UV-SELECTIVE ZN(O,S)-BASED SOLAR CELLS FOR BIPV APPLICATIONS

Álex Lopez-Garcia¹, Robert Fonoll Rubio¹, Zacharie Jehl Li-Kao¹, Víctor Izquierdo-Roca¹, Alejandro Pérez-Rodríguez^{1,2}, Edgardo Saucedo Silva³

> ¹ Institut de Recerca en Energia de Catalunya (IREC), Sant Adrià del Besòs, Barcelona, Spain.
> ² IN2UB, Departament d'Enginyeria Electrònica i Biomédica, Universitat de Barcelona, Barcelona, Spain
> ³ Photovoltaic group, Departament Enginyeria Electrònica, Universitat Politécnica Catalunya, Barcelona, Spain alopez@irec.cat

The project *Disruptive sustainable TECHnologies FOR next generation pv WINdows* is co-funded by the European Union under GA 826002

1. Introduction

2. Experimental methods

3. Results and Discussion

4. Summary and Outlook

INTRODUCTION

Focus

Build transparent colorless window that filters UV light and integrates PV functionality (wavelengthselective)

INTRODUCTION

State of the art UV-selective transparent solar cells

- 1. Inorganic heterojunction devices
- 2. n-ZnO used as absorber layer
- 3. $E_g = 3.3 \text{ eV}$
- 4. UV onset at 2.7-2.9 eV → SPECTRAL MISMATCH
- Low efficiency devices: Record (measured under intense "monochromatic" LED illumination) at PCE<0.2% (AM1.5G, estimated)

Ban et al. Adv. Elec. Mat., 5, 10 (2019)

INTRODUCTION

Introducing Zn(O,S)...

- 1. Zn(O,S) mixed crystals can be fabricated throughout whole compositional range
- 2. Bandgap bowing: minimum around x=S/(S+O)=0.5
- 3. Minimum bandgap around 2.7-2.8 eV
- 4. UV onset at 2.7-2.9 eV → SPECTRAL MATCH
- 5. Increase in photocurrent as compared with ZnO, due to possibility of reducing the bandgap by alloying Zn(O,S)

EXPERIMENTAL METHODS

1. Zn(O,S) device fabrication

- I. FTO substrate preparation (Acetone, IPA, H_2O , O_3)
- II. NiO by e-beam evaporation of NiO powder
- III. Zn(O,S) deposition by RF Sputtering of mixed ZnO/ZnS target
- IV. (Opt.) C_{60} /BCP by spin coating
- V. ITO by DC-Pulsed Magnetron Sputtering of In_2O_3/SnO_2 target in Ar/O₂ atm.
- VI. Wet etching (Aqua Regia 60%) on edge to get to FTO back-contact

RESULTS

$$\omega (cm^{-1}) = 574.0 - 170.8 \left(\frac{S}{S+0}\right)$$

- Main $ZnO_{1-x}S_x$ peaks confirm formation of mixed crystal
- Three peaks are observed:
 - 193 cm⁻¹: Peak attributed to Zn(O,S) phase
 - 348 cm⁻¹: Peak related to LO_{ZnS}
 - 473 cm⁻¹: (Shifted) peak related to LO_{ZnO}

Methodology developed at IREC allows to experimentally quantify relative sulphur content (x) by determining the position of the shifted LO_{ZnO} like peak

Calculated value: x=S/(S+O)=0.6

Optical Characterization

- a. Tauc's plot bandgap estimation confirms $Zn(O,S) E_g < 3 eV$
- b. $AVT(w/o C_{60}) = 75\%; AVT(w/ C_{60}) = 69\%$
- c. Devices absorb (UV light) past 2.8 eV

$$AVT (\%) = \frac{\int T(\lambda) P(\lambda) S(\lambda) d\lambda}{\int P(\lambda) S(\lambda) d\lambda}$$

- 1. PV effect observed in Zn(O,S)-based devices
- 2. Device w/o C_{60} : PCE<0.1% due to very low V_{OC}
- 3. Device w/ C₆₀ ETL: PCE=0.48% at AVT=69% (LUE=0.34%)

RESULTS

Device PV characterization

- 1. Voltage dependent photocurrent close to 0 V
- 2. Bulk ionization photoconductivity: Attributed to C₆₀ Jeong et al. *Adv. Funct. Mat. 14, 3089, (2011)*
- Indication that C₆₀ can participate in absorption/extraction

- 1. S-kink close to V_{OC}
- 2. Hypothesis: Injection barrier at absorber/CTL interface

Tress et al. Adv. Funct. Mat., 21, 2140, (2011)

SUMMARY & OUTLOOK

- 1. Zn(O,S) is better suited for UV applications due to better spectral match (in mid compositional range)
- 2. PV effect has been demonstrated in planar heterojunction devices based on Zn(O,S)
- 3. Hybrid devices with C_{60} /BCP ETL show a dramatic increase in Jsc (and slightly Voc), showing a device with a PCE=0.48% at an AVT=69% (LUE=0.34%).
- 4. It is necessary to study alternative novel (PV) applications! Not just conventional PV
- **On-going research**: I. fundamental characterization of the Zn(O,S) absorber films. II. Device characterization. III. Remove S-kink in devices.

9

THANKS FOR YOUR ATTENTION!

UNIVERSITAT DE BARCELONA

A. BAUER AND D. HARISKOS (ZSW) D. PAYNO AND S. KAZIM (BCMATERIALS/IKERBASQUE)

The project *Disruptive sustainable TECHnologies FOR next* generation pv WINdows is co-funded by the European Union under GA 826002

