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Abstract 

Objective. Low-intensity focused ultrasound stimulation (LIFUS) emerges as an attracting technology for noninvasive 

modulation of neural circuits, yet the underlying action mechanisms remain unclear. The neuronal intramembrane 

cavitation excitation (NICE) model suggests that LIFUS excites neurons through a complex interplay between 

microsecond-scale mechanical oscillations of so-called sonophores in the plasma membrane and the development of a 

millisecond-scale electrical response. This model predicts cell-type-specific responses that correlate indirectly with 

experimental data, but it is computationally expensive and difficult to interpret, which hinders its potential validation. 

Here, we introduce a multi-Scale Optimized Neuronal Intramembrane Cavitation (SONIC) model to achieve fast, 

accurate simulations and confer interpretability in terms of effective electrical response. Approach. The NICE system 

is recast in terms of smoothly evolving differential variables affected by cycle averaged internal variables that are a 

function of sonophore size and charge density, stimulus frequency and pressure amplitude. Problem separation allows 

to precompute lookup tables for these functions, which are interpolated at runtime to compute coarse-grained, 

electrophysiologically interpretable and spatially distributed predictions of neural responses. Main Results. The SONIC 

model accelerates computation by more than three orders of magnitude, accurately captures millisecond-scale electrical 

responses of various cortical and thalamic neurons and offers an increased interpretability to the effects of ultrasonic 

stimuli in terms of effective membrane dynamics. Using this model, we explain how different spiking behaviors can be 

achieved in cortical neurons by varying LIFUS parameters, and interpret predictions of spike amplitude and firing rate 

in light of the effective electrical system. We demonstrate the substantial influence of sonophore size on excitation 

thresholds, and use a nanoscale spatially extended SONIC model to suggest that partial sonophore membrane 

coverage has a limited impact on neuronal excitability. Significance. By providing an electrophysiologically interpretable 
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description, the SONIC model clarifies cell-type-specific LIFUS neuromodulation according to the intramembrane 

cavitation hypothesis. 

Keywords: Coarse-graining, Computational modeling, Electrophysiological interpretability, Intramembrane cavitation, 

Neural dynamics, Neuromodulation, Temporal multiscaling, Ultrasound stimulation 

 

1. Introduction 

Ultrasound (US)-based therapeutic applications, such as diagnostic imaging and thermal ablation therapies, are now 

widely accepted in the clinical field [1,2]. Low-intensity focused ultrasound stimulation (LIFUS), employing the same 

technology but with different sonication parameters (carrier frequency, peak pressure amplitude, duration, pulse 

repetition frequency, and duty cycle), has recently emerged as a very compelling modality for neuromodulation 

therapies. Owing to their mechanical nature, US waves can be accurately directed through biological tissue, offering the 

ability to concentrate the acoustic energy to a deep focal spot [2,3]. Moreover, numerous experiments on both animal 

models and humans have demonstrated that transcranial LIFUS is able to either excite, inhibit, or modulate the electrical 

activity of neurons in the central nervous system (CNS) [4–10]. Furthermore, exhaustive explorations of different 

sonication parameters on the motor cortex of mice have shown that stronger stimulus intensities and durations increase 

the probability of a motor response without affecting the duration or strength of the response, thereby suggesting a 

threshold excitation mechanism associated with the US intensity [6]. LIFUS could therefore trigger a local and 

controllable neuromodulatory effect on various neural targets, using a distant and possibly noninvasive sonication 

device. However, in order for LIFUS to become a reliable neuromodulation technology, we must elucidate the 

fundamental mechanism(s) by which US waves interact with neural tissue at the cellular scale, how these mechanisms 

may vary across neural structures and how optimal sonication parameters change with it. 

Several theories have emerged to try to decipher this interaction. Among them, the neuronal intramembrane 

cavitation excitation (NICE) model [11] hypothesizes that incoming US waves induce the cavitation of specific 

nanometer-scale phospholipidic structures (so-called “bilayer sonophores”) within plasma membranes. This model 

provides quantitative predictions of cell-type-specific neural responses upon US exposure that result in excitation or 

inhibition of cortical networks depending on LIFUS parameters [12]. These predictions agree with the results of 

numerous in vitro experiments and in vivo studies sonicating the CNS of various animal models [5,6,13–16]. Yet, the 

model is purely theoretical and built around the intramembrane cavitation hypothesis, whose direct mechanical and 

electrical manifestations have yet to be observed experimentally. Moreover, the intrinsic electromechanical coupling of 

the model entails important computational limitations. From an algorithmic standpoint, the explicit modeling of 

mechanical membrane oscillations with microsecond-scale periodicity results in a very stiff differential system that 
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severely hinders numerical integration. From an analysis standpoint, the bidirectional coupling between mechanical and 

electrical variables evolving at different time scales produces a singular electrical response that can be difficult to 

interpret under the classical frame of neural dynamics. These limitations have so far prevented systematic, large-scale 

explorations of the LIFUS parameter space with the NICE electromechanical model, and its efficient integration in 

realistic applications involving the simultaneous solving of coupled differential systems, such as multi-compartmental 

morphological models and neuron population models. 

In this study, we present a coarse-grained variant of the NICE electromechanical model – the so-called multi-Scale 

Optimized Neuronal Intramembrane Cavitation (SONIC) model – that allows the interpretation of the millisecond-scale 

dynamics of neural responses upon US exposure in terms of effective membrane dynamics. We show that the SONIC 

model can provide accurate predictions of cell-type-specific neural responses with respect to the detailed NICE model, 

while significantly decreasing computation times. We then exploit the SONIC model explore systematically the dense, 

multidimensional LIFUS parameter space, and analyze responses of different neuron types with an advanced 

electrophysiological understanding. Finally, we use a nanoscale spatially extended SONIC model to study the impact of 

partial sonophore coverage on predicted neural responses and expected excitability. 

2. Methods 

2.1 The NICE electromechanical model 

The NICE electromechanical model [11,12,17] is a mathematical model consisting of a system of first- and second-

order differential equations describing the dynamic mechanical and electrical behavior of a bilayer sonophore that 

cavitates upon sonication while being anchored by surrounding transmembrane proteins (Figure 1(a)). 

 

Figure 1. Description of the NICE electromechanical model. (a) Schematic representation of a bilayer sonophore 
structure (phospholipidic layers, inner cavity and surrounding transmembrane proteins) with the associated differential 
variables Z (apex deflection) and ng (internal gas molar content). The local transmembrane potential Vm and electric 
pressure PQ resulting from charge distributions on both sides of the membrane (green and red dots) are also indicated. 
(b) Electrical circuit representation of the local membrane dynamics, with the same transmembrane potential, a 
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deflection-dependent capacitance Cm, and cell-type-specific Hodgkin-Huxley ionic conductances and reversal 
potentials. 

2.1.1 NICE mechanical model. 

The mechanical part of the NICE electromechanical model predicts that incoming US waves generate a dynamic 

pressure imbalance that drives alternating expansions and compressions of sonophore structures, to oscillate at the US 

frequency. This cyclic behavior is captured by a second-order partial differential equation (akin to the Rayleigh-Plessey 

equation of bubble cavitation [18]) describing the antiphase apex deflection Z of the sonophore inner and outer leaflets, 

and a first-order equation describing the variation of internal gas content ng: 

(1) 

𝑑2𝑍

𝑑𝑡2
= −

3

2𝑅(𝑍)
(
𝑑𝑍

𝑑𝑡
)
2

+
1

𝜌𝑙 ∙ |𝑅(𝑍)|
[𝑃𝐴 + 𝑃𝑆(𝑍) + 𝑃𝑉𝑆 (

𝑑𝑍

𝑑𝑡
 ) − 𝑃0 + 𝑃𝑉𝐿 (

𝑑𝑍

𝑑𝑡
) + 𝑃𝑀(𝑍) + 𝑃𝐺(𝑍, 𝑛𝑔) + 𝑃𝑄(𝑍, 𝑄𝑚)] 

𝑑𝑛𝑔

𝑑𝑡
=
2𝑆(𝑍) ∙ 𝐷𝑔𝑙

𝜉
(𝐶𝑔 −

𝑃𝐺(𝑍)

𝑘𝐻
) 

where R(Z) and S(Z) represent the curvature radius and surface area of a sonophore leaflet and Qm the local membrane 

charge density around the sonophore (for a definition of all other parameters see Table 1). Ultimately, the normal 

acceleration of a leaflet apex depends on the resultant of the applied acoustic pressure PA, the constant hydrostatic 

pressure P0 around the membrane, and several intrinsic pressure forces, defined as in [11,17]: 

• the elastic membrane tension pressure developed in the two leaflets: 𝑃𝑆(𝑍) = −
𝑘𝑆

𝑅(𝑍)

(𝑆(𝑍)−𝑆0)

𝑆0
 

• the viscous pressure developing in the leaflets: 𝑃𝑉𝑆 (
𝑑𝑍

𝑑𝑡
) = −12

𝜇𝑆∙𝛿0

𝑅2(𝑍)

𝑑𝑍

𝑑𝑡
 

• the viscous pressure in the extra-membrane medium: 𝑃𝑉𝐿 (
𝑑𝑍

𝑑𝑡
) = −4

𝜇𝑙

|𝑅(𝑍)|

𝑑𝑍

𝑑𝑡
 

• the intermolecular pressure between leaflets: 𝑃𝑀(𝑍) =
1

𝑆(𝑍)
∫ ∫ 𝐴𝑟 ∙ (𝛾

𝑥  – 𝛾𝑦) 𝑑𝑟𝑑𝜃
𝑎

0

2𝜋

0
 with 𝛾 =

𝛥∗

2𝑧(𝑟)+𝛥(𝑄𝑚0)
 

• the internal gas pressure in the cavity: 𝑃𝐺(𝑍, 𝑛𝑔) =
𝑛𝑔∙𝑅𝑔∙𝑇

𝑉(𝑍)
 

• the electric pressure exerted on the sonophore by charges on either side of its membrane: 𝑃𝑄(𝑍, 𝑄𝑚) =

−
𝑆0

𝑆

𝑄𝑚
2

2𝜖0∙𝜖𝑟
 

Here, S0 represents the leaflet surface area at rest, V(Z) the sonophore volume, r the in-plane distance from the 

sonophore center, z(r) the local deflection at this distance, and Δ(Qm0) the charge-dependent gap between the two 

leaflets of the sonophore when the neuron is at rest (computed by canceling out PM and PQ at Z = 0). 

Table 1. Parameters of the NICE mechanical model. 

Parameter Symbol Unit Value Source(s) 
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Sonophore radius (default value) a nm 32.0 [11] 

Temperature T K 309.15 [19] 

Universal gas constant Rg Pa∙m3∙mol-1∙K-1 8.314 [20] 

Thickness of the leaflet δ0 nm 2.0 [17,21] 

Gap between the two leaflets on an uncharged membrane Δ* nm 1.4 

[17] 
Intermolecular pressure coefficient Ar Pa 105 

Exponent in the intermolecular repulsion term x - 5.0 

Exponent in the intermolecular attraction term y - 3.3 

Density of the extramembrane medium ρl kg∙m-3 1075 [22] 

Dynamic viscosity of the extramembrane medium µl Pa∙s 7∙10-4 
[11] 

Dynamic viscosity of the leaflet µs Pa∙s 0.035 

Area compression modulus of the bilayer membrane kS N∙m-1 0.24 [17,23,24] 

Gas concentration in the extra-membrane medium  Cg mol∙m-3 0.62 
[11,25,26] 

Henry’s constant kH Pa∙m3∙mol 1.613∙105 

Hydrostatic pressure in the extra-membrane medium P0 Pa 105 [20] 

Diffusion coefficient of air in the extra-membrane medium Dgl m2∙s-1 3.68∙10-9 [27] 

Effective thickness of boundary layer between 
extramembrane medium and intramembrane space for gas 
transport 

ξ nm 0.5 [11] 

Vacuum permittivity ε0 F∙m-1 8.854∙10-12 [28] 

Relative permittivity of the intramembrane cavity εr - 1 [11] 

Resting membrane capacitance Cm0 µF∙cm-2 1.0 [19] 

 

2.1.2 NICE electrical model. 

The electrical part of the NICE electromechanical model predicts that the alternating expansions and compressions 

of a cavitating sonophore induce local, periodic oscillations in the plasma membrane capacitance (given by 𝐶𝑚(𝑍) =

𝐶𝑚0Δ

a2
[𝑍 +

𝑎2−𝑍2−𝑍∙Δ

2𝑍
ln (

2𝑍+𝛥

𝛥
)] as in [11]), which in turn cause large-amplitude oscillations of the transmembrane 

potential Vm near the resonating structure. The detailed effects of such voltage variations on neuronal excitation are 

cell-type-specific and captured by a modified Hodgkin-Huxley differential system (Figure 1(b)), where the evolution of 

the local membrane potential Vm depends not only on the contribution of several ionic currents with specific 

conductances gi and reversal potentials Ei, but also on a so-called capacitive displacement current (𝐼𝐶 = 𝑉𝑚
𝑑𝐶𝑚

𝑑𝑡
) 

originating from the capacitance oscillations: 

(2) 

𝑑𝑉𝑚
𝑑𝑡

= −
1

𝐶𝑚
[𝑉𝑚

𝑑𝐶𝑚
𝑑𝑡

+ ∑𝑔𝑖 ∙ (𝑉𝑚 − 𝐸𝑖)

𝑖

]  

𝑑𝑥

𝑑𝑡
= {

𝛼𝑥(𝑉𝑚) ∙ (1 − 𝑥) − 𝛽𝑥(𝑉𝑚) ∙ 𝑥
𝑥∞(𝑉𝑚) − 𝑥

𝜏𝑥(𝑉𝑚)

 

In this system, non-leakage ionic conductances are regulated by the product of one or multiple gating variables x, 

whose evolution is regulated by specific voltage-dependent activation and inactivation rate constants (αx and βx, 

respectively), or by a steady state probability x∞ and a time constant τx (also both voltage-dependent). Sodium (m and 
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h) and delayed rectifier potassium (n) currents gating variables have been defined with the former paradigm [19], while 

that of slow non-inactivating (p) and calcium (s and u) currents are defined with the latter one [12,19]. 

It should be noted that the electric pressure term PQ depends directly on the membrane charge density, and therefore 

varies over the course of neural activation. As a result, the mechanical and electrical differential systems are 

bidirectionally coupled. 

2.2 A multi-Scale Optimized Neuronal Intramembrane Cavitation (SONIC) model 

The NICE mechanical model (described in [11]) and the Hodgkin-Huxley models of cortical regular spiking (RS), fast 

spiking, low-threshold spiking (LTS), thalamic reticular, and thalamo-cortical neurons (described in [12]), as well as 

Subthalamic Nucleus (STN) neurons (described in [29,30]) have been implemented in Python 3.6 and coupled together, 

using identical equations and parameters as in the references. Model equations are solved here with the odeint function 

from the scipy.integrate Python library (http://www.scipy.org) that uses a fixed step, variable order solver automatically 

selecting between nonstiff (Adams) and stiff (BDF) methods based on dynamic monitoring of the integrated system 

[31,32]. Numerical simulation of a RS neuron with typical sonophore in-plane radius (32 nm) and LIFUS parameters 

(500 kHz carrier frequency, 100 kPa pressure amplitude) reveals the extreme stiffness of the differential system. In 

consequence, the algorithm requires to use many time steps per acoustic period (1000 in our implementation) to ensure 

stable integration of intra-cycle system oscillations, and results in tremendous computation times (>> 1 day for a 150 

ms CW stimulus). Therefore, we introduce here multiple optimization steps to reduce the computational cost of the 

algorithm. 

2.2.1 Lennard-Jones approximation of intermolecular pressure. 

Profiled simulations of the mechanical model in isolation reveal that the spatial integration of intermolecular pressure 

PM is by far the longest internal computation at each iteration. However, despite its complexity, this integrated pressure 

term depends solely on leaflet deflection and the nature of its profile is similar to that of its local counterpart. Therefore, 

a precomputing step is defined wherein a Lennard-Jones expression of the form 𝑃𝑀̃(𝑍) = 𝐴𝑟̃  [(
𝛥∗̃

2𝑍+𝛥(𝑄𝑚)
)
𝑥̃

 −

 (
𝛥∗̃

2𝑍+𝛥(𝑄𝑚)
)
𝑦̃

] is fitted to the integrated profile and then used as a new predictor of intermolecular pressure during the 

iterative numerical resolution (Figure 2(a)). This simplification allows to reduce computation times by more than one 

order of magnitude, without significantly affecting the resulting deflection profiles (RMSE = 0.8% of cavitation extent 

over one acoustic period for typical simulation conditions mentioned above). 
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Figure 2. Description of the model simplification and optimization steps. (a) Comparison of spatially integrated 
(green) and fitted approximation (dashed red) of intermolecular pressure profiles for a realistic range of deflections. (b) 
Explicit representation of the electrical system recasting, along with a comparison of the short-term evolution of the 
membrane potential (Vm) and charge density (Qm) upon sonication (500 kHz, 100 kPa), showing remarkably different 
stiffness. (c) Schematic representation of the coarse-graining and precomputing pipeline. Mechanical simulations are 
run until periodic stabilization of Z and ng, at which point the membrane capacitance Cm, transmembrane potential and 
voltage-gated rate constants are computed over the last acoustic cycle. The average value of Vm and rate constants are 
then stored into lookup tables. The process is repeated for various combinations of sonophore radii (a), US frequencies 
(f), acoustic pressure amplitudes (A) and membrane charge densities. (d) Schematic representation of the hybrid 
integration of the electrical system. Lookup tables are interpolated at a specific sonophore radius, US frequency and 
acoustic amplitude to yield 1D projected vectors of effective variables in the Qm space, which are then used alternatively 
to interpolate effective variables during US-ON and US-OFF periods, respectively. 

2.2.2 Recasting of the electrical system. 

Simulations of the detailed NICE electromechanical model predict that while the local membrane potential of a 

cavitating sonophore undergoes large-amplitude oscillations, the membrane charge density and the ion channel gating 

variables around that structure evolve much more smoothly over the course of neural activation ([11] and Figure 2(b)). 

Therefore, the distinct electrical system is first recast as function of charge (using the transformation Qm = Cm∙Vm), 

thereby removing the capacitive displacement current term and yielding a new scheme composed only of smooth 

differential variables: 
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(3) 

𝑑𝑄𝑚
𝑑𝑡

= − [ ∑𝑔𝑖 ∙ (
𝑄𝑚
𝐶𝑚

− 𝐸𝑖)

𝑖

]  

𝑑𝑥

𝑑𝑡
=

{
 
 

 
 𝛼𝑥 (

𝑄𝑚
𝐶𝑚
) ∙ (1 − 𝑥) − 𝛽𝑥 (

𝑄𝑚
𝐶𝑚
) ∙  𝑥

𝑥∞(
𝑄𝑚
𝐶𝑚
) − 𝑥

𝜏𝑥 (
𝑄𝑚
𝐶𝑚
)

 

As Qm/Cm is still rapidly oscillating, the evolution of electrical differential variables during US-ON periods is then 

expressed as a function of “effective” internal variables (using this time the rate constants formulation for all gates, with 

αx = x∞/τx and βx = 1/τx - αx), obtained by averaging their rapid oscillatory part over an acoustic period T. This is only 

possible because the differential variables evolve smoothly and allows to capture the millisecond-scale system evolution 

without explicitly resolving intra-cycle oscillations: 

 (4) 

(
𝑑𝑄𝑚
𝑑𝑡

)
∗

= −∑𝑔𝑖 ∙ (
∫

𝑄𝑚
𝐶𝑚(𝑍)

𝑇

0
𝑑𝑡

𝑇⏟        
𝑉𝑚
∗

− 𝐸𝑖)

𝑖

 

(
𝑑𝑥

𝑑𝑡
)
∗

=
∫ 𝛼𝑥
𝑇

0
(
𝑄𝑚
𝐶𝑚(𝑍)

)𝑑𝑡

𝑇⏟          
𝛼𝑥
∗

 ∙ (1 − 𝑥) −
∫ 𝛽𝑥
𝑇

0
(
𝑄𝑚
𝐶𝑚(𝑍)

)𝑑𝑡

𝑇⏟          
𝛽𝑥
∗

 ∙ 𝑥 

We shall refer to Vm
* as the effective membrane potential and to αx

* and βx
* as effective rate constants. 

2.2.3 Precomputation and hybrid integration of effective solutions. 

As they depend directly on the sonophore deflection profile and thus indirectly on the sonophore geometry, LIFUS 

parameters and electromechanical coupling, effective variables are precomputed for various combinations of sonophore 

radii (a), US frequencies (f), acoustic peak pressure amplitudes (A) and membrane charge densities – covering the 

LIFUS parametric space, sonophore geometrical range and membrane physiological range – and then stored in 4D 

lookup tables to be linearly interpolated at runtime (Figure 2(c)). For each combination, a short simulation of the 

mechanical system is performed until a limit cycle is reached (detected by thresholding the root mean square error 

between two consecutive cycles of both Z and ng), and effective variables are then computed over the last acoustic 

cycle. The required granularity of lookup tables was determined by visually inspecting the nonlinearity of effective 

variables along each dimension. Lookups are computed here for 3 characteristic sonophore radii (16, 32 and 64 nm), 7 

carrier frequencies (20, 100 and 500 kHz, 1, 2, 3 and 4 MHz), pressure amplitudes including 0 Pa and 50 logarithmically 

Page 8 of 31AUTHOR SUBMITTED MANUSCRIPT - JNE-102846.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9 

distributed values between 0.1 and 600 kPa, and cell-type-specific ranges of physiologically realistic, linearly distributed 

charge densities (from Vm0∙Cm0 - 25 to 50 nC/cm2 with a 1 nC/cm2 step). 

Effective solutions are computed by interpolating effective variables at (a, f, A) and (a, f, 0) to yield 1D projected 

vectors in the Qm space, which are then used to interpolate effective variables and solve equation (4) during US-ON 

and US-OFF periods, respectively (Figure 2(d)). The same odeint solver as for the detailed NICE model is used, however 

the absence of rapid oscillations allows to use a constant time step far greater than a typical acoustic period (dt = 50 µs). 

For the sake of simplicity, this new model variant involving electrical system recasting and coarse-graining, 

precomputation of effective variables and hybrid numerical integration using lookup interpolation tables will be referred 

to as SONIC model later on. 

2.3 Comprehensive characterization of neural responses 

2.3.1 Spike detection and derived metrics. 

Incident neural spikes are detected on charge density profiles as local maxima using prominence thresholding, and 

neighboring local minima are used to define the spike boundaries. Spike amplitude is defined as the smallest differential 

between the local maximum and the neighboring local minima. Latency is defined as the delay between the stimulus 

onset and the occurrence of the first spike, and firing rate as the average of reciprocals of inter-spike intervals, 

accounting only for spikes occurring during the stimulus interval. 

2.3.2 Systematic exploration of the LIFUS parameter space. 

A typical LIFUS protocol comprises five distinct stimulation parameters: US frequency, acoustic peak pressure 

amplitude, pulse repetition frequency (PRF), duty cycle (DC), and duration, all of which substantially affect the 

mechanical and electrical response of a neuron. The latter also depends heavily on the cell-type-specific ion channel 

population and on the acoustic properties of the immediate anatomical environment. Hence, LIFUS optimization is a 

complex problem that requires the exhaustive characterization of the effects of multiple, possibly co-dependent, 

parameters over a high-dimensional space – a challenge that goes far beyond what is experimentally feasible. In this 

context, computational models can constitute a powerful tool to study the effect of a specific set of parameters in an 

isolated manner, provided they can be used efficiently. 

The NICE electromechanical model predicts that cell-type-specific sensitivities to LIFUS can be classified into two 

main categories, depending on the presence or absence of a voltage-gated depolarization current active at sub-

threshold charge levels [12]. Therefore, the parameter space is systematically explored for RS and LTS neurons – that 

provide a typical use case for each category – by varying the following stimulation parameters: sonophore radius (5 

logarithmically distributed values from 16 to 64 nm), US frequency (500 kHz and 4 MHz), acoustic peak pressure 
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10 

amplitude (30 logarithmically distributed values from 10 to 600 kPa), PRF (10, 100 and 1000 Hz) and duty cycle (1 to 

100% with a 1% step). Stimulus duration is fixed to 1 s in order to analyze all relevant features of neural responses 

(excitation thresholds, firing rate adaptation, bursting behaviors, etc.). Two-dimensional behavior maps are then 

produced by plotting firing rates of resulting responses as a function of duty cycle and pressure amplitude, since neural 

activation across cell types is found to be mostly sensitive to these parameters, presumably along with the sonophore 

radius. 

2.4 A multi-compartmental SONIC model to study spatially-distributed nanoscale 

interactions 

Because it is recast as a differential system akin to the familiar Hodgkin-Huxley formulation, the SONIC model can 

be easily extended into multiple spatial compartments. Considering the inherent assumptions of the intramembrane 

cavitation theory, the first (most evident) expansion scale to consider is that of the sonophore itself, in interaction with 

its direct surroundings. Therefore, a nanoscale multi-compartmental SONIC model is developed to study the impact of 

that interaction on the local neural response. It consists of two radially symmetric membrane sections (Figure 3): a 

bilayer sonophore (compartment S) of radius a, surrounded by a LIFUS-insensitive circular membrane patch 

(compartment I) expanding from a to an outer radius b. The ratio of sonophore membrane area (πa2) divided by the total 

membrane area (πb2) is designated as the sonophore coverage fraction (fs = a2/b2). Compartments S and I are modeled 

electrically by voltage gated RC circuits, representing the local effective transmembrane dynamics of an RS neuron in 

the LIFUS-modulated sonophore region and the LIFUS-insensitive surrounding membrane. Both compartments are 

linked to ground in the extracellular medium, and connected to each other within a sub-membrane intracellular space of 

depth deff by a cylindrical resistor RSI. The resistor value is approximated by considering an element that spans between 

the middle radial coordinates of compartments S and I, such that 𝑅𝑆𝐼 = ∫
𝜌

2𝜋∙𝑑𝑒𝑓𝑓∙𝑟
𝑑𝑟

𝑎+𝑏

2
𝑎

2

=
𝜌

2𝜋∙𝑑𝑒𝑓𝑓
ln (

𝑎+𝑏

𝑎
), where the 

cytoplasmic resistivity ρ is set to the typical value of 100 Ω∙cm [35]. Finally, deff is arbitrarily set to 100 nm, i.e. within the 

order of magnitude of a typical sonophore diameter. 
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11 

 

Figure 3. Schematic representation of the nanoscale multi-compartmental SONIC model. A bilayer sonophore of 
radius a (S, in light grey) is surrounded by a LIFUS-insensitive circular membrane patch (I, in dark grey) expanding 
between a and an outer radius b = a/√fs, where fs represents the sonophore coverage fraction of the total membrane 
area. Both sections are modeled electrically by voltage gated RC circuits, linked to ground in the extracellular medium, 
and connected to each other within a sub-membrane intracellular space of depth deff by a cylindrical resistor RSI. 

In this cylindrically geometric model, the effective variation of membrane charge density in each compartment results 

from (1) transmembrane currents triggered by the local effective membrane potential variations, and (2) effective 

intracellular currents between the two compartments as a result of differences in local effective membrane potential: 

𝐼𝑆𝐼
∗ =

1

𝑇
∫

𝑉𝑚𝑆−𝑉𝑚𝐼
𝑅𝑆𝐼

𝑇

0
𝑑𝑡 =

𝑉𝑚
∗
𝑆−𝑉𝑚

∗
𝐼

𝑅𝑆𝐼
. It results in the following equations: 

(5) 

(
𝑑𝑄𝑚𝑆
𝑑𝑡

)

∗

=
1

πa2
∙
𝑉𝑚
∗
𝐼
− 𝑉𝑚

∗
𝑆

𝑅𝑆𝐼
−∑𝑔𝑖 ∙ (𝑉𝑚

∗
𝑆 −𝐸𝑖)

𝑖

 

(
𝑑𝑄𝑚𝐼
𝑑𝑡

)

∗

=
1

π(𝑏2 − a2)
∙
𝑉𝑚
∗
𝑆
− 𝑉𝑚

∗
𝐼

𝑅𝑆𝐼
−∑𝑔𝑖 ∙ (𝑉𝑚

∗
𝐼 −𝐸𝑖)

𝑖

 

where local ionic conductances are regulated by independent sets of gating variables defined as in equation (4). 

This multi-compartmental model has been implemented NEURON [36], by using the precomputed lookup tables from 

an RS neuron (see Figure 2) to compute membrane currents, and a custom intracellular connection scheme explicitly 

casted in terms of Vm* to compute intracellular currents. 

The hypothesis of a unique, transmembrane potential variation across the entire membrane patch is also considered. 

This hypothesis was previously assessed with a point-like NICE model by only considering an attenuated version of the 

membrane capacitance oscillations resulting from the cavitating sonophore (𝐶𝑚(𝑡) = 𝑓𝑠 ∙ 𝐶𝑚𝑆(𝑡) + (1 − 𝑓𝑠) ∙ 𝐶𝑚0), thereby 
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reducing the variation range of the transmembrane potential [12]. Here, a point-like SONIC model is developed in parallel 

that uses lookup tables derived from mechanical simulations with this spatially averaged capacitance. 

3. Results 

3.1 LIFUS-dependent effective variables 

In this section, effective profiles of membrane capacitance, membrane potential and ion channels rate constants of 

an RS neuron are interpolated from the corresponding pre-computed lookup tables (see section 2.2.3 and Figure 2(c)) 

at various acoustic amplitudes, US frequencies, and sonophore radii, and evaluated as a function of membrane charge 

density. 

3.1.1 Effective membrane potential and rate constants are significantly amplified as a function of acoustic 

pressure amplitude. 

In the absence of acoustic perturbation, the mechanical state of the sonophore is solely dependent on gas content 

and charge density. As the latter increases in magnitude, augmentation of the electrical pressure compresses the 

sonophore and increases its membrane capacitance. As a result, the profile of the unperturbed effective membrane 

potential Vm
* = Qm/Cm is an odd function of Qm that deviates slightly from linearity (Figure 4(a)). For small acoustic 

perturbations (A < 50 kPa), the amplitude of intra-cycle oscillations is still heavily dependent on the electrical pressure. 

Hence, the sonophore expansions and the resulting capacitance drops throughout acoustic cycles are considerably 

reduced as the magnitude of membrane charge density increases. Thus, the effective membrane capacitance 𝐶𝑚
∗ =

[
1

𝑇
∫

𝑑𝑡

𝐶𝑚(𝑍)

𝑇

0
]
−1

 displays an inverse bell-shaped profile as a function of charge, and the resulting effective membrane 

potential, despite conserving its odd symmetry, is amplified at intermediate values of │Qm│ before converging 

asymptotically towards its unperturbed counterpart as charge magnitude is further increased. Larger acoustic 

perturbations (A > 50 kPa) induce greater sonophore expansions and capacitance drops within intra-cycle oscillations, 

during which the influence of the electrical pressure is heavily reduced. This means that the Cm
* profile is shifted towards 

lower values and exhibits little dependency on the charge density within the physiological range. Consequently, the Vm
* 

charge profile is amplified and transitions towards another quasi-linear regime. This amplification generates larger 

deviations from reversal potentials, and thus stronger ionic currents. 
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Figure 4. Modulation of charge-dependent effective variables as a function of acoustic pressure amplitude, US 
frequency and intrinsic sonophore radius. Effective variables of an RS neuron are displayed as a function of 
membrane charge density, with a color code corresponding to the modulating variable at which they were derived (color 
bar depicted on top). The original, non-modulated variables (dashed black lines) are also depicted for comparison. (a) 
Dependence on acoustic pressure amplitude (32 nm radius sonophore, f = 500 kHz). (b) Dependence on US frequency 
(32 nm radius sonophore, A = 50 kPa). (b) Dependence on intrinsic sonophore radius (f = 500 kHz, A = 50 kPa). 

As voltage-gated rate constants are nonlinear functions of the membrane potential, their effective counterparts 

cannot be derived directly from Vm
* and must be explicitly computed. For small acoustic perturbations, they also deviate 

from their original counterpart at intermediate charge values and re-converge asymptotic towards it as we reach the 

borders of the physiological range. For large acoustic perturbations, all profiles are widely amplified around one extremity 

of the range due to their exponential nature, with the exception of the sigmoidal βh profile. In particular, αm
* and αn

* are 

amplified for positive charge values which corresponds to faster openings of the sodium m-gate and potassium n-gate 

during action potentials. Hence, increasing acoustic amplitude also amplifies rate constants, which is likely to trigger 

faster gating variations. 
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3.1.2 Effective variables are significantly amplified as a function of the sonophore radius. 

For intermediate values of acoustic pressure amplitude (here 50 kPa), varying the sonophore radius within a realistic 

range around its default value (16 < a < 64 nm) produces significant changes in the effective variables profiles (Figure 

4(b)). Expectedly, larger sonophores yield more pronounced sonophore expansions (as shown in [17]) and related 

capacitance drops, thereby amplifying the effective membrane potential profile in a charge-symmetric manner, as 

obtained when increasing acoustic amplitude. It results in a similar amplification of all effective rate constants. 

Oppositely, smaller sonophores have narrower periodic expansions, which limits the amplification of effective variables. 

The consequences of the dependence of effective variables on sonophore radius in terms of neuronal excitability are 

discussed in section 3.5.1. 

3.2 Model validation 

In this section, we evaluate the ability of the SONIC model to accurately reproduce membrane charge density profiles 

generated with the detailed NICE model (based on the charge-casted NICE electromechanical model described in 

equations (1) and (3)) for a variety of LIFUS conditions. For cases requiring the identification of sub- and supra-threshold 

regimes, a binary search to find the excitation threshold amplitude was conducted with the SONIC model and the 

appropriate neuron type, US frequency, and sonophore radius. 

3.2.1 The model accurately captures predicted cell-type-specific excitation thresholds and responses to CW 

stimuli. 

Under typical continuous-wave (CW) LIFUS conditions (f = 500 kHz, 150 ms stimulus), the SONIC model accurately 

captures both passive responses of an RS neuron at sub-threshold amplitudes, and non-adaptive high-frequency tonic 

spike trains elicited at supra-threshold amplitudes (Figure 5(a), top). In the latter regime, amplitude-dependent variations 

in response latency, firing rate, and spike amplitude within the tonic train are picked up with a remarkable accuracy up 

to 600 kPa (Figure 5(a), bottom), a value far exceeding the pressure amplitudes used in recent neuromodulation studies 

on the CNS [37]. However, the model fails to capture the exact threshold amplitude at which the neuron transitions from 

a passive response to an active spiking behavior: integration with the detailed NICE model does not yield excitation at 

the threshold amplitude determined with the SONIC model (Figure 5(a), top). It can be assumed that this arises from 

the high nonlinearity of the effective membrane potential at low acoustic pressure amplitudes and negative charge 

densities (Figure 4(a)), yielding inaccurate linear interpolations during the build-up phase. 
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Figure 5. Validation of the SONIC model against the detailed NICE model. Membrane charge density profiles from 
simulations with the detailed NICE model (light solid curves) and SONIC model (dark dashed curves) of different neurons 
under various LIFUS conditions are compared, along with derived spiking metrics (latency, firing rate and spike 
amplitude). (a) Top: comparison of charge density profiles of a RS neuron under CW sonication (f = 500 kHz) for sub-
threshold (AT - 5 kPa), threshold (AT) and supra-threshold (AT + 20 kPa) acoustic pressure amplitudes. Bottom: 
comparison of derived spiking metrics for varying supra-threshold pressure amplitudes. (b) Top: comparison of charge 
density profiles of a RS neuron under CW sonication at supra-threshold amplitude (threshold + 20 kPa) with f = 20 kHz 
and f = 4 MHz. Bottom: comparison of derived spiking metrics for varying carrier frequencies from 20 kHz to 4 MHz. (c) 
Top: comparison of charge density profiles of a RS neuron under CW sonication at supra-threshold amplitude (threshold 
+ 20 kPa) with 16 and 64 nm radius sonophores at f = 500 kHz. Bottom: comparison of derived spiking metrics for 
varying sonophore radii from 16 to 64 nm. (d) Top: comparison of charge density profiles of RS (blue) and LTS (red) 
neurons under pulsed-wave (PW) sonication (f = 500 kHz, A = 100 kPa, 100 Hz PRF) at 5% DC. Bottom: comparison 
of derived spiking metrics for varying duty cycles from 5 ‒ 100%. (e) Top: comparison of charge density profiles of a 
LTS neuron under PW sonication (f = 500 kHz, A = 100 kPa, 5% DC) with PRF of 10 Hz, 100 Hz, 1 kHz and 10 kHz. 
Bottom: comparison of derived spiking metrics for varying PRF from 10 Hz to 10 kHz. 

The model accuracy for supra-threshold amplitudes is conserved as the carrier frequency increases up to several 

MHz (Figure 5(b), top). However, significant differences in spike amplitude (and to a lesser extent in latency and firing 

rate) appear as the frequency approaches the lower bound of the US domain (Figure 5(b), bottom). In fact, at such low 

frequencies, the order-of-magnitude of the intra-cycle oscillations dynamics approaches that of the gating kinetics of 

sodium and potassium ion channels, thereby inducing large intra-cycle gating variations that modulate the membrane 
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charge density at the US frequency and cause considerable oscillations in the detailed solution (Figure 5(b), inset). As 

can be expected, these oscillations are absent from the effective solution because of the intrinsic cycle-averaging 

strategy of the SONIC model, but the resulting spiking behavior stays qualitatively correct. This intra-cycle interference 

(and the resulting divergence) vanishes at- frequencies higher than 100 kHz. This supra-threshold accuracy is also 

conserved for the sonophore radii bounding the lookup interval (16 and 64 nm): the larger radius yields similar reductions 

in latency and spike amplitude and increases in firing rate, and vice-versa (Figure 5(c), top). Interestingly, simulations 

of the SONIC model at intermediate radii that are not present in the lookup tables yield identical latencies than those 

obtained with the detailed NICE model, but higher firing rates and spike amplitudes (Figure 5(c), bottom). This 

inaccuracy suggests that while the effective membrane potential governing the initial charge build-up exhibits a rather 

linear dependency on the sonophore radius, effective rate constants depend nonlinearly on this variable, hence a higher 

resolution of the lookup tables in this dimension would be needed to produce quantitatively identical results. 

Nonetheless, spiking patterns stay qualitatively similar. Thus, the SONIC model can estimate cell-type-specific threshold 

excitation amplitudes with a precision in the order of kPa, and accurately captures the amplitude, frequency and 

sonophore radius dependencies of neural responses to CW stimuli. Note that these observations translate to other 

neuron types since they all share the same mode of interaction with CW stimuli (data not shown), except for the STN 

neuron type which was validated separately (see section 4.1.3). 

3.2.2 The model accurately captures predicted cell-type-specific responses to PW stimuli. 

Under typical PW stimulation conditions (f = 500 kHz, A = 100 kPa, 100 Hz PRF), the SONIC model accurately 

captures cell-type-specific, DC-dependent changes in latency and firing rate of RS and LTS neurons, which are good 

representatives of the two main types of sensitivities to pulsed LIFUS protocols according to predictions from the NICE 

model [12]. In particular, at very low duty cycles, both the passive response of a RS neuron and the sparse firing of a 

LTS neuron are accurately reproduced (Figure 5(d), top). In the latter case, a minor divergence is initiated and amplified 

during US-OFF periods, which is likely due to the great sensitivity of the charge-casted system to initial conditions of 

early depolarization phases as well as intrinsic differences in the computation of membrane capacitance between the 

NICE and SONIC models. This divergence is also found for the RS neuron that starts firing at 50% DC and yields small 

inaccuracies in the reported firing rates (Figure 5(d), bottom), despite producing very similar spiking behaviors. The 

SONIC model accuracy is mostly preserved throughout variations in PRF for a LTS neuron at 5% DC (Figure 5(e)), with 

two notable exceptions around 1 kHz and at 10 kHz. In the former case, the model inaccuracy is probably due to a 

particular pulse-spike synchronization that amplifies divergence of the effective solution ‒ in fact, a slight divergence in 

the charge build-up phase can shift spike occurrence by one or several pulses, thereby offsetting the entire downstream 

response dynamics. In the latter case, however, divergence likely arises from the increasing number of ON-OFF 

transitions and the decrease of pulse duration down to the order of magnitude of the integration time step of the SONIC 
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model, limiting the number of iterations per pulse and thereby the accuracy of the effective solution. Thus, the SONIC 

model accurately captures the duty cycle and PRF dependencies of cell-type-specific neural responses to PW stimuli, 

relevant to different gating mechanisms. 

3.3 The SONIC model boosts algorithmic efficiency by at least 3 orders of magnitude 

The algorithmic acceleration provided by the presented SONIC model is assessed by comparing computation times 

of SONIC simulations with that of detailed NICE simulations, performed on the same computer (24-core, 2.1 GHz clock 

rate server, 126 GB RAM, Ubuntu 16.04.3 operating system). 

For typical CW stimulation parameters (f = 500 kHz), the detailed solution of the NICE model is computed in approx. 

1 day, while the effective solution of the SONIC model is solved in less than 1 min. (Figure 6(a)), which corresponds to 

a gain in efficiency of more than 3 orders of magnitude. 

 

Figure 6. Quantification of the SONIC model acceleration. Comparison of computation times for 250 ms simulations 
under various LIFUS conditions, with the detailed NICE model (light gray) and SONIC model (dark gray, along with the 
fixed precomputation cost). (a) Comparison for CW simulations of the RS neuron at various sub- and supra-threshold 
acoustic amplitudes. The excitation threshold is also indicated (dashed vertical line). (b) Comparison for CW simulations 
of the RS neuron at various US frequencies with a supra-threshold amplitude (threshold + 20 kPa). (c) Comparison for 
CW simulations of the RS neuron with various sonophore radii, also at supra-threshold amplitude (threshold + 20 kPa). 
(d) Comparison for simulations of the RS (blue) and LTS (red) neurons (f = 500 kHz, A = 100 kPa, 100 Hz PRF) at 
various duty cycles. Dashed horizontal lines indicate characteristic durations.  

The computation times of SONIC simulations show a significant increase between the sub- and supra-threshold 

regimes. This illustrates the stiffer differential system resulting from an active electrical response, as the employed 

LSODA solver uses an adaptive integration scheme that takes an increasing number of internal steps at each iteration 

as the system stiffness augments. Conversely, the computation times of NICE simulations augment linearly with acoustic 

amplitude and do not exhibit a sharp transition between those two regimes, as the full electromechanical model 

possesses a huge intrinsic stiffness that is hardly affected by the presence of an active electrical response, but rather 

by the increase in magnitude of intra-cycle oscillations. 

Expectedly, computation times of the NICE model increase as the stimulus carrier frequency increases, owing to the 

algorithm’s frequency-dependent integration time step, while those of the SONIC model do not exhibit any dependency 
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on that parameter (Figure 6(b)). The NICE model takes longer to compute supra-threshold simulations for very small 

sonophore radii – which could indicate an increase in the system’s nonlinearity for such small structures – and is 

otherwise rather constant across values of a. Conversely, the SONIC model takes longer to compute supra-threshold 

simulations (threshold + 20 kPa, where the threshold is determined for each value of a by a titration procedure) as the 

sonophore radius increases. This results from the greater sensitivity of larger sonophores to pressure amplitude, 

meaning that responses in the supra-threshold range transition faster towards tonic, high-frequency firing (see Figure 

5(c)), which produces stiffer differential systems 20 kPa above the excitation threshold. 

For PW stimuli, NICE computation times increase as the stimulus duty cycle increases, for both actively and passively 

responding neurons (Figure 6(d)), as a result of the longer LIFUS-ON total duration. SONIC computation times show 

less sensitivity to that parameter, but more intra-neuron variability: computation times for the actively responding LTS 

neuron are on average twice that of the RS neuron that is less activated, thereby confirming the influence of electrical 

variables on the effective system’s stiffness. 

Overall, the gain in algorithmic efficiency provided by the SONIC model must be mitigated as it comes with an initial 

cost: the time required to inform the lookup tables necessary to run SONIC simulations is in the order of 2-3 days. 

However, this precomputation cost is fixed and can be significantly decreased by a trivial parallelization, which is 

impossible with the detailed NICE model. 

3.4 Cell-type-specific excitability and spiking activity depends on multiple LIFUS parameters 

The different sensitivities of the RS and LTS neurons to LIFUS have been previously characterized in [12]. This 

section aims at providing an interpretation of their respective recruitment mechanisms, based on the newly introduced 

effective membrane dynamics, and at using behavior maps to establish detailed trends of their firing behavior in different 

regions of the parameter space. It should be noted that a typical behavior map (i.e., 3000 simulations, see Methods 

section) was generated here in about 30 hours, a process that would have taken more than 10 years with the detailed 

NICE model. 

3.4.1 Regular spiking neurons are recruited by leakage currents above a critical ultrasonic dose. 

In the sub-threshold state where the membrane charge density is below the neuron’s spiking threshold QT, LIFUS-

ON periods of sufficient intensity trigger a strong effective hyperpolarization of several tens of millivolts that closes all 

voltage-gated ion channels, but also triggers a depolarizing leakage current (proportional to the difference Vm
* - Eleak) 

that increases the membrane charge density (Figure 7(a), insets i-ii). At each pulse offset, the sudden mechanical 

stabilization of the membrane prompts an effective depolarization that crosses the leakage reversal potential and brings 

the membrane potential above its pre-pulse level, yet remaining in the sub-threshold state. Hence, the leakage current 

changes polarity and the charge density decreases. As a result, the net charge variation over a PRI depends on the 
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combination of pressure amplitude and duty cycle (referred to as US dose) that determines the magnitude and duration 

of LIFUS-ON effective depolarization, and is positive for US doses above a certain threshold. As the charge density 

progressively approaches QT, effective hyperpolarizations and depolarizations are shifted towards higher potential 

values, which diminishes the imbalance between the LIFUS-ON and LIFUS-OFF charge variations, ultimately reducing 

the net charge increase per PRI. Above a critical US dose, the imbalance stays positive as the charge crosses QT, at 

which point the sodium channels begin to open and drive further charge increase. 

 

Figure 7. Cell-type-specific LIFUS behavior maps. Two-dimensional behavior maps depicting the firing rate of RS 
and LTS neurons (32nm sonophore radius, 500 kHz US frequency) as a function of duty cycle and amplitude, for various 
PRF, along with threshold excitation amplitudes predicted from titration procedures (orange curves). Temporal profiles 
of membrane charge density (black) and effective membrane potential (gray) are also depicted for selected 
combinations of duty cycle and amplitude. (a) Behavior maps and selected profiles at 10 HZ PRF. (b) Maps and profiles 
at 100 Hz PRF. (c) Maps and profiles at 1 kHz PRF. 

3.4.2 Low-threshold spiking neurons can be recruited at lower ultrasonic doses thanks to calcium currents. 

The LTS neuron is intrinsically easier to bring to a supra-threshold state due to its higher resting potential, and is 

thus generally activated at lower amplitudes than the RS neuron (Figure 7, bottom maps). Moreover, in the sub-threshold 

state, the sudden effective depolarization at pulse offsets triggers the transient opening of intrinsic low-threshold calcium 
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voltage-gated channels during LIFUS-OFF periods, producing a depolarizing current that can overcome the effect of 

the hyperpolarizing leakage current and drive further depolarization of the membrane towards QT. As a result, the LTS 

neuron can be excited at far lower duty cycles than the RS neuron with sub-MPa amplitudes (Figure 7(a), inset iii). 

3.4.3 Cortical neurons can be entrained into different spiking behaviors depending on PRF values. 

When a regular or low-threshold spiking neuron reaches the supra-threshold state (Qm > QT), the effective gating 

kinetics of sodium and potassium channels during LIFUS-ON periods trigger a high-frequency, non-adaptive train of 

action potentials with a high spiking frequency (>> 100 Hz) and reduced spike amplitude (<< 70 nC/cm2), as seen in 

Figure 5(a-c). During LIFUS-OFF periods, the system’s behavior mainly depends on its electrical state at the preceding 

pulse offset: a decreasing membrane charge at the transition tends to induce repolarization, whereas an increasing 

membrane charge triggers further depolarization towards an action potential of “standard” amplitude through the 

traditional (i.e., unmodulated) membrane dynamics of the neuron. 

For low PRFs allowing complete membrane repolarization between consecutive pulses, both neurons exhibit a 

similar, typical behavior (Figure 7(a)): US doses just above their respective excitation threshold see each pulse trigger 

exactly one spike (insets i and iii), whereas at higher doses each pulse necessarily triggers a burst of spikes (insets ii 

and iv). Notice that the transition between those spiking patterns is sharper for the RS neuron. 

At intermediate PRFs that induce an accumulative depolarization effect between consecutive pulses, both neurons 

exhibit more complex spiking patterns (Figure 7(b)). Just above the excitation threshold, a large number of pulses is 

required to trigger a single spike. This number decreases as the US dose is increased. For particular US doses, the rate 

of sub-threshold charge increase is such that after multiple preceding pulses, the neuron’s excitation threshold is 

reached exactly at the time of a pulse onset, such that a burst of spikes can be fired within the pulse, enriching the firing 

rate spectrum with a high-frequency component. Interestingly, because the RS neuron’s leakage-driven sub-threshold 

build-up is quasi-linear, it synchronizes its bursting activity with a multiple of the PRI (referred to as nPRI-locked bursting) 

in a robust manner throughout the stimulus (Figure 7(b), inset ii). Moreover, this behavior is achieved at specific 

combinations of duty cycle and pressure amplitude seen as distinct stripes of higher firing rate on the behavior map, 

corresponding to different multiples of the PRI, and surrounded by regions of cyclic spiking activity (Figure 7(b), insets i 

and ii). This clustered pattern of nPRI-locked bursting cannot be obtained for the LTS neuron, because of the nonlinear, 

influence of the T-type calcium current on the sub-threshold charge build-up. However, as the latter current enhances 

sensitivity to LIFUS, the LTS neuron can synchronize its spiking activity with the stimulus by firing exactly one spike for 

each pulse at high US doses (Figure 7(b), inset iv). This behavior (referred to as PRI-locked spiking) is seen over a 

large region of the considered amplitude-DC space, (which suggests that it could be reliably elicited), something that is 

not obtained with the RS neuron for the range of considered acoustic amplitudes. When further raising the acoustic 

dose, both neuron types fire a burst of spikes at each pulse. 
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At high PRF for which PRI is in the order of magnitude of spike duration, synchronization phenomena do not occur 

and both neurons show less regular responses (Figure 7(c)). At low US doses slightly above their respective excitation 

threshold, both neuron fire sparse spikes at a variable rate (Figure 7(c), insets i and iii). At higher US doses, this high-

frequency pulsing protocol tends to constrain the membrane charge density to a supra-threshold regime and yields very 

high firing rates for both neurons (Figure 7(c), insets ii and iv), similar to those obtained by continuous stimulation. 

3.5 Excitation thresholds are sensitive to LIFUS parameters and sonophore geometry 

Visual inspection of effective variables reveals the significant influence of both US frequency and sonophore radius 

on a neuron’s effective electrical system (Figure 4(b-c)), and ultimately on its electrical response. Hence, this section 

analyzes the influence of these two parameters on excitation thresholds, assessed using titration procedures. 

3.5.1 Neuronal excitability shows substantial sensitivity to the sonophore radius. 

For an RS neuron, augmenting the sonophore radius to twice its reference value (64 nm) induces larger cavitation 

that amplifies the effective membrane potential (Figure 4(c)) and the resulting leakage-driven sub-threshold 

depolarization, thereby shifting the excitation threshold significantly towards lower US doses (Figure 8(a), solid curves). 

This decrease is particularly important at low duty cycles (e.g., > 3-fold decrease from 180 to 45 kPa at 20% DC). 

Oppositely, diminishing the sonophore radius to half its reference value (16 nm) induces a tremendous increase in 

threshold amplitudes. Again, this augmentation is particularly marked at low duty cycles (e.g., > 5-fold increase from 

110 to 600 kPa at 25% DC, below which it becomes impossible to excite the neuron with amplitudes in our lookup 

range). However, the augmentation is also substantial at high duty cycles (e.g., from 30 to 65 kPa at 100% DC). 

 

Figure 8. Influence of sonophore radius and US frequency on excitation thresholds. Threshold excitation 
amplitude as a function of the duty cycle for an RS neuron (solid curves) and an LTS neuron (dashed curves), predicted 
through titration procedures. (a) Effect of sonophore radius (f = 500 kHz). (b) Effect of US frequency (a = 32 nm). 

The effects are smaller on an LTS neuron (Figure 8(a), dashed curves): doubling or halving the sonophore radius 

respectively shift the excitation threshold towards lower or higher US doses for small duty cycles (below 20% DC). For 
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larger duty cycles, the neuron’s excitability is very robust to changes in sonophore extent (less than 5 kPa variation 

across the 3 conditions). 

3.5.2 US frequencies above 1 MHz reduce neuronal excitability. 

As anticipated from Figure 4(b), sub-MHz variations of the US frequency do not induce significant changes in the 

threshold excitation profiles of both neurons (Figure 8(b)). However, increasing the frequency up to 4 MHz induces 

stronger viscous stresses that limit the amplification of the effective membrane potential (Figure 4(b)) and the resulting 

leakage-driven sub-threshold depolarization, thereby shifting the excitation threshold towards slightly higher US doses. 

This effect is only relevant on large sonophores (here 32 and 64 nm radius) experiencing higher viscous stresses during 

cavitation. It is also more prominent in RS neurons than in LTS neurons, as the latter cell type is more dependent on 

LIFUS-ON periods to reach its spiking threshold. 

4. Discussion 

4.1 Interpretability of the SONIC model 

4.1.1 The SONIC model provides interpretability to the LIFUS-modulated spiking dynamics of cortical 

neurons. 

The high degree of similarity between detailed and effective solutions of the NICE and SONIC electromechanical 

models, respectively, reveals that membrane charge density and ion channels gating variations during a LIFUS neural 

response can be expressed as a function of “effective” membrane potential and rate constants, averaged over acoustic 

cycles. These effective variables all exhibit a dependency on Qm in the absence of acoustic perturbation, and they are 

amplified upon sonication to an extent that depends on acoustic pressure amplitude, US frequency and sonophore 

membrane span. 

The amplification of effective variables explains key features of the specific dynamics observed in both cortical RS 

and LTS neurons during LIFUS-ON periods (Figure 5(a-c)). 1) Given that sodium and potassium have reversal potentials 

of opposite signs (50 and -90 mV, respectively), Vm
* amplification primarily increases the deviation from ENa and thus 

the magnitude of the depolarizing sodium current when Qm < 0, and deviation from EK and the magnitude of the 

hyperpolarizing potassium current when Qm > 0. This sign-dependent, ion-specific current amplification limits the charge 

density variation range, ultimately reducing the amplitude of the depolarization and hyperpolarization peaks reached 

during action potential trains. 2) The amplification of (i) αm
* and αn

* for positive charge densities and (ii) βm
* and βn

* for 

negative charge densities accelerate the opening and closing of the sodium and potassium activation gates during 

action potentials, further enhancing their temporal dynamics. 3) αh
* amplification triggers faster reactivation of the sodium 

h-gate upon repolarization, which effectively eliminates recovery periods between spikes, thereby considerably 
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increasing the firing frequency to a rate far superior to what can be evoked with electrical stimulation. 4) αp
* amplification 

accelerates the p-gate opening upon occurrence of the first spike, yielding a very fast firing rate adaptation within the 

first few spike intervals, and is therefore responsible for the non-adaptive nature of LIFUS-triggered spike trains. Hence, 

the SONIC model provides interpretability to the high-frequency and non-adaptive nature of spike trains in cortical RS 

and LTS neurons upon CW LIFUS. 

4.1.2 The SONIC model captures complex trends of LIFUS responses depending on multiple parameters. 

Due to its associated computational burden, the NICE model only allows for sparse explorations of the LIFUS 

parameter space. While such explorations can reveal crucial information (e.g. cell-type-specific, DC-dependent 

excitation thresholds obtained by titration procedures), denser explorations such as the ones performed in this study 

allow to capture finer trends in neural responses, and to assess the influence of parameters such as the PRF on those 

trends. Here, we showed that low PRFs can entrain both neuron types into regular firing behaviors, transitioning from 

isolated spikes to cyclic bursting at the PRF as US doses are increased. Higher PRFs yield more complex behaviors, 

from dose-specific synchronization phenomena at 100 Hz to a more continuous interaction at 1 kHz. 

4.1.3 The SONIC model captures subtle neuromodulatory effects over narrow regions of the LIFUS space. 

Interestingly, a recent computational study of the NICE model for STN neurons suggests that CW LIFUS can also 

induce other, subtle neuromodulatory effects on these spontaneously firing neurons [29]. Markedly, the authors predict 

that increasing levels of US doses successively elicit (1) steady increase in the firing rate of the neuron above its 

physiological baseline, (2) further increase of the firing rate with significant spike-frequency and spike-amplitude 

adaptation, and (3) generation of silenced plateau potentials after a transient period of adaptation. While those 

transitions between qualitatively distinct modes of LIFUS-neuron interaction occur over a narrow range of low acoustic 

amplitudes (A < 25 kPa), they are remarkably captured by the SONIC model (Figure 9). 

 

Figure 9. Distinct neuromodulatory effects of CW LIFUS (f = 500 kHz) on STN neurons at very low intensities, as 
predicted by the SONIC model. (a) Temporal evolution of firing rate during LIFUS, defined as in [29], for increasing 
acoustic amplitudes. (b) Neural responses elicited at three specific amplitudes showing the distinct modes of interaction. 
Corresponding spatial peak pulse averaged intensities, computed as in [29] but with ρl =1075 kg∙m-3, are shown for 
comparison. Electrical model parameters were taken from [29,30]. 
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4.2 Effects of partial sonophore membrane coverage on neural responses 

Sonophore membrane coverage is a key parameter of the NICE model likely to vary across a wide range of possible 

values. The influence of this parameter was previously assessed using a point-like NICE model with spatially-averaged 

capacitance, i.e. assuming that neural response is only sensitive to the spatial average of membrane potential variations. 

Here, instead, we assess the influence of partial sonophore membrane coverage using a nanoscale multi-

compartmental SONIC model (see section 2.4) that considers the spatial co-distribution of sonophores with ion 

channels, as well as the effects of local intracellular currents, on an RS neuron’s response. 

For typical CW LIFUS parameters (f = 500 kHz, A = 50 kPa, 100 ms duration) and with 50% membrane coverage, 

the stimulus onset creates an instantaneous effective capacitance drop and hyperpolarization of the local sonophore 

membrane potential (Figure 10(a)). This creates an effective voltage imbalance with the unaffected surroundings, which 

drives significant intracellular currents. As these currents rapidly equilibrate the effective membrane potential across the 

2 compartments, they also drive fast and significant changes in membrane charge density, increasing Qm locally around 

the sonophore and decreasing it in the periphery. During the stimulus, the sonophore mechanical resonance induces 

leakage membrane currents that progressively increase the membrane charge density locally, but also in the periphery 

through the action of intracellular currents that equilibrate effective membrane potentials. After approximately 40 ms, 

Qm around the sonophore eventually reaches the threshold value that drives the opening of local voltage-gated ion 

channels and triggers a spike train. As intracellular currents still maintain the Vm
* spatial equilibrium, QT is also reached 

in the surrounding membrane where voltage-gated ion channels also open. Both compartments then fire synchronized 

spike trains but with different Qm variation ranges, since their effective electrical systems are not identically modulated 

by the stimulus. As the sonication stops, the sonophore membrane capacitance instantaneously returns to its resting 

value, which synchronizes charge density across the entire membrane patch. 
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Figure 10. Effects of partial sonophore membrane coverage on neural responses. (a) Effective membrane 
potential (top) and charge density (bottom) of a RS neuron with 50% sonophore membrane coverage in response to 
CW sonication (f = 500 kHz, A = 50 kPa, 100 ms duration). Neural responses of a bilayer sonophore and its periphery 
computed with the nanoscale multi-compartmental SONIC model are depicted (solid dark and dashed light blue, 
respectively), as well the single response obtained with a point-like SONIC model using a spatially averaged membrane 
capacitance (grey). (b) Threshold excitation amplitude as a function of sonophore membrane coverage, computed with 
both the point-like (grey) and multi-compartmental SONIC (dark blue) models, using titration procedures at f = 500 kHz 
(1 s stimulus). 

This model involves several simplifications. First, it assumes that ion channels are present in the direct vicinity of a 

sonophore structure and respond to local changes in membrane potential, regardless of the global membrane fraction 

covered by such structures. Second, it assumes that these ion channels (in particular leakage channels) are present in 

sufficient number to drive a local depolarization up to the spiking threshold that may excite an entire neuron. Third, it 

neglects other intracellular driving forces that may be relevant at this nanometer scale, including the intracellular diffusion 

of ion particles following their concentration gradient. Fourth, it only consists of two compartments without further spatial 

discretization, and may therefore fail to capture the effects of a more continuous interaction between a sonophore and 

its surroundings. Fifth, it includes arbitrary choices such as the simplistic assumption of cylindrical symmetry, the value 

of effective sub-membrane depth and that of the intracellular resistor. Nevertheless, this model suggests that local 

depolarization around a sonophore generates intracellular currents that predominate overwhelmingly over membrane 

currents to synchronize the membrane electrical state in a very robust manner, unaffected by changes in key model 

parameters. In fact, while the choice of effective sub-membrane depth in this multi-compartmental model is indeed 

arbitrary, a sensitivity analysis shows that a decrease by several orders of magnitude below the nanometer range would 

be required in order to start observing desynchronized responses. 

Critically, the point-like SONIC model considering a spatially-averaged potential across the entire membrane patch 

(see section 2.4) only predicts a sub-threshold response for identical parameters. 
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4.3 Influence of sonophore size and density on neural excitability 

Simulations of the NICE model in reference studies [11,12] were all performed by assuming a constant sonophore 

radius of 32 nm – a value derived from the averaged distance between neighboring proteins in native oocytes [38]. 

While the order of magnitude of this parameter can be deemed reasonable, it is likely to vary significantly across 

organisms, cell types, and morphological sections of a given cell. Moreover, it is shown here that this parameter affects 

both the gating dynamics and the threshold excitation amplitudes of our neuron models, and is thus likely to play a key 

role in the excitability of most neuron types. In particular, it might shift the region of cortical suppression predicted in [12] 

to smaller or higher US doses. 

Sonophore membrane coverage is another key variable likely to vary across a wide range of possible values. 

However, past simulations were mostly performed assuming 100% coverage, which is arguably unrealistic. The effect 

of partial coverage on neural response was only assessed for a single value of 75%, with a pressure amplitude far above 

the neuron’s excitation threshold [12], using a point-like NICE model with a spatially-averaged capacitance. With this 

model, membrane charge density can only be brought above the spiking threshold by the progressive action of 

transmembrane depolarizing currents which, for an RS neuron under CW sonication, directly depend on the amplitude 

of LIFUS-triggered effective capacitance drop. As the sonophore membrane coverage decreases, the spatially-

averaged drop is substantially dampened. This attenuates the effective variables of the electrical system, which raises 

excitation thresholds (Figure 10(b)). Under this paradigm, neuronal excitability is very sensitive to the density of 

sonophores: 75% coverage is enough to double the threshold excitation amplitude, and below 50% no pressure 

amplitude within the considered LIFUS range is able to excite the neuron. 

The nanoscale multi-compartmental SONIC model – that considers spatially distributed voltage variations and ion 

channels gating – reveals an additional mechanism by which Qm can be raised locally towards the spiking threshold. In 

fact, upon stimulus offset, the effective sonophore hyperpolarization generates local intracellular currents converging 

from the surrounding, unaffected membrane region that induce a rapid and substantial rise in the sonophore membrane 

charge density (Figure 10(a)). This effect is amplified for small fractions of sonophore coverage as the predominance of 

the unaffected membrane drives stronger intracellular currents towards the sonophore. However, this predominance 

also hinders the subsequent progressive charge increase once Vm* has reached a spatial equilibrium. Nevertheless, 

this additional mechanism contributes to maintaining a very robust neuronal excitability as sonophore densities 

decreases (Figure 10(b)): excitation threshold amplitudes are hardly affected above 10%, and even a coverage fraction 

as low as 1% raises the threshold excitation amplitude by less than a factor 3. 

The predicted effects of partial sonophore coverage on neural excitability are highly dependent on inherent model 

assumptions. The point-like SONIC model, considering spatially-averaged US effects on the membrane, predicts that 
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neuronal excitability is very sensitive to that parameter, and that low sonophore densities (fs < 50%) may prevent the 

recruitment of cortical neurons with typical LIFUS protocols. Conversely, the multi-compartmental SONIC model 

developed here, considering spatially-distributed US effects on the membrane, predicts that the US excitability of cortical 

neurons is very robust to partial sonophore membrane coverage. More generally, the predictions of the latter model 

seem to agree with the experimental observation that US neuromodulation can be found in a diverse range of neural 

targets, despite important variabilities in their membrane structure. This observation suggests that the acoustic impact 

is likely to mechanistically interact with localized features of the structure (the sonophores in the case of the 

intramembrane cavitation hypothesis). 

4.4 Relevance for experimental validation 

Despite predicting LIFUS parameter-dependent trends of neural activation and inhibition that match with indirect 

responses (e.g. hindlimb motor activity, mesoscale cortical activity) observed experimentally [11,12], one major limitation 

of the NICE electromechanical model is the lack of direct experimental validation at the cellular level, and in particular, 

direct observation of intramembrane cavitation, given the nanometer-scale extent of the hypothesized bilayer 

sonophores. Recording local oscillations in membrane thickness or transmembrane potential might be elusive, as this 

would require a sensing technology of high spatial (< 100 nm) and temporal (<< 1 µs) resolution with enough sensitivity 

to detect thickness variations of a few nanometers. However, the predicted dependency of excitation thresholds, 

response latencies, neural firing rates and spike amplitudes on LIFUS parameters are testable features that could (1) 

provide indirect validation of the NICE electromechanical hypothesis and (2) constrain specific model parameters with 

significant associated variability, such as the sonophore radius and density. In this context, our SONIC model defines 

effective membrane dynamics as a more interpretable frame of reference, supporting the design of such validation 

experiments and providing additional insight on how exactly LIFUS modulates ion channel gating dynamics. 

4.5 Generalizability and integration 

The presented coarse-graining approach can be adapted to any neuron model with conductance-based membrane 

dynamics, provided that response time constants of its constituent voltage-gated ion channels are in the millisecond 

range. The translation into effective channel models could be further simplified by neglecting the small-scale changes 

in deflection profiles across different neuron types, and thus deriving cell-type-specific effective variables from a single 

precomputed table of mechanical deflections. Moreover, while we focused here on single neuron characterization, 

SONIC models of several neuron types could easily be coupled together with synaptic connections in order to design 

realistic, yet computationally efficient representations of cortical and/or peripheral neural networks responding to LIFUS. 

These network models could be used to increase our understanding of the influence of different LIFUS parameters on 

large-scale neural response as in [12]. Alternatively, they could guide the design of studies on the causal role of certain 
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brain regions in specific behaviors and behavioral disorders, as LIFUS currently emerges as very compelling technology 

for causal brain mapping [37]. 

4.6 Advantage over other simplification strategies 

The authors of the NICE electromechanical model have already proposed approaches to tackle the computational 

inefficiency of the original differential system (equations (1) and (2)), and speed up the numerical integration of solutions. 

A hybrid resolution scheme was developed that takes advantage of the weak influence of the electrical system on the 

mechanical one: the full electromechanical system is periodically integrated (every 500 µs) for a few acoustic cycles 

until quasi-static (oscillatory) stabilization of the mechanical variables, which are then assumed to remain unchanged 

for the rest of the 500 µs interval, allowing to integrate a simplified system with reduced stiffness for a large portion of 

the solution [11]. A later simplification was devised that represents the oscillations of sonophore membrane capacitance 

by a simple sinusoid at the US frequency, thereby dispensing from integrating the mechanical part of the model [12]. 

However, as both simplifications explicitly model the high-frequency, large-amplitude oscillations of the transmembrane 

potential, their integration time step must stay significantly smaller than the acoustic period to ensure convergence, 

which represents a strongly limiting factor for algorithmic optimization. Conversely, the time step used in our SONIC 

model is completely independent from the stimulus frequency, and only limited by the order of magnitude of the response 

time constants of constituent ion channels (as well as the PRI). Moreover, despite yielding excitation profiles that are 

qualitatively similar to that of the detailed NICE model, the sinusoidal capacitance-driven model does not properly 

capture the asymmetry of capacitance oscillations that dictates the dynamics of the initial charge build-up phase during 

CW stimulation; therefore, it cannot provide an accurate estimate of the response latency and excitation threshold for 

such protocols. On the other hand, our SONIC model considers this asymmetry during the precomputation of lookup 

tables, and can therefore reliably predict these excitation metrics. Obviously, this precomputation step is time consuming 

but it stays within the same order of magnitude as that required to run a single simulation of the detailed model. 

Moreover, it is a fixed cost, meaning one precomputation then allows to explore the entire parameter space. 

Furthermore, PRF and duty cycle do not need to be considered at this stage, which reduces the problem dimensionality. 

Finally, as it consists of a high number of small, independent mechanical simulations, precomputation can be easily 

optimized by parallelization (in fact, on our 24-core server, the parallelized process only takes 2 to 3 hours per neuron 

type). 

5. Conclusion 

In this study, we derived an effective coarse-grained variant of the NICE electromechanical model that greatly 

accelerates numerical simulations while preserving the accuracy of computed solutions and offering electrophysiological 

interpretability. This so-called SONIC model was used to explore systematically the LIFUS parametric space and 
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establish cell-type-specific behavior maps, by recasting LIFUS responses under the frame of an “effective” neural 

dynamics. We also expanded the SONIC model into a nanoscale multi-compartmental representation to study the 

impact of the electrical interactions between LIFUS receptive sub-cellular structures and their surroundings on the neural 

response. In ongoing work, we are conducting sonication experiments on isolated leech ganglia and analyzing the 

electrical responses of specific neurons to LIFUS with intracellular recordings, in order to verify the trends in effective 

spiking dynamics suggested by the model and provide indirect validation and quantification of the intramembrane 

cavitation mechanism. We are also expanding the SONIC model into cell-morphological neuron representations in order 

to study the effects of LIFUS on different neural structures in a more realistic manner. 
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