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The  STAR  algorithm  addresses  channel-specific  noise  that  is  sparse  in  time.
It removes  electrode  or sensor  noise  and  certain  forms  of  myogenic  artifact.
In  contrast  to other  techniques,  few  data  are lost  and the  dimensionality  of the  data  is  preserved.
The  STAR  algorithm  complements  component  analysis  techniques  such  as ICA.
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Background:  Muscle  artifacts  and  electrode  noise  are  an  obstacle  to interpretation  of EEG  and  other  elec-
trophysiological  signals.  They  are  often  channel-specific  and  do not  fully benefit  from  component  analysis
techniques  such  as  ICA,  and  their  presence  reduces  the dimensionality  needed  by those  techniques.  Their
high-frequency  content  may  mask  or masquerade  as gamma  band  cortical  activity.
New  method:  The  sparse  time  artifact  removal  (STAR)  algorithm  removes  artifacts  that  are  sparse  in space
and time.  The  time  axis  is  partitioned  into  an  artifact-free  and  an  artifact-contaminated  part,  and  the
correlation  structure  of  the  data  is  estimated  from  the  covariance  matrix  of  the  artifact-free  part.  Artifacts
are  then  corrected  by projection  of  each  channel  onto  the  subspace  spanned  by the  other  channels.
Results:  The  method  is  evaluated  with  both  simulated  and  real data,  and  found  to be highly  effective  in
removing  or  attenuating  typical  channel-specific  artifacts.
Comparison  with  existing  methods:  In  contrast  to  the  widespread  practice  of  trial  removal  or  channel
rtifact
yogenic

CA
ensor noise

removal  or  interpolation,  very  few  data  are  lost.  In contrast  to  ICA  or other  linear  techniques,  processing
is  local  in time  and affects  only  the  artifact  part, so  most  of  the  data  are  identical  to the  unprocessed  data
and  the  full  dimensionality  of  the  data  is  preserved.
Conclusions:  STAR  complements  other  linear  component  analysis  techniques,  and  can  enhance  their
ability  to  discover  weak  sources  of  interest  by increasing  the number  of  effective  noise-free  channels.

© 2016  The  Author.  Published  by  Elsevier  B.V.  This  is an  open  access  article  under  the  CC  BY-NC-ND
. Introduction

Among the many sources of noise and artifact that plague stud-
es involving human and animal electrophysiology, some affect
nly one channel at a time. This paper addresses such channel-
pecific artifacts, leaving aside other types that impinge on several

hannels such as eyeblink, heartbeat or background neural activ-
ty. Signals recorded by multichannel recording techniques such as
lectroencephalography (EEG), magnetoencephalography (MEG),
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electrocorticography (ECoG), invasive electrode arrays or optical
techniques are related to underlying sources by a linear mixing
process:

xj(t) =
∑

i

si(t)uij, (1)

where t is time, si(t) are the source signals, and uij are mixing
coefficients. We  call “channel-specific” a source si for which the
uij are zero for all channels j except one.

Channel-specific noise includes electrode contact noise, pulsa-

tion noise, and certain forms of muscle artifact in EEG, as well as
sensor noise in MEG  or other techniques. Electrode-tissue con-
tact artifacts are usually temporally sparse, occurring as isolated
events or bursts of events that affect one channel at a time.
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replaced with its projection on the subspace spanned by the other
A. de Cheveigné / Journal of Neu

uscle artifacts may  also be channel-specific if they are produced
y motor units proximal to a single electrode (Yilmaz et al., 2014),
lthough activity from deeper muscles may  affect multiple elec-
rodes. Such artifacts often have a spectrum that extends to high
requency, but they may  also include low-frequency components
hat overlap with low-frequency cortical activity (Goncharova et al.,
003), so that spectral filtering is not sufficient to eliminate them.
lectromyogenic noise is particularly troublesome as it can be con-
used with high-frequency cortical activity (Yuval-Greenberg et al.,
008; Whitham et al., 2007; Muthukumaraswamy, 2013; Yilmaz
t al., 2014), particularly as muscle activity may  correlate with cog-
itive state (Whitham et al., 2008; Yuval-Greenberg et al., 2008;
cMenamin et al., 2011). Cephalic skin potential (Corby et al., 1974)
ay  also covary with cognitive state, and contact noise may  corre-

ate with behavior.
A standard approach to dealing with spatio-temporally sparse

rtifacts is to discard either the offending channel, or the offend-
ng time interval or trial (Junghöfer et al., 2000). This entails loss
f data, particularly if artifacts affect multiple channels and/or are
idely distributed in time, and it also complicates analysis and

nterpretation stages, that need to be made tolerant to the missing
ata.

Another approach is to apply multichannel linear analysis
echniques such as independent component analysis (ICA), beam-
orming, or joint diagonalization (JD) (de Cheveigné and Parra,
014) to isolate noise components. Component signals yk(t)
btained by these methods are related to observations as:

k(t) =
∑

j

xj(t)wjk, (2)

here t is time and the wjk are weights. The J observation channels
pan a space that contains all such linear combinations, and the
imensionality of the data is the number of dimensions of this space
J or less). Components belong to this space. Different methods
PCA, ICA, beamforming, etc.) differ in how they find the appropri-
te weights to apply to the data. ICA in particular has been proposed
o remove artifacts including myogenic (Delorme et al., 2007; Ma
t al., 2012; Crespo-Garcia et al., 2008).

The appeal of these linear techniques is that a noise source xi
an potentially be perfectly canceled: a component yk is insensi-
ive to source i as long as

∑
juijwjk = 0, where uij are the mixing

oefficients and wjk the component weights (Eqs. (1) and (2)). With
igh-dimensional data (lots of channels) there is considerable flex-

bility in satisfying this constraint, and the strength of analysis
lgorithms such as ICA lies in their ability to find such sets of
eights. However, if a noise source is specific to a single channel j,

t can only be cancelled by setting wjk to zero for every component
, effectively discarding that channel. In this situation, component
nalysis offers little over the time-honored practice of discarding
oisy channels.

Component analysis itself is vulnerable to channel-specific noise
ecause it relies on the dimensionality of the data (determined by
he number of channels) to resolve the various sources. If channels
re discarded due to artifacts, analysis may  be impaired, whereas if
hey are not discarded (due to lack of knowledge or the need to con-
erve enough channels), the artifact is injected into the extracted
omponents via Eq. (2). The presence of artifacts may also interfere
ith the ability of the algorithm to find the optimal wjk. For exam-
le an algorithm such as CSP (Koles et al., 1990), that searches for
omponents that differ in power between two intervals, may  lock

n to an artifact that is present in one interval but not the other.
inally, the artifacts may  interfere with the ability to estimate the
opography associated with cortical activity, possibly compromis-
ng source modeling. Channel-specific noise thus limits the ability
nce Methods 262 (2016) 14–20 15

of linear methods to improve the signal to noise ratio (SNR) of weak
brain activity.

These considerations lead us to focus on channel-specific noise,
leaving other techniques such as ICA, JD, or beamforming to deal
with noise sources that impinge on multiple electrodes. This is
important scientifically, to obtain a more accurate picture of brain
activity, and also for applications such as brain-computer interfaces
(BCI), prediction of epileptic seizures, wearable brain-monitoring
devices, and so on. The method described here is effective, fully
automatic, and amenable to an online implementation for applica-
tions that involve realtime monitoring.

2. Methods

2.1. Signal model and assumptions

Each observation xj(t) is the sum of signals from multiple sources
i within the brain or the environment (Eq. (1)). We  make sev-
eral restrictive assumptions. Each noise source ni(t) affects only
one particular channel (assumption 1). Noise activity is temporally
sparse so that artifacts on different channels do not temporally
overlap (assumption 2), and for a significant proportion of time
the data are artifact-free (assumption 3). Finally, we assume that
in the absence of artifacts the data are linearly dependent such
that each channel belongs to the subspace spanned by the other
channels. In other words for each channel j there exist ajj′ such
that xj(t) =

∑
j′ /=  jajj′ xj′ (t) (assumption 4). This is plausible for neu-

rogenic activity due to source-to-sensor mixing. Of course, many
kinds of noise do not meet these assumptions; the focus here is on
those that do. In real data, these assumptions will be met  only as
an approximation,  for example because of non-stationarity of the
brain and noise processes underlying the data. The quality of the
outcome depends on the quality of the approximation.

2.2. The STAR algorithm

The algorithm proceeds in two  phases. The first phase detects
the presence of channel-specific artifacts, the second phase corrects
them.

Phase 1. The covariance matrix of the data is estimated, and
from it is calculated the matrix A that projects each channel on
the subspace spanned by the other channels. The projection x̄j(t)
of channel j is the weighted sum of the channels j′ /= j that best
approximates xj(t). In the absence of an artifact we  should have
x̄j(t) − xj(t) = 0 as a result of the linear dependence assumption, so a
significant deviation indicates the presence of an artifact. Values of
x̄j(t) − xj(t) are fit by a zero-mean Gaussian distribution, and values
eccentric from this distribution (relative to a predefined threshold
�) are flagged as artifactual. This is repeated for all channels, and the
union of eccentric time samples is labeled as artifact-contaminated.
The covariance matrix is initially estimated from the entire data,
and subsequently reestimated on the part of data labeled as artifact-
free. A few iterations of this process lead to a stable partition of the
time axis between artifact-free and artifact-contaminated parts.

Phase 2. The artifact-contaminated part is further divided
according to which channel is most degraded at each time sample.
For this purpose, a second eccentricity measure is calculated for
each channel as the ratio of instantaneous power to power aver-
aged over the artifact-free portion. The channel with the highest
score at a given time sample “owns” that sample, and its data are
channels, using projection coefficients calculated from the artifact-
free part. Data replacement occurs only at the part corresponding
to the artifact: at other times the data are left intact, so most of the
data remain untouched by the processing.
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Fig. 1. Denoising simulated data. (a) Target signal. (b) 10-channel data including target, Gaussian noise (SNR = 10), and an artifact on one channel. The black bar indicates
STAR’s  estimate of the “artifact-contaminated” part. (c) Data after removal of the artifact by the STAR algorithm. (d) 10-channel data including the same target and Gaussian
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emoval of artifacts by the STAR algorithm. (f) Result of applying the JD algorithm to 

as  first applied before the JD algorithm.

.3. Implementation details

A Matlab implementation of the algorithm is available in the
oiseTools toolbox (http://audition.ens.fr/adc/NoiseTools/). In the
rojection steps, to avoid issues with rank-deficient data, PCA is
pplied and PCs with power below a threshold are discarded. The
lgorithm operates on a sample-by-sample basis, each channel
witching between an artifact-free state (no projection) and an
rtifact-contaminated state (projection). To limit the number of
witches, the eccentricity measure is temporally smoothed by con-
olution with a short triangular window.

The algorithm thus has 4 parameters: the eccentricity threshold
 (the same value is used in phases 1 and 2), the size of the smooth-
ng kernel in phase 2, the number of neighbors used to fix each
hannel, and the truncation threshold for the PCA. Of these, only
he first is critical, as it determines the proportion of time sam-
les that will be labeled as artifact-contaminated. An excessively

ow threshold leads to insufficient “artifact-free” data to reliably
etermine its correlation structure. For convenience, our imple-
entation is designed to automatically increment the threshold

by a factor 1.1) if this occurs.
To save computation and reduce overfitting, channels may  be

rojected on a subset of neighbouring channels, rather than on the
ull set of channels. On the assumption that cortical sources of inter-
st should affect groups of physically close channels, this subset
hould suffice. ‘Neighborhood’ can be quantified based on geomet-
ical proximity, or by measuring between-channel correlation in
he raw data. To improve noise rejection it may  be useful to apply
TAR repeatedly, so that each iteration removes artifacts missed by
he previous iteration.

.4. Relaxing assumption 2

Assumption 2 is often violated for myogenic noise that may

ccur in bursts affecting multiple motor units (Yilmaz et al., 2014).
e can relax it to allow several channels [jC] to be contaminated,

s long as we modify assumption (4) to assume that each of the
ontaminated channels [jC] can be expressed as the weighted sum
 bars indicate STAR’s estimate of the “artifact-contaminated” part. (e) Same after
 data in (d), with the aim of recovering the target. (g) Same, but the STAR algorithm

of the remaining non-contaminated channels. The algorithm is
modified to project each of [jC] on the subspace spanned by the
non-contaminated channels. This modification is computationally
expensive (the number of cases to consider is exponential in the
number of [jC]), and in our implementation it is only approximated,
see below.

3. Results

3.1. Simulated data

A sinusoidal target and several Gaussian noise sources were
mixed together to simulate multichannel data, and channel-
specific artifacts were added. The sinusoidal target signal (Fig. 1(a))
was mixed into the 10-channel data via a 1 × 10 mixing matrix with
random coefficients, together with 8 independent Gaussian noise
sources mixed via a 8 × 10 random mixing matrix. Coefficients were
chosen to ensure SNR = 10, and a pulse-like artifact was  added to
one channel (Fig. 1(b)). Applying STAR effectively suppresses the
artifact (Fig. 1(c)), apparently without distorting the signal. The data
remain contaminated by the other noise sources, although at this
SNR the target still emerges. Fig. 1(d) shows a similar mixture with
SNR = 10−8 and one artifact on each channel, and Fig. 1(e) shows
the result of applying STAR. The black bars in Fig. 1(b, d) indicate
STAR’s estimate of the artifact-contaminated part. The artifacts are
removed, but at this SNR the target is invisible.

A linear algorithm such as JD (de Cheveigné and Parra, 2014)
can be used to extract a weak target such as Fig. 1(a) despite a very
unfavorable SNR. However this requires the dimensionality of the
noise to be smaller than that of the data, a requirement that fails
in the presence of the channel-specific artifacts in addition to the
Gaussian noise as in Fig. 1(d). Indeed, applying JD to the artifact-
contaminated data fails to recover the target (Fig. 1(f)). However,

if STAR is first applied to remove the artifacts (Fig. 1(e)), JD can
successfully recover the target (Fig. 1(g)). This example shows that
STAR can effectively remove channel-specific artifacts, that it can do
so for artifacts affecting multiple channels, and that such removal

http://audition.ens.fr/adc/NoiseTools/
http://audition.ens.fr/adc/NoiseTools/
http://audition.ens.fr/adc/NoiseTools/
http://audition.ens.fr/adc/NoiseTools/
http://audition.ens.fr/adc/NoiseTools/
http://audition.ens.fr/adc/NoiseTools/
http://audition.ens.fr/adc/NoiseTools/
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Fig. 2. 128-channel EEG data. (a–c) Examples of single-channel signals from a 128-
channel EEG recording before (red) and after (blue) applying STAR. (d) Percentage
of  samples removed for each channel (sorted by decreasing percentage), for each
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Fig. 3. 128-channel EEG data. (a) One channel with muscle artifact before (red) and
after (blue) processing. (b, c) Spectrograms of the signal before and after applying
ubject. (e) Proportion of power removed for each channel (sorted by decreasing
ower), for each subject. (For interpretation of the references to color in this legend,
he reader is referred to the web version of the article.)

ay  be needed for a component analysis technique such as JD to
ucceed.

.2. EEG data

A first example involves data recorded with a 128-channel EEG
ystem (Biosemi). The data sampled at 512 Hz were high-pass fil-
ered with 20 Hz cutoff (2nd order Butterworth) to emphasize
he gamma region that is relatively susceptible to artifacts. The
TAR algorithm was applied with threshold parameter � = 2 to sup-
ress channel-specific artifacts. The size of the smoothing window
pplied to the eccentricity measure was 19 samples. Fig. 2(a–c)
hows three example signals from individual electrodes before
red) and after (blue) processing. In Fig. 2(a) the data are contam-
nated by what seems to be muscle activity. This is suppressed by
TAR (the three remaining bursts reflect activity correlated across
ensors and therefore not removed). In Fig. 2(b) the data are con-
aminated by a pulsatile noise with a period of approximately 1 s,

ost likely a “pulsation artifact” due to a vein underlying the elec-
rode (Niedermeyer and Lopez da Silva, 2005). In Fig. 2(c) the data
re contaminated by a series of glitches of high amplitude (note the
cale) that are equally well suppressed.

Data from this study were available for 8 subjects, about
.5–2.5 h each. Fig. 2(d) shows the percentage of samples cor-
ected by STAR for each channel (channels sorted by decreasing
ercentage) and subject, cumulated over the recording session.
he percentage varies across subjects and channels, reflecting a
ifferent prevalence of channel-specific artifacts between subjects,
nd for a given subject, between channels. For the worst subject the
ercentage is below 5% for most channels, implying that >95% of
he data of those channels were untouched by the processing. For

ood subjects the percentage of intact samples is >98% for almost
ll channels. These numbers suggest that the negative impact of
pplying STAR, if any, is likely to be minimal. Fig. 2(e) shows the
ercentage of power removed by STAR for each channel (channels
STAR. (d, e) Same, with superimposed chirp signal, illustrating that processing can
reveal a signal otherwise masked by the artifact. (For interpretation of the references
to  color in this legend, the reader is referred to the web  version of the article.)

sorted by decreasing percentage) and each subject (individual
lines). Again the percentage varies across subjects and channels. For
the worst subject, >20% of power was  removed for >30 channels,
and >55% for the worst channel. For other subjects the percent-
ages are smaller, but still significant for a subset of channels. To
summarize, STAR is both safe and of potentially significant benefit.

Fig. 3(a) shows one channel contaminated by a burst of pulsatile
activity, likely muscle artifact, before (red) and after (blue) applying
STAR. The spectrogram of these data is shown in Fig. 3 before (b),
and after (c) processing. Artifactual activity dominates the higher
spectral region, but this is alleviated by processing. Fig. 2(d) and (e)
illustrates how this processing could potentially reveal high fre-
quency activity (here a synthesized narrowband chirp) otherwise
masked by the artifact.

A second example uses data recorded from three closely-spaced
EEG electrodes within the ear canal of a subject (Kidmose et al.,
2012). The rationale for recording from within the ear is unob-
trusiveness (for hearing aid-related applications) and the hope
that muscle artifacts will be weaker, however the close spacing
between electrodes is expected to result in signals highly corre-
lated across channels. Fig. 4(a) shows a short segment of signals
from the three electrodes. Contrary to expectations, one channel
(green) is affected by channel-specific glitches of possible mus-
cular origin. Applying STAR removes these artifacts resulting in
signals that are much more similar across channels, as expected
from collocated electrodes (Fig. 4(b)). Another way to attenuate
channel-specific artifacts is to average across channels, but the ben-
efit here is relatively small (Fig. 4(c), red). However applying STAR
before averaging greatly increases this benefit (blue). The deflection
near 0.5 s is not removed because it is shared across sensors. The
effect of artifact reduction of the 3-channel data is reflected in its
PCA spectrum (Fig. 4(d)). Cortical signals from closely spaced elec-
trodes should be highly correlated, implying a rapidly decreasing
PCA spectrum, and this expectation is better met  after applying
STAR. This example shows that STAR can be effective even for a
small number of channels.

3.3. Simulated target embedded in real EEG

This example involves a simulated repetitive target (half-

sinusoid pulse) superimposed on the same 3-channel EEG signal
as in the previous example. The advantage of using a simulated
target is that the ground truth is known, the advantage of using
real EEG as noise is that it is representative of real EEG noise. The
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Fig. 4. Three-channel EEG. (a) Raw data. (b) Same after artifact removal by STAR. (c)
Average over channels of raw (red) or processed (blue) data. (d) Eigenvalue spec-
trum of raw (red) and processed (blue) data. The smaller power of PCs 2 and 3
indicates that the signals are closer to being identical across channels, as expected
for  three collocated electrodes. (e, f) Simulated target (290 repetitions of a half-
sinusoid) embedded in 3-channel EEG noise (SNR = 0.03). Blue is average over trials,
gray band indicates ±2SD of a bootstrap resampling of the mean. (e) Average over
trials of the “best” electrode. (f) Same as (e) after applying the STAR algorithm to sup-
press artifacts. (g) Same as (e) after applying the JD algorithm to enhance the target.
(h) Same as (e) after applying first STAR then JD. The values plotted are normalized
to equate the variance over trials in each condition, thus the greater amplitude of the
mean (blue) in (h) reflects the better SNR of the recovered signal. (For interpretation
o
t

t
n
t
o
r
S
r
f
t
a
A
a
p
c

4

o
r
u
C
t

ICA as a tool to reduce myogenic artifacts has been questioned
f  the references to color in this legend, the reader is referred to the web  version of
he article.)

arget pulse was repeated 290 times and added to the second chan-
el of the EEG with SNR = 0.03. Fig. 4(e) shows the average over
rials of the second EEG channel. The gray band represents ±2SD
f a bootstrap resampling of the mean. The presence of artifacts is
eflected by the irregular width of the gray band. In principle, the
NR of such multichannel data can be enhanced by the JD algo-
ithm (de Cheveigné and Parra, 2014) with the appropriate bias
unction to enhance repeatable components. However in this case
he benefit is limited (Fig. 4(g)) presumably because all channels
re artifact-contaminated so that there is no artifact-free subspace.
pplying the STAR algorithm attenuates these artifacts (Fig. 4(f))
nd JD produces a well-isolated target signal (Fig. 4(h)). This exam-
le shows again that removing channel-specific artifacts with STAR
an improve the effectiveness of component analysis.

. Discussion

The STAR algorithm exploits the between-channel correlation
f the underlying data to identify channel-specific artifacts and
epair them. Figuratively, it “surfs” the correlation structure of the

nderlying data, selectively shaving off the parts that do not fit.
hannel-specific artifacts are ubiquitous in EEG and other recording
echniques. Removing them is usually tedious (if done manually)
nce Methods 262 (2016) 14–20

or complex and unreliable (if done automatically), and a reliable
automatic method to suppress them is thus useful.

4.1. Comparison with other approaches

The most common approach to channel-specific artifacts is to
discard the offending channel(s), or else the offending samples or
trials (Picton et al., 2000). Valid data are lost as a result, and the
strategy fails if too many channels and/or samples are affected.
In contrast, STAR entails minimal data loss, because only a small
proportion of samples are discarded. Data are rejected on a sample-
by-sample basis, in contrast for example to SCADS (Junghöfer et al.,
2000) that removes larger chunks (trials) of the affected channel, or
AFOP (Boudet et al., 2012) that operates on a relatively long window
(e.g. 20 s).

As in several other approaches, missing channels are interpo-
lated spatially. In STAR the interpolation is based on an estimate
of the correlation structure gathered over the artifact-free part, in
contrast to methods such as SCADS that apply spherical spline inter-
polation to reconstruct the missing data (Perrin et al., 1989). STAR
thus requires no geometrical information (it is purely data-driven)
although it may  benefit from using a proximity map  to restrict the
number of channels upon which each channel is projected. STAR
uses the multivariate correlation structure of the data, in contrast
to wavelet or empirical mode basis (Safieddine et al., 2012) that use
the within-channel autocorrelation structure to interpolate missing
values.

A very different approach is to use component analysis to form
linear combinations of channels as in Eq. (1), and project the com-
ponents that correspond to artifacts out of the data. There are
many techniques available (ICA, beamforming, JD, etc.) that dif-
fer in the way they determine the weights wjk. In ICA (Delorme
et al., 2007; Ma  et al., 2012; Crespo-Garcia et al., 2008) a measure
of statistical independence (e.g. kurtosis) is used to constrain the
weights. Channel-specific noise is usually both kurtotic (lots of zero
or extreme values) and independent between channels, so this pro-
cedure is likely to isolate components that contain channel-specific
noise. In beamforming (Grosse-Wentrup et al., 2009) a spatial filter
is used to isolate sources, either desired (to extract them) or unde-
sired (to suppress them), on the basis of their spatial position. In CSP
(Koles et al., 1990) or JD (de Cheveigné and Parra, 2014) the spatial
filter is instead designed to maximize or minimize some desirable
or undesirable trait of the data.

Regardless of the method, component analysis faces a funda-
mental limitation: it cannot resolve more sources than dimensions
in the data. STAR is not subject to this limitation, as illustrated by
the example in Fig. 1(d–g) where artifacts were present on all chan-
nels, in addition to target and noise sources, but the target could
nonetheless be separated. Neither ICA, nor JD, nor beamforming can
deal with this situation because the number of sources to resolve
exceeds the number of channels. The reason why STAR succeeds is
that it operates locally in time (so that the solution applied to fix
each sample need not consider other samples), and leaves most of
the data intact (the dimensionality of the cleaned data is that of
the data before artifacts were added). In contrast, techniques such
as ICA apply a single linear transform to all the data, each artifact
removed reduces the data dimensionality, and there may not be
enough dimensions to allow them all to be removed. As stressed
in Section 1, an artifact specific to channel j can only be removed
by setting all the wjk to zero in Eq. (2), i.e. discarding that elec-
trode, and therefore if artifacts are present on many channels the
dimensionality is greatly reduced. Empirically, the effectiveness of
because ICs may  be found to contain both artifact and neural
activity (McMenamin et al., 2010, 2011), presumably as a conse-
quence of the large number of distinct generators of muscle artifact.
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Similar to STAR, the sensor noise suppression (SNS) method (de
heveigné and Simon, 2008b) addresses sensor-specific noise by
eplacing each channel by its projection on the subspace spanned
y the other channels. However with SNS this operation is applied
niformly across the time axis, and thus shares the same drawbacks
f other component analysis techniques.

The AFOP method of Boudet et al. (2012) applies different solu-
ions to different parts of the time axis (or time-frequency plane).
rtifacts within a limited spectrotemporal window are isolated
sing a variant of the common spatial pattern (CSP) algorithm
Koles et al., 1990), and the data over that window are fixed by
rojecting them out. AFOP can remove any activity specific to that
indow, not just channel-specific, in contrast to STAR which only

emoves channel-specific artifacts. However as noted above, AFOP
perates at a coarser temporal granularity.

The focus of STAR on channel-specific artifacts could be seen
s a limitation. However this restriction allows it to avoid remov-
ng activity shared across channels, of deeper and possibly neural
rigin. Most importantly, STAR is compatible with other tech-
iques (ICA or other) that can deal with channel-shared artifacts,

ncreasing their effectiveness by relieving them of the burden
f channel-specific artifacts. Indeed, the primary motivation for
eveloping STAR was to push the limits of these noise reduction
echniques, including our own previous efforts (de Cheveigné and
imon, 2007, 2008a,b; de Cheveigné, 2010, 2012; de Cheveigné and
arra, 2014).

An feature of STAR is that it is automatic, in contrast to tradi-
ional artifact rejection that requires manual intervention, or to
CA that requires inspection of components to decide which to
emove. It is relatively parameter-free, in contrast to methods such
s FASTER (Nolan et al., 2010) that involve multiple parameters. It
s also conceptually simple and computationally fast.

To summarize the main features that distinguish STAR from
ther approaches: (a) it is automatic and requires little tuning,
b) dimensionality is not reduced and apart from the artifact
ortions the data are untouched, (c) the method addresses only
hannel-specific artifacts, leaving other forms of artifact to other
pproaches, that it complements and can enhance.

.2. Caveats and cautions

Assumption 4 requires that the dimensionality of the activity
nderlying the data (e.g. number of significant neural sources) be

ess than the number of channels. As there are potentially billions
f neural sources this can only be an approximation.

The correlation structure is assumed to be stationary so that
he projection parameters estimated from the artifact-free part
an be applied in the artifact-contaminated part. A departure from
his assumption (for example if additional neural sources coincided
ith muscle artifact) would reduce effectiveness.

The calculation of the projection matrix, that allows each chan-
el to be replaced by its projection on the other channels, is subject
o overfitting if there is a large number of channels or insufficient
ata. It is useful to limit the projection to a subset of neighboring
hannels (10 seems to work well).

Assumptions 2 and 3 require that channel-specific artifacts be
ocal in time, which excludes slow channel-specific fluctuations.
t may  be useful to remove such slow fluctuations by high-pass
ltering the data before applying STAR (or split the data into low-
nd high-pass streams, process the latter, then recombine).

For each channel, the algorithm switches between an artifact-
ree state, for which the data are untouched, and an artifact-

ontaminated state for which the data are replaced by their
rojection. The transition between states may  produce a step, and
his may  paradoxically lead to increased high-frequency noise if
he transitions are numerous and/or the steps are large. Smoothing
nce Methods 262 (2016) 14–20 19

the eccentricity measure reduces the number of switches, and in
practice switching seems rarely a problem unless the data contain
a lot of low-frequency power (see previous point).

Assumption 2, that artifacts should occur on only one channel
at a time, is often violated for myogenic activity that may occur
in bursts that affect several channels simultaneously. This has two
consequences. First, the algorithm (in its basic form) only fixes one
channel at a given time point, and so artifacts on the other channels
may  remain. Second, projection on artifact-contaminated channels
may  contaminate the channel being fixed. The extension described
in Section 2.4 addresses the problem, although its applicability is
limited by the computational cost of dealing with the many com-
binations of artifact-contaminated channels (exponential in their
number). The NoiseTools toolbox implements an approximation
that appears to be effective. STAR may  be applied repeatedly, so
that each new pass removes artifacts missed by previous passes.

4.3. Applicability to electromyogenic activity

There is evidence that much EEG power beyond 20 Hz is mus-
cular in origin: when muscular activity is silenced by injection
of a paralysing drug, power in that band is greatly diminished
(Whitham et al., 2007). The fact that muscular activity covaries
with mental state makes it a potential confound in cognitive stud-
ies (Whitham et al., 2008; Yuval-Greenberg et al., 2008; Shackman
et al., 2009). The STAR algorithm offers a partial solution, in that it
removes the type of myogenic activity that is local to one elec-
trode (Ma  et al., 2012). This constitutes a subset of myogenic
activity: activity that is instead correlated across electrodes (e.g.
from deeper or distant muscles) must be removed by other means
(McMenamin et al., 2010; Yilmaz et al., 2014). Empirically, the
amount of reduction observed for each artifact burst is variable,
ranging from 100% to a few tens of percent (e.g. Fig. 3). Artifacts that
are correlated across electrodes (e.g. from ocular or deep muscles)
may  be addressed by component analysis such as ICA or JD, to which
STAR is complementary in that it avoids squandering dimensions
useful to those methods. The STAR algorithm is thus of potential
benefit in studies of cortical activity at higher frequencies.

4.4. Applicability to real-time and BCI applications

The algorithm can operate online in real time. After an initial
bootstrap phase (to get an estimate of the artifact-free covariance
matrix), the algorithm switches between two  states: (1) no artifact,
the covariance matrix is updated, (2) artifact, the offending chan-
nels are corrected. Updating of the covariance matrix estimate may
occur for example according to a leaky integrator mechanism, to
allow for slow variations of the correlation structure.

Applications such as BCI involving a wearable EEG device are
limited by artifacts related to movement, including contact and
muscle artifacts (Fatourechi et al., 2007; McFarland et al., 2005;
Reis et al., 2014) that can for example disrupt an otherwise effec-
tive technique such as CSP (Grosse-Wentrup et al., 2009). Manual
correction or offline processing are obviously ruled out, and STAR
thus is of potential benefit for these applications.

5. Conclusions

The sparse time artifact reduction (STAR) algorithm deals effec-
tively with channel-specific artifacts that are common in EEG,
including electrode contact noise and certain types of muscle arti-
fact. It operates locally in time, correcting only the samples affected

by the artifact, and leaving the remainder intact, and thus has min-
imal negative impact on the underlying data. Removal of an artifact
does not reduce the dimensionality of the data, in contrast to chan-
nel rejection or component analysis techniques such as ICA. The
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TAR algorithm can complement those techniques and enhance
heir effectiveness by relieving them of the burden of dealing with
hannel specific artifacts. The STAR algorithm operates automati-
ally, requires few parameters, is computationally efficient, and can
e implemented to perform online processing in real time.
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Yilmaz G, Ungan P, Sebik O, Uginčius P, Türker KS. Interference of tonic muscle
activity on the EEG: a single motor unit study. Front Hum Neurosci 2014];8:504.

Yuval-Greenberg S, Tomer O, Keren AS, Nelken I, Deouell LY. Transient induced
gamma-band response in EEG as a manifestation of miniature saccades. Neuron
2008];58:429–41.

http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0005
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0010
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0010
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0010
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0010
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0010
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0010
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0010
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0010
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0010
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0010
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0010
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0010
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0010
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0010
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0010
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0010
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0015
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0020
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0020
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0020
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0020
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0020
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0020
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0020
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0020
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0020
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0020
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0025
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0025
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0025
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0025
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0025
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0025
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0025
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0030
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0030
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0030
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0030
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0030
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0030
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0030
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0030
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0030
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0030
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0030
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0030
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0030
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0035
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0035
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0035
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0035
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0035
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0035
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0035
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0035
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0035
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0035
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0035
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0040
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0040
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0040
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0040
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0040
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0040
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0040
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0040
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0040
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0040
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0040
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0045
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0045
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0045
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0045
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0045
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0045
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0045
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0045
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0045
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0050
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0055
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0055
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0055
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0055
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0055
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0055
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0055
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0055
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0055
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0055
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0055
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0055
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0055
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0055
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0055
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0055
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0060
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0060
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0060
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0060
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0060
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0060
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0060
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0060
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0060
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0060
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0060
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0060
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0060
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0060
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0065
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0065
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0065
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0065
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0065
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0065
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0065
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0065
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0065
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0065
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0065
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0065
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0065
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0065
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0070
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0070
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0070
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0070
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0070
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0070
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0070
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0070
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0070
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0070
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0070
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0070
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0070
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0075
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0080
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0080
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0080
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0080
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0080
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0080
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0080
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0080
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0080
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0080
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0080
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0080
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0080
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0080
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0085
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0085
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0085
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0085
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0085
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0085
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0085
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0085
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0085
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0085
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0085
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0085
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0085
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0090
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0095
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0095
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0095
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0095
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0095
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0095
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0095
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0095
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0095
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0095
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0095
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0095
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0095
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0095
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0095
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0100
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0100
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0100
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0100
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0100
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0100
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0100
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0100
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0100
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0100
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0105
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0105
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0105
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0105
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0105
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0105
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0105
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0105
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0105
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0105
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0105
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0105
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0105
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0105
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0105
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0105
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0110
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0110
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0110
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0110
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0110
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0110
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0110
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0110
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0110
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0110
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0110
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0110
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0110
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0115
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0115
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0115
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0115
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0115
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0115
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0115
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0115
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0115
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0115
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0115
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0115
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0115
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0115
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0115
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0120
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0120
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0120
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0120
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0120
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0120
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0120
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0120
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0120
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0120
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0120
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0120
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0120
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0120
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0120
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0120
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0125
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0130
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0130
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0130
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0130
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0130
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0130
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0130
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0130
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0130
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0130
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0130
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0130
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0130
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0130
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0130
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0135
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0140
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0140
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0140
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0140
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0140
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0140
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0140
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0140
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0140
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0140
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0145
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0150
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0150
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0150
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0150
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0150
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0150
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0150
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0150
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0150
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0150
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0150
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0150
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0155
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0160
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0160
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0160
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0160
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0160
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0160
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0160
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0160
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0160
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0160
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0160
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0160
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0160
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0160
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0160
http://refhub.elsevier.com/S0165-0270(16)00006-6/sbref0160

	Sparse time artifact removal
	1 Introduction
	2 Methods
	2.1 Signal model and assumptions
	2.2 The STAR algorithm
	2.3 Implementation details
	2.4 Relaxing assumption 2

	3 Results
	3.1 Simulated data
	3.2 EEG data
	3.3 Simulated target embedded in real EEG

	4 Discussion
	4.1 Comparison with other approaches
	4.2 Caveats and cautions
	4.3 Applicability to electromyogenic activity
	4.4 Applicability to real-time and BCI applications

	5 Conclusions
	Acknowledgements
	References


