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Abstract. Computer game technology is increasingly more complex and
applied in a wide variety of domains, beyond entertainment, such as
training and educational scenarios. Testing games is a difficult task re-
quiring a lot of manual effort since the interaction space in the game is
very fine grained and requires a certain level of intelligence that cannot
be easily automated. This makes testing a costly activity in the overall
development of games.
This paper presents a model-based formulation of game play testing in
such a way that search-based testing can be applied for test generation.
An abstraction of the desired game behaviour is captured in an extended
finite state machine (EFSM) and search-based algorithms are used to
derive abstract tests from the model, which are then concretised into
action sequences that are executed on the game under test.
The approach is implemented in a prototype tool EvoMBT. We carried
out experiments on a 3D game to assess the suitability of the approach
in general, and search-based test generation in particular. We applied
5 search algorithms for test generation on three different models of the
game. Results show that search algorithms are able to achieve reasonable
coverage on models: between 75% and 100% for the small and medium
sized models, and between 29% and 56% for the bigger model. Mutation
analysis shows that on the actual game application tests kill up to 99%
of mutants. Tests have also revealed previously unknown faults.

Keywords: game play testing · search-based testing · model-based test-
ing

1 Introduction

A common approach to test a computer game is by play testing it, where human
users are deployed to play the game in order to find flaws, usability issues,

? This work is a result of iv4XR project, funded by the EU Horizon 2020 research and
innovation programme under grant agreement No 856716.
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and to give feedback on the game user experience. This process is expensive,
so introducing automation could greatly reduce the cost. Unfortunately, so far
there is not much automated testing technology available for computer games.
A handful that exist are tailored for specific games (and not publicly available).

Computer games also come in a great variety of genres such as action, adven-
ture, puzzle, strategy, building, etc [1]. The difference between genres (or even
within the same genre) is large, e.g. an action game is usually a fast moving
event driven system but the story is linear, while an adventure game is much
less event driven, but the story is often complex. While such variety is good to
keep users entertained, it certainly does not help in developing an automated
testing approach that would work for all, or at least most, game genres.

This paper presents model-based approach for automated play testing of
computer games, relying on search-based testing for generating tests. Outside
the Game domain, model-based testing (MBT) [12] has long been known as a
versatile testing approach. Similarly, search-based testing (SBT) [9] has proven
effective for generating tests, in particular when the search space is large and
exact methods are not applicable. This paper aims to formulate game play testing
in such a way that SBT can be applied for automated test generation.

We present an approach for modelling game behaviour using extended finite
state machines (EFSMs) in such a way that the tester can model the desired
aspect of the game behaviour. Once the model is defined, SBT is applied for test
generation from the model, following a typical MBT cycle.

The approach is implemented in a prototype tool EvoMBT which allows the
generation of abstract tests from EFSM models by applying search-based algo-
rithms. Empirical evaluation is carried out by applying EvoMBT on a 3D game
called Lab Recruits. The concretisation and execution of abstract tests on Lab

Recruits is implemented by means of an agent-based API of Lab Recruits.
Results show that the proposed application of SBT and MBT are effective in
achieving reasonable levels of coverage on the model and exposing faults.

The main contributions of this work are:

1. an approach combining SBT and MBT for automated game play testing

2. a tool EvoMBT for generation of tests from an EFSM model, allowing exper-
imentation with existing search algorithms

3. publicly available artifacts (tool, models, data) that enable reproducibility
of results and facilitate further research.

The rest of the paper is organised as follows: Section 2 presents the run-
ning example used throughout the paper. Section 3 discusses issues in modelling
games and presents definitions used in the rest of the paper. Section 4 introduces
the testing problem and Section 5 presents our proposed search-based test gen-
eration approach. Experimental results are presented in Section 6 and related
work is discussed in Section 7. Section 8 concludes, and outlines future work.
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Fig. 1. Level buttonDoors1 in Lab Recruits.

2 Running Example

This section introduces Lab Recruits3, a 3D game developed for experimenting
with intelligent agents. The application allows the definition of mazes, a set of
rooms connected by doors. Each door is opened by one or more buttons, and
each button activates one or more doors. The goal is to find the path to reach
a certain room by opening doors in the right order. The game can be played by
both humans and artificial agents [10]. Lab Recruits levels are defined as csv
(comma-separated value) human-readable files allowing researchers to specify
their tests of variable complexity.

As a running example, Figure 1 shows a level of the Lab Recruits game
named buttonDoors1. The level features three doors, door1, door2, and door3,
and four buttons, b0, b1, b2, and b3. Door door1 is activated by buttons b1,
b2, and b3, while door2 and door3 are connected only to b2. Note that b0 is
not connected, therefore pressing it has not effect in the game. Agent agent1

aims to reach the room marked with a star, and therefore to open door3. A
possible path requires agent1 to press b1 to open door1 and then b2 to open
door3. Since b2 also acts on door1, at this point agent1 cannot reach door3,
but need to traverse door2 and press b3 to open door1. Now, agent1 walks
through door1 and door3, finally reaching the star room. Even if the layout of
the level is simple, the path to reach the final room is not trivial and it is not
trivial for automated play testing.

3 Modelling Games

Computer games are stateful systems, and hence using state-based models to
model them is natural. They are also very complex systems, so abstraction will

3 https://github.com/iv4xr-project/labrecruits

https://github.com/iv4xr-project/labrecruits
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have to be applied, but not to the degree that we lose control and observability
of the system. Plain finite state machines (FSM) or labelled transition systems
are in most cases either cumbersome or insufficient, and we will need to use, for
instance, EFSM that allow variables and assignments to be superimposed over
a finite state model. The running example presented in Section 2 with buttons
and doors whose states change dynamically can be modelled with a plain FSM,
but its size would be quite large; whereas an EFSM model would be much more
succinct and easy to understand.

Unlike other types of systems, modelling a computer game has an additional
challenge due to the presence of the ‘world’ where the game is played on. E.g.
the Lab Recruits game in Section 2 is played in a virtual lab building as its
’world’. A world imposes certain constraints. Triggering a state might require
a certain interactable to be interacted with, but a test agent can only do that
if the interactable is physically reachable from its current position. If there is a
wall between them, this is obviously problematic. So in terms of modelling, such
physical constraints need to be taken into account as well. That is, a transition in
the model should be translatable to a concrete sequence of actions by the agent,
that are also physically possible. The same goes with observation. When the
model requires that a certain condition should be checked, e.g. as an invariant
to check, or as the guarding condition of a transition, it implies that the agent
should be able to observe the condition. In the game setup this is not always
given. A wall might be blocking the agent’s sight, and hence the agent might
first need to move itself to a spot where it can observe the said condition. In
terms of modelling, this means that introducing guards and invariants in the
model implies that there should exist a feasible way for the agent to actually
observe them.

In the next subsection, we present the EFSM notation we adopt in the rest of
the paper, and introduce the modelling of Lab Recruits (see Section 2) which
takes into consideration the issues mentioned above regarding the modelling of
games for testing purposes.

3.1 EFSM Notation

An FSM models the behaviour of a system as a finite set of states connected by
transitions, where a transition could be fired by an input and returns an output.
EFSMs [4] introduce data information into FSM behavioral representation. An
EFSM has an internal memory, a set of variables, to store data and extends FSM
transitions with guards and update transformations. Guards specify whether a
transition can be performed according to the values of the variables stored in
the memory. Updates allow changing variable values as a result of a transition.
In this paper we adopt the following definition of EFSM.

Definition 1 (EFSM). An EFSM E is a 7-tuple (S, I,O,D, F, U, T ), where

– S is a set of states
– I is s set of input symbols and O is a set of output symbols
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– D̄ : D1 × . . .×Dn is an n-dimensional space .
– F is a set of enabling functions fi : D̄ → {0, 1}
– U is a set of update transformations ui : D̄ → D̄
– T : S × F × I → S × U ×O is a transition relation.

Symbol x̄ = (x1, . . . , xn) indicates an element of D1×. . .×Dn. Given states s1, s2,
input i, output o, f ∈ F , and u ∈ U , (s1, f, i) → (s2, u, o) denotes T (s1, f, i) =
(s2, u, o). Given a vector variables x̄ ∈ D̄ at s1, the notation specifies a transition
from s1 to s2, triggered by the input i, and provided f(x̄) = 1. The transition
produces the output o, and updates x̄ to u(x̄).

A finite path P over an EFSM E = (S, I,O,D, F, U, T ) is a finite sequence
of transitions t0 . . . tn ∈ T . A configuration of E is a pair state s ∈ S and vector
variables x̄ ∈ D. A feasible path over E from a configuration (s0, x̄) is a path
t0 . . . tn such that the enabling function of t0 is 1 for x̄ and for each i ∈ [1, n],
fi(ui−1(x̄i−1)) = 1 with fi enabling function of ti, ui−1 update function on ti−1,
and xi−1 vector variables at i− 1.

EFSM model for Lab Recruits A model for Lab Recruits captures the
essential features of the game while abstracting away from details that are not
of interest to the tester. For instance, to check the consistency of the button-
door connections in the game, a candidate model could consider only buttons
and doors and the actions the player can perform: move from a door to a button
or to another door, walk trough a door, and toggle a button. Such a model for
buttonDoors1 in Figure 1 could be EFSM LR1 = (S, I,O,D, F, U, T ) in Figure
2. The set of states S are buttons and doors. For each door door , d p and d m

model the two sides of door . The n-dimensional space D records door status
with D = {0, 1}×{0, 1}×{0, 1}, where xi control door i. The EFSM in Figure 2
has three types of transitions: solid edges for free travel, when the agent can move
from one entity to the other without traversing a door; this type of transition
has empty enabling and update functions. Dotted transitions model guarded
movements that happen when the agent walks through a door; the enabling
function check the status of the corresponding variable, while update function is
empty. Dashed self loop transitions are for toggle actions, i.e., the agent presses
the button; the update function changes the status of the doors connected to
the pressed button. Note that the concept of ‘transitions’ here also incorporates
‘world travel’. That is, a transition in the model is guaranteed to be physically
possible in the Lab Recruits world, and furthermore the guards guarding the
transitions can be physically checked as well (through some concretisation that
guides the agent to observe them, achieved via automated navigation in the
underlying testing framework [11]). Input set I = {travel, toggle} defines the
actions an agent can perform, i.e., move (travel) or press a button (toggle).
Output set O is empty.

The game starts with the agent near b0 and with all the doors closed, there-
fore x̄ = (0, 0, 0). A feasible path to reach star room in Figure 1 has to include
transition 16 (t16, for short), and therefore opening door3. The agent1 starts
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Fig. 2. EFSM model of buttonDoors1 in Figure 1

going to b1 (t30) and pressing it (t23). Update transformation changes x̄ to
(1, 0, 0), i.e., door1 is open. Then, agent1 goes to d1m (t24) and walks through
door1 reaching d1p (t20). Enabling function of t20 is 1, as x1 = 1. After that,
agent1 goes to b2 (t13) and presses it (t9), changing x̄ to (0, 1, 1), so door1 is
closed, while door2 and door3 are open. At this point, the agent goes to door2

(t8), crosses it (t5), reaches b3 (t3), and toggles it (t1). Button b3 opens door1
so that x̄ = (1, 1, 1), i.e., all the doors are open. Now, agent1 can reach star room
following, for instance, t1, t4, t6, t14, t21, and t16. This gives an example of a
feasible path from the initial position of the agent to the star room mimicking
the steps an agent has to perform.

We also implemented a random level generator for Lab Recruits for exper-
imental purposes. The generator builds on the observation that the EFSM of a
Lab Recruits level has a specific structure. First, a room is represented by the
set of buttons it contains. Given the total number of buttons n buttons in a level
and the mean mean buttons number of buttons in a room, the algorithm extracts
random integers from a Poisson distribution with mean mean buttons, until all
buttons are used. For instance, given n buttons = 10 and mean buttons = 2, the
generated sequence 2, 3, 2, 1, 2 corresponds to the number of buttons in a level
with 5 rooms. Then, given the number of doors n doors, we randomly connect
two rooms until all doors are used. The algorithm guarantees that there are not
unconnected rooms. Given a room, the corresponding EFSM model has a state
for each button and door side, and all the states are connected by a free travel
Each button has a self loop with update function that represents button-door
connections. Finally, the models corresponding to linked rooms are connected
by guarded travel transition, where the enabling function checks the status of
the door. The generated EFSM can be transformed into the corresponding csv
file level and opened on Lab Recruits.

4 Problem Definition

The play testing problem involves finding a sequence of actions that achieve a
desired goal in the game. Given the model of the system under test (SUT), the
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play testing problem could be represented as a coverage problem on the model.
Testing a specific play action in the game (corresponding to a transition T in the
model) is equivalent to finding a prefix play that would reach the source state of
T , and subsequently a suffix play to verify the effect of T . Hence, generating a test
suite from the model that would cover all transitions corresponds to exercising
the corresponding game play actions in the SUT. Stronger coverage criteria, such
as k-transition coverage and path coverage, represent more rigorous interactions
of game play actions.

5 Test Generation

Our proposed approach follows the generic model-based test generation approach
where the SUT is abstracted into a model which is then used to generate abstract
tests. The abstract tests are then concretised into concrete tests that can be
executed on the SUT.

The goal of the work presented in this paper is to investigate the feasibil-
ity of applying the model-based approach by incorporating search-based test
generation for the test generation phase.

The abstraction phase, where the model of the SUT is built, typically in-
volves human involvement as it requires a good understanding of the behaviour
of the SUT. In our experiments, we have used models which were crafted manu-
ally as well as randomly generated ones. However, the test generation approach
presented here is independent of how the model is generated, as long as it is
as described in Section 3.1. The concretisation and execution phases are spe-
cific to the SUT and could be implemented in different ways, depending on the
nature of the SUT. For our experiments we have built automated transformers
from abstract tests to concrete tests, and adopted an agent-based API provided
by the SUT for executing the tests. For a different SUT, different concretisation
(and execution) mechanisms are needed, however the generation of abstract tests
remains the same, as long as the model of the SUT is provided.

In the remainder of this section, we present the search-based test generation
approach for deriving abstract tests from the model of the SUT.

5.1 Search-based test generation

Test generation from models could be driven by different goals. In this paper
we outline a search-based approach that can be applied to find test suits that
satisfy a desired model coverage criterion, e.g., transition coverage. We present
the various ingredients needed for applying a search algorithm for test generation,
including individual representation, search operators, and fitness function.

Individual representation Given an EFSM, we represent an individual as a
path (sequence of transitions), starting from the initial state of the model (see
Section 3.1). Individuals can be of different length, up to a pre-defined maxi-
mum. For our running example (see Figure 2), I1 = 〈t27, t28, t18, t21〉 represents
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an example of an individual. Note that paths in the model may or may not
be feasible, hence an individual, as generated initially, is not guaranteed to be
feasible.

Search operators With individuals represented as paths in the model, differ-
ent operators could be implemented. Here we describe crossover and mutation
operators that we used in our experiments. Clearly, other operators could be
implemented and experimented with.

Crossover: one possible way of implementing crossover is to adopt a straightfor-
ward application of single point relative crossover. Given two individuals, a com-
mon state is chosen at random and the tails of the two individuals are swapped.
For our running example, if I1 = 〈t30, t26, t16, t11〉 and I2 = 〈t29, t21, t17, t25〉,
crossover at state d3m results in offspring O1 = 〈t30, t26, t17, t25〉 and O2 =
〈t29, t21, t16, t11〉.

Mutation: we propose three mutation operators, applied with equal probability:
1) insert self transition: insert a self transition on a randomly chosen state of the
model, if such a transition is allowed
2) delete self transition: remove a self transition at random
3) delete a transition: remove a transition at random.

Fitness function Given an EFSM model and a given coverage criterion, the
fitness function should guide the search towards covering all coverage targets.
However, since the individual may not be feasible, the fitness function should
also guide the search towards turning the individual into a feasible one. As a
result, the fitness function has two components: 1) related to path feasibility,
and 2) related to the search target. A high level algorithm of the fitness function
we adopted is shown in Algorithm 1. To calculate the fitness of an individual
with respect to a coverage target, first the individual is executed on the model
and the execution trace as well as the outcome of the execution are returned (line
6 in Algorithm 1). If the individual is a feasible path, then the algorithm checks
to see if the current target is present in the individual. If present (line 9) then
target is covered, otherwise, the fitness value should estimate the distance from
satisfying the target. In this case, we opt for a simple heuristic, i.e., penalising the
individual by a predefined constant value (PENALTY1 ). Other heuristics could
be applied here as well. If however the individual happens to be infeasible (line
14 in Algorithm 1, this means that a transition guard in the path represented
by the individual has failed. In this case, we compute the approach level and
branch distance for the path (lines 15 and 16). Approach level is computed as
the number of transitions in the path yet to be traversed. Branch distance is
computed based on the guard expression of the failing transition, as typically
done in code-based testing [9]. We then check whether the individual contains
the current target (line 17). If yes, no penalty is applied, otherwise, a penalty
is applied (PENALTY2 � PENALTY1 ). Finally, the algorithm computes the
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Algorithm 1 Fitness function
1: Input
2: I individual
3: T target

4: Output
5: f fitness value

6: trace, feasible←− executeOnModel(I)
7: if feasible then . individual I represents a feasible path in the model
8: al feasiblity, bd feasiblity ←− 0
9: if T ∈ I then
10: al target, bd target←− 0
11: else
12: al target, bd target←− PENALTY1 . even if I eventually turns feasible, T remains

uncovered, but at least I is feasible
13: end if
14: else if not feasible then . individual I represents an infeasible path
15: al feasiblity ←− length(I)− passdTransitions
16: bd feasiblity ←− computeBranchDistance(trace)
17: if T ∈ I then
18: al target, bd target←− 0 . fitness takes the value of feasiblity fitness
19: else
20: al target, bd target←− PENALTY2 . even if I turns feasible, T remains uncovered
21: end if
22: end if
23: f feasiblity = al feasibility + normalise(bd feasibility)
24: f target = al target + normalize(bd target)
25: f = f feasibility + f target

feasibility fitness and target fitness values, and sums them up to find the fitness
value of the individual (lines 23-25).

Search algorithms Once the individual encoding, search operators, and fitness
function are defined, existing search algorithms could be applied to generate
tests. In practice though, the corresponding machinery for implementing the
test generation is needed. We have implemented a prototype tool EvoMBT that
uses EvoSuite [5] as a library. EvoMBT implements all the model related parts,
including the operators discussed above. It implements EvoSuite’s interfaces in
such a way that search algorithms already implemented in EvoSuite can be used
out-of-the-box. Details are discussed in Section 6.

6 Evaluation

In this section we present the experiment we carried out in order to get insight
into the feasibility of the proposed test generation approach combining search
based algorithms with model based testing.

6.1 Prototype: EvoMBT

EvoMBT provides an implementation of the EFSM used in this paper and the
necessary machinery for generating/executing tests from/on the model, compute
fitness values, and collect coverage. EvoMBT uses search algorithms implemented
in EvoSuite [5] (i.e., EvoSuite is used as a library). EvoMBT currently implements
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state and transition coverage criteria, relative point crossover, and a number of
mutation operators. At the moment, several search algorithm found in EvoSuite
can be used with EvoMBT without any modification. For the purpose of experi-
mentation, EvoMBT also implements mutation operations on the Lab Recruits

application, and enables concretisation and execution of generated tests on Lab

Recruits (both mutated and original). It generates different reports that enable
analysis of results as well as debugging of eventual faults. EvoMBT is publicly avail-
able in Github: https://github.com/iv4xr-project/iv4xr-mbt. We also pro-
vide an executable jar with all the necessary resources, and additional plots that
could not fit in the paper, here: https://doi.org/10.5281/zenodo.4768470.

6.2 Models of the system under test

We use three different models of Lab Recruits: i) buttonDoors1: the running
example (see Section 2) with 10 states and 30 transitions, ii) randomMedium:
randomly generated model as described in Section 3.1 with n doors = 8 and
n buttons = 10 having 26 states and 116 transitions, and iii) randomLarge:
randomly generated with n doors = 15 and n buttons = 20 having 50 states
and 194 transitions.

6.3 Experiment setup

Experiments are aimed at assessing: feasibility of search-based algorithms for
generating abstract test sequences from the model, practicality of abstract tests
for execution on the actual system under test, and fault finding potential of the
generated tests. Consequently we formulate the following research questions to
guide our experimental evaluation:

RQ1 - Suitability of SBT how suitable are search based algorithms for test
generation from the models?

RQ1.1 - Model coverage how much of the models are covered by the test
generation algorithms?

RQ2 - Test execution are the model-based tests feasible in terms of execution
on the actual application?

RQ3 - Fault finding what is the fault finding potential of the tests generated
from the models?

For RQ1, we report on the search algorithms we used for test generation
and the coverage they achieved on the models (RQ1.1). For this purpose we
use transition coverage criterion, computed as the ratio of covered transitions
to the total number of transitions in the model. For RQ2, we measure the test
execution time on the Lab Recruits application. For RQ3, we measure the
mutation score of the tests on mutants injected into the Lab Recruits appli-
cation. Mutation score is computed as the ratio of killed mutants to the total
number of mutants generated.

https://github.com/iv4xr-project/iv4xr-mbt
https://doi.org/10.5281/zenodo.4768470
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Fig. 3. Coverage achieved by the search algorithms for the three models

Experimental settings For the search algorithms, we kept the default values in
EvoSuite. For search budget, we use 300 seconds, collecting statistical data every
10 seconds. Experiments were run on computers with Intel Core i7 processors
with 8 cores @2.80GHz and 8GB memory, running Ubuntu Linux.

Experiment procedure For RQ1.1 we run each algorithm on a given model 20
times, to account for the random nature of the algorithms. Hence, we performed
5 algorithms × 3 (models) × 20 (repetitions) = 300 runs for a total of 300 ×
300 (seconds) = 90000 seconds (25 hours). For RQ2, we report test execution
times on the Lab Recruits application for all test suites generated. For RQ3,
we report the mutation scores for all algorithms generated on buttonDoors1,
randomMedium, and randomLarge.

6.4 Results

Suitability of SBT (RQ1) The first set of results are related to the suitability
of search based testing for the generation of tests from models. We have applied
5 different search algorithms: MONOTONIC GA, MOSA, NSGAII, SPEA2,
STEADY STATE GA for the generation of tests from the models. Figure 3 shows
the coverage achieved by each algorithm on the three models of Lab Recruits.

As can be seen from Figure 3, the algorithms achieve different levels of cov-
erage on the three models. On the running example (buttonDoors1), which is
the least complex of the three with 30 transitions in total, all algorithms achieve
high levels of coverage with MOSA achieving 100%. On the randomMedium model
which has 116 transitions, MOSA still achieves full coverage, while the other al-
gorithms achieve less than for the smaller model. On the largest of the three,
which has 194 transitions, the coverage achieved by the algorithms decreases
with MOSA achieving 59% median coverage while the others achieve below 37%.
Given the size of the model, the results could potentially improve if search bud-
get is increased. As can be seen in Figure 4, the trend shows that the coverage
is likely to increase with increased search budget.

We answer RQ1 positively: different search algorithms could be applied for
test generation from models, achieving reasonable levels of transition coverage.
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Fig. 4. Coverage achieved on randomLarge by the search algorithms over time

Model Algorithm Tests Passed Failed Time (avg per test)

buttonDoors1

STEADY STATE 237 220 17 36 (0.15)
NSGAII 222 195 27 34.2 (0.15)
MONOTONIC 239 205 34 29.5 (0.12)
SPEA2 227 204 23 28.4 (0.13)
MOSA 400 380 20 36.1 (0.09)

randomMedium

STEADY STATE 436 391 45 661.3 (1.52)
NSGAII 614 502 112 1176 (1.92)
MONOTONIC 564 495 69 1324.5 (2.35)
SPEA2 594 527 67 1104.8 (1.86)
MOSA 919 833 86 1362.2 (1.48)

randomLarge

STEADY STATE 249 31 218 243.2 (0.98)
NSGAII 401 22 379 412.8 (1.03)
MONOTONIC 466 25 441 613.8 (1.32)
SPEA2 307 31 276 267.4 (0.87)
MOSA 546 28 518 430.1 (0.79)

Table 1. Test execution time on Lab Recruits (in minutes), the tests are organized
into 20 test suites for each algorithm

Test execution (RQ2) We measured the time it takes to execute the generated
tests on the actual Lab Recruits application. The abstract tests are concretised
for automated execution on Lab Recruits via its agent based API. The execu-
tion of tests on Lab Recruits involves the player (driven by the test agent)
actually interacting with the game environment (e.g., going from one room to
another, pressing buttons, etc). Hence, the execution of tests is time taking.

As can be seen from Table 1, test execution on Lab Recruits is rather time
taking. Hence, if the test generation were to be done directly on Lab Recruits,
it would have taken an extremely long period of time. To give an idea, on
buttonDoors1, MOSA performed, on average, 54848 fitness evaluations (i.e.,
executed abstract tests on the model). Executing that many tests directly on
Lab Recruits would take several days.

For RQ2, overall the model based approach for test generation combined with
search algorithms gives an efficient means for generating tests for such systems
as Lab Recruits where test execution is slow.
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Model Mutants Algorithm Suits Tests Mutantion score (avg. per suite)

buttonDoors1 5

STEADY STATE 20 220 0.46
NSGAII 20 196 0.41
MONOTONIC 20 204 0.34
SPEA2 20 204 0.37
MOSA 20 377 0.59

randomMedium 8

STEADY STATE 20 386 0.83
NSGAII 20 506 0.80
MONOTONIC 20 487 0.79
SPEA2 20 508 0.92
MOSA 20 850 0.98

randomLarge 24

STEADY STATE 20 32 0.08
NSGAII 20 20 0.03
MONOTONIC 20 25 0.11
SPEA2 20 31 0.08
MOSA 20 29 0.12

Table 2. Mutation analysis results

Fault finding (RQ3) With RQ3, we assess the fault finding potential of the
generated tests. We created mutants in the Lab Recruits application in which
the association between buttons and doors is changed, i.e., a link between a
button and a door is removed. We created a number of mutants and executed
the generated test suites on each mutant. Given that the tests may not all run
successfully on the original application (see Table 1, ‘Failed’ column), we exe-
cuted only the passing tests on the mutants, and calculated the mutation score.
The results, presented in Table 2, show that the generated tests are effective
in detecting the injected faults. It is worth noting that the mutation scores for
buttonDoors1 and randomLarge are low because several tests failed when exe-
cuted on the original Lab Recruits application (see Section 6.4), reducing the
coverage of the tests. These test failures are due to bugs in Lab Recruits and
the agent based API. In particular, in Lab Recruits, under certain circum-
stances, pressing a button fails to open a door controlled by it. On the agent
API, we found instances where the agent gets stuck while navigating the game
world, which is not supposed to happen. All faults have been reported to the
developers of Lab Recruits.

Concerning RQ3, experimental results show that generated tests are effective
in detecting injected faults and revealing actual bugs in the application under
test.

7 Related Work

Although SBT has been successful for various types of software, its application
in computer games has not been much studied. Directly using a search algorithm
to search for test sequences without any model has not been attempted, as far we
as know. The search space is far too large for such an approach to work. Instead,
existing works tend to employ search algorithms for optimizing learning-based
automated agents. For example Holmg̊ard et al [6] uses Monte Carlo Search Tree
(MCTS) based agents to replace human play testers. A genetic algorithm is used
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to evolve MCTS’ selection policy towards a desired play style. The case study is
small; a game played in a 10×20 grid. It is unclear if the approach would scale
to bigger games.

There were very few studies, as far as we could find, on the use of MBT for
testing computer games, e.g. [13,2,7]. Ariyurek et al [2] use a scenario graph for
generating abstract test sequences. Such a graph is essentially an FSM whose
states are decorated with a set of predicates that abstractly describe the state of
a game under test. MCTS is used to search for the concrete sequence of actions
that implement the steps in an abstract test sequence. The case studies are
however small scale games, played in a grid not larger than 10×11; it is not clear
if MCTS would scale to a larger search space. To deal with larger game worlds
Prasetya et al. investigate the use of navigation mesh as a model [11] of the game
world under test, subjected to their agent-based automated testing framework
iv4XR/aplib [10]. The idea is taken from pathplanning, where the walkable areas
of a physical or virtual world is divided into a finite set of connected shapes (e.g.
triangles). This reduces the initially infinite search space into a finite graph which
is then used as a model to guide agents’ navigation, e.g. using A*.

Iftikhar et al [7] use UML state machine, which is an EFSM, to model an
open source variant of the Super Mario game. The study does not however fully
explore the implication of using extended FSMs. For generating tests, an N+
strategy is used [3], that is aimed at covering all transitions and round trips. This
strategy is not strong enough to handle an EFSM with complex constellations of
conditions. It essentially unrolls the FSM into a tree where along any full path
in the tree no node is repeating, except if it is the last node.

Outside the game domain, search-based algorithms are used for generating
tests from EFSMs. Many of the works are focused on finding valid paths from the
models and eventually covering predefined goals (e.g., [8]). Our work is aimed
at exploring the feasibility of SBT for automated play testing via modelling.
In this regard, existing works on SBT from EFSMs are complementary with
ours, and could eventually be experimented with in EvoMBT so as to increase the
effectiveness and efficiency of test generation. For instance, the fitness function
of Kalaji et al [8] could be implemented in EvoMBT in order to assess its feasibility
for the play testing use case.

8 Conclusion and Future Work

We have presented an approach for automated game play testing by employing
the combined application of search-based and model-based testing. The main
objective of the work presented is exploratory in nature where we tried to assess
the suitability of search-based testing for automated game play testing. Game
play behavior is abstracted into an EFSM model and search-based algorithms
are used to generate abstract tests, which are then converted into concrete tests
that can be executed on the game. Experimental results are promising where a
number of search algorithms were experimented with and achieved reasonable
model coverage, mutation score, and exposed real bugs in the game under test.
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The current work makes a number of choices with respect to heuristics used
for test generation, such as fitness function and search operators. There are
different alternatives that could be implemented and experimented with as part
of future work.
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