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Abstract. We study the Hertle-Hawking no boundary proposal in which wave function of the universe is

given by a path integral over all compact Euclidean 4-dimensional geometries and mater fields that have the
3-dimensional argument of the wave function on their one and only boundary. We suppose that the original

phase transition takes place before the GUT phase transition i.e., in the stage of SUT (Super Unified Theory)

phase transition. After the phase transition, there is a fluctuations of the scalar field ®, over a smooth average
value. These fluctuations result in fluctuations of energy density. In this paper, we choose the potential V(g)

as a exponential function of time “t” and consider a complex radius of the Friedmann-Robertson-Walker model.

1.. Introduction. Until the twentieth century, cosmology, dealing with the subject of the

creation of the universe, was mostly a part of metaphysics. In recent decades a lot of the work
in quantum cosmology has been done. '

There is no consensus yet on how the universe initially came to be, the general assumption is
that perhaps an energetic fluctuation caused the universe to tunnel into existence from quantum
foam. The spontaneous symmetry breaking of the unified field occurred, thereby separating
gravity, matter fields and GUT force‘ﬁeld, as well as initiating the expansion of the universe.

Our knowledge of the unification of the fields can guide us to determine how the fields in
the vacuum state may be further organized. Although the high temperatures necessary for
unification are physically absent in the vacuum, quantum physics indicates their presence in a -
virtual way. Due to uncertainty principle, as the dimension of space decreases, the equivalent
energy per particle (ie., the temperature) increases. Also an estimate of the increase in
equivalent temperature (energy/particle) can be done from the Heisenberg uncertainty relation.

The question of why the large energy is not found in practical, the observed vacuum energy
is so small in comparison to the scales of particle physics is known as cosmological constant
problem. It is generally thought to be easier to imagine an unknown mechanism which would
set vacuum parameter exactly to zero and so it can be considered that there exist another
unification SUT (Super Unified Theory) in the very early universe.

The vacuum universe U (11) is thermodynamically equilibrium with the infinite boundary
(R — o0, Ry — o) like a plain white paper. The break-down of the special unitary group
SU(11) of U(11) into SU(6) x SU(5) x U(1), under the pre-distribution of energy when it is
reached below the “critical point” (it is compared with the curie point of the magnet).
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The breakdown of SUT symmetry group SU(11), gave two fundamental group like
SU(6) x SU(5) leads to a phase transition and then larger fundamental group SU(5) breaks
into a subgroup like SU(3) x SU (2)L x U(1), in which the scalar field ¢ changes. The original
vacuum, with false vacuum (¢ = 0) is no longer the true vacuum (¢ = o)

. - The inflationary
stage arises, however, if the true vacuum is not immediately attained.

An analogy will illustrate the scenario. Suppose stream is being cool
transition temperature of 100°

temperature.

ed through the phase
C. Normally we except the steam to condense to water at this

However, it is possible to super-cool the steam to temperature below 100°C,
although it is then in an unstable state. The instability sets in when certain parts of the steam
condense to droplets of water which then coalesce and eventually the condensation is complete.

In the super-cooled state the steam still remains its latent heat, which is released as the droplets
form.

Here we suppose that similar like super-cooling takes place past the SUT phase transition.
What happens then is somewhat similar to the gas-vapor-liquid analogy. Its details depend on
the latent energy group SU(6) like latent heat (its name may be given as ‘intelligence’, which
are responsible for the acceleration of the energy of SU (5), and also the cause for the creation
of D.N.A. of the live body etc.) and then on the potential energy function V(¢).

After the separation of two type energies SU (5) and SU(6), they want to interact each other
and has a tendency to unify once again, as a result the direction of the energy group SU(6) is
opposite to the direction of the energy group SU(5), for remaining the temperature unaltered
and then an inflation occurred instantaneously. After the completion, the latent energy SU(6)
acts as a field. Again the seed fluctuation can grow to form the large scale structures with
a scale invariant spectrum through fluctuations in the scalar fields ¢(t). These fluctuations
result in fluctuations of ehergy density. Through scientific investigations, we have discovered
that fields are as real as the material world. In fact, fields represent more of a fundamental
reality, because the material world is nothing but a manifestation of the underlying fields. In
particular the decoupled of SU(11), gave a several domain compartment along with the domain
wall in which the compartment filled either latent energy or matter energy and hence created an
inhomogeneous discrete energy universe. Then the latent energy compartments together form
a core of a massive universe, while the matter energy compartments together form the surface
of the universe (it inay be compared with the structure of an atom, the quark form by the
group SU(3) is in the centre, while the laptons of the group SU(2) stayed outside the nucleus.
Although, at present it may be consider that the actual formation of an atom as the latent
energy group SU(6) is in the very centre of the nucleus and then quark made by the strong
energy group SU(3), while the leptons form by the weak energy group SU(2) laid outside the
nucleous. The whole atom effectively controlled by the latent energy. As the total number of
bosons of SU(6) is greater than the total number of bosons of SU(5), so that latent energy of
S(6) stayed in the centre of the massive universe and form PBH, while the matter energy of
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SU(5), laid out side the centre region of the early universe and hence produce event horizon by
the group SU(6) and particle horizon by the group SU (5). The energy group SU(11) do not
interact with the energy group SU(6) and SU(5), while SU(6) produces gravitational field with

the increase of latent energy and then energy S U(5) form the super-cluster, cluster, galaxy etc.
remaining a “Black hole” at the centre.

2. Intelligence : SU(6). In the transformations under the group SU(6), the basic fields
here are the latent energy field and we have

U=exp(—iH), : (1)

Where H is a 6 x 6 Hermitian matrix of Zero trace. The matrix H now has 35 independent

components. In the weak interaction SU(2), we have, H as 2 x 2 Hermitian matrix of zero
trace and the most general form of such matrix is

( a b-l—ic) <1 0) (01) ( 0 z)
H= ‘ =a +0b +c (2)
b—ic —-a 0 -1 10 -1 0

Thus, like above, we have 35 matrix charges Iy, I, I3, - -, Is5 out of which five matrices
are diagonal. Corresponding to this, we have 35 bosons. For want of any specific designation,
they are referred to simply as Ji. There were no change takes place for exchanging the bosons
namely Ji3, Jig, Jr1s, Jr24, Jk3s, corresponding to the said five diagonal matrices. We expect
the participating interactions of the bosons Jj, to have comparable strength. The J; bosons are
expected to generate a latent force. This force is believed to be potentially so large that the

exotic matter fluid are expected to transfer into the ordinary matter field, and then everything
of the universe. '

3. Super Unified Field : SU(11). If we wish to unify all three interactions

SU(6),SU(5),U(1) in a Super Grand Unification scheme, we could trivially combine the three
into a structure

SU(6) x SU(5) x U(1) (3)

From the symmetry breaking of SU(11), we find SU(6) and SU(5); the subgroups of SU(11),
where

p(=5)>1, n—p(=11-5=06)>1
So that

SU(n) D SU(p) x SU(n —p) x U(1)
or, SU(11) > SU(5) x SU(6) x U(1) (4)
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For completeness there are also the orthogonal and sympletic subgroups.
SU(11) D 0(11) (5)
SU(22) D US,(22) (6)

Since the rank of SU(11) is 10 and U(1) is 1, a useful check is that the sum of the ranks of
the subgroup SU(5) and SU(6) is less than or equal to the rank of the original group.

Thus, however, it was realized that such a structure (3) can form part of a single larger
structure denoted by SU(11). Again, if we go back of equation (1) and apply it to 11 x 11
matrices, the matrix H has 120 arbitrary constant. Thus there are 120 bosons that now

medidate between the different type of energy fields. Of these we already have 24 from SU(5)
and 35 from SU(6) and 1 from U(1) '

Thus, 120 — (24 + 35 + 1) = 60 more bosons are needed to make up the list of 120. For
want of any specific designation, they are referred to simply as the J bosons. The J bosons are

expected to link the participants of SU(6) with SU(5) i.e, SU(2) and SU(3) and U(1). There
are emitted and absorbed J particles (an anti-J particles).

As the energy group SU(5) advanced for unification with SU(6), the strength of weak -
force gradually increases and the strength of strong forces decreases, ultimately the unification
occurred at the extreme situation.

Super Unified Theory

(9ns

SuU(11)

Interaction strength (relative scale)

Gravity &

>
>

Radiation or Particle energy °

It can be expected, that for the symmetry breaking of SU(11), created an amount of positive
energy, negative energy and an equivalent amount of latent energy.
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4. Excess production of J bosons in the early universe. Let us denoted the mass
of the J-bosons by M, and its coupling strength by a ;. The coupling strength depending on
what type of particle J is, let us denoted by I'.s the rate of collisions that do not conserve the
number of J;. bosons, i.e., collisions in which the J-boson is involved. Denote the characteristic
decay rate of the J-boson by I';, we thus have three time scales to play with:

I‘}I,I‘gl and HI_1

At the earliest epochs, with constant temperature > 10!° GeV, the latent energy was the
strongest force between the various constituents of the umiverse. Other interactions were
unimportant under the hypothesis of asymptotic freedom. As the universe continued to
changing phase and its constant temperature dropped there was a phase when gravity as well
as latent force become weaker while the other interactions still remained unimportant. Thus
for T < 10'% GeV, the particles remained essentially free for some time.

During this phase it becomes necessary to examine the nature of distribution, functions
are as follows. Assuming ideal gas approximation and thermodynamic equilibrium, it is then
possible to write down the distribution functions of any given species of particles. Let us use the
symbol L to denote typical species (L = 1,2,---). Thus n.(P)dp denotes the number density
of species in the momentum range (P, P + dP), where

-1
ni(P) = 9&_p? |gxp ELP) — 1

2m2h3 kT

Where T = the temperature of the distribution, g; = the number of spin states of the species,
k = the Boltzmann constant and E? = ¢'2p? + m2c/%is the energy corresponding to rest mass
my, of a typical particle. The quantity p is the chemical potential of the species L. We get
set ur, =0, g =1, mg =0, for Ji bosons. Since particles and antiparticles annihilate in pairs
and produce Ji. bosons their chemical potentials are equal and opposite. Again we saw that for
T < Ty, the distribution function cannot preserve its form under changing phase. Thus it may
get distorted from its equilibrium form. Now of the various species in the very early universe,
the J-bosons are probably the most massive. Thus, provided they have a, high enough value
Ty, there is a chance that the J bosons will first dropout of equilibrium. For this to happen,
however, it is also necessary that they have not all decayed by then. The collision rate.

A comparison of the three rats shows that

I‘c/zaJ<<I‘J

Soon after gravity became weak that means the amount of equivalent energy is not.adequate

and then the changing phase of the universe with the essentially no interaction between the
species. A
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5. Quantum Cosmology of Zero Loop. We consider the Hartle-H

awking path integral
for no boundary’ proposal, by taking the wave function,

¥lgii ("), 6 (¥F)] = o — loop 9:5, 9% = Z e (7)

Where we summing over a small set of extrema of the Euclidean action [ , generally complex
classical solutions of the field equations.

some extrema

The zero-loop approximation gives

w(ab’ ¢b) ~ wO—loop(ab, ¢b) = Z 6_1[(“”¢"]

Some extrema

(8)

where I(ay, ¢p) is the Euclidean action of a classical solution that is compact and has the S3
geometry and homogeneous scalar field as its one and only boundary.

One boundary FRW-scalar histories have a time parameter ‘¢’ that can be taken to run from
0 (at a regular ‘centre’) to 1 (at the boundary), and then to have ¢ = ¢(¢) and four metric.

Consider the metric
2 2
T Y 72c] o R BT
ds _[ i N(t)| dt*+ 37Ta(t) dQs (9)

Where N (t) is the lapse function and dQ3 is the metric on a unit 3-sphere S3.
If the scalar field potential is

ERP

[with the coefficient again chosen to simplify the formulas below, in terms of the rescaled
potential [V (¢)], then the Euclidean action fo the history is

— 1 .2, 332y, 1 3
I—/dt(2N( aa +a,¢)+2N( a+ a°V) (10)
. dl 1 ) 3.2 1 3
= (= e (o ~N(— = I == 1
ie, — 0 2N( aa’ + a’¢ )+2N( a+a’V)=L=H (11)

Here ¢ is the scalar field.
6. FRW-Scalar Model with Complex Scale Factor. We have from the equation (11),
—a® +a%p? + N3 (=1 +a2V) =0 (12)

We consider @ = R + iR, as complex radius. Now substituting ‘a’ in the equation (12), and
separating real and imaginary part, we have,

—(R?* - R}) + (R* - R})¢? - N*V + N*V(R* - R}) =0 (13)
: R R,
2 ) Vi A 14
and  §%+ N?V — p ol =0 (14)
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Now we consider,
Hp = 7 and H; = %;
R(t) = Cpe''rt  and Ri(t) = ¢,efrt
where R(0) = R;(0) = £, and consider N(t) =
Thus the equation (14) becomes Fg
$* = HpH; -V (15)

6.1 FRW-Scalar Models with An Exponential Potential V = e?*?, To illustrate

some of these ideas quantitatively, it is helpful to consider the case of an exponential potential

V(p) = et o (8)

where a is a real parameter that characterizes how fast the potential varies as a function of 0.
We have from the equation (15) and (16),

d¢
dt

= +\/HpH; — e2a¢

Integrating, we have

62a¢ (A2c:{:2a\/HRH1t i 1>2 K :*:4HRHI <A2e:F2a\/HRH1t 3 1) - 4HRHI

(17)
[where A is integration constant]
: 4H’RHIA261F2Q\/_—_anI[_t _ . ‘
ie., e?*? = (A2eT2aVITRT T 172 =V [taking +Ve Sign| (18)
Hence : 1 1 '
® = log(2\/HrH] A) ~ ~ log [ A%eFVARTIL Saan] (19)
Differentiating both side with respect to time t, we get
] A2e:FQ'\/7'Tn—}T1—t o e:i:(.\'\/HRHIt
¢_—ﬂ:\/ HRH]Aze:Fa w—n 1t+e:ta /H——nHlt . (20)

Again, if we take negative sign, then from the equation (17), we have

—4HpH;(A%eF2VHrHIt 4 9)

_ o200 _ 1)
an G (A2eF2aVHrHt | 1)2 (21)
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1 o 4i2HRHI(A2e$2a\/HRH;t s 2)
& (A261F20\/HRHIt + 1)2

When A =1, then

(23)

TovHRHt | +aVHRHTL 2
V=HRHI|:6 R!+; R’+2}

. " (24)

1
and ¢ = —log \/HRHI{

e:i:a\/HRH]t a1 e:FavHRHlt }_1

Thus,

FavHrHt _ ,xavV/HrHIt
(S (S
e:Fa /HRH]t-f-eia‘/HRHlt

¢ = ++/HgpH; (25)
FoVHRHTt _ ptaVHRHL

\/HRH] 2
202 e:FaVHRHlt_{_e:*:a\/HRH]t ‘

2

ie, p~ =

(26)

6.2 o = 0 de-sitter Example, V = constant. When a = 0, the potential is independent
of ¢. For the exponential potential V(¢) = €22 given (17) and (21), this would give V =1,
but one can easily generalize the result to any constant V.

For example from equation (17)

= AHRpHA?

V= @1 (27)

and from equation (21)
’ ——4HRH1(A2 +2)

V="

Now in the Einstein Universe, we consider Hg = H, so we have from equation (27)

(28)

Integrating, we get |
’ i("s ‘)t
R = Be ‘ - (29)

[where B, is the integration constant]
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Also, we have from the equation (28)

R, 2 i(A? +1)
R; 2v/A2 +2

Hp =

:;:i( AZ+1 )L
i, Ry =Ce \2Va%i2
[where, C is the integration constant)

Now, B = C = ¢, thus equation (29) and (30) becomes

i(TA;+’)t
R = {pe

:l:(——'t-—“‘2 1 )(u)
and Ry = e \2Va*+2

We have from (22)
4i2HRH](A2 + 2) !
(}12,+_1)2

And taking Hg = H; then

_ g i A+

T T2/AZ 2
A241 .

Ry = e n/ates )

Hy

6.3 ¢ = 0 Example, V = 1. We have from the equation (18)
2/ HrpH, Aet*VHrRHIt _ 1 | A2p%2aVHRHL [taking positive sign.]

] 1 1 ]
l.e., t——:*:'&'——H_R—H_IlOg{Z (\/HRHIi\/HRH]—l)}
If Hr = H; then (33) becomes
,/HE__
PRI log{HR:i: R 1}

OtHR A A

6.4 The Energy Dehsity of ¢-Field. We have from the equation (17)

¢=— log {4HRH1(:i:A26’F2“"ﬁ tt1-1) -~ log(Aze’*:z“\/Hm‘ +1)

329

(31)

(32)

(33)

(34)

(35)

the inflationary model seems capable of producing the spectrum, through fluctuations in the

scalar field ¢(t).
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Harrison in 1970 and Zeldovich in 1972 has 51‘gued independently, from theoretical
considerations that at the time of entering the horizon, the amplitude of a typical density
perturbations should have the form F(k)ak=3 where F(k) = |§(k, t)l2 and k, the wave number.

t =t(k).

The fact that AT/T in the microwave background radiation is < 1075, implies that |3(k,t)|?
was < 1 in the radiation dominated phase of expansion. -

It can be shown that the root—mean-square fluctuation of mass M as a fraction of average
mass contained in a region of size R is proportional to k3|§|> at K = R™!. Therefore, for the
above F(k), ((6M /M )2) will be independent of the scale R at t = t(k)enter, thus giving equal
power at all scales at the time they enter the horizon.

A scale-invariant spectrum is indicated by the distribution of discrete large-scale structures.
We write the equation (35), the fluctuation as F(t) over a smoothed average value ¢o(t).
Thus |
¢(t) = do(t) + F(t) . (36)
These fluctuations result in fluctuations of energy density.

The energy density of a scalar field is

1. '
pc? = -2-d>2(t) : (37)
The average energy density during inflation being dominated by the constant term Vj of the
Coleman-Weinberg-potential. We have the density constract
§pc?
0r(t) = — 38
k(t) v (38)
We use bo the mean evolution of ¢ in the slow roll-over phase; but what is F(t)? Now in
actually the fluctuations in ¢ are of quantum origin but here, in a classical approximation,
we are using F(t) to mimic them classically. In quantum field theory the field would be an
operator ¢(t) whose Fourier coefficient §i(t) are also operators. In a quantum state specified
by the wave function ¥y, the fluctuations of g are given by the dispersion relation

o?(t) = (Wrlai ()| ) ;. (39)
The mean value (in k = 0 mode) of ¥}, being zero. This is because ¢o, the average of ¢, is

homogeneous. Since o2(t) appears to be a good measure of quantum fluctuations.

We may write )
po(t)
Vo

ok(t) = ok(t) (40)



(&

COMPLEX MODEL OF THE QUANTUM COSMOLOGY 331

Thus we have taken a semi-classical approximation to estimate the fluctuations in the energy

density of the ¢ field which act”as the seed fluctuation of density during the inflationary phase
t; <t <ty.

7. Concluding Remarks. In the paper, we consider a path integral over all compact
Euclidean 4-dimensional geometries and matter fields by considering a complex scale factor.
There were a stage of SUT of Phase transition before GUT. We think field created by the

latent energy group. We consider a scalar ¢-field. The fluctuation of the scalar field ¢ result in
fluctuations of energy density.

We find the value of the scale factor, when potential V' = 1 and also the scale factor, related
with imaginary time. It has been showed that the energy density changes exponentially with
time. We found the time, when ¢ = 0, in terms of the parameter Hg and Hj.

Acknowledgement. The author is thankful to Prof. Subenoy .Chakraborty, Department
of Mathematics, Jadavpur University for helpful discussion.
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