
GPU Optimizations for Atmospheric Chemical Kinetics
Theodoros Christoudias

christoudias@cyi.ac.cy
The Cyprus Institute

Nicosia, Cyprus

Timo Kirfel
Astrid Kerkweg

Domenico Taraborrelli
Forschungszentrum Jülich GmbH, IEK-8

Jülich, Germany

Georges-Emmanuel Moulard
Erwan Raffin

Center for Excellence in Performance Programming, Atos
Rennes, France

Victor Azizi
Gijs van den Oord
Ben van Werkhoven

Netherlands eScience Center
Amsterdam, Netherlands

Figure 1: Mutli-scale approach of accelerator optimizations for climate modeling and chemical kinetics.

ABSTRACT
We present a series of optimizations to alleviate stack memory over-
flow issues and improve overall performance of GPU computational
kernels in atmospheric chemical kinetics model simulations. We use
heap memory in numerical solvers for stiff ODEs, move chemical
reaction constants and tracer concentration arrays from stack to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8842-9/21/01.
https://doi.org/10.1145/3432261.3439863

global memory, use direct pointer indexing for array memory ac-
cess, and use CUDA streams to overlap computation with memory
transfer to the device. Overall, an order of magnitude reduction in
GPU memory requirements is achieved, allowing for simultaneous
offloading from multiple MPI processes per node and/or increasing
the chemical mechanism complexity.

CCS CONCEPTS
•Hardware→Memory test and repair;Testingwith distributed
and parallel systems; • Computing methodologies → Mas-
sively parallel algorithms; Model verification and validation.

KEYWORDS
GPU, Memory test, Parallel systems, Distributed computing, CUDA

https://doi.org/10.1145/3432261.3439863


HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea T. Christoudias, et al.

ACM Reference Format:
Theodoros Christoudias, Timo Kirfel, Astrid Kerkweg, Domenico Tarabor-
relli, Georges-Emmanuel Moulard, Erwan Raffin, Victor Azizi, Gijs van
den Oord, and Ben van Werkhoven. 2021. GPU Optimizations for Atmo-
spheric Chemical Kinetics . In The International Conference on High Per-
formance Computing in Asia-Pacific Region (HPCAsia 2021), January 20–22,
2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3432261.3439863

1 INTRODUCTION
The ECHAM/MESSy Atmospheric Chemistry (EMAC) model is a
numerical chemistry and climate simulation system that includes
sub-models describing tropospheric and middle atmosphere pro-
cesses and their interaction with oceans, land and human influences
[4]. It uses the second version of the Modular Earth Submodel Sys-
tem (MESSy2) to link multi-institutional computer codes. The core
atmospheric model is the 5th generation European Centre Hamburg
general circulation model (ECHAM5) [6].

The acceleration of atmospheric chemical kinetics [3] and refac-
toring for new technologies (such as GPU accelerators) can reduce
the required CPU-nodes and time-to-solution by a factor of 5–10 [1],
with an order of magnitude more complex atmospheric chemical
mechanism (in terms of number of species and reactions) com-
pared to the current state-of-the-art, towards enabling Exascale
performance [2].

The objectives of this work are to:
(1) Optimize performance for current and future GPU technolo-

gies, including NVIDIA Volta GPU and later, and
(2) Extend computational capability to be able to handle an order

of magnitude more complex chemistry, such as the Mainz
Organic Mechanism (MOM) [7].

2 BACKGROUND
EMAC is a distributed memory application comprising:

• A non-local dynamical (spectral) part with low scalability,
exclusively relying on the Message Passing Interface (MPI)
for parallelization.

• Local physical/chemical processes that can be massively par-
allelized with high scalability, ported on GPU architectures
using the MEDINA (MECCA Development in Accelerators)
code-to-code parser.

The EMAC MECCA sub-model [7] numerically solves the ordi-
nary differential equations (ODEs) describing atmospheric chemical
kinetics. In typical climate simulations, chemical kinetics can take
up to 90% of the execution time. Each CPU process that offloads to
the GPU requires a chunk of the GPU VRAM memory, whose size
depends on the number of species and reaction constants in the
MECCA mechanism. The number of GPUs per node and VRAM
memory available in each GPU dictates the total number of CPU
processes that can run concurrently.

3 GPU MEMORY ALLOCATION
Stack frame memory or local memory is allocated for all available
threads of the GPU. For instance, on a V100 accelerator that has
2048 active threads per streaming multiprocessor (SM) and 80 SMs,
at runtime the kernel will allocate a total of 2048 × 80 × (size

of local memory) Bytes in the VRAM of the GPU. Thus, for the
same code and problem size the total stack memory requirement is
higher for newer generation GPUs, as they have more SM units and
more active threads per SM. For comparison, an older generation
K40 accelerator employs a maximum of 2048 active threads in 15
SMs (compared to 80 SMs in V100). However, as stack memory
is allocated for the maximum total number of threads running
concurrently when multiple CPU processes are offloading work
simultaneously, the GPU quickly runs out of memory.

As an example, when declaring a local array with 5000 double-
precision elements on the GPU, approximately 40 kBytes of stack
memory are required per thread. If the kernel only uses 4096 threads,
the theoretical amount of memory needed to be allocated in the
VRAM at runtime is 164MBytes. But as the stack memory will
be allocated for the maximum number of threads a GPU can run
concurrently, the kernel will be be using more than 6GBytes on
a V100 (whereas the same code would be using ∼1GByte on a
K40 generation accelerator). So, on each V100 with 32GBytes of
memory, no more than 5 processes can run concurrently, even
though theoretically more than 200 concurrent processes can be
supported.

The NVIDIA Multi-Process Service (MPS) can be used to force
each process launching a kernel on a GPU to occupy only a part of
the available threads, which limits the total memory requirement
of the MPI processes offloading to the GPU. In our tests, setting
the CUDA MPS active thread percentage to 10% in our runtime
environment allowed us to run with ten times more processes per
GPU, thus keeping the CPU thread count high on each individ-
ual compute node for better balancing the CPU/GPU application
heterogeneity. However, use of this setting can be regarded as a
limiting workaround, rather than a solution.

To improve the overall performance of the computational kernel
for atmospheric chemical kinetics, it is thus critical to overcome
the GPU stack memory overflow.

4 OPTIMIZATIONS OVERVIEW
To alleviate the GPU memory overflow issues and improve overall
performance of the computational kernel we:

• Use heap memory in numerical solvers for stiff ODEs
• Move chemical reaction constants from stack to global mem-
ory

• Transfer tracer concentration arrays to global memory
• Use direct pointer indexing for array memory access
• Use streams to overlap computation with device to-and-from
memory transfers [8]

Moreover, the MPS can be used without the “active thread per-
centage” variable set, which still allows kernel and memcopy oper-
ations from different processes to overlap on the GPU, achieving
higher utilization and shorter running times according to NVIDIA.

5 BENCHMARK METHODOLOGY
The results presented in this work were obtained on a benchmark
representative of a real-world application, simulating one model
month at 15min timesteps with 142 chemical species, 310 chemical
reactions, 128 × 64 × 31 = 253952 gridpoints (longitude, latitude,

https://doi.org/10.1145/3432261.3439863


GPU Atmospheric Chemical Kinetics HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea

Table 1: Time to solution for the benchmark one-month sim-
ulation of the original reference implementation that could
only use 16 MPI processes per compute node, and the op-
timized version including all memory optimizations that
can now take advantage all 40 available MPI processes (one
per physical processor core). Note that using Nvidia Multi-
Process-Service (MPS) but without setting the active thread
percentage (ATP) achieves the best time to solution.

Code Version Time to solution (s) Speedup

Original reference 13504 1×16 MPI processes/node (max.
possible)

Optimized w/o MPS 7674 1.76×40 MPI processes/node

Optimized w/ MPS+ATP=10% 7633 1.77×40 MPI processes/node

Optimized w/ MPS 7402 1.82×40 MPI processes/node

vertical levels respectively) – at a spherical truncation of T42 (corre-
sponding to a quadratic Gaussian grid of ∼ 2.8×2.8◦ in latitude and
longitude) and using the Rosenbrock 3-step implicit Runge–Kutta
numerical integrator.

When compiling CUDA we have used the nvcc compiler switch
--ptxas-options=-v to obtain the memory that the kernel will
use at runtime per thread. This amount includes the stack frame
memory declared by the user for each thread.

The results have been obtained on an Atos BullSequana XH2000
supercomputer equipped with compute nodes having the following
specifications: 2× Intel Skylake Xeon 6148 (20 cores @ 2.4 GHz), 4×
NVIDIA Tesla V100 32GB SXM2, 394GB RAM DDR4 2667MT/s.

6 RESULTS
The achieved performance after these optimizations in terms of i)
runtime and ii) required memory is presented in Table 1 and Table 2
respectively.

As a result of our optimizations, it is now possible to use at least
40 MPI processes per node concurrently, compared to a maximum
possible of 16 MPI processes originally, improving the overall time
to solution by a factor of 1.82× at node level. This performance is
achieved without the use of the MPS active thread percentage fea-
ture, resulting in a more efficient and future-proof implementation.

The overall speedup offered by the use of CUDA streams is not
significant on V100 as it is constrained here by the size of the
chemical ODE system, and it is still ongoing work.

7 OUTLOOK
The improved source-to-source parser and Rosenbrock-family im-
plicit ODE solver CUDA code can be used by other researchers
to transform chemistry kinetics packages to CUDA-accelerated
code. The methodology can be used as a template for enabling high

Table 2: GPU Memory use for the benchmark one-month
simulationwith different optimizations. The achievedmem-
ory reduction is at least of order five between reference and
with all optimizations. Note: the active thread percentage
ATP at 10% does not result in memory reduction by a pro-
portional factor of 10.

Optimisation GPU Memory per MPI Process (MiB)
Nominal MPS MPS+ATP=10%

Reference (No
optimisation)

7655 7653 801

+ Global reaction
constants and kernel
arrays

2313 2311 415

+ Pointer direct
indexing

1549 1549 335

performance computing capability on GPU architectures for atmo-
spheric modelling applications. The code is available on Github1
under the MIT license.

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agree-
ment No 823988 (ESiWACE2) and was in part supported by the
NVIDIA Application Lab at JSC [5].

REFERENCES
[1] Michail Alvanos and Theodoros Christoudias. 2017. GPU-accelerated atmospheric

chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model (version
2.52). Geoscientific Model Development 10, 10 (2017), 3679.

[2] Michail Alvanos and Theodoros Christoudias. 2019. Accelerating Atmospheric
Chemical Kinetics for Climate Simulations. IEEE Transactions on Parallel and
Distributed Systems 30, 11 (2019), 2396–2407.

[3] Theodoros Christoudias and Michail Alvanos. 2016. Accelerated chemical kinetics
in the EMAC chemistry-climate model. In 2016 International Conference on High
Performance Computing & Simulation (HPCS). IEEE, 886–889.

[4] Patrick Jöckel, Astrid Kerkweg, Andrea Pozzer, Rolf Sander, Holger Tost, Hella
Riede, Andreas Baumgaertner, Sergey Gromov, and Bastian Kern. 2010. Develop-
ment cycle 2 of the modular earth submodel system (MESSy2). Geoscientific Model
Development 3 (2010), 717–752.

[5] Jülich Supercomputing Centre. 2018. JURECA: Modular supercomputer at Jülich
Supercomputing Centre. Journal of large-scale research facilities 4, A132 (2018).
https://doi.org/10.17815/jlsrf-4-121-1

[6] E Roeckner, R Brokopf, M Esch, MA Giorgetta, S Hagemann, L Kornblueh, E
Manzini, U Schlese, and U Schulzweida. 2006. Sensitivity of simulated climate to
horizontal and vertical resolution in the ECHAM5 atmosphere model. Journal of
Climate 19, 16 (2006), 3771–3791.

[7] R. Sander, A. Baumgaertner, D. Cabrera-Perez, F. Frank, S. Gromov, J.-U. Grooß, H.
Harder, V. Huijnen, P. Jöckel, V. A. Karydis, K. E. Niemeyer, A. Pozzer, H. Riede,
M. G. Schultz, D. Taraborrelli, and S. Tauer. 2019. The community atmospheric
chemistry box model CAABA/MECCA-4.0. Geoscientific Model Development 12, 4
(2019), 1365–1385. https://doi.org/10.5194/gmd-12-1365-2019

[8] Ben van Werkhoven, Jason Maassen, Frank J Seinstra, and Henri E Bal. 2014. Per-
formance models for CPU-GPU data transfers. In 2014 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. IEEE, 11–20.

1https://github.com/CyprusInst/medina

https://doi.org/10.17815/jlsrf-4-121-1
https://doi.org/10.5194/gmd-12-1365-2019
https://github.com/CyprusInst/medina

	Abstract
	1 Introduction
	2 Background
	3 GPU Memory Allocation
	4 Optimizations Overview
	5 Benchmark Methodology
	6 Results
	7 Outlook
	Acknowledgments
	References

