A Possible Alignment Between the Orbits of Planetary Systems and their Visual Binary Companions

Sam Christian^{1,2}, Andrew Vanderburg^{1,3}, Juliette Becker^{4*}, Daniel Yahalomi⁵, Logan Pearce^{6‡}, George Zhou⁷, Karen **Collins8, Adam Kraus9, and the TESS team**

¹Massachusetts Institute of Technology; ²Liberal Arts and Science Academy; ³University of Wisconsin Madison; ⁴California Institute of Technology; ⁵Columbia University; ⁶University of Arizona; University of Southern Queensland; ⁸University of Texas at Austin; *51 Pegasi b Fellow; [‡]NSF Graduate Research Fellow

67 TESS Exoplanets in Gaia DR2 Visual Binary Systems; 960 systems in control

We used the El-Badry & Rix (2018) catalog as our base binary sample. Systems with possibly incorrect astrometric parameters were removed. We also constructed a control sample of binary systems from the El-Badry & Rix (2018) catalog. The control sample was chosen to match the properties of the binary systems with exoplanets (Figure 1). **Statistically significant alignment (p = 0.0048) between planets and binaries**

All Exoplanets discovered using the transiting method have inclinations of approx. 90°. Thus, relative inclination between binary system and exoplanet can be measured as |90-i[binary]|. **Overabundance of |90-i[binary]| near 0 indicates a preference for** There is a clear

alignment.

overabundance of aligned systems around 0° compared to the control sample (expected random PDF of inclination is sin[i]). A KS test between binaries with exoplanets and control sample returns a p-value of 0.0048

Alignment observed primarily below 700 AU

There is a larger fraction of aligned systems below 700 AU (this dividing line has large error due to the sparse number of observations). A KS test of systems below 700 AU compared to those above 700 AU returns a p-value of 0.0172.

Possible Explanation for Alignment

We believe the most likely explanation for the alignment is a torque from the binary companion (Batygin 2012), causing the protoplanetary disk to oscillate and dissipate energy, moving to its lowest energy state of alignment with the binary system.
Recent theoretical

Θ

References

Batygin, K. 2012, Nature, doi: 10.1038/nature11560 El-Badry, K., & Rix, H.-W. 2018, doi: <u>10.1093/mnras/sty2186</u>
Pearce, L. A., et al., doi: 10.3847/153<mark>8-4357/ab8389</mark> Roisin, A., et al.. 2021, arXiv e-prints, arXiv:2107

- work suggests this
- explanation could explain the alignment
- $\frac{1}{2}$ (Roisin et al. 2021) and intriguingly, the
- \overline{n} aligned population has
- -30 tim[escales of](https://github.com/logan-pearce/lofti_gaiaDR2) rotation
- $\frac{1}{20}$ of the protoplanetary
- disk less than the 10 lifetime of the

protoplanetary disk (the dashed line in Figure 6).

QR Code (link here) to the LOFTI code, a program central to our analysis.

Orbital inclination of binaries inferred from relative proper motion

If the relative proper motion vectors are parallel to the plane connecting the two stars in the binary system, the system has an inclination of 90° (aligned with the exoplanet). **Figure 2**

Constraining the orbit of a system requires knowledge of the total mass of the system. In order to determine the masses of each star, we use isochrone fitting on Gaia photometry and spectroscopy – when available -- from various sources.

We use the LOFTI Python package (Pearce et al. 2020), a Monte-Carlo based sampling Phase method, to constrain the orbits of our systems. 100 orbits from a LOFTI fit are shown in Figure 3.