1

Deep Reinforcement Learning Control of White-Light Continuum Generation

CARLO M. VALENSISE^{1,*}, ALESSANDRO GIUSEPPI², GIULIO CERULLO¹, AND DARIO POLLI¹

¹ IFN-CNR, Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (IT)

² University of Rome "La Sapienza", Department of Computer, Control and Management Engineering (DIAG), Via Ariosto 25, 00185 Rome (IT)

* Corresponding author: carlo.valensise@polimi.it

Compiled July 27, 2021

White-light continuum (WLC) generation in bulk media finds numerous applications in ultrafast optics and spectroscopy. Due to the complexity of the underlying spatio-temporal dynamics, WLC optimization typically follows empirical procedures. Deep Reinforcement Learning (deep RL) is a branch of Machine Learning dealing with the control of automated systems using deep Neural Networks. In this Letter we demonstrate the capability of a deep RL agent to generate a long-term-stable WLC from a bulk medium without any previous knowledge about the system dynamics and functioning. This work demonstrates that Reinforcement Learning can be exploited effectively to control complex nonlinear optical experiments. © 2021 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

In recent years a strong synergy has developed between photonics and the computational tools collectively referred to as Artificial Intelligence (AI) [1], bringing mutual benefits to both disciplines. On the one hand, photonic technologies are increasingly employed to improve and speed up data collection, at the basis of every AI application. On the other hand, AI provides robust analytical and predictive tools adapted to a wide variety of photonic contexts: non-linear spectroscopy [2, 3], quantum optics [4], supercontinuum generation in optical fibers [5] and image propagation in diffuse media [6]. In this work, we deepen the link between the two fields, by applying Reinforcement Learning (RL) [7] to automate white-light continuum (WLC) generation, one of the central problems in nonlinear optics. We demonstrate how RL is able to locate, in a multidimensional space and in an unsupervised fashion, a set of parameters able to guarantee a broadband and long-term stable WLC. Previously, Machine Learning has been used in combination with evolutionary algorithms such as Genetic Algorithms [8] to tailor the supercontinuum produced in an integrated-photonic chip [9] or to automatically perform mode-locking on a fiber laser [10].

WLC generation is a complex third-order nonlinear process which finds numerous applications in ultrafast optics and spectroscopy. Experimentally, WLC generation is quite simple: a moderately energetic (0.5-3 μ J) femtosecond pulse is tightly focused in a plate of a transparent material (such a sapphire, CaF₂, YAG, YVO₄) with few-mm thickness. By suitably controlling the pulse energy, the focused beam divergence and the position of the nonlinear plate with respect to the focal plane, one obtains the formation of a filament and an explosive spectral broadening, resulting in a spectrum which extends both to the blue and to the red of the driving pulse spectrum, with a moderate spectral energy density of 10-20 pJ/nm [11]. Due to its spectral extension, high spatial beam quality and outstanding shot-to-shot energy stability, WLC is employed for seeding of optical parametric amplifiers [12], as the probe pulse in broadband transient absorption spectroscopy [13, 14] and in the generation of octave-spanning spectra for the characterization of the carrier-envelope phase of few-optical-cycle pulses [15, 16]. WLC generation involves the complex combination of several nonlinear optical processes, such as spatial self-focusing, temporal self-phase modulation, self-steepening and space-time focusing [17, 18], as well as group velocity dispersion and plasma generation through multi-photon ionization. The complexity of the underlying spatio-temporal nonlinear optical processes prevents a complete theoretical description of WLC generation and has led to the development of empirical procedures for the optimization of the WLC properties (bandwidth, energy, stability). Often, a variation of the parameters of the driving laser, due to either fluctuations or change of operating regime (such as e.g. a different repetition rate) degrades the quality of the WLC, calling for a time-consuming manual adjustment procedure.

RL is a powerful method for the solution of optimization problems which can be formalized as Markov Decision Processes (MDPs) [19]. The solution is determined by an agent that observes, at each discrete temporal step t, the state s_t of an environment *E* and is then able to decide actions a_t that affect the environment evolution. After taking an action, a reward $r(s_t, a_t, s_{t+1})$ is given to the agent, reflecting the quality of the action taken given the current state and the subsequent one. The agent's objective is to determine an optimal policy π to perform the best actions so as to maximize the expected cumulative reward. Initially the agent has no a-priori knowledge on the internal functioning or dynamics of the environment, and the optimal policy is determined by the agent through direct experience of the behavior of the environment. RL agents are currently at the center of intensive research, especially for what concerns solutions based on deep Learning. Deep Neural Networks [20] are powerful mathematical tools that allow the agent

Fig. 1. Scheme of the actor and critic NN of the RL agent. The actor NN takes as input the state and outputs an action; the critic NN takes as input the state-action pair (s_t , a_t) and outputs is the state-action value function. See Supplementary Information for a full description of the two NNs.

to understand complex environments, and learn how to obtain good rewards (see Supplementary Information). Deep RL agents were demonstrated to be particularly successful in complex tasks such as playing video games [21, 22] and traditional games [23]. Moreover, deep RL is used for control tasks such as robotics and autonomous driving [24], with recent contributions focusing on critical features for real-world application, namely safety [25] and constrained control [26]. In this work, we propose and demonstrate that deep RL is a powerful tool also within the non-linear optics research field. In particular, we train a deep RL agent to control and optimize a strongly non-linear process such as WLC generation.

A broad and stable WLC spectrum requires the optimization of at least three degrees of freedom, namely the energy of the pump pulse, the numerical aperture of the focused beam and the position of the nonlinear plate with respect to the beam waist. All these quantities are continuous, making the task suitable, from a deep RL standpoint, to be solved through an "actor-critic" architecture [27]. In general, deep learning-based actor-critic solutions use a pair of neural networks (NNs) trained with different purposes (see Figure 1): the actor network approximates the policy $\pi(s)$, the mapping between states and actions, while the critic network approximates the so called state-action value function Q(s, a) [7], a quantity that, for each state-action pair (*s*, *a*) approximates the cumulative reward that can be obtained starting in (s, a) and following the policy π thereafter (see Supplementary Information). Several training processes for the two networks were proposed in the last few years. One of the first and most widely used deep RL solutions for the actor-critic setting is the Deep Deterministic Policy Gradient (DDPG) [24]; to solve the WLC generation problem we employed its recent evolution called Twin Delayed DDPG (TD3) [28], that represents the state of the art in the field [29].

The optical setup used for WLC generation is sketched in Figure 2. It starts with a fiber-based ytterbium laser system (Coherent Monaco) providing pump pulses with ≈ 300 fs duration at 1030 nm, at a variable repetition rate up to 50 MHz, that we fixed at 2 MHz, and a pulse energy up to 80 μ J, that we fixed at $\approx 1.25 \mu$ J. A motorized rotary stage (Thorlabs, PRM1Z8) varies the orientation angle ϑ of a half wave plate (HWP), followed by a polarizing beam splitter (PBS), so as to finely control the power reaching the crystal. The aperture of an iris (set at an angle ϑ) is controlled by a second motorized rotary stage (Thorlabs, K10CR1) in order to vary the numerical aperture of the pump beam focused on a 6-mm-thick YAG crystal via lens L1 with 5-cm focal length. The position (*z*) of the crystal with respect to the laser focus can be varied by a third motorized actuator

2

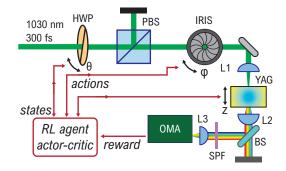


Fig. 2. Optical setup. HWP: half wave plate; PBS: polarizing beam splitter; L1: focusing lens (focal length 5 cm); L2: collimating lens (focal length 2 cm); BS: beam splitter T:R-90:10; SPF: short-pass filter; L3: focusing lens (focal length 3 cm); OMA: optical multichannel analyzer; RL: Reinforcement Learning agent observing the state of the environment, taking actions on it, getting rewards in turn.

(Thorlabs, MT1-Z8). After the interaction, lens L2 with 2-cm focal length collimates the generated WLC, which is then filtered by a short-pass filter (Thorlabs, FESH1000) to reject the fundamental beam and the long-wavelength lobe that is not detectable by the silicon spectrometer employed (Ocean Insight, Flame VIS-NIR). To reduce the light intensity, a beam splitter (BS) with a transmittance/reflectance ratio of 90/10 is placed before the spectrometer. No multiple filamentation or crystal damage were observed with this experimental configuration. Python programming language is used to control the actuators [30] and read the spectrometer [31].

To express the WLC generation problem as a Markov decision process we define the state of the system as the vector $s = (\vartheta, \phi, z)$. The actions correspond to movements of the actuators to absolute positions, thus are expressed in a similar way $a = (\rightarrow \vartheta, \rightarrow \phi, \rightarrow z)$. Each action taken by the agent is evaluated with respect to the goal of generating a broad WLC spectrum, by computing a scalar reward $r(s_t, a_t, s_{t+1})$. During the movement of the three actuators, a series of output spectra is recorded by the spectrometer (set at 3-ms integration time). This batch of spectra enables a better estimation of the action-value function since it doesn't depend only on the last position, but contains information about the entire movement (see Figure 3a). Next, each spectrum is normalized and integrated, obtaining a sequence of values (see Figure 3b) that are finally averaged to get a single scalar value to be used as reward for the action.

The training procedure for a TD3 Deep Learning Agent is divided in episodes, each lasting for T_e time steps. During the training, all the transitions (s_t, a_t, s_{t+1}, r_t) , composed by the initial state, the action taken, the next state and the reward received are stored in the so-called replay-buffer, that gathers all the acquired knowledge on the system. At the beginning of the training process, usually the environment is explored by performing random actions, so that the agent may gather some starting data. After a few episodes of random exploration a sufficient amount of transitions are present in the replay-buffer, and the agent can start the training of its actor and critic NNs. As the agent trains, its knowledge on the system increases. As customary in RL solutions, in order to maintain active the exploration of the environment and improve the learned policy to obtain higher rewards, the actions produced by the actor network are randomly perturbed. This ensures that the agent experiences

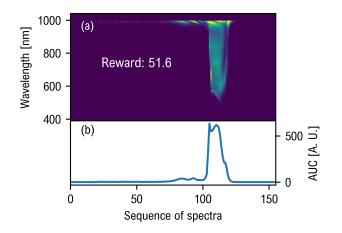


Fig. 3. Example of transition between two states. Spectra collected during the transition (a) reported along with the corresponding area under the curve (b). The sum of the values in panel (b) divided by the number of acquired spectra (proportional to the length of the dynamics) gives the scalar reward.

possibly more rewarding states that are not considered within its (current) policy, and avoids being attracted towards locally optimal policies.

After each episode is completed, the system is randomly reset to a new initial condition. To assess the improvements of the learned policy after some training episodes, the agent undergoes some evaluation episodes in which its actions are not perturbed. This evaluation procedure allows to determine whether the agent has completed the training (i.e., is able to obtain sufficiently high rewards) or if it needs to undergo a new training phase. We refer the reader to the Supplementary Information for a more detailed description of the training procedure.

Figure 4 reports an exemplary complete experiment of our RL agent controlling WLC generation. We selected $T_e = 50$ time steps for each episode, and used the first four episodes for the random sampling. After that, three evaluation episodes are then performed to check the agent knowledge just after the random initialization. Clearly, at this point the agent is not able to produce positive rewards (i.e. to generate WLC). During the first exploration phase (time steps 350-450) some positive rewards are observed by the agent, also thanks to the random perturbation of its actions that causes the controller to try new strategies. However, it is only during the third exploration period (time steps 600-700) that the policy is consolidated to systematically obtain positive rewards. In fact, during the third and final set of evaluations (time steps 700-850) the reward obtained by the agent is always positive and reaches high values, meaning that the WLC is constantly generated. Note that, despite following a deterministic policy, the obtained reward varies in intensity between the three last evaluations. This is due to the different starting point of each evaluation and to the strong non-linear nature of the WLC generation process, that determines different spectra even for slight variations of the actuators' positions, as shown in Figure 5.

Figure 6 reports the details of the beginning of an evaluation episode, once the correct policy is determined by the agent. The system starts in a random state and the actor NN is used to predict the next position given the current state. Already after four steps the system converges to a stable state for WLC

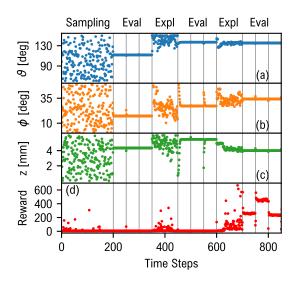


Fig. 4. Example of training of RL agent for WLC generation. Panel (a), (b) and (c) report, respectively all the positions of the actuators during the whole experiments. The different phases of the experiments are highlighted by vertical gray bars. In panel (d) the reward corresponding to each transition is reported. The experiment is concluded when the policy is able to provide a stable solution for WLC generation.

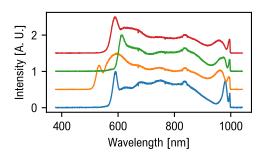


Fig. 5. WLC spectra produced by RL agent after training. Differences in shape are due to the strong non-linearity of the process and random nature of parts of the training procedure.

generation. In Figure 6d the spectra corresponding to the first four steps are sequentially reported, to highlight the onset of WLC. Notably, the final spectrum is not the most intense of the series; this behavior is commonly found in RL solutions, as the agent aims at maximizing the cumulative reward in the future. The strong non-linearity of the underlying process does not guarantee that all transitions with high rewards are reproducible, therefore the agent moves towards states that give lower, but more constant rewards.

To assess the long-term quality of the generated WLC, after the agent convergence to a stable WLC generation configuration, its activity was blocked and a sequence of N = 7000 spectra $({\bf S}_N)$ was acquired during forty minutes, at a rate of ≈ 3 spectra per second. To evaluate the overall stability we computed the auto-correlation between the recorded spectra as a function of the delay τ :

$$C(\tau, \{\mathbf{S}\}_N) = \frac{1}{n-t} \sum_{i=0}^{n-1-\tau} \mathbf{S}_i \cdot \mathbf{S}_{i+\tau}.$$
 (1)

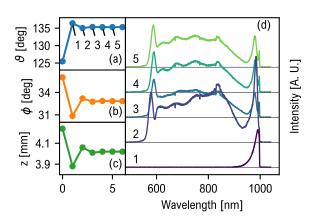


Fig. 6. Example of evaluation episode. Panels (a), (b) and (c) report the positions for the three actuators. In panel (d) the spectra corresponding to the first transitions of the episode are sequentially reported.

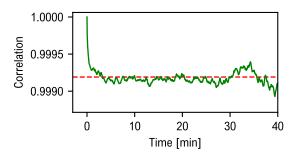


Fig. 7. Correlation function for 7000 WLC spectra sampled in 40 mins. See Eq. (1).

The results are shown in Figure 7. Very high correlation values (>99,9 %) along the whole sampling period are observed, thus confirming the good stability reached by the AI-generated WLC.

To conclude, in this work we demonstrated the capability of Reinforcement Learning, currently the state of the art for modelfree-control, to handle and optimize a complex and strongly non-linear optical process such as WLC generation. The agent is able to learn an effective policy of control of three degrees of freedom, that, correctly combined, allow stable and broadband WLC generation from a YAG crystal. This proof of concept result may be helpful in experimental contexts in which careful optimization of light sources is required before performing the actual experiments, such as non-linear spectroscopy, often requiring broadband and stable pulses, or quantum optics, to control and tailor the spontaneous parametric down conversion process, by which entangled photon pairs are generated. More generally, multi-parametric processes that require precise automated control may exploit RL as control tool. Photonics can benefit from AI not only to process data after measurements, but also to control complex experimental processes.

Disclosures. The authors declare no conflicts of interest. See Supplement 1 for supporting content.

REFERENCES

1. K. Goda, B. Jalali, C. Lei, G. Situ, and P. Westbrook, APL Photonics 5, 070401 (2020).

4

- C. M. Valensise, A. Giuseppi, F. Vernuccio, A. D. la Cadena, G. Cerullo, and D. Polli, APL Photonics 5, 061305 (2020).
- R. Houhou, P. Barman, M. Schmitt, T. Meyer, J. Popp, and T. Bocklitz, Opt. Express 28, 21002 (2020).
- V. Cimini, I. Gianani, N. Spagnolo, F. Leccese, F. Sciarrino, and M. Barbieri, Phys. Rev. Lett. **123** (2019).
- U. Teğin, B. Rahmani, E. Kakkava, N. Borhani, C. Moser, and D. Psaltis, APL Photonics 5, 030804 (2020).
- B. Rahmani, D. Loterie, E. Kakkava, N. Borhani, U. Teğin, D. Psaltis, and C. Moser, Nat. Mach. Intell. 2, 403 (2020).
- R. S. Sutton and A. G. Barto, *Reinforcement Learning: An Introduction* (MIT Press, 2018), 2nd ed.
- 8. D. E. Goldberg and J. H. Holland, Mach. Learn. 3, 95 (1988).
- B. Wetzel, M. Kues, P. Roztocki, C. Reimer, P.-L. Godin, M. Rowley, B. E. Little, S. T. Chu, E. A. Viktorov, D. J. Moss, A. Pasquazi, M. Peccianti, and R. Morandotti, Nat. Commun. 9 (2018).
- 10. G. Pu, L. Yi, L. Zhang, and W. Hu, Optica 6, 362 (2019).
- 11. M. Bradler, P. Baum, and E. Riedle, Appl. Phys. B 97, 561 (2009).
- 12. C. Manzoni and G. Cerullo, J. Opt. 18, 103501 (2016).
- S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, Phys. Rev. A 59, 2369 (1999).
- U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle, Appl. Phys. B 96, 215 (2009).
- M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, and H. Takahashi, Opt. Lett. 26, 1436 (2001).
- A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, Nature **421**, 611 (2003).
- J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, Phys. Rev. Lett. 77, 3783 (1996).
- 18. A. L. Gaeta, Phys. Rev. Lett. 84, 3582 (2000).
- 19. E. A. Feinberg and A. Shwartz, eds., *Handbook of Markov Decision Processes* (Springer US, 2002).
- R. Hecht-Nielsen, "Theory of the backpropagation neural network," in International Joint Conference on Neural Networks, (IEEE, 1989), p. 593.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, "Playing atari with deep reinforcement learning," https://arxiv.org/abs/1312.5602 (2013).
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, Nature **518**, 529 (2015).
- D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, Nature **529**, 484 (2016).
- T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, "Continuous control with deep reinforcement learning," https://arxiv.org/abs/1509.02971v2 (2019).
- F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, Adv. Neural Inf. Process. Syst. **30**, 908 (2017).
- 26. A. Giuseppi and A. Pietrabissa, IEEE Control. Syst. Lett. 4, 755 (2020).
- R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, "Policy gradient methods for reinforcement learning with function approximation," in *Advances in neural information processing systems*, (MIT Press, 2000), pp. 1057–1063.
- S. Fujimoto, H. van Hoof, and D. Meger, "Addressing function approximation error in actor-critic methods," https://arxiv.org/abs/1802.09477 (2018).
- A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu, "Stable baselines," https://github. com/hill-a/stable-baselines (2018).
- 30. T. Gehring, "Thorlabs apt," https://github.com/qpit/thorlabs_apt (2019).
- K. Sunden, "Python seabreeze," https://python-seabreeze.readthedocs. io/ (2019).

FULL REFERENCES

- K. Goda, B. Jalali, C. Lei, G. Situ, and P. Westbrook, "Al boosts photonics and vice versa," APL Photonics 5, 070401 (2020).
- C. M. Valensise, A. Giuseppi, F. Vernuccio, A. D. la Cadena, G. Cerullo, and D. Polli, "Removing non-resonant background from CARS spectra via deep learning," APL Photonics 5, 061305 (2020).
- R. Houhou, P. Barman, M. Schmitt, T. Meyer, J. Popp, and T. Bocklitz, "Deep learning as phase retrieval tool for CARS spectra," Opt. Express 28, 21002 (2020).
- V. Cimini, I. Gianani, N. Spagnolo, F. Leccese, F. Sciarrino, and M. Barbieri, "Calibration of quantum sensors by neural networks," Phys. Rev. Lett. **123** (2019).
- U. Teğin, B. Rahmani, E. Kakkava, N. Borhani, C. Moser, and D. Psaltis, "Controlling spatiotemporal nonlinearities in multimode fibers with deep neural networks," APL Photonics 5, 030804 (2020).
- B. Rahmani, D. Loterie, E. Kakkava, N. Borhani, U. Teğin, D. Psaltis, and C. Moser, "Actor neural networks for the robust control of partially measured nonlinear systems showcased for image propagation through diffuse media," Nat. Mach. Intell. 2, 403–410 (2020).
- R. S. Sutton and A. G. Barto, *Reinforcement Learning: An Introduction* (MIT Press, 2018), 2nd ed.
- 8. D. E. Goldberg and J. H. Holland, Mach. Learn. 3, 95–99 (1988).
- B. Wetzel, M. Kues, P. Roztocki, C. Reimer, P.-L. Godin, M. Rowley, B. E. Little, S. T. Chu, E. A. Viktorov, D. J. Moss, A. Pasquazi, M. Peccianti, and R. Morandotti, "Customizing supercontinuum generation via onchip adaptive temporal pulse-splitting," Nat. Commun. 9 (2018).
- G. Pu, L. Yi, L. Zhang, and W. Hu, "Intelligent programmable modelocked fiber laser with a human-like algorithm," Optica 6, 362 (2019).
- M. Bradler, P. Baum, and E. Riedle, "Femtosecond continuum generation in bulk laser host materials with sub-µj pump pulses," Appl. Phys. B 97, 561–574 (2009).
- C. Manzoni and G. Cerullo, "Design criteria for ultrafast optical parametric amplifiers," J. Opt. 18, 103501 (2016).
- S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, "Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing," Phys. Rev. A 59, 2369–2384 (1999).
- U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle, "Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground," Appl. Phys. B 96, 215–231 (2009).
- M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, and H. Takahashi, "Single-shot measurement of carrierenvelope phase changes by spectral interferometry," Opt. Lett. 26, 1436 (2001).
- A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, "Attosecond control of electronic processes by intense light fields," Nature 421, 611–615 (2003).
- J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, "Observation of pulse splitting in nonlinear dispersive media," Phys. Rev. Lett. 77, 3783–3786 (1996).
- A. L. Gaeta, "Catastrophic collapse of ultrashort pulses," Phys. Rev. Lett. 84, 3582–3585 (2000).
- 19. E. A. Feinberg and A. Shwartz, eds., *Handbook of Markov Decision Processes* (Springer US, 2002).
- R. Hecht-Nielsen, "Theory of the backpropagation neural network," in International Joint Conference on Neural Networks, (IEEE, 1989), p. 593.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, "Playing atari with deep reinforcement learning," https://arxiv.org/abs/1312.5602 (2013).
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, "Human-level control through deep reinforcement learning," Nature **518**, 529–533 (2015).
- D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-

tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, "Mastering the game of go with deep neural networks and tree search," Nature **529**, 484–489 (2016).

- T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, "Continuous control with deep reinforcement learning," https://arxiv.org/abs/1509.02971v2 (2019).
- F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, "Safe modelbased reinforcement learning with stability guarantees," Adv. Neural Inf. Process. Syst. **30**, 908–918 (2017).
- A. Giuseppi and A. Pietrabissa, "Chance-constrained control with lexicographic deep reinforcement learning," IEEE Control. Syst. Lett. 4, 755–760 (2020).
- R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, "Policy gradient methods for reinforcement learning with function approximation," in *Advances in neural information processing systems*, (MIT Press, 2000), pp. 1057–1063.
- S. Fujimoto, H. van Hoof, and D. Meger, "Addressing function approximation error in actor-critic methods," https://arxiv.org/abs/1802.09477 (2018).
- A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu, "Stable baselines," https://github. com/hill-a/stable-baselines (2018).
- 30. T. Gehring, "Thorlabs apt," https://github.com/qpit/thorlabs_apt (2019).
- K. Sunden, "Python seabreeze," https://python-seabreeze.readthedocs. io/ (2019).

5