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Abstract

For every prime number pn, we define the sequence Xn =
∏

q≤pn

q
q−1 −eγ×log θ(pn), where θ(x) is

the Chebyshev function and γ ≈ 0.57721 is the Euler-Mascheroni constant. The Nicolas theorem
states that the Riemann hypothesis is true if and only if the Xn > 0 holds for all prime pn > 2. For
every prime number pk, Xk > 0 is called the Nicolas inequality. We show if the sequence Xn is
strictly decreasing for n big enough, then the Riemann hypothesis must be true. For every prime

number pn > 2, we define the sequence Yn = e
1

2×log(pn )

(1− 1
log(pn ) )

and show that Yn is strictly decreasing for

pn > 2. For all prime pn > 286, we demonstrate that the inequality Xn < eγ × log Yn is always
satisfied. We prove that limn→∞ Xn = limn→∞(log Yn) = 0.
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1. Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with real part 1

2 [1]. In mathe-
matics, the Chebyshev function θ(x) is given by

θ(x) =
∑
p≤x

log p

with the sum extending over all prime numbers p that are less than or equal to x [2]. For every
prime pn, we define the sequence

Xn =
∏
q≤pn

q
q − 1

− eγ × log θ(pn).

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural logarithm. The
importance of this property is:

Theorem 1.1. [3], [4]. Xn > 0 holds for all prime pn > 2 if and only if the Riemann hypothesis
is true. Moreover, the Riemann hypothesis is false if and only if there are infinitely many prime
numbers qi for which Xi ≤ 0 and infinitely many prime numbers r j for which X j > 0.
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We use the following properties of the Chebyshev function:

Theorem 1.2. [2].

lim
x→∞

θ(x)
x

= 1.

Theorem 1.3. [5]. For x ≥ 41:

θ(x) > (1 −
1

log(x)
) × x.

Besides, we use the following result:

Theorem 1.4. [5]. For x ≥ 286:∏
q≤x

q
q − 1

< eγ × (log x +
1

2 × log(x)
).

We also use the Mertens’ theorem which states:

Theorem 1.5. [6].

lim
x→∞

(
1

log x
×

∏
q≤x

q
q − 1

) = eγ.

We prove if the sequence Xn is strictly decreasing for n big enough, then the Riemann hy-

pothesis must be true. For every prime number pn > 2, we define the sequence Yn = e
1

2×log(pn )

(1− 1
log(pn ) )

and

show that Yn is strictly decreasing for pn > 2. Finally, for all prime pn > 286, we demonstrate
that the inequality Xn < eγ × log Yn is always satisfied.

2. Results

Theorem 2.1.
lim
n→∞

Xn = 0.

Proof. We know by the theorem 1.5:

lim
n→∞

(
1

log pn
×

∏
q≤pn

q
q − 1

) = eγ,

and we have by the theorem 1.2:

lim
n→∞

θ(pn)
pn

= 1.

Putting all this together yields the proof:

lim
n→∞

∏
q≤pn

q
q − 1

− eγ × log θ(pn)

 = lim
n→∞

(
eγ × log pn − eγ × log pn

)
= 0.
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Theorem 2.2. If Xn is strictly decreasing for n big enough, then the Riemann hypothesis must be
true.

Proof. Suppose that pn > 2 is the smallest prime number such that the Nicolas inequality is false
under the assumption that Xi is strictly decreasing (that is Xi > Xi+1). In this way, we have

Xn ≤ 0

and thus
Xn+1 < Xn ≤ 0.

This implies
lim sup

n→∞
Xn < 0

which is a contradiction with the theorem 2.1. By contraposition, the Nicolas inequality would
be satisfied for all prime pn big enough. Consequently, there would be not infinitely many prime
numbers for which the Nicolas inequality is unsatisfied. In this way, using the theorem 1.1, we
can conclude that the Riemann hypothesis must be true when Xn is strictly decreasing for n big
enough.

For every prime number pn > 2, we define sequence Yn = e
1

2×log(pn )

(1− 1
log(pn ) )

.

Theorem 2.3. For every prime number pn > 2, the sequence Yn is strictly decreasing.

Proof. For every real value x ≥ 3, we state the function

f (x) =
e

1
2×log(x)

(1 − 1
log(x) )

where the derivative of f (x) is

f ′(x) = −
1.5 × e

1
2×log(x) × (log(x) − 0.333333)

x × (log(x) − 1)2 × log(x)
.

Consequently, the function f (x) is monotonically decreasing for every real value x ≥ 3 and
therefore, the sequence Yn is monotonically decreasing as well. Indeed, a function f (x) of a real
variable x is monotonically decreasing in some interval if the derivative of f (x) is lesser than zero
and the function f (x) is continuous over that interval [7]. Certainly, the function f ′(x) is lesser
than zero for all values x ≥ 3 where f (x) is continuous. In addition, Yn is essentially a strictly
decreasing sequence, since there is not any natural number n > 1 such that Yn = Yn+1.

We will prove another important result:

Theorem 2.4. Let q1, q2, . . . , qm denote the first m consecutive primes such that q1 < q2 < · · · <
qm and qm > 286. Then

m∏
i=1

qi

qi − 1
< eγ × log (Ym × θ(qm)) .
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Proof. From the theorem 1.3, we know that

θ(qm) > (1 −
1

log(qm)
) × qm.

In this way, we can show that

log (Ym × θ(qm)) > log
(
Ym × (1 −

1
log(qm)

) × qm

)
= log qm + log

(
Ym × (1 −

1
log(qm)

)
)
.

We know that

log
(
Ym × (1 −

1
log(qm)

)
)

= log

 e
1

2×log(qm )

(1 − 1
log(qm) )

× (1 −
1

log(qm)
)


= log

(
e

1
2×log(qm)

)
=

1
2 × log(qm)

.

Consequently, we obtain that

log qm + log
(
Ym × (1 −

1
log(qm)

)
)
≥ (log qm +

1
2 × log(qm)

).

Due to the theorem 1.4, we prove that

m∏
i=1

qi

qi − 1
< eγ × (log qm +

1
2 × log(qm)

) < eγ × log (Ym × θ(qm))

when qm > 286.

We finally obtain the main result:

Theorem 2.5. For all prime pn > 286, we show that the inequality Xn < eγ × log Yn is always
satisfied.

Proof. According to the theorem 2.4, we have that for all prime pn > 286:∏
q≤pn

qi

qi − 1
< eγ × log (Yn × θ(pn))

which is equivalent to ∏
q≤pn

qi

qi − 1
− eγ × log θ(pn) < eγ × log Yn

and thus,
Xn < eγ × log Yn.
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Theorem 2.6.
lim
n→∞

(log Yn) = 0.

Proof. We obtain that

lim
n→∞

(log Yn) = lim
n→∞

(log
e

1
2×log(pn )

(1 − 1
log(pn) )

)

= log 1
= 0.
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