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Abstract. Recently, a vast amount of satellite data has become avail-
able, going beyond standard optical (EO) data to other forms such as
synthetic aperture radars (SAR). While more robust, SAR data are often
more difficult to interpret, can be of lower resolution, and require intense
pre-processing compared to EO data. On the other hand, while more in-
terpretable, EO data often fail under unfavourable lighting, weather, or
cloud-cover conditions. To leverage the advantages of both domains, we
present a novel autoencoder-based architecture that is able to both (i)
fuse multi-spectral optical and radar data in a common shared-space, and
(ii) perform image segmentation for building footprint detection under
the assumption that one of the data modalities is missing–resembling
a situation often encountered under real-world settings. To do so, a
novel randomized skip-connection architecture that utilizes autoencoder
weight-sharing is designed. We compare the proposed method to baseline
approaches relying on network fine-tuning, and established architectures
such as UNet. Qualitative and quantitative results show the merits of
the proposed method, that outperforms all compared techniques for the
task-at-hand.
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1 Introduction

Deep learning is becoming a necessity for tackling problems that emerge in the
analysis of geospatial data [24], as researchers are faced with an ever-increasing
volume of data, with sizes exceeding 100 petabytes, and the need to interpret and
make predictions in diverse contexts. In this paper, we focus on the problem of
detecting building footprints from satellite images and radars. This task carries
significant impact, and is a necessary step for a wide range of applications,
such as estimating economic factors [17], disaster and crisis response [35, 7],
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human activity monitoring and urban dynamics [9], as well as population density
estimation[25]4.

Inspired by the recent Spacenet5 challenge, in this paper we tackle the task of
multi-view learning given diverse data from multiple sensors. Concretely, we fo-
cus on fusing Synthetic-Aperture Radar (SAR) images, along with their electro-
optical (EO) counterparts. Using SAR and EO data in-tandem is a common
approach, since these multiple data views are considered to hold complimentary
information. Specifically, SAR data are becoming more relevant, as the specific
wavelengths used can penetrate clouds (Fig. 1), and can carry significant in-
formation even when captured in unfavourable weather conditions - while can
also be collected independently of the day-night cycle. However, optical data -
although easier to interpret and usually of higher resolution - fail to capture
meaningful information when occlusions are present in the optical range, for
example when insufficient lighting is present, or when the area is covered with
clouds. We adopt the challenging setting where EO data is only available during
training, and considered as a missing modality (view) during test-time. This is a
realistic assumption inspired from real-world settings, where as aforementioned,
EO data are likely to be missing due to conditions at capture time.

Fig. 1: SAR (left) and EO (right) composite from the Rotterdam area, with data
collected on the same day by the Sentinel-1 and Sentinel-2 satellites.

The straightforward approach towards such a challenging setting is to pre-
train a network with the view that is missing at test time, and subsequently
fine-tune the network using data available both during training and testing -
an approach commonly employed in satellite imagery analysis [28, 10, 29, 1]. At
the same time, several approaches have been proposed on multi-view learning for

4 Human activity monitoring and population density estimation are critical steps for
building robust epidemiological models to tackle global events such as pandemics
and natural disasters

5 https://spacenet.ai/sn6-challenge/
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satellite imagery for a variety of tasks [22, 18, 19]. However, these methods are not
tailored for handling missing modalities at test-time, and are thus unsuitable for
the specific setting under consideration. In this light, we propose a novel, multi-
view method for building footprint detection that introduces a weight-sharing
mechanism for learning a common shared-space where the input modalities are
fused. To retain the advantages of skip connections in terms of retaining high-
frequency information and facilitate inference with missing modalities, we fur-
ther propose a novel randomized skip connection mechanism. In summary, the
contributions of this work are as follows:

– We propose a segmentation method based on weight-sharing, that enforces a
shared latent-space that leverages information from multiple satellite views
at train-time. As shown, this facilitates learning more informative represen-
tations at test-time given entirely missing views.

– We introduce the concept of randomized skip-connections to enhance the
shared-space representations, whilst maintaining the benefits of propagating
high-frequency information directly to later layers in the network - without
circumventing the shared space.

– Through a set of rigorous qualitative and quantitative experiments, we demon-
strate how the proposed method outperforms typically used architectures
such as UNet[26], as well as other commonly used fine-tuning approaches, in
the presence of missing modalities.

The rest of the paper is organized as follows. In Section 2, we provide a brief
summary of related work in the areas of building footprint detection using SAR,
image segmentation, transfer-learning, as well as multi-view fusion. In Section 3
we present the proposed methodology, while in Section 4 we describe the em-
ployed dataset along with the relevant pre-processing steps. Finally, in Section 5
we present both qualitative and quantitative results demonstrating the merits
of the proposed method.

2 Related Work

Building detection using SAR data. Several works have been proposed
for building footprint detection using SAR data. In [33], an approach where
SAR data is used to extract lines defined by building faces, which are then
used in conjunction with the corresponding optical data. In [32], high resolution
images are used to generate Digital Surface Models (DSM) of urban areas using
Markovian fusion. In [39], Conditional Random Fields (CRF) were used to detect
building footprints on pairs of high-resolution interferometric SAR (InSAR) and
orthorectified images. More recently, deep learning approaches such as [27] have
been proposed. For a detailed review on deep learning applications on SAR data,
the reader is referred to [42, 41].

Image segmentation. The goal of semantic image segmentation is to map an
input image to a matrix of class predictions for each pixel. A whole range of mod-
ern methods and architectures exploiting the power of deep neural networks have
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been proposed in the literature, like the Fully Convolutional Networks (FCN)
[28], and occasionally even Recurrent Neural Networks (RNN) [37, 36], and ad-
versarial losses [16]. But the most prominent architectures used for the purposes
of semantic image segmentation are based on the encoder-decoder paradigm.
The seminal work of Ronneberger et al. combined in UNet a general-purpose
autoencoder-based architecture, with the use of symmetric skip connections, in
order to allow for fine-grained details to be recovered in the prediction. SegNet [3]
uses a similar encoder-decoder architecture, where the maxpooling indices from
the encoding sequence are used in the upsampling procedure. ResNet-DUC [38]
is another encoder-decoder based architecture where the encoder part is made
up of ResNet [12] blocks while the upsampling is handled by a series of Dense
Upsampling Convolutions (DUC). DeepLab [4] makes use of atrous convolutions
and atrous spatial pyramid pooling to better handle variations in scale, while
it also adds a fully connected Conditional Random Field (CRF) to improve lo-
calization performance. FC-DenseNet [30] takes the symmetric skip connections
of the UNet and combines them with DenseNet [13] blocks, in which each layer
takes input from all the preceding layers in the block. This allows the creation
of very deep networks of this kind.

Transfer Learning. By pretraining on comprehensive image datasets such as
ImageNet [6], multiple works have achieved state of the art results and/or faster
convergence for many segmentation tasks [28, 11, 10, 15], including the SpaceNet
baseline model [29]. Recent work [29, 15] has also shown that improvements can
be gained by pretraining on datasets more closely aligned to the task at hand,
such as the Carvana dataset [1]. In attempts to leverage multiple satellite views,
the SpaceNet baseline also pretrains the networks on the more informative EO
satellite views. We build off such ideas, and propose an approach that models
both domains simultaneously at train-time.

Multi-view fusion. A huge range of different types of image satellite data are
readily available [2, 5, 40]–each providing their own unique benefits and draw-
backs. For this reason, many detection and segmentation networks employ tech-
niques to fuse these views to combine the useful features of each. Multi-view
satellite fusion methods have been successfully utilized for tasks including crop
segmentation [22], target detection [18, 19], and a whole host of other application
areas [8, 23, 20].

In contrast to such approaches however, in our case the EO modality is
missing at test-time. We thus design our network to leverage both views at train-
time to learn a more informative shared representation: inspired from works on
coupled and Siamese networks [21, 14], we design a weight-sharing scheme to
map the two views to a shared representation.

3 Methodology

In this section we describe the proposed multi-view shared-space method that
facilitates building footprint extraction under missing modalities. We first de-
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(a) (b)

Fig. 2: Learning curves of the models trained with (a) BCE only vs with (b)
BCE+DL. As can be seen, including the DL loss leads to better stability, and
higher validation accuracy.

scribe the task at hand in Section 3.1. We then detail how we enrich the SAR
representations using the EO data available at train time, using a weight-sharing
mechanism (Section 3.2) and randomized skip-connections (Section 3.3). Finally,
we detail our choice of loss functions used to train the network in Section 3.4.
An overview of the proposed method is visualized in Fig. 3.

3.1 Problem setting

Our goal is to learn a mapping f from satellite image data X ∈ RV×C×H×W

(comprised of V views) to its corresponding ground-truth binary mask Y ∈
RH×W , from which we extract its building footprints. In the setting of the
SpaceNet challenge we have multiple informative views at train-time, includ-
ing SAR and EO imagery. However, the EO view is missing at test-time, and
therefore can only be leveraged during training.

To address this problem, we adopt a UNet [26] as a base segmentation net-
work (as is commonly employed for segmentation of satellite imagery [34]), com-
prised of an encoder and decoder with symmetric skip connections between these
two sub-networks. However, one cannot straight-forwardly pass the entire data
tensor X through such a network at test-time, due to these missing views. We
therefore propose accordingly a novel method, building on this UNet architec-
ture, to facilitate learning a shared latent representation of both views that can
lead to more accurate mask predictions at test-time, whilst requiring only the
SAR data.

Throughout the rest of the paper, we denote view v ∈ {E,S} (denoting the
EO and SAR views respectively; both comprised of 4 channels) of our satellite
data as X (v) ∈ RC×H×W , scalars as lower-case Latin letters p, and random
variables as lower-case Greek letters ψ.
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Fig. 3: An overview of the proposed method for enforcing a shared space in our
segmentation network. During training (a), we first process the two images X (i)

separately with a series of view-specific layers to transform each to a common
representation. We then pass these representations from both views through a
shared encoder and decoder to generate the corresponding masks predictions, as
a means of encouraging the most informative features of both views to be repre-
sented in the common encodings. We further enforce the shared-space constraint
by introducing stochastic skip connections (shown with red and blue lines) to
mix the representations. During testing (b), the available modality (SAR) can be
straightforwardly utilized with the respective encoder, while still leveraging in-
formation from the missing modality, infused in the shared-space representation
obtained during training.
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3.2 Enforcing a shared space

In order to jointly utilize all views of our satellite data at train-time and learn
a shared representation, we make the assumption that they live in the same
low-dimensional subspace. To enforce such a shared space, we introduce two
siamese specific encoders, followed by a final shared encoder and decoder. The two
specific encoders first map the two separate views to this shared representation,
and the single shared encoder and decoder take these common representations
and transform them back to image space. By processing both views this way,
the common representation extracted from the SAR data can be influenced and
enriched by the specific information present in the EO data, without requiring
any access to it whatsoever at test-time.

3.3 Randomized Skip Connections

Symmetric skip connections are extremely useful for image transformation tasks
that need to retain some semblance of the input image, due to the provided
ability for the network to pass low-level image information directly to later layers
of the network. In this section, we propose a modification to the skip connection
paradigm that not only retains such a desirable property, but jointly encourages
shared representations of the multiple satellite views.

Concretely, the representation Di at the ith layer in the decoder is concate-
nated with the N − ith layer of the shared encoder EN−i’s representations of the
multiple views in a stochastic manner. We thus modify the ith activation in the
decoder Di with a skip connection as

Di :=
[
ψiE(S)

N−i + (1− ψi)E(O)
N−i, Di

]
, (1)

where ψi
i.i.d.∼ Bern(p), and [., .] denotes channel-wise concatenation. At train-

time p ∈ [0, 1], and at test-time we fix the parameter p := 1 to deterministically
pass the only available SAR representations.

We posit that by sending a mixture of representations of both views via
the skip connections, we further encourage the shared representations to be
generic and retain the informative features from both views in order to best
predict the corresponding mask. We show experimentally in Section 5.2 the
benefit of using such non-deterministic skip connections at train-time. We note
that we recover the vanilla skip connection setup when each random variables
xi’s ‘success’ parameter is set to p = 0 or p = 1.

3.4 Loss Functions

In order to train the network to map input images X (i) to its binary mask
counterpart Y, we impose a typical pixel-wise binary cross-entropy loss, defined
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as

LB = EX (i),Y

[
− 1

CHW

∑
c,h,w

yhw log f(X (i))chw

+(1− yhw) log(1− f(X (i))chw)

]
,

(2)

where f is the segmentation network, and where we compute the average BCE
loss over all spatial and channel dimensions in each image.

We also impose, in addition to this regular BCE loss, the so-called Dice
Loss (DL) [31]. This objective more closely encodes our goal of having high
Intersection over Union (IoU) of the predicted and ground-truth masks, and is
defined as

LD = EX (i),Y

[
1−

2
∑

c,h,w yhwf(X (i))chw∑
c,h,w yhw +

∑
c,h,w f(X (i))chw

]
. (3)

We find the additional loss term defined in Eq. (3) to increase the stability
of the model’s training process, along with reducing overfitting. We show this
impact of the two loss terms by plotting the level curves for the model trained
with the BCE loss and BCE+DL in Fig. 2a and Fig. 2b respectively. We compute
the total loss as an average over both views of the satellite images, so as to
facilitate the weight sharing described in section Section 3.2. This leads to the
final combined objective for our segmentation network

L = λDLD + λBLB , (4)

where λD, λB are the weights for the two loss separate loss terms.

4 Data and Data Preprocessing

4.1 Data

For the training and testing of our model we used the publicly available training
dataset from the SpaceNet 6 challenge. It consists of 3401 half-meter resolution
SAR images (provided by Capella Space) together with their half-meter resolu-
tion RGB-NIR counterparts (provided by Maxar’s WorldView 2 satellite) of the
city of Rotterdam. The RGB-NIR images were obtained through reconstruction
using several other EO images that were also provided in the dataset. In ad-
dition, annotations for over 48,000 building footprints were provided, together
with look-angle information (north or south facing) for each of the SAR image
tiles. It should be noted that although future applications of this technology will
be most likely using remote sensing data obtained by satellites, this proof-of-
concept dataset was obtained through aerial means.
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4.2 Data Preprocessing

Each of the 900 × 900 pixel images was zero-padded to a size of 1024 × 1024
and then normalised/standardised based on values gathered from the whole of
the training set (no-data pixels were not taken into account). Also, since SAR
images are affected by the direction from which the data was collected (North
vs South), they had to be flipped according to their orientation.

The ground truth masks are comprised of two separate channels, one marking
the interiors of each of the building footprints and one marking the borders. Using
two separate channels allowed to have the border and the interior overlap over
a few pixels to facilitate extraction of the polygons from the predicted masks.

5 Experiments and Results

5.1 Training

We randomly selected 20% (680 pairs of images) of the test dataset to use for
testing purposes. A further 20% of the remaining test dataset was used for
validation during training. The images were preprocessed similarly for all tests.
We used a UNet16 as our ’baseline’ model, which was firstly trained using the
EO data for 150 epochs, and was subsequently trained over a further 50 epochs
using the SAR data. All versions of the SS model were trained for 100 epochs
using both SAR and EO data, using hyperparameters λD = λB = 1 for all
experiments. Furthermore, when training our models, the loss was taken to be
the average of the separate losses produced by the SAR and EO data. In all
cases the Adam optimizer was used with a learning rate of 0.001 and with all
the other parameters set to their default value. The batch size was limited to 8
by the capacity of the GPUs used. As mentioned in Section 3.3, in the versions
of the model using the randomized skip connections, the value of p is randomly
chosen as p ∈ [0, 1] at each occurrence of a skip connection. All models were
trained on single nodes of the Cyclone supercomputer of the Cyprus Institute,
each featuring dual Intel Xeon Gold 6248 CPUs and quad NVidia V100 GPUs.
The training time did not exceed 12 hours in any of the experiments.

5.2 Performance Evaluation

The evaluation of the performance of the different models was done using the
average pixel-wise intersection-over-union score (IoU) of the prediction versus the
ground truth masks and the SpaceNet metric which is the F1 score (harmonic
average of precision and recall), where a polygon-wise IoU of a predicted and a
ground truth polygon greater than 0.5 is considered to be a true positive.

A summary of the test results is presented in Table 1, where as can be seen,
the proposed method outperforms compared approaches. The best results are
achieved when utilizing both weight-sharing as well as skip mixing, which is a
consistent conclusion with respect to both evaluation metrics employed. Fur-
thermore, in Fig. 4 we present indicative results of our implementation and
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Fig. 4: Different views for 4 tiles from the test datatset, showcasing a wide variety
of urban environments. From top to bottom: EO Image, SAR Image, Ground
truth, UNet16 mask prediction, Shared Space (ours) mask prediction.
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Table 1: Testing Scores for UNet16 (using fine-tuning), and different variations of
the proposed shared-space (SS) model, showing the merits of employing random-
ized skip connections (RSC) and weight sharing. For the last entry on the table,
the skip connections originating from non-shared encoder layers were removed.
The number of parameters of each model is also presented.

Implementation No of params Pixel-wise IoU SpaceNet metric

UNet16 with fine-tuning 44M 0.596 0.522

SS with UNet skip-conns removed 36M 0.577 0.498

SS with Unet skip-conns 44M 0.639 0.592

SS with randomized skip-conns 44M 0.635 0.604

SS with RSC only within the SS 44M 0.639 0.616

compare with baseline results using UNet16, along with the ground truth and
EO and SAR inputs for each case. In the first two columns, one can see how
that our model outperforms UNet16 in detecting more fine-grained details (i.e.,
small buildings). The fourth column of the figure shows how our model gener-
ates considerably less false positives than UNet16. This becomes more apparent
in Fig. 5 and Fig. 6, were predictions from all the variants of our model are
presented together with predictions from UNet16 and the ground truth. It can
be clearly seen that utilizing both weight-sharing in-tandem with randomized
skip-connections facilitates the detection of smaller buildings, that are often
missed in the baseline models. We have also observed that the proposed model
is able to detect footprints of complex, large buildings with much better fidelity
(e.g., Fig. 6b). To further verify the positive effect of the proposed randomized
skip-connection architecture, we evaluate a variant of the proposed shared-space
architecture where skip connections are entirely removed. As can be seen from
results presented in Fig. 5b and Fig. 6b, removing the skip-connections results
in segmentation maps that fail to capture fine-grained details. This verifies the
successful propagation of high-frequency information through the network layers
by employing the randomized skip-connections.

6 Conclusions

In this work, we presented a novel approach for building footprint detection util-
ising multiple satellite imagery views, in the challenging setting where only one
modality is available at test time. To this end, we presented a novel shared-space
autoencoder method that utilizes randomized skip connections to facilitate prop-
agating high-frequency information to the later layers without circumventing the
shared-space property. We highlight that the proposed method can be considered
as a generic approach to fusion under missing modalities at test-time, and can
be readily incorporated into more complex architectures. With a set of rigorous
experiments, we presented qualitative and quantitative results that demonstrate
the merits of the proposed approach, in comparison to typically employed vanilla
UNet architectures as well as other fine-tuning approaches.
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Fig. 5: Predictions from all models together with the ground truth. Yellow circles
mark where UNet16 was unable to detect fine details in the image

Fig. 6: Predictions from all models together with the ground truth. Our model
maintains higher fidelity when predicting complex features like the ones marked
by yellow circles
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