
Letter Optica 1

Deep Reinforcement Learning Control of White-Light
Continuum Generation
CARLO M. VALENSISE1,*, ALESSANDRO GIUSEPPI2, GIULIO CERULLO1, AND DARIO POLLI1

1IFN-CNR, Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (IT)
2University of Rome "La Sapienza", Department of Computer, Control and Management Engineering (DIAG), Via Ariosto 25, 00185 Rome (IT)
*Corresponding author: carlo.valensise@polimi.it

Compiled July 27, 2021

White-light continuum (WLC) generation in bulk me-
dia finds numerous applications in ultrafast optics and
spectroscopy. Due to the complexity of the underly-
ing spatio-temporal dynamics, WLC optimization typ-
ically follows empirical procedures. Deep Reinforce-
ment Learning (deep RL) is a branch of Machine Learn-
ing dealing with the control of automated systems us-
ing deep Neural Networks. In this Letter we demon-
strate the capability of a deep RL agent to generate a
long-term-stable WLC from a bulk medium without
any previous knowledge about the system dynamics
and functioning. This work demonstrates that Rein-
forcement Learning can be exploited effectively to con-
trol complex nonlinear optical experiments. © 2021 Opti-

cal Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

In recent years a strong synergy has developed between pho-
tonics and the computational tools collectively referred to as
Artificial Intelligence (AI) [1], bringing mutual benefits to both
disciplines. On the one hand, photonic technologies are increas-
ingly employed to improve and speed up data collection, at the
basis of every AI application. On the other hand, AI provides
robust analytical and predictive tools adapted to a wide variety
of photonic contexts: non-linear spectroscopy [2, 3], quantum
optics [4], supercontinuum generation in optical fibers [5] and
image propagation in diffuse media [6]. In this work, we deepen
the link between the two fields, by applying Reinforcement
Learning (RL) [7] to automate white-light continuum (WLC)
generation, one of the central problems in nonlinear optics. We
demonstrate how RL is able to locate, in a multidimensional
space and in an unsupervised fashion, a set of parameters able
to guarantee a broadband and long-term stable WLC. Previ-
ously, Machine Learning has been used in combination with
evolutionary algorithms such as Genetic Algorithms [8] to tailor
the supercontinuum produced in an integrated-photonic chip [9]
or to automatically perform mode-locking on a fiber laser [10].

WLC generation is a complex third-order nonlinear process
which finds numerous applications in ultrafast optics and spec-
troscopy. Experimentally, WLC generation is quite simple: a
moderately energetic (0.5-3 µJ) femtosecond pulse is tightly fo-
cused in a plate of a transparent material (such a sapphire, CaF2,

YAG, YVO4) with few-mm thickness. By suitably controlling
the pulse energy, the focused beam divergence and the posi-
tion of the nonlinear plate with respect to the focal plane, one
obtains the formation of a filament and an explosive spectral
broadening, resulting in a spectrum which extends both to the
blue and to the red of the driving pulse spectrum, with a mod-
erate spectral energy density of 10-20 pJ/nm [11]. Due to its
spectral extension, high spatial beam quality and outstanding
shot-to-shot energy stability, WLC is employed for seeding of op-
tical parametric amplifiers [12], as the probe pulse in broadband
transient absorption spectroscopy [13, 14] and in the genera-
tion of octave-spanning spectra for the characterization of the
carrier-envelope phase of few-optical-cycle pulses [15, 16]. WLC
generation involves the complex combination of several non-
linear optical processes, such as spatial self-focusing, temporal
self-phase modulation, self-steepening and space-time focus-
ing [17, 18], as well as group velocity dispersion and plasma
generation through multi-photon ionization. The complexity
of the underlying spatio-temporal nonlinear optical processes
prevents a complete theoretical description of WLC generation
and has led to the development of empirical procedures for the
optimization of the WLC properties (bandwidth, energy, stabil-
ity). Often, a variation of the parameters of the driving laser,
due to either fluctuations or change of operating regime (such as
e.g. a different repetition rate) degrades the quality of the WLC,
calling for a time-consuming manual adjustment procedure.

RL is a powerful method for the solution of optimization
problems which can be formalized as Markov Decision Pro-
cesses (MDPs) [19]. The solution is determined by an agent
that observes, at each discrete temporal step t, the state st of an
environment E and is then able to decide actions at that affect
the environment evolution. After taking an action, a reward
r(st, at, st+1) is given to the agent, reflecting the quality of the
action taken given the current state and the subsequent one.
The agent’s objective is to determine an optimal policy π to
perform the best actions so as to maximize the expected cumu-
lative reward. Initially the agent has no a-priori knowledge on
the internal functioning or dynamics of the environment, and
the optimal policy is determined by the agent through direct
experience of the behavior of the environment. RL agents are
currently at the center of intensive research, especially for what
concerns solutions based on deep Learning. Deep Neural Net-
works [20] are powerful mathematical tools that allow the agent

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Letter Optica 2

Actor NN Critic NN

st at

st,at

Q(st,at)

Fig. 1. Scheme of the actor and critic NN of the RL agent. The
actor NN takes as input the state and outputs an action; the
critic NN takes as input the state-action pair (st, at) and out-
puts is the state-action value function. See Supplementary
Information for a full description of the two NNs.

to understand complex environments, and learn how to obtain
good rewards (see Supplementary Information). Deep RL agents
were demonstrated to be particularly successful in complex tasks
such as playing video games [21, 22] and traditional games [23].
Moreover, deep RL is used for control tasks such as robotics
and autonomous driving [24], with recent contributions focus-
ing on critical features for real-world application, namely safety
[25] and constrained control [26]. In this work, we propose and
demonstrate that deep RL is a powerful tool also within the
non-linear optics research field. In particular, we train a deep RL
agent to control and optimize a strongly non-linear process such
as WLC generation.

A broad and stable WLC spectrum requires the optimization
of at least three degrees of freedom, namely the energy of the
pump pulse, the numerical aperture of the focused beam and the
position of the nonlinear plate with respect to the beam waist.
All these quantities are continuous, making the task suitable,
from a deep RL standpoint, to be solved through an "actor-critic"
architecture [27]. In general, deep learning-based actor-critic
solutions use a pair of neural networks (NNs) trained with dif-
ferent purposes (see Figure 1): the actor network approximates
the policy π(s), the mapping between states and actions, while
the critic network approximates the so called state-action value
function Q(s, a) [7], a quantity that, for each state-action pair
(s, a) approximates the cumulative reward that can be obtained
starting in (s, a) and following the policy π thereafter (see Sup-
plementary Information). Several training processes for the two
networks were proposed in the last few years. One of the first
and most widely used deep RL solutions for the actor-critic set-
ting is the Deep Deterministic Policy Gradient (DDPG) [24];
to solve the WLC generation problem we employed its recent
evolution called Twin Delayed DDPG (TD3) [28], that represents
the state of the art in the field [29].

The optical setup used for WLC generation is sketched in
Figure 2. It starts with a fiber-based ytterbium laser system (Co-
herent Monaco) providing pump pulses with ≈ 300 fs duration
at 1030 nm, at a variable repetition rate up to 50 MHz, that we
fixed at 2 MHz, and a pulse energy up to 80 µJ, that we fixed at
≈ 1.25 µJ. A motorized rotary stage (Thorlabs, PRM1Z8) varies
the orientation angle ϑ of a half wave plate (HWP), followed by
a polarizing beam splitter (PBS), so as to finely control the power
reaching the crystal. The aperture of an iris (set at an angle
φ) is controlled by a second motorized rotary stage (Thorlabs,
K10CR1) in order to vary the numerical aperture of the pump
beam focused on a 6-mm-thick YAG crystal via lens L1 with
5-cm focal length. The position (z) of the crystal with respect
to the laser focus can be varied by a third motorized actuator

HWP
1030 nm

300 fs

PBS IRIS

L1

L3 L2

SPF

OMA

BS

YAG

θ φ

z

reward

actions

states

RL agent

actor-critic

Fig. 2. Optical setup. HWP: half wave plate; PBS: polarizing
beam splitter; L1: focusing lens (focal length 5 cm); L2: colli-
mating lens (focal length 2 cm); BS: beam splitter T:R-90:10;
SPF: short-pass filter; L3: focusing lens (focal length 3 cm);
OMA: optical multichannel analyzer; RL: Reinforcement
Learning agent observing the state of the environment, tak-
ing actions on it, getting rewards in turn.

(Thorlabs, MT1-Z8). After the interaction, lens L2 with 2-cm
focal length collimates the generated WLC, which is then fil-
tered by a short-pass filter (Thorlabs, FESH1000) to reject the
fundamental beam and the long-wavelength lobe that is not
detectable by the silicon spectrometer employed (Ocean Insight,
Flame VIS-NIR). To reduce the light intensity, a beam splitter
(BS) with a transmittance/reflectance ratio of 90/10 is placed
before the spectrometer. No multiple filamentation or crystal
damage were observed with this experimental configuration.
Python programming language is used to control the actuators
[30] and read the spectrometer [31].

To express the WLC generation problem as a Markov de-
cision process we define the state of the system as the vector
s = (ϑ, φ, z). The actions correspond to movements of the ac-
tuators to absolute positions, thus are expressed in a similar
way a = (→ ϑ,→ φ,→ z). Each action taken by the agent is
evaluated with respect to the goal of generating a broad WLC
spectrum, by computing a scalar reward r(st, at, st+1). During
the movement of the three actuators, a series of output spectra is
recorded by the spectrometer (set at 3-ms integration time). This
batch of spectra enables a better estimation of the action-value
function since it doesn’t depend only on the last position, but
contains information about the entire movement (see Figure 3a).
Next, each spectrum is normalized and integrated, obtaining a
sequence of values (see Figure 3b) that are finally averaged to
get a single scalar value to be used as reward for the action.

The training procedure for a TD3 Deep Learning Agent is
divided in episodes, each lasting for Te time steps. During the
training, all the transitions (st, at, st+1, rt), composed by the ini-
tial state, the action taken, the next state and the reward received
are stored in the so-called replay-buffer, that gathers all the
acquired knowledge on the system. At the beginning of the
training process, usually the environment is explored by per-
forming random actions, so that the agent may gather some
starting data. After a few episodes of random exploration a suffi-
cient amount of transitions are present in the replay-buffer, and
the agent can start the training of its actor and critic NNs. As the
agent trains, its knowledge on the system increases. As custom-
ary in RL solutions, in order to maintain active the exploration
of the environment and improve the learned policy to obtain
higher rewards, the actions produced by the actor network are
randomly perturbed. This ensures that the agent experiences



Letter Optica 3

Fig. 3. Example of transition between two states. Spectra col-
lected during the transition (a) reported along with the corre-
sponding area under the curve (b). The sum of the values in
panel (b) divided by the number of acquired spectra (propor-
tional to the length of the dynamics) gives the scalar reward.

possibly more rewarding states that are not considered within
its (current) policy, and avoids being attracted towards locally
optimal policies.

After each episode is completed, the system is randomly reset
to a new initial condition. To assess the improvements of the
learned policy after some training episodes, the agent under-
goes some evaluation episodes in which its actions are not per-
turbed. This evaluation procedure allows to determine whether
the agent has completed the training (i.e., is able to obtain suf-
ficiently high rewards) or if it needs to undergo a new training
phase. We refer the reader to the Supplementary Information
for a more detailed description of the training procedure.

Figure 4 reports an exemplary complete experiment of our
RL agent controlling WLC generation. We selected Te = 50 time
steps for each episode, and used the first four episodes for the
random sampling. After that, three evaluation episodes are then
performed to check the agent knowledge just after the random
initialization. Clearly, at this point the agent is not able to pro-
duce positive rewards (i.e. to generate WLC). During the first
exploration phase (time steps 350-450) some positive rewards
are observed by the agent, also thanks to the random perturba-
tion of its actions that causes the controller to try new strategies.
However, it is only during the third exploration period (time
steps 600-700) that the policy is consolidated to systematically
obtain positive rewards. In fact, during the third and final set
of evaluations (time steps 700-850) the reward obtained by the
agent is always positive and reaches high values, meaning that
the WLC is constantly generated. Note that, despite following
a deterministic policy, the obtained reward varies in intensity
between the three last evaluations. This is due to the different
starting point of each evaluation and to the strong non-linear
nature of the WLC generation process, that determines different
spectra even for slight variations of the actuators’ positions, as
shown in Figure 5.

Figure 6 reports the details of the beginning of an evaluation
episode, once the correct policy is determined by the agent.
The system starts in a random state and the actor NN is used
to predict the next position given the current state. Already
after four steps the system converges to a stable state for WLC

90

130

ϑ 
[d
eg

]

(a)

Sampling Eval Expl Eval Expl Eval

10

35

ϕ 
[d
eg

]

(b)

2
4

z 
[m

m
]

(c)

0 200 400 600 800
Time Steps

0
200
400
600

Re
w
ar
d (d)

Fig. 4. Example of training of RL agent for WLC generation.
Panel (a), (b) and (c) report, respectively all the positions of
the actuators during the whole experiments. The different
phases of the experiments are highlighted by vertical gray
bars. In panel (d) the reward corresponding to each transition
is reported. The experiment is concluded when the policy is
able to provide a stable solution for WLC generation.

400 600 800 1000
Wavelength [nm]

0

1

2
In
te
ns

ity
 [
A.
 U
.]

Fig. 5. WLC spectra produced by RL agent after training. Dif-
ferences in shape are due to the strong non-linearity of the
process and random nature of parts of the training procedure.

generation. In Figure 6d the spectra corresponding to the first
four steps are sequentially reported, to highlight the onset of
WLC. Notably, the final spectrum is not the most intense of the
series; this behavior is commonly found in RL solutions, as the
agent aims at maximizing the cumulative reward in the future.
The strong non-linearity of the underlying process does not
guarantee that all transitions with high rewards are reproducible,
therefore the agent moves towards states that give lower, but
more constant rewards.

To assess the long-term quality of the generated WLC, after
the agent convergence to a stable WLC generation configuration,
its activity was blocked and a sequence of N = 7000 spectra
({S}N) was acquired during forty minutes, at a rate of ≈ 3 spec-
tra per second. To evaluate the overall stability we computed
the auto-correlation between the recorded spectra as a function
of the delay τ:

C(τ, {S}N) =
1

n− t

n−1−τ

∑
i=0

Si · Si+τ . (1)



Letter Optica 4

0 5

125
130
135

ϑ 
[d
eg

]
1 2 3 4 5

(a)

0 5

31

34

ϕ 
[d
eg

]

(b)

0 5

3.9

4.1

z 
[m

m
]

(c)

600 800 1000
Wavelength [nm]

In
te
ns

ity
 [
A.
 U

.]5

4

3

2

1

(d)

Fig. 6. Example of evaluation episode. Panels (a), (b) and (c)
report the positions for the three actuators. In panel (d) the
spectra corresponding to the first transitions of the episode are
sequentially reported.

0 10 20 30 40
Time [min]

0.9990

0.9995

1.0000

Co
rr
el
at
io
n

Fig. 7. Correlation function for 7000 WLC spectra sampled in
40 mins. See Eq. (1).

The results are shown in Figure 7. Very high correlation values
(>99,9 %) along the whole sampling period are observed, thus
confirming the good stability reached by the AI-generated WLC.

To conclude, in this work we demonstrated the capability of
Reinforcement Learning, currently the state of the art for model-
free-control, to handle and optimize a complex and strongly
non-linear optical process such as WLC generation. The agent
is able to learn an effective policy of control of three degrees
of freedom, that, correctly combined, allow stable and broad-
band WLC generation from a YAG crystal. This proof of concept
result may be helpful in experimental contexts in which care-
ful optimization of light sources is required before performing
the actual experiments, such as non-linear spectroscopy, often
requiring broadband and stable pulses, or quantum optics, to
control and tailor the spontaneous parametric down conversion
process, by which entangled photon pairs are generated. More
generally, multi-parametric processes that require precise au-
tomated control may exploit RL as control tool. Photonics can
benefit from AI not only to process data after measurements, but
also to control complex experimental processes.
Disclosures. The authors declare no conflicts of interest.

See Supplement 1 for supporting content.

REFERENCES

1. K. Goda, B. Jalali, C. Lei, G. Situ, and P. Westbrook, APL Photonics 5,
070401 (2020).

2. C. M. Valensise, A. Giuseppi, F. Vernuccio, A. D. la Cadena, G. Cerullo,
and D. Polli, APL Photonics 5, 061305 (2020).

3. R. Houhou, P. Barman, M. Schmitt, T. Meyer, J. Popp, and T. Bocklitz,
Opt. Express 28, 21002 (2020).

4. V. Cimini, I. Gianani, N. Spagnolo, F. Leccese, F. Sciarrino, and M. Bar-
bieri, Phys. Rev. Lett. 123 (2019).

5. U. Teğin, B. Rahmani, E. Kakkava, N. Borhani, C. Moser, and D. Psaltis,
APL Photonics 5, 030804 (2020).

6. B. Rahmani, D. Loterie, E. Kakkava, N. Borhani, U. Teğin, D. Psaltis,
and C. Moser, Nat. Mach. Intell. 2, 403 (2020).

7. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction
(MIT Press, 2018), 2nd ed.

8. D. E. Goldberg and J. H. Holland, Mach. Learn. 3, 95 (1988).
9. B. Wetzel, M. Kues, P. Roztocki, C. Reimer, P.-L. Godin, M. Rowley, B. E.

Little, S. T. Chu, E. A. Viktorov, D. J. Moss, A. Pasquazi, M. Peccianti,
and R. Morandotti, Nat. Commun. 9 (2018).

10. G. Pu, L. Yi, L. Zhang, and W. Hu, Optica 6, 362 (2019).
11. M. Bradler, P. Baum, and E. Riedle, Appl. Phys. B 97, 561 (2009).
12. C. Manzoni and G. Cerullo, J. Opt. 18, 103501 (2016).
13. S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting,

Phys. Rev. A 59, 2369 (1999).
14. U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle, Appl.

Phys. B 96, 215 (2009).
15. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira,

T. Homma, and H. Takahashi, Opt. Lett. 26, 1436 (2001).
16. A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis,

C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and
F. Krausz, Nature 421, 611 (2003).

17. J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, Phys. Rev. Lett. 77,
3783 (1996).

18. A. L. Gaeta, Phys. Rev. Lett. 84, 3582 (2000).
19. E. A. Feinberg and A. Shwartz, eds., Handbook of Markov Decision

Processes (Springer US, 2002).
20. R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in

International Joint Conference on Neural Networks, (IEEE, 1989), p.
593.

21. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,”
https://arxiv.org/abs/1312.5602 (2013).

22. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, Nature 518, 529 (2015).

23. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
Nature 529, 484 (2016).

24. T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
https://arxiv.org/abs/1509.02971v2 (2019).

25. F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, Adv. Neural
Inf. Process. Syst. 30, 908 (2017).

26. A. Giuseppi and A. Pietrabissa, IEEE Control. Syst. Lett. 4, 755 (2020).
27. R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-

dient methods for reinforcement learning with function approximation,”
in Advances in neural information processing systems, (MIT Press,
2000), pp. 1057–1063.

28. S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” https://arxiv.org/abs/1802.09477
(2018).

29. A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.
com/hill-a/stable-baselines (2018).

30. T. Gehring, “Thorlabs apt,” https://github.com/qpit/thorlabs_apt (2019).
31. K. Sunden, “Python seabreeze,” https://python-seabreeze.readthedocs.

io/ (2019).

https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1509.02971v2
https://arxiv.org/abs/1802.09477
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://github.com/qpit/thorlabs_apt
https://python-seabreeze.readthedocs.io/
https://python-seabreeze.readthedocs.io/


Letter Optica 5

FULL REFERENCES

1. K. Goda, B. Jalali, C. Lei, G. Situ, and P. Westbrook, “AI boosts pho-
tonics and vice versa,” APL Photonics 5, 070401 (2020).

2. C. M. Valensise, A. Giuseppi, F. Vernuccio, A. D. la Cadena, G. Cerullo,
and D. Polli, “Removing non-resonant background from CARS spectra
via deep learning,” APL Photonics 5, 061305 (2020).

3. R. Houhou, P. Barman, M. Schmitt, T. Meyer, J. Popp, and T. Bocklitz,
“Deep learning as phase retrieval tool for CARS spectra,” Opt. Express
28, 21002 (2020).

4. V. Cimini, I. Gianani, N. Spagnolo, F. Leccese, F. Sciarrino, and M. Bar-
bieri, “Calibration of quantum sensors by neural networks,” Phys. Rev.
Lett. 123 (2019).

5. U. Teğin, B. Rahmani, E. Kakkava, N. Borhani, C. Moser, and D. Psaltis,
“Controlling spatiotemporal nonlinearities in multimode fibers with deep
neural networks,” APL Photonics 5, 030804 (2020).

6. B. Rahmani, D. Loterie, E. Kakkava, N. Borhani, U. Teğin, D. Psaltis,
and C. Moser, “Actor neural networks for the robust control of par-
tially measured nonlinear systems showcased for image propagation
through diffuse media,” Nat. Mach. Intell. 2, 403–410 (2020).

7. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction
(MIT Press, 2018), 2nd ed.

8. D. E. Goldberg and J. H. Holland, Mach. Learn. 3, 95–99 (1988).
9. B. Wetzel, M. Kues, P. Roztocki, C. Reimer, P.-L. Godin, M. Rowley, B. E.

Little, S. T. Chu, E. A. Viktorov, D. J. Moss, A. Pasquazi, M. Peccianti,
and R. Morandotti, “Customizing supercontinuum generation via on-
chip adaptive temporal pulse-splitting,” Nat. Commun. 9 (2018).

10. G. Pu, L. Yi, L. Zhang, and W. Hu, “Intelligent programmable mode-
locked fiber laser with a human-like algorithm,” Optica 6, 362 (2019).

11. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum genera-
tion in bulk laser host materials with sub-µj pump pulses,” Appl. Phys.
B 97, 561–574 (2009).

12. C. Manzoni and G. Cerullo, “Design criteria for ultrafast optical para-
metric amplifiers,” J. Opt. 18, 103501 (2016).

13. S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting,
“Femtosecond spectroscopy of condensed phases with chirped super-
continuum probing,” Phys. Rev. A 59, 2369–2384 (1999).

14. U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle, “Sub-50
fs broadband absorption spectroscopy with tunable excitation: putting
the analysis of ultrafast molecular dynamics on solid ground,” Appl.
Phys. B 96, 215–231 (2009).

15. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira,
T. Homma, and H. Takahashi, “Single-shot measurement of carrier-
envelope phase changes by spectral interferometry,” Opt. Lett. 26, 1436
(2001).

16. A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis,
C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and
F. Krausz, “Attosecond control of electronic processes by intense light
fields,” Nature 421, 611–615 (2003).

17. J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse
splitting in nonlinear dispersive media,” Phys. Rev. Lett. 77, 3783–3786
(1996).

18. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev.
Lett. 84, 3582–3585 (2000).

19. E. A. Feinberg and A. Shwartz, eds., Handbook of Markov Decision
Processes (Springer US, 2002).

20. R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in
International Joint Conference on Neural Networks, (IEEE, 1989), p.
593.

21. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,”
https://arxiv.org/abs/1312.5602 (2013).

22. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature 518, 529–533 (2015).

23. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-

tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature 529, 484–489 (2016).

24. T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
https://arxiv.org/abs/1509.02971v2 (2019).

25. F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” Adv. Neural
Inf. Process. Syst. 30, 908–918 (2017).

26. A. Giuseppi and A. Pietrabissa, “Chance-constrained control with lex-
icographic deep reinforcement learning,” IEEE Control. Syst. Lett. 4,
755–760 (2020).

27. R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Advances in neural information processing systems, (MIT Press,
2000), pp. 1057–1063.

28. S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” https://arxiv.org/abs/1802.09477
(2018).

29. A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.
com/hill-a/stable-baselines (2018).

30. T. Gehring, “Thorlabs apt,” https://github.com/qpit/thorlabs_apt (2019).
31. K. Sunden, “Python seabreeze,” https://python-seabreeze.readthedocs.

io/ (2019).

https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1509.02971v2
https://arxiv.org/abs/1802.09477
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://github.com/qpit/thorlabs_apt
https://python-seabreeze.readthedocs.io/
https://python-seabreeze.readthedocs.io/

