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Abstract— This paper presents a robust protection scheme
to protect the power transmission network against a class of
feedback-based attacks referred in the literature as "Dynamic
Load Altering Attacks" (D-LAAs). The proposed scheme en-
visages the usage of Energy Storage Systems (ESSs) to avoid
the destabilising effects that a malicious state feedback has on
the power network generators. The methodologies utilised are
based on results from polytopic uncertain systems, invariance
theory and Lyapunov arguments. Numerical simulations on a
test scenario validate the proposed approach.
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NOMENCLATURE

δ Voltage phase angle at generator buses
ω Frequency deviation at generator buses
φ Frequency deviation at load buses
M Inertia matrix of the generators
n,m number of generators and load buses
Ma,Mp sets of vulnerable and secure buses
D,DL Damping coefficient matrices
PL Power consumption at load buses

KP ,KI Generator controller gain matrices
KLG Attack gain matrix
α Decrease rate of the Lyapunov function

umax Bound on the ESS power norm
0n,1n Column vectors of zeros and ones of size n

I. INTRODUCTION

Energy storage systems (ESSs) are becoming an integral
part of modern power networks. In fact, the flexibility offered
by their capability to absorb or release power in a controlled
way proved to be a promising enabler for the provisioning
of ancillary services aimed at improving power quality and
voltage stability performances [1], while also contributing
to optimal renewable sources usage [2], [3]. It was expected
then that, due to the ever increasing penetration of distributed
renewable energy sources and electro-mobility [4], ESSs
research and number has significantly increased in the last
few years.

Devices such as ESSs, controllable loads and distributed
generators require for their functioning complex control
systems together with information gathered from several
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heterogeneous sources, as market signals and remote network
state measurements. As a consequence, power systems as
a whole have evolved towards highly interconnected cyber-
physical systems in which a modern ICT control system
manages the dynamics and operational constraints of the
physical network [5]. Treating power networks as active
cyber-physical systems offers significant improvements in
their economic performances, enabling functionalities such
as dynamic exploitation of power tariffs and demand side
management programs [6], but at the same time, due to the
interconnected nature of the modern ICT control systems,
introduces also several new vulnerabilities in the network
[7].

Among the various cyber attacks that target power net-
works, this work focuses on the so-called "Dynamic Load
Altering Attacks" (D-LAAs), originally presented in [8]. D-
LAAs are feedback-based attacks that aim at destabilising
the transmission network by dynamically controlling, in a
malicious way, compromised flexible loads that could be
normally used for demand side management programs or
smart functionalities.

This paper presents a protection scheme based on robust
control methods and Lyapunov arguments to protect power
networks against D-LAAs by controlling ESSs in such a way
that the destabilising effects of D-LAAs are compensated
without requiring any real-time detection or reconstruction
of the attack. With respect to the previous work from the
authors [9], developed in the scope of the H2020 ATENA
project [10], this paper proposes a defence strategy that has
robust properties against a whole set of identified potential
D-LAAs whereas [9] assumed the attack characteristics to
be known. This paper also differentiates from [11] as the
protection scheme proposed by its authors was based mainly
on securing loads, and consequently reducing the degree of
freedom available to the attacker, while this work proposes
a control law for an active component of the grid namely
ESSs, without affecting the attacker capabilities.

The main contributions and the distinctive features of this
work are:

i) The characterisation of the systems subject to D-LAA
as polytopic uncertain systems, whose dynamics poten-
tially switch over time depending on the attack.

ii) The development of a control strategy, based on results
from robust control theory and invariance arguments, of
a robust protection scheme that ensures the asymptotic
network stability against the considered set of D-LAAs.

iii) The introduction of an optimisation framework with
which the network operators may tune the performance



and characteristics of the control law that manages the
ESSs.

The objective of the proposed control law is to assure the
asymptotic stability of the network subject to D-LAAs which
are taken into account as a form of parametric uncertainty.
It will be shown that the resulting system takes the form
of a polytopic uncertain linear system with time switching
dynamics, and consequently the control law will be designed
in such a way that, over the whole range of uncertain and
switching dynamics, the Lyapunov inequality holds and the
control effort is bounded.

The rest of the paper is structured as follows: Section II
reports some required preliminary notions; Section III details
the network and attack models, as well as the proposed
control logic; Section IV presents some numerical simulation
results to validate the proposed approach while Section V
draws the conclusions and highlights possible future works.

II. PRELIMINARIES

This section reports some useful definitions and results
that are required in the following analysis.

Definition 1: A Polytopic Linear Differential Inclusion
(LDI) system is defined as [12]:

ẋ = A(ζ)x+B(ζ)u, (1)

where

ζ ∈ Z = {[ζ1, ζ2, ..., ζp]T | ζi ≥ 0 ∀i ∈ [1, p],

p∑
i=1

ζi = 1}

(2)

models the system uncertainties and the matrices A(ζ), B(ζ)
are elements of the convex hull of a finite set of known
"vertex" matrices Ai, Bi, i ∈ [1, p], i.e.:

A(ζ) =

p∑
i=1

ζiAi, (3)

B(ζ) =

p∑
i=1

ζiBi.

Definition 2: A Linear Time Invariant Switched Systems
with arbitrary switching signal φ(t) : R+ → S = {1, 2, ..., s}
is defined as a system of the form [13], [14]:

ẋ = Aix+Biu (4)
i = φ(t).

When modelling an uncertain system as a polytopic LDI
system, one possible approach to study its asymptotic sta-
bility is related to the existence of a so-called "Common"
Lyapunov Function [15]. In fact, to assure the asymptotic
stability of a system of the form (4) under a state feedback
u = Kx, it is sufficient to prove that, for any symmetric
matrix Q > 0, there exist a single symmetric matrix P > 0
such that:

(A(ζ) +B(ζ)K)TP + P (A(ζ) +B(ζ)K) = −Q,∀ζ ∈ Z,
(5)

which, due to the polytopic nature of the matrix uncertainties,
is equalent to the existance of a symmetric matrix P > 0
that satisfies:

(Ai +BiK)TP + P (Ai +BiK) < 0, ∀i ∈ [1, p]. (6)

Furthermore, it is worth remarking that Common
Quadratic Lyapunov Functions (CQLFs) are also typically
used to prove the quadratic, and hence asymptotic, stability
of switched systems of the form (4) with analogous argu-
ments and conditions of the ones reported above [13].
Quadratic stability and stabilizability of switched linear sys-
tems with polytopic uncertainties under state feedback has
received a considerable amount of attention [16]–[18]. In
general, the existence of a CQLF is only sufficient for the
asymptotic stability and could hence be rather conservative,
but the algebraic conditions required to assure the existence
of a CQLF for the switched system considered can not
be trivially derived [19]. In the following, we will resort
to numerical analysis to evaluate the existence of a CQLF
for the system and the consequent feasibility of the related
optimisat ion problem.

Definition 3: Given a symmetric matrix P > 0, the
ellipsoid

E(P ) = {x ∈ Rn : xTP−1x ≤ 1} (7)

centered at the origin of a linear system is said to be invariant
attractive [20] for the closed loop system

ẋ = (A+BK)x (8)

if for any x0 ∈ E(P ) the evolution of the system remains in
E(P ) and ultimately tends to the origin.
In this work the following theorem from [20] will be utilised:

Theorem 1: Let P, Y be solution of following semidefi-
nite programming problem:

max tr(P ) (9)
s.t.[

AP + PAT +BY + Y TBT P
P −I/α

]
< 0

[
P Y T

Y u2
maxI

]
≥ 0

in the matrix variables P = PT and Y , with α > 0. Then:

i) the control u = Kx, where K = Y P−1 asymptotically
stabilizes the system (8),

ii) u is bounded on the ellipsoid E(P ) so that ||u|| ≤ umax,
iii) V (x) = xTP−1x is a Lyapunov function for (8)
iv) the ellipsoid E(P ) is the one that maximises the sum of

its squared semiaxes among all the invariant ellipsoids
of the system (8) over which V (x) decreases not slower
than −α ||x||2.



III. PROBLEM FORMULATION

A. Network Model

The transmission network is modelled as in [11], utilising
the linearized swing and power flow equations [21]. Let the
network be composed by n generator buses and m load
buses, of which ma are vulnerable to a D-LAA and mp are
considered secure and candidate placement option for ESSs.
In the following, Ma and Mp will represent respectively
the set of vulnerable and secured load buses.

The dynamics of the system are captured by the following
descriptor system:
I 0 0 0
0 M 0 0
0 0 I 0
0 0 0 0



δ̇
ω̇

θ̇

φ̇

 = −


0 −I 0 0

Lgg +KI D +KP Lgl 0
0 0 0 I
Llg 0 Lll −DL



δ
ω
θ
φ

+


0
0
0
PL

 ,
(10)

in which M = diag(M1, . . . ,Mn) is the inertia matrix of the
generators, KP and KI capture respectively the proportional
and integral control actions of the generators and DL the
self-regulating effect of the load. The matrix

L =

[
Lgg Lgl
Llg Lll

]
(11)

is the laplacian of the network [22]. Note that in the consid-
ered scenario Lgg ∈ Rn×n, Lgl ∈ Rn×m, Llg ∈ Rm×n and
Lll ∈ Rm×m.

B. Attack Model

The structure of the attack considered in this work is
derived from [11], where D-LAA are driven by a proportional
controller with time varying gain. Assuming that the attack is
launched on the load bus v ∈Ma starting from the measure
of the electrical frequency deviation of the generator s, the
attack takes the form:

PLVv (t) = −KLG
vs (t)ωs(t). (12)

It can be shown with simple mathematical manipulation
reported in [11], that the attack can be included in the
dynamics of the network (10). Proceeding as in [11] by
including the power flow equations in the swing equations,
the descriptor system (10) becomes explicitable and it can
be reconducted to the linear system

 δ̇θ̇
ω̇

 =

 0 0 I
(−DL)−1Llg (−DL)−1Lll (−DL)−1KLG

M−1(Lgg +KI) M−1Lgl M−1(D +KP )

δθ
ω

+

−

 0
(−DL)−1

0

u. (13)

Note that the presence of attacks is included in the system
(13) by the term (−DL)−1KLG. In this representation, the
overall attack can be seen as a form of parametric uncertainty,

as the dynamical matrix of system (13) can be written in the
following form:

A =

 0 0 I
(−DL)−1Llg (−DL)−1Lll 0

M−1(Lgg +KI) M−1Lgl M−1(D +KP )

+0 0 0
0 0 (−DL)−1KLG

0 0 0

 . (14)

It is worth noting that the matrix KLG is a sparse matrix
whose non-zero elements KLG

vs represent the gains of the
ongoing attacks of the form (12). It is then possible to define
an uncertainty range, as the various KLG

vs that characterise
every possible attack are bounded as in [11] by the amount
of vulnerable load available on the node v ∈ Ma, and by
the availability of the measure of the frequency deviation
at the generator node s. Due to the structure of (14), all
possible uncertain dynamical matrices of system (13) lie
in the compact set that is obtained by the product of the
compact sets over which the various gains of the potential
D-LAAs range. The convex hull of such set can be easily
characterised by its vertices, as each vertex represent a
distinct combination of the various possible D-LAAs each of
which taken with its maximum gain KLG

vs . Since all possible
D-LAAs can be written as a convex combination of these
vertices, it follows that the system (13) can be seen as a
Polytopic Linear Differential Inclusion system of form (3).
Note that if we also include in the analysis the ability of
the attacker to modify in real time the gains that define the
D-LAA, the network dynamics will switch between matrices
that are included in the same polytope.

C. Protection Scheme

We now introduce the following optimisation problem:

max
P,Y,α,ūmax

γ1 tr(P )− γ2 ūmax + γ3 α

s. t. ∀i = 1, ..., p[
AiP + PATi +BY + Y TBT P

P −I/α

]
≤ 0[

P Y T

Y ūmaxI

]
≥ 0

P = PT ,
(15)

where γ1, γ2, γ3 represent the relative weights that their
corresponding objectives have in the optimisation being the
size the ellipsoid, the control saturation and its stabilising
performances. In (15) it was set ūmax = u2

max to avoid
increasing the complexity of the problem by maintaining the
linear nature of its constraints and objective function.

In light of Theorem 1, the function V (x) = xP−1x is a
CQLF for all the systems whose dynamics are represented
by the vertices (Ai + BY P−1) of (13). It follows that
the feedback u = Y P−1x will asymptotically stabilize the
network under attack, independently of which attack is being
performed. Additionally, u will be bounded in norm by umax



over the ellipsoid E(P ), where V (x) will decrease with a rate
not slower than −α||x||2.

In what was presented so far, it was implicitly assumed u
to be unbounded. This assumption is in general unreasonable,
as the control effort provided by the available ESSs is limited
by their operative power limits. Furthermore, the matrix K =
Y P−1 is in principle dense, meaning that a portion of the
control effort (i.e. stabilising power) could be distributed on
every load bus. In realistic scenarios the number and location
of ESSs to be placed in the network will be limited to a few
units and specific, secured, buses previously identified with
the setMp. The details on how both of these limitations are
addressed are presented in the following.

Recalling that Mp was defined as the set of secure buses
available for the installation of ESSs, and noting that the
presence of a row of zeros in the matrix Y translates by
construction to the matrix K, it is possible to restrict the
number and locations of the ESSs by adding to (15) a
set of constraints that forces the rows of the matrix Y
corresponding to buses not contained inMp to be formed by
zeros. Doing this guarantees that the corresponding elements
of the control vector u are identically zero, and hence no
ESSs shall be placed on such buses.

Regarding the control saturation, recall that Theorem 1
states that over the invariant ellipsoid the inequality ||u|| ≤
umax holds. Having a bound on the norm of the control
relates to having a limited amount of installed ESS power,
and consequently umax can be used as an indicator for the
sizing of the distributed storages. In fact, to avoid power
outages the network state shall never leave its region of
safe operation XS , as a frequency deviation higher than
an operative bound would cause the security mechanisms
to stop the service provision. Ideally, the network operator
would desire to have the invariant ellipsoid over which the
CQLF decreases with its desired rated to be enclosed by
XS , so that the system evolutions are guaranteed to remain
in its safe region. On the contrary, attacks that start from
initial conditions in XS but outside the ellipsoid would be
successful in driving the system to instability, as the control
effort would saturate.
Furthermore, having a larger invariant ellipsoid implies either
worse transient performances or a higher maximum control
effort (i.e. larger ESSs), while having a smaller ellipsoid may
restrict too much the region of attraction in which the system
is robustly stable. Recalling the multi-objective nature of the
problem (15), the operator may iterativevly tune the weights
γ1, γ2, γ3 to attain a ESSs control configuration that satisfies
its requirements. Additionally, the network operator may fix
any of the three variables that appear in the objective function
of (15) (e.g. in scenarios in which the installed ESSs power is
predetermined) and run the optimisation to derive the robust
control law, in compliance with its use case limitations.

Future research will cover automatic parameter tuning,
by means of analytical analysis of the system stable and
operative regions characteristics. In fact, a crucial aspect
for usage on real scenarios is a proper, and direct, way of
mapping the operative requirements of the operator onto the

Fig. 1. Transmission network with 6 load buses and three generators

design parameters of the controller.
Remark 1: The proposed control scheme protects the net-

work also against D-LAAs in which the attacker changes
the exploited load buses, or attack charateristics, over time.
In fact, such attacks can be seen as switching the dynamics
of the network in the sense of definition 2. Noting that the
dynamical matrix (14) switches between matrices that are
contained in the polytope characterised by the vertices over
which V (x) = xP−1x is a CQLF, from standard switched
system arguments it follows that the stability properties of
the closed loop system are maintained.

IV. SCENARIO AND SIMULATIONS

A. Simulation Set Up

For the validation of the proposed control strategy we
considered the classical nine-bus example adopted by [23]
and reported in Figure 1. We assume that the set of se-
cure loads buses that can host storage is Mp = {5, 6}.
Additionally, the set of attacks against which the network
operator wants to ensure stability is described by a sparse
matrix KLG whose non-zero elements have the following
indices: {(1, 2), (2, 3), (4, 3)}. We consider, without loss of
generality, the same upper bound for each attack gain,
namely 106. The weights γ1, γ2, γ3 were set respectively to
2, 1, 10.

B. Baseline Scenario: Destabilising Dynamic Load Altering
Attack with no protection

We now proceed to show that the considered D-LAAs are
in fact able to destabilise the unprotected power network.
Figure 2 shows that a single attack of the form (12) deployed
on the load bus 1 starting from the measure of the electrical
frequency deviation at generator bus 2 is able to destabilise
the network in less than half a second. The fourth subplot of
Figure 2 represents how the D-LAA gain varies over time,
as a percentage of the maximum consider attack gain.

C. Simulation 1: Defence Against a Single D-LAA

In this simulation, it is shown how the proposed control
scheme prevents the destabilising effects of the same D-



Fig. 2. Frequency deviation for the three generators and attack profile,
baseline scenario

Fig. 3. Frequency deviation for the three generators and attack profile, first
simulation

Fig. 4. ESS power profiles, first simulation

LAA of the previous simulation, amplified by a factor of
two. From the analysis of the first subplot in Figure 3 it
is clear how the switch of the system dynamics caused by
the attack starting at t = 1s causes a fluctuation in the first

Fig. 5. Frequency deviation for the three generators and attack profile,
second simulation

generator frequency, but the effect of the ESSs control avoids
that this fluctuation drives the closed loop attacks to steer the
network into instability. In fact, the other two generators are
almost unaffected by the attack as their frequency deviations
are several orders of magnitude lower. It is worth noting how
the network recovers after the second switch of its dynamics,
caused by the abrupt interruption of the attack at t = 8s,
with an exponential behaviour. Figure 4 shows the control
effort in p.u., and highlights how the actuated control is very
limited in magnitude. From the analysis of the figure it is
clear how the attack is compensated by the ESSs, as for
both the storages their power profile changes sign during
the attack. The small magnitude of the defence control is
caused ny the fact that the control shares the same state-
feedback nature of the attack (12), meaning that around the
origin of the system it will be limited: by preventing the D-
LAA to steer the system towards the border of its operative
region, the control prevents the attack to grow in magnitude.
Nevertheless, it is still important to tune both the invariant
ellipsoid size and the parameter umax in order to assure that
all the operative region is robustly stable, as if the system
trajectory starts from an initial state having high frequency
deviations both the attack and the stabilising control will be
of greater magnitude.

D. Simulation 2: Defence Against Multiple Switching D-LAA

In this final simulation we consider a more complex
D-LAA in which three load buses are exploited, with a
feedback coming from different generators. Note that, being
the optimisation problem not dependant on the on-going
attack, the ESS control law is the same as in the previous
simulation. In the fourth subplot of Figure 5, the continuous
line represents an attack driven by the (1, 2) element of the
matrix KLG, the dashed line represents the element (2, 3)
while the dotted one represents the element (4, 3). Note that
the first two attacks are on buses connected to a generator,



while the last one is on a load bus that has no generator
neighbour. The observed behaviour is similar to the previous
case, with the system maintaining its stability thanks to the
designed CQLF and control.

V. CONCLUSIONS AND FUTURE WORKS

The work presented a robust protection scheme against
Dynamic Load Altering Attacks to prevent network instabil-
ity. The results are based on classical Polytopic Linear Dif-
ferential Inclusion system theory and Lyapunov-Invariance
arguments. Simulations validated the approach in a test
scenario. Future research will focus on a procedure for the
optimal sizing of the invariance ellipsoid used to assure
network stable operation, and the ensurance of component-
wise constraints on the control effort replacing the bound
on its norm assured in the present work. Automatic tuning
of the design parameters of the controller will also be
explored, to better support the network operator in satisfying
its requirements.
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