
By Peter W. Brewer

For Tellervo versions 1.2.x (server)
and 1.2.x (desktop)

TELLERVO
A guide for users and developers

By Peter W. Brewer

Compiled: May 11, 2016

©2016 Peter W. Brewer

Laboratory of Tree-Ring Research
1215 E. Lowell Street
Tucson
Arizona 85721. USA.

T +1 520 621 0753
B p.brewer@ltrr.arizona.edu

Compiled: May 11, 2016

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no

Back-Cover Texts.

Contents

Preface . 1

I User Guide 3

1 Installation 5
1.1 Introduction . 5
1.2 Server installation . 5

1.2.1 Install as Virtual Appliance . 6
1.2.2 Ubuntu native installation . 8
1.2.3 Advanced install on other operating systems . 8

1.3 Installing the desktop application . 9
1.3.1 First time launch . 9
1.3.2 Mapping support . 11

1.4 Upgrading Tellervo desktop . 11
1.5 Upgrading Tellervo Server . 11
1.6 Uninstalling . 12

1.6.1 Tellervo desktop application . 12
1.6.2 Tellervo server . 12

2 Tellervo-lite 13
2.1 Launching Tellervo-lite . 13
2.2 Tellervo-lite interface . 13

2.2.1 Data tab . 13
2.2.2 Metadata tab . 14

2.3 Measuring a new sample . 15
2.4 Loading existing files . 16
2.5 Inserting, deleting and remeasuring rings . 16
2.6 Saving . 16

3 Getting started 19
3.1 Main window . 19
3.2 Measuring a new sample . 19
3.3 Opening existing data . 22
3.4 Reconciling data . 23

4 Measuring platforms 25

5 Metadata 27
5.1 Tree Ring Data Standard - TRiDaS . 27

iv CONTENTS

5.2 Entering sample metadata . 30
5.3 Entering bulk metadata . 31

5.3.1 Toolbar buttons . 32
5.4 Metadata browser . 32
5.5 Laboratory codes . 33

6 Field data collection 35
6.1 Creating data entry forms . 35
6.2 ODK mobile application . 37
6.3 Importing ODK metadata into Tellervo . 37

7 Mapping 39
7.1 Navigation . 40

7.1.1 Mouse with scroll wheel . 40
7.1.2 Single button mouse . 40

7.2 Interacting with data . 40
7.3 Map layers . 41

7.3.1 Data layers . 41
7.3.2 Web Map Service (WMS) . 42

7.4 Toobar buttons . 42
7.5 Layers list . 43
7.6 Exporting maps . 43

8 Graphing 45
8.1 Controlling graphs . 45
8.2 Exporting graphs . 47

9 Importing and exporting 49
9.1 Exporting data . 49

9.1.1 Naming conventions . 50
9.1.2 Character sets . 51

9.2 Importing data . 51

10 Curation and Administration 55
10.1 Laboratory workflow . 55
10.2 Barcodes . 55

10.2.1 Sample labels . 56
10.2.2 Box labels . 56
10.2.3 Series barcodes . 56

10.3 Storage boxes . 59
10.3.1 Creating and editing boxes . 59
10.3.2 Inventory . 59
10.3.3 Checking boxes in and out . 59
10.3.4 Locating samples . 59

11 Indexing 61
11.1 Types of index . 61

11.1.1 Exponential Index . 61
11.1.2 Polynomial Index . 62
11.1.3 Horizontal Line Index . 62
11.1.4 Floating Index . 62
11.1.5 High-Pass Filter Index . 63
11.1.6 Cubic Spline Index . 63

CONTENTS v

11.2 Indexing data . 63

12 Crossdating and chronology building 65
12.1 Algorithms . 65

12.1.1 T-Score . 65
12.1.2 Trend . 66
12.1.3 Weiserjahre . 66
12.1.4 R-Value . 67

12.2 Crossdating series . 67
12.3 Managing chronologies . 67

13 The Tellervo server 69
13.1 Backing up and restoring your database . 69

13.1.1 Backup whole Virtual Appliance . 69
13.1.2 Restoring a Virtual Appliance backup . 69
13.1.3 Backup PostgreSQL database . 70
13.1.4 Restoring a PostgreSQL database . 70

13.2 Upgrading the server . 70
13.3 Graphical Interface to the Virtual Appliance . 71
13.4 Security . 71

13.4.1 Usernames and passwords . 71
13.4.2 Authentication and encryption . 71

13.5 Directly accessing the database . 72
13.5.1 PGAdminIII . 72
13.5.2 ODBC . 73
13.5.3 PSQL . 73

13.6 Tellervo server configuration . 73
13.6.1 Standard server configuration . 73
13.6.2 Advanced server configuration . 74

13.7 Managing map services . 75

14 Help and support 77
14.1 Getting help . 77
14.2 Support for future development . 77

II Developers guide 79

15 Developing Tellervo Desktop 81
15.1 Source code . 81
15.2 Development environment . 81
15.3 Dependencies . 82
15.4 Code layout . 82
15.5 Multimedia resources . 84

15.5.1 Ring remarks . 84
15.6 Translations . 84
15.7 Logging . 85
15.8 Preferences . 86
15.9 Build script . 86

15.9.1 Building native installers . 87
15.9.2 Code signing . 87

vi CONTENTS

15.9.3 Native libraries . 88
15.10 Java Architecture for XML Binding - JAXB . 88
15.11 Java version . 89
15.12 Developing graphical interfaces . 89
15.13 Supporting measuring platforms . 89
15.14 Writing documentation . 90
15.15 Recording screencast tutorials . 90
15.16 Making a new release . 91

16 Developing Tellervo Server 93
16.1 Webservice . 93

16.1.1 Creating new series . 93
16.2 Server package . 93

16.2.1 Tellervo server script . 95
16.3 Handling version dependencies . 97

16.3.1 Client requiring a recent server . 97
16.3.2 Server requires a recent client . 97

16.4 Handling server configuration . 97
16.5 Making a new release . 98
16.6 Administering the Maven repository . 99

17 Webservice specifications 101
17.1 Basics of sending requests . 101
17.2 Standard request/response . 102

17.2.1 Namespaces . 102
17.2.2 Errors and warnings . 103

17.3 Authentication requests . 104
17.3.1 Plain authentication . 104
17.3.2 Secure authentication . 104
17.3.3 Cookies and sessions . 105
17.3.4 Logout . 105

17.4 Reading records . 105
17.5 Deleting records . 105
17.6 Creating records . 106
17.7 Updating records . 106
17.8 Reading and setting permissions . 107

18 Systems architecture 109
18.1 Authentication design . 109
18.2 Database permissions design . 110
18.3 Universally Unique Identifiers . 110
18.4 Barcode specifications . 110

19 Tellervo Database 113
19.1 Spatial extension . 113
19.2 CPGDB functions . 113
19.3 Complex database functions . 114

CONTENTS vii

III Appendices 117

A Belfast Apple 119
A.1 Description . 119
A.2 Example file . 120

B Belfast Archive 121
B.1 Description . 121
B.2 Example file . 122

C Besançon 123
C.1 Description . 123
C.2 Additional information . 124
C.3 Example file . 124

D CATRAS 125
D.1 Background . 125
D.2 Reading byte code . 126

D.2.1 Strings . 126
D.2.2 Integers . 126
D.2.3 Real numbers . 126
D.2.4 Categories . 126
D.2.5 Dates . 127

D.3 Metadata . 127
D.4 Data . 127

D.4.1 Ring widths . 127
D.4.2 Chronologies . 127

E Cracow Binary Format 129
E.1 Description . 129

F Comma Separated Values 131
F.1 Description . 131
F.2 Example file . 132

G Corina Legacy 133
G.1 Description . 133
G.2 Example file . 135

H DendroDB 137
H.1 Description . 137
H.2 Example file . 138

I Heidelberg 139
I.1 Description . 139
I.2 Example file - raw series . 142
I.3 Example file - chronology . 142

J KINSYS-KS 143
J.1 Description . 143
J.2 Example file . 145

K Microsoft Excel 97/2000/XP 147
K.1 Description . 147

viii CONTENTS

L Microsoft Excel 2007 149
L.1 Description . 149

M Nottingham 151
M.1 Description . 151
M.2 Example file . 152

N ODF Spreadsheet 153
N.1 Description . 153

O Oxford 155
O.1 Description . 155
O.2 Limitations . 156
O.3 Example file . 157

P PAST4 159
P.1 Dating . 161
P.2 Example file . 162

Q Sheffield 163
Q.1 Description . 163
Q.2 Dating . 165
Q.3 Example file . 165

R Topham 167
R.1 Description . 167
R.2 Example file . 167

S TRiDaS 169
S.1 Description . 169
S.2 Example file . 170

T TRIMS 175
T.1 Example file . 175

U Tucson 177
U.1 Description . 177
U.2 RWL files . 178
U.3 CRN files . 178
U.4 Workarounds and quirks . 179
U.5 Example file - raw series . 180
U.6 Example file - chronology . 181

V Tucson Compact 183
V.1 Description . 183
V.2 Example file . 184

W VFormat 185
W.1 Description . 185
W.2 Example file . 187

X WinDENDRO 189
X.1 Description . 189

CONTENTS ix

Y XML Error Codes 193

Z GNU General Public License 195
Z.1 Preamble . 195
Z.2 Terms and Conditions . 196

References 201

Preface

The Tellervo application is primarily designed for the measurement of tree ring widths and the organization and
curation of the data, metadata and physical samples for dendrochronological research. It is cross-platform (running
on all Java 7 and later enabled operating systems including Windows, MacOSX and Linux) and open-source. It
includes support for standard measuring platforms including Velmex, Lintab and Henson.

Tellervo is a substantial rewrite of the original dendro application ‘Corina’ developed at Cornell University since
2000. Corina itself following an earlier DOS-based version programmed in C, which in turn was derived from a
collection of FORTRAN and C utilities. While Corina was built around a standard file-based data management
system, Tellervo uses an object-relational database management system (ORDBMS) and server/client webservice
infrastructure based on the Tree Ring Data Standard (TRiDaS). The application was renamed Tellervo to reflect
the substantial changes made from the original Corina code-base.

This manual is divided into two main sections, the first for users, the second for developers. Tellervo is open source
software (see the details of the license on pages 195–200), so you are welcome to inspect and edit the code. The
second part of this manual will help you do that.

Over the years Corina and Tellervo have been developed by many people, all of whom are listed within the about
box of Tellervo. We would like to thank the many people that have tested the applications especially: Charlotte
Pearson; Carol Griggs; Brita Lorentzen; Jess Herlich; LeAnn Canady; Kate Seufer; and many undergraduate and
postgradutes students at Cornell and the University of Arizona.

We would also like to thank the University of Arizona; the College of Arts & Sciences and the Department of
Classics, Cornell University; the Malcolm H. Wiener Foundation; and the many patrons of the Aegean and Near
Eastern Dendrochronology for their financial support.

We hope that you find Tellervo useful and look forward to hearing your feedback.

Part I

User Guide

Chapter 1

Installation

1.1 Introduction

Tellervo is a cross-platform and open source application primarily aimed at dendro data collection and management.

Tellervo can be run in one of two ‘modes’: full Tellervo and Tellervo-lite. Tellervo running in full mode is an
enterprise-style tool requiring access to an installation of Tellervo server. Tellervo server manages all data and
metadata within a relational database, based on the Tree Ring Data Standard (TRiDaS – Jansma et al., 2010).
Tellervo provides a host of advanced features such as: integrated 3D mapping; graphing; metadata management;
barcode-based curation; dendro data indexing; crossdating; secure access permissions system; collaborative sharing
of data; amongst others.

For users looking for a simple tool to just measure dendro samples and edit existing data files, the cut-down
Tellervo-lite may be a more appropriate option. Tellervo-lite is a standalone desktop application that doesn’t
require access to a server. It provides a very similar interface for measuring samples as the full Tellervo but instead
of the data being stored and managed within the Tellervo server, they are saved to one of a wide variety of legacy
dendro data file formats. The lack of relational database, however, means that many of the advanced functions
offered by the full Tellervo (e.g. 3D mapping, metadata management; curation etc) are not available within
Tellervo-lite.

Unless specified otherwise, this manual describes the functionality of the full Tellervo application with the exception
of chapter 2 which outlines all the behaviour specific to Tellervo-lite.

Tellervo is made up of two packages: the Tellervo desktop application and the Tellervo database server. Tellervo
was designed primarily for laboratories with multiple users, each running the Tellervo desktop application on their
own computer connecting to a single central server containing the lab’s data. The Tellervo server is only required if
you are running the full Tellervo. If you intend to use Tellervo in lite mode then you can skip the server installation
and move directly to section 1.3.

1.2 Server installation

To make use of all the features of Tellervo desktop you will require access to a Tellervo server. If you are running
Tellervo in a lab where the Tellervo server has already been set up by your systems administrator, all you will
require is the URL of your server and your login credentials. Otherwise you will need to install Tellervo server
yourself.

How you install Tellervo server will depend on how you intend to use it. In medium to large laboratories, you would
typically install the server package on a dedicated server. However, in smaller laboratories this is probably not
necessary or feasible. In which case it is perfectly fine to install the server on the same machine that is connected

6 Tellervo: A guide for users and developers

to your measuring equipment. This is likely to be the situation if you simply want to try out Tellervo, if you don’t
have a separate server, or if you do not work in a multi-user laboratory.

The Tellervo server is made up of a number of components, which unlike the desktop client, can’t be easily
combined together into cross-platform packages. Although all the constituent components are open-source and
available for all major platforms, building and maintaining separate packages for each platform is too large a task
for a small development team. To conserve resources, we therefore made the decision to utilize Virtual Machine
technology to ensure that the Tellervo server could still be run on all major operating systems. This means that
we can package the Tellervo server for a single operating system (Ubuntu Linux) and then distribute it as a Virtual
Appliance that can be run as a program on your normal operating system.

The Tellervo server is therefore available via three methods. The first is as a VirtualBox∗ Virtual Appliance which
can be run on any major operating system and we strongly recommend that you stick with this option unless you
are experienced with Linux and running servers. The second option is to intall the native Ubuntu package on an
Ubuntu Linux server. The source code for the server is also available so it is perfectly possible for more experienced
users to set up the Tellervo server to run natively on other platforms. But to do this you will require a good
knowledge of Apache 2, PHP and PostgreSQL. Choose the most applicable method and follow the instructions in
the following sections.

1.2.1 Install as Virtual Appliance (recommended method)

To run the Tellervo server Virtual Appliance, you will first need to download and install VirtualBox from http:

//www.virtualbox.org. Installation packages are available for Windows, MacOSX, OpenSolaris and many Linux
distributions.

Once you have VirtualBox installed, you will then need to download the Tellervo server from the Tellervo website
http://www.tellervo.org/download. This package contains a bare-bones Ubuntu Linux server with everything
required to run the Tellervo server installed and ready to use. As VirtualBox, the entire Ubuntu operating system
and Tellervo server components are all open source there are no license fees to pay.

1. Open VirtualBox and go to File : Import Appliance

2. Press the choose button and locate the virtual appliance file that you downloaded from the website†

3. Rename the server if you choose, then press the finish/import button

4. Once the server is installed, highlight it in the virtual machine list and press the ‘settings’ button

5. Go to ‘Network’ and choose ‘Attached to Bridged Adapter’. You may also like to give the system more RAM
if you have powerful machine

6. Click ok, then back on the main page, press the ‘run’ button

7. Read and accept the information about how to gain and release control of the keyboard in VirtualBox

8. The server will boot and eventually present you with a command line login screen. Log in with the following
temporary details:

Username : tellervo

Password : dendrochronology

9. Once you are logged in the server will automatically ask you a series of questions

∗Note that the Tellervo appliance is provided in the open standard format OVA. You should be able to run the appliance in other
Virtual Machine applications (e.g. VMWare, Citrix etc) but the OVA standard is very young and changing fast. We recommend
sticking with VirtualBox until the standard stabilizes.
†If you are using an older version of VirtualBox it may expect an OVF rather than the OVA file provided. The OVA file is a tar file

containing several files required by VirtualBox including an OVF file. If you rename the extension of the OVA file to tar then extract
the contents to a folder using a tools like WinRAR you should then be able to continue.

http://www.virtualbox.org
http://www.virtualbox.org
http://www.tellervo.org/download

Installation 7

10. Answer the questions and the configuration will finish by testing your new server (see figure 1.1).

11. Note down the URL of your new Tellervo webservice as you will need to enter this when you start your
Tellervo desktop client. If you need to know the URL at a later date you can run the tests again by typing:

tellervo-server --test

12. You can now install and run the Tellervo Desktop application (see section 1.3)

Figure 1.1: Screenshot of VirtualBox running the Tellervo
server. The console contains the results of the tests run at
the end of the configuration routine.

To save on download size and disk space only the es-
sential packages to make the server run have been in-
stalled. This means there is no graphical interface just
a command line. Hopefully this should not be a prob-
lem as once set up, the only interaction needed with the
Virtual Appliance will be through the normal Tellervo
desktop application. If you would prefer to use a graph-
ical interface to the server this can be easily installed.
See chapter 13 for further details.

There are a number of limitations caused by distribut-
ing the server software in this way. The operating
system has already been configured to use networking
without a proxy server, so if your computer requires a
proxy then you won’t be able to connect to the Internet.
Please contact the developers for more details.

VirtualBox has a number of methods for providing net-
work connectivity to the Tellervo virtual appliance. The
default setup described above is to use bridged net-
working. This makes the virtual server appear as if it
was another physical computer on your network with
its own IP address. This works best in most situations,
but can cause problems if your network administration
is particularly strict. It is also not suited to those in-
stalling Tellervo Server on a laptop which is used on different networks, especially via wifi. If you have problems
with bridged networking, then it may be better to use one of the alternatives listed below.

The first network alternative is to use host-only networking. To use this you simple select your server in
VirtualBox, click settings then on the network tab choose host-only adapter. This setting means that your server
will only be visible to the physical computer you are running Tellervo server on. This may not be a problem (it
may even be desirable) if you are installing for your personal use but of course it is not suitable if you are intending
to share the server with colleagues.

The second network alternative is to use NAT networking. NAT stands for Network Address Translation and
means that requests and responses sent to/from your physical computer are intercepted and forwarded on to the
virtual Tellervo server. Instead of Tellervo server having its own IP address, Tellervo clients wanting to talk to the
server send requests to your physical computer. This has the benefit of being more likely to work if your institution
has strict network policies. The main drawback is that it takes a little more effort, and perhaps requires a better
understanding of systems administration to set up.

With your virtual machine powered off, select it in VirtualBox, click settings and go to the network tab. Change
the network type to NAT and then click the port forwarding button. Add an entry to the list:

Name - TellervoHTTP

Protocol - TCP

Host Port - 8080

8 Tellervo: A guide for users and developers

Guest Port - 80

You can leave the other fields blank. The host port is the port that your Tellervo users connect to. The normal
port that users connect to for web services is port 80, however, on most secure operating systems (e.g. Linux and
OSX) you cannot port forward to ports below 1024, although it should be possible in Windows. If you are running
Windows you may therefore be able to use a host port of 80. If you use 8080 (or any other port other than 80)
you will need to include this in the URL of your webservice when you try to connect. The other complication
of using NAT networking is that the URL provided by the Tellervo server configuration utility is incorrect as
the server has no way of knowing that NAT is being used. The URL that you need to use to connect to is:
http://ip.of.your.physical.machine:8080/tellervo/

1.2.2 Ubuntu native installation

If you are fortunate enough to be running Ubuntu then the native Ubuntu deb package is the best and easiest
method for installing the Tellervo server, otherwise see section 1.2.1 to install the server as a Virtual Appliance.

To install the Tellervo server in Ubuntu simply download the deb package from the Tellervo server http://www.
tellervo.org/download and install with your favourite package manager. For instance, to install from the
command line simply type:

sudo dpkg --install tellervo-server.deb

If you haven’t got all the required dependencies already installed dpkg will return an error. This can be fixed by
running:

sudo apt-get install -f

This will install all the missing packages, and will automatically allow dpkg to run to completion. The package will
automatically run a configuration script to assist with creating a database user, building the Tellervo PostgreSQL
database, setting database permissions and setting up the Apache webservice. The configuration ends with a test
routine to check all services are set up correctly and if so, will provide you with the URL of the newly configured
Tellervo webservice.

1.2.3 Advanced install on other operating systems

As mentioned previously, the limited resources available for Tellervo development means that we have been unable
to produce native installers for platforms other that Ubuntu. The VirtualBox method can be used on all modern
operating systems so we strongly suggest you stick with this method. However, if you are an experience systems
administrator and are feeling brave, it is possible to set up the Tellervo server manually.

The Tellervo server is essentially a PostgreSQL database running PostGIS extensions accessed via a PHP webservice
running on Apache 2. The following dependencies are therefore required: postgresql-9.1; postgis; postgresql-
contrib-9.1; postgresql-9.1-pljava; sun-java6-jre; apache2; php5; php5-pgsql; php5-curl; php5-mhash. Note the
interdependencies for PostgreSQL and PostGIS are very specific, so be careful to install the correct versions.

The basic procedure for installation is as follows:

I Install all dependencies
I Create PostgreSQL database from Tellervo template SQL file
I Set up a database user and provide access to the server in the pg hba.conf file
I Give this user read and write permissions to the database
I Copy the webservice code into a web accessible folder
I Set up Apache to see this folder by creating an entry in the sites-enabled folder
I Restart PostgreSQL and Apache and check you can access the webservice from a web browser

http://ip.of.your.physical.machine:8080/tellervo/
http://www.tellervo.org/download
http://www.tellervo.org/download

Installation 9

1.3 Installing the desktop application

Installation packages for the Tellervo desktop application are available for Windows, MacOSX and Ubuntu Linux.
Tellervo can also be run on other operating systems as long as they support Java 7 or later‡.

To install Tellervo, download the installation file for your operating system from http://www.tellervo.org/

download. The website should provide you with a link to the installer for your current operating system:

Windows – Run the setup.exe and follow the instructions. If you do not have Java installed the installer will
direct you to the Java website where you can get the latest version. Once installed, Tellervo can be launched
via the Start menu. Please note that that the 64 bit version of Tellervo should only be used if you have the
64 bit version of Java. The vast majority of Windows users will have 32 bit version of Java regardless of the
type of processor or operating system they are using. If you install the incorrect version you’ll be warned and
the 3D mapping and connection to measuring hardware will be disabled.

Mac OS X – Download then open the zip file and drag the Tellervo.app into your applications folder. To
use the 3D mapping or measuring platform hardware in Tellervo you will also need to install the ‘Tellervo
Drivers’ package found within the zip file.

Ubuntu Linux – A deb file is available which was designed for use on Ubuntu distributions but should work
on any Debian based system. Install using your favorite package management system or from the command
line like this: e.g.

sudo dpkg --install tellervo.xx.xx all.deb

On Ubuntu and similar distributions, the package should add a Tellervo shortcut to your applications menu.
Alternatively you can start Tellervo from the command line by typing tellervo. For other Linux distributions
you are probably better off using the standard Java executable described below. Note though that you will
need to manually install serial port and 3D graphics libraries to use these features in Tellervo. If there is
demand for a package for other Linux distributions we may make these available in the future. For instance,
basic RPMs have been produced but we do not have the time or resources to test these at the moment.

Other operating systems – Make sure you have Java 7 or later installed, then download the Tellervo jar file
to your hard disk. You can run Tellervo from the command line by typing:

java -jar tellervo.jar

Note that several native libraries are required to enable Java to interface with your serial port and 3D graphics
hardware. If you want to take advantage of these features in Tellervo you will need to manually install these
libraries. Please contact the Tellervo developers for more information.

Once you have installed your Tellervo Desktop application and you have access to a Tellervo server you are now
ready to launch Tellervo for the first time.

1.3.1 First time launch

When you launch Tellervo for the first time you will be presented with a setup wizard (figure 1.2). Following the
wizard to configure the main settings required before you can begin to use Tellervo. If you want to re-run this
wizard at any time you can do so from the entry in the Help menu. You can also manually edit all these settings
from the Tellervo preferences dialog which can be found in Edit : Preferences.

The pages of the wizard include:

Tellervo mode – asks the user to choose whether they want to run Tellervo in full or lite mode.

‡Tellervo was initially developed against Sun Java 7 JRE, however, now OpenJDK7 is routinely used. See section 15.11, page 89
for more information.

http://www.tellervo.org/download
http://www.tellervo.org/download

10 Tellervo: A guide for users and developers

Figure 1.2: The Tellervo setup wizard will launch the first time you start Tellervo.

Network connection – this configures how your computer accesses the internet. Most users will be able to use
the default ‘Use system default proxy settings’ option here, but if you know that your computer is behind a
corporate proxy server you may choose to manually provide the settings.

Configuring the Tellervo server – Tellervo comes in two parts: the Tellervo desktop client that you are using;
and the Tellervo server which runs the database that stores your data. If you are working in a lab your
systems administrator may have already set up the Tellervo server and given you the URL to connect to.
Alternatively, you may have already installed the Tellervo server yourself. If so the installation program should
have given you the URL. If you don’t have access to a Tellervo server yet, you should close this wizard, then
go to the Tellervo website and download it.

Measuring platform configuration – the next page enables you to configure measuring platform hardware at-
tached to your computer. Some measuring platforms have fixed settings in which case the port settings will
be set automatically, but others can be changed in the hardware and must be set explicitly here. Use the
‘Test Connection’ button to make sure that Tellervo can successfully communicate with your platform.

Once you have completed the wizard you will be presented with a dialog (figure 1.3) for logging in to your Tellervo
server.

Figure 1.3: Tellervo server login dialog.

The username and password details requested are your
Tellervo login credentials (not your system or network
credentials) provided to you by your systems admin-
istrator. If you are using your own Virtual Appliance
server, the default admin user details are provided in
section 13.4.1, page 71. The dialog gives you the op-
tion for saving your username and/or password if you
prefer. We recommend using this feature only on per-
sonal machines. You may choose to cancel the login if
you like and Tellervo will continue to load, however, you
will not have access to the Tellervo database therefore
very few functions will be available to you.

Installation 11

1.3.2 Mapping support

Tellervo includes 3D mapping for visualization of sam-
pling locations. Although this is not necessary for most
tasks, to make use of the mapping functions you will require a OpenGL 3D capable graphics card. To check whether
your computer already supports 3D mapping, open Tellervo, go to Admin, then Site map. Tellervo will warn you
if your graphics card is not supported.

All MacOSX computers should automatically support OpenGL. Most Windows and Linux computers made since
2006 should also support OpenGL, however, this does require proper drivers to be installed. In some cases Windows
computers may include a compatible graphics card, but may only have the default Windows video drivers installed.
If you are having trouble with the mapping in Tellervo make sure you have installed the most recent drivers for
your graphics card. Linux users may be required to install proprietary graphics drivers.

The mapping component of Tellervo makes use of NASA’s open source World Wind Java. NASA’s website
http://worldwind.arc.nasa.gov/ contains further information and instructions that you may find helpful if
you are having problems getting the mapping to work.

1.4 Upgrading Tellervo desktop

There are no special requirements for upgrading the Tellervo desktop client. You need simply install the new
version over the top of your previous version. Any personal settings will be maintained after the upgrade.

1.5 Upgrading Tellervo Server

The process for upgrading your server is the same regardless of whether it is running in a VirtualBox virtual machine
or on a native Linux server. As with any upgrade, the first thing you need to do is backup your data (see section
13.1.1, page 69). We cannot be held responsible for loss of data in the event something goes wrong during the
upgrade process.

Open your Tellervo server and log in to the command line. Then type the following commands:

cd /tmp

wget http://www.tellervo.org/url-of-the-updated-package.deb

sudo dpkg --install tellervo.x.x.x.deb

The first line changes your current directory to the temporary folder. The second command downloads the new
package from the Tellervo server. Make sure you enter the correct URL to the package you are upgrading to. The
final command installs the new package. Again make sure you have the correct file name specified here. If all
goes well, your webservice and database will be upgraded to the latest version and the server test routine will run
to confirm all is correct. If the server gives you any errors or warnings, please contact the developers for further
assistance.

Note that if you are running Tellervo within a VirtualBox virtual machine, you still need the Ubuntu deb file to
upgrade your existing server. The VirtualBox .ova file is only used to set up your server in the first instance as it
also contains the entire operating system.

http://worldwind.arc.nasa.gov/

12 Tellervo: A guide for users and developers

1.6 Uninstalling

We understand that Tellervo will never suit the requirements of all users, but as an open source product, we would
really appreciate feedback as to why it didn’t work for you. Without this feedback it is difficult to prioritize future
development.

1.6.1 Tellervo desktop application

For Windows users, Tellervo desktop can be uninstalled using the standard add/remove programs feature in
control panel, or via the item in the Tellervo start menu. Mac users should simply delete the application from their
applications folder. Linux users should use their prefered package management tool e.g. from the command line:

sudo dpkg --remove tellervo

1.6.2 Tellervo server

Please note that uninstalling the Tellervo server will delete your Tellervo database and all the data
it contains. Make sure that you export any data you need before uninstalling.

If you are running the Tellervo server as a virtual appliance simply follow the uninstall instructions for VirtualBox.
If you are running Tellervo server as a native Linux server, you should use your preferred package mangement tool
e.g. from the command line:

sudo dpkg --remove tellervo-server

Chapter 2

Tellervo-lite

Tellervo-lite is the form that the Tellervo desktop application takes when you disable integration with the Tellervo
server. The basic interface of Tellervo-lite is very similar to the full Tellervo, however, it lacks many of the advanced
features such as 3D mapping, curation, and metadata management. If you are looking for a easy to use tool for
simply measuring dendro samples and editing existing data files, then Tellervo-lite may be the best option for you.

Tellervo-lite is a ‘mode’ of the standard Tellervo application, not a smaller separate application. There is a unified
installation procedure for installing Tellervo, and the switch to ‘lite’ mode is done during the configuration stage
the first time you launch the application. If you have not installed Tellervo yet, please do so now by following the
instructions on page 9.

2.1 Launching Tellervo-lite

The first time you launch Tellervo you will be presented with the setup wizard. The first question asks whether
you’d like to use the standard Tellervo or Tellervo-lite. If you have decided to convert to Tellervo-lite mode at a
later date (or vice versa), you can make the change by going to Help : Setup wizard to relaunch the wizard, or
by going to Edit : Preferences and ticking the ‘disable databse integration’ checkbox on the network tab. Once
you have launched (or relaunched) Tellervo in lite mode you will see the main screen shown in figure 2.1.

2.2 Tellervo-lite interface

The main Tellervo-lite interface is split into two parts. On the left is the series list, which contains all of the
measurement series present within the current data file. On the right are two tabs: the data tab which contains
the ring measurement values table and a graph representation; and the metadata tab which contains some basic
metadata fields. Depending on the file format you intend to use, the series list may have one or more measurement
series. For instance the Tucson RWL data format is capable of storing multiple series, whereas the Sheffield format
can contain just one.

2.2.1 Data tab

The data tab contains three main panels: data table; graph; and remarks panel, all out which can be resized to
suit your needs. The remarks panel enables you to tag individual rings with features, however, there is currently
no support for saving this information in legacy files so it’s not particularly useful in the context of Tellervo-lite
and is therefore collapsed by default. The data table provides a way to view and edit the ring width data for your

14 Tellervo: A guide for users and developers

Figure 2.1: The main screen when Tellervo is launched in lite mode.

series, and is arranged in decades. You can enter and edit data within the table directly by clicking the cell and
typing in a value.

The graph panel shows a basic chart of the ring width data and has it’s own toolbar for adding/removing features,
zooming etc.

At the bottom of the data tab is a status bar providing some summary information about the series. It includes:
the calendar being used (whether absolute or relative); year and size of the currently selected ring; the variable
being displayed (whole ring width; early/latewood width etc); the current measurement units; and some basic
statistic. Clicking on the final three items, gives you options to change what is displayed.

2.2.2 Metadata tab

The metadata tab in Tellervo-lite provides a very generic and simplified method for entering the most common
metadata to legacy dendro data files. The type of metadata stored in legacy data formats varies substantially,
from essentially none (e.g. Belfast format) to quite rich (e.g. Heidelberg format). The time it would take to
provide, maintain and support a metadata screen tailored to each format would be prohibitive. Besides, if you are
interested in storing rich dendro metadata you should really be using the full version of Tellervo! The metadata
screen in Tellervo-lite therefore provides the ability to add/edit a few of the very core metadata fields supported
by most data formats.

At the top of the metadata tab is a pull down menu for specifying how the series are grouped. This is only relevant
if you have multiple series in your file but will affect how the metadata fields behave and how files are saved
depending on the output format you choose. For example, if you specify that the series are all from the same
site/object, then then site/object name will be syncronised across all the series. Similarly, if the series are from the
same tree, then the species field will be synchronised. If you choose to save a to a file format that expect all series

Tellervo-lite 15

to be from the same site, yet you specify the series are from different sites, then Tellervo will save each series to
a separate file.

2.3 Measuring a new sample

To begin measuring a new sample you should start by clicking the File : New menu or by clicking the corresponding
button on the toolbar. A new ‘Untitled’ series will appear in your sample list. Next, switch to the metadata tab
and enter the name for this series and any other of the metadata fields that are desired. You can now switch back
to the data tab. You can add as many series as you like by clicking the add series button at the top of the series
list. You can also sort the series using the drop down menu at the bottom of the panel.

Before you begin measuring you need to tell Tellervo what sort of measurements you are making: whole ring
widths; or early/latewood widths (the default is whole ring widths). To specify early/latewood widths you need
to go to Edit : Measuring mode. . . : Early and latewood widths. If you use this menu after you have already
measured some rings you will be warned that Tellervo will delete the data you have already collected. Once in
‘early and latewood widths’ measuring mode you will be able to choose which data is displayed in the table by
clicking the variable box on the status line and choose between: Ring width; Earlywood width; Latewood width;
Early/Latewood width.

To begin measuring your sample you can now go to Edit : Start measuring, press the start measuring button on
the toolbar, or you can press F5. While measuring you should be provided with audible feedback for each ring
measured with a more pronounced sound made every 10th ring. If there is a problem communicating with your
measuring hardware, check your settings in the preferences dialog. If you still have problems contact the Tellervo
developers by going to Help : Email developers, making sure you include details of your hardware and any error
messages that you receive.

If your sample is already dated and/or you already know how many rings your sample has, then you can initialise
your data matrix using the button on the toolbar or the menu item in the edit menu. This gives you a dialog
requesting date and ring number information which can be useful for those of you that use the skeleton plotting
method prior to measuring.

Note by default Tellervo labels rings as relative years beginning in 1001 (a convention from the days of mainframe
computers and punchcards). If your sample is dated, you should explicity tell Tellervo either using the initialise
grid function prior to measuring, or by going to Tools : Redate once you’ve finished.

Depending on the measuring platform hardware you have, you will see some variation of the measuring panel
in figure 2.2. The left display holds the absolute position of the last ring boundary (for devices that measure
cumulatively), the middle display holds the last recorded measurement width and the right display holds the
current position of the measuring plaform (for devices that report live measurements). The right-hand display is
useful for devices that don’t have a physical display such as the Lintab.

Figure 2.2: Measuring control panel. The number of digital
displays will vary between 1 and 3 depending on what type of
measuring platform hardware you have.

Tellervo supports the measuring of rings both individ-
ually and cumulatively. We feel that it is easier and
more accurate to measure rings individually, that is to
say the device is reset to zero after each measurement.
If a device accepts requests to reset measurements (e.g.
Quadra Chek boxes) or if it automatically resets itself to
zero after recording a measurement (e.g. EVE IO) then
this procedure is used by Tellervo. In this case the user
begins measuring by setting the display to zero, then
moves the platform to the end of the ring, then either
presses the ‘measure’ button on the hardware device or the ‘record’ button on the screen.

16 Tellervo: A guide for users and developers

If your device does not have a physical ‘measure’ button you don’t need to click on the ‘record’
button each time. Instead click on the ‘turn on mouse trigger’ button and then you can use your
mouse’s left button as a measure button regardless of where the mouse is on the screen. This means
you don’t need to lift your eyes from your microscope to ensure you are clicking the button correctly.
When you’re finished measuring press escape to exit this mode. Alternatively you can use the tab key
to ensure the record button has focus and then you can use the spacebar on your keyboard.

Certain devices (e.g. Boekler Microcode boxes) do not listen for requests to reset to zero. In this case to measure
each ring individually, you would need to manually reset the reading to zero following each measurement. This
would of course be extremely tedious. In this situation Tellervo measures cumulatively from the beginning of the
first ring and calculates the ring width based on the previous ring boundary position. With this method you must
be careful not to knock your sample, and you must also take special care when altering radii to navigate around
problem structures. If you do knock your sample, the best way to recover is to reset your platform to zero and
press the measure button. Next, press the ‘stop measuring button’, manually fix the values in the data table, then
begin measuring again from where you left off.

If you are in ‘Early and latewood widths’ measuring mode the measurements are made and sent to the data
table in pairs. The first measurement should be of the earlywood of the ring, and the next value the latewood
measurement. Whether you are currently measuring early or latewood is indicated as a message at the bottom of
the measuring panel.

2.4 Loading existing files

If you have existing data files that you would like to examine and/or edit, these can be opened using the File :
Open menu or the equivalent button on the toolbar. Through the use of the TRiCYCLE conversion library (Brewer
et al., 2011), Tellervo supports many legacy dendro data formats. Select the correct format from the format list
in the dialog and then select the file you’d like to open. You can now make changes to the data and/or metadata
just as if it was a new series. Ring width values can be changed manually just by clicking on the value in the table
and typing in the new value, or you can use the Edit : Start measuring menu to remeasure rings.

2.5 Inserting, deleting and remeasuring rings

If you find you need to insert or delete a ring in your dataset, the easiest thing to do is to right click on the cell
in question and use the popup menu. You can also find similar options in the edit menu. You will notice that in
the popup menu there is also the option of tagging a ring with various features (e.g. frost damage, false ring etc).
This feature exists in Tellervo-lite, however, there is currently no support for saving this information to legacy data
files.

If you want to remeasure a ring (or series or rings) you need simply highlight the ring in the data table and measure
as normal. The new measurements will simply be pasted over the top of the old ones.

2.6 Saving

Saving your changes is simply a matter of going to File : Save or File : Save as, or using the corresponding
toolbar icons. If you are saving to a new file, then you will need to choose the format you’d like to use from the
file save dialog. There is no need to add the file extension for formats that have a standard extension as Tellervo
will automatically add this for you.

Tellervo-lite 17

If you have loaded an existing data file, you will be warned that overwriting it may result in the loss of some
metadata. If your original file contained metadata not supported by the rudimentary fields in the metadata tab,
then this metadata will be missing from the newly saved file. You may therefore prefer to use the File : Save as
option and save to a new file instead.

If you have multiple series in your file and you attempt to save to a format that only supports one series per file,
Tellervo will warn you and ask whether you’d like to use the keycodes of the series as file names. If you answer
yes the files will be saved within the specified folder with the keycodes as the file names, otherwise it will create a
series of files with the same filename with a number suffix.

Chapter 3

Getting started

Once you have your Tellervo desktop application installed (see chapter 1) and you also have access to a Tellervo
server (either via your lab network administrator or your own on as a Virtual Appliance) you are ready to start
using Tellervo. Below are some basic instructions for performing common tasks in Tellervo followed by a number
of more in-depth chapters.

3.1 Main window

When you launch Tellervo in full mode and login you will be presented with the Tellervo main window (figure 3.1).
The screen is split into two main areas. On the left is a list of series that are currently loaded. On the right are a
series of tabs that display data and information about the currently selected series. The tabs include:

Data – This is the main tab for showing ring-width data for the currently selected series. The tab is split into
three: data tables contain the ring-width values; graph of the ring-widths; and a ring remarks panel where
individual rings can be tagged with comments.

Metadata – The metadata tab records all the associated information about the currently selected series following
the Tree Ring Data Standard (TRiDaS). Full details about metadata is given in chapter 5.

Components viewer – For series that are derived from other series e.g. indices, sums, chronologies etc, the
components viewer displays all the series that are referenced by the currently selected series.

Dependents viewer – Displays all other series that rely upon the currently selected series. For instance if this
series is used in one or more chronologies, then those chronologies will be displayed here.

Map – Contains a 3D map viewer with the location of all the series currently loaded and that have location data
recorded in their metadata.

3.2 Measuring a new sample

Once your measuring platform has been configured, measuring your first sample is simple. To start a new mea-
surement go to File : New or click the ‘new’ icon on the toolbar. A dialog will appear where you can scan your
sample’s barcode, or press the button to enter metadata for your sample later. Barcodes minimize data entry errors
and also speed up the process of measuring your samples. See section 10.2 for more information. Once you have
scanned your barcode or pressed the button, you will then be presented with an empty Tellervo metadata screen.

20 Tellervo: A guide for users and developers

Figure 3.1: The main window in Tellervo. The screen is split into a two, with a list of open series in the workspace on the
left, and a series of tabs on the right showing information about the currently selected series. The data tab is opened with
a new series ready to receive measurements.

The next step is to fill out the metadata information. If you have used a barcode, nearly all of this metadata will
be filled in for you, otherwise you will need to fill this out yourself. Details about metadata can be found in chapter
5, page 27. Once you have populated the metadata tab, you can then switch to the data tab.

Before you begin measuring you need to tell Tellervo what sort of measurements you are making: whole ring
widths; or early/latewood widths (the default is whole ring widths). To specify early/latewood widths you need
to go to Edit : Measuring mode. . . : Early and latewood widths. If you use this menu after you have already
measured some rings you will be warned that Tellervo will delete the data you have already collected. Once in
‘early and latewood widths’ measuring mode you will be able to choose which data is displayed in the table by
clicking the variable box on the status line and choose between: Ring width; Earlywood width; Latewood width;
Early/Latewood width.

To begin measuring your sample you can now go to Edit : Start measuring, press the start measuring button on
the toolbar, or you can press F5. While measuring you should be provided with audible feedback for each ring
measured with a more pronounced sound made every 10th ring. If there is a problem communicating with your
measuring hardware, check your settings in the preferences dialog. If you still have problems contact the Tellervo
developers by going to Help : Report bug on last transaction, making sure you include your email address and
any further information.

If your sample is already dated and/or you already know how many rings your sample has, then you can initialise
your data matrix using the button on the toolbar. This gives you a dialog requesting date and ring number
information which can be useful for those of you that use the skeleton plotting method prior to measuring.

Note by default Tellervo labels rings as relative years beginning in 1001. If your sample is dated, you should
explicity tell Tellervo either using the initialise grid function prior to measuring, or by going to Tools : Redate
once you’ve finished.

Getting started 21

Depending on the measuring platform hardware you have, you will see some variation of the measuring panel
in figure 3.2. The left display holds the absolute position of the last ring boundary (for device that measure
cumulatively), the middle display holds the last recorded measurement width and the right display holds the
current position of the measuring plaform (for devices that report live measurements). The right-hand display is
useful for devices that don’t have a physical display such as the Lintab.

Figure 3.2: Measuring control panel. The number of digital
displays will vary between 1 and 3 depending on what type of
measuring platform hardware you have.

Tellervo supports the measuring of rings both individ-
ually and cumulatively. We feel that it is easier and
more accurate to measure rings individually, that is to
say the device is reset to zero after each measurement.
If a device accepts requests to reset measurements (e.g.
Quadra Chek boxes) or if it automatically resets itself to
zero after recording a measurement (e.g. EVE IO) then
this procedure is used by Tellervo. In this case the user
begins measuring by setting the display to zero, then
turns the platform to the end of the ring, then either
presses the ‘measure’ button on the hardware device or the ‘record’ button on the screen.

If your device does not have a physical ‘measure’ button you don’t need to click on the ‘record’
button each time. Instead click on the ‘turn on mouse trigger’ button and then you can use your
mouse’s left button as a measure button regardless of where the mouse is on the screen. This means
you don’t need to lift your eyes from your microscope to ensure you are clicking the button correctly.
When you’re finished measuring press escape to exit this mode.

Certain devices (e.g. Boekler Microcode boxes) do not listen for requests to reset to zero. In this case to measure
each ring individually, you would need to manually reset the reading to zero following each measurement. This
would of course be extremely tedious. In this situation Tellervo measures cumulatively from the beginning of the
first ring and calculates the ring width based on the previous ring boundary position. With this method you must
be careful not to knock your sample, and you must also take special care when altering radii to navigate around
problem structures. If you do knock your sample, the best way to recover is to reset your platform to zero and
press the measure button. Next, press the ‘stop measuring button’, manually fix the values in the data table, then
begin measuring again from where you left off.

Figure 3.3: Right click context menu showing some of
the options for adding remarks to rings.

If you are in ‘Early and latewood widths’ measuring mode the
measurements are made and sent to the data table in pairs.
The first measurement should be of the earlywood of the ring,
and the next value the latewood measurement. Whether you
are currently measuring early or latewood is indicated as a
message at the bottom of the measuring panel.

While you measure your sample you can flag features in a
ring by right clicking on any cell in the table and selecting
one or more of the standard notes (see figure 3.3).

Tellervo supports all standard TRiDaS remarks including:
fire damage; frost damage; crack; false ring(s); compression
wood; tension wood; traumatic ducts; single pinned; double
pinned; triple pinned and many others. Rings that include
remarks are indicated by the relevant icon in the data screen.
Depending on your method of work, this can be useful for
keeping track of sample pin holes. For instance, if a missing
or false ring is discovered after a sample has been pinholed,
the offset in pinholes can be easily seen without resurfacing the sample.

22 Tellervo: A guide for users and developers

In addition to the right click menu, you can also access ring remarks by opening the remarks panel using the button
on the toolbar. This panel gives the the ability to add free text remarks to individual rings. One final method
for adding remarks is specific to fire history researchers. Standard FHX-style remarks can be added to rings by
pressing the equivalent FHX character code key in the relevant ring cells. For instance pressing a lower-case ‘a’ in
a cell will add the ‘fire injury in latewood’ remark.

The data screen also contains a status bar at the bottom. By clicking on the units section, you can switch between
micron and 1/100th mm units. Tellervo understands the units being supplied by the measuring platform, therefore
changes here are purely for display purposes only. If you have a platform that measures in microns, but prefer to
see the values in 1/100th mm then you can use this feature. There are also options on the status bar that enable
you to choose one of a variety of summary statistics about your series.

Once you have finished measuring your sample, you should then go to File : Save to save your series to the
database.

3.3 Opening existing data

If you have used traditional dendrochronology software, you are probably used to opening existing dendro data
files from your computer. Tellervo works in a different way. All data accessed by Tellervo is stored within the
central Tellervo database rather than in files. The database provides many benefits over file based storage, most
importantly it means there is a high degree of security and integrity in your data.∗

To use data that you have stored in existing data files you must first import your data into the Tellervo database.
This gives you the opportunity to clean-up your data! For details of how to import your data see chapter 9, page
49.

Once you have data in your database, either by importing existing data files or measuring new samples, you
can access your data through the database browser. This is accessed through the File : Open or File : Open
multiple menus and an example of the dialog is shown in figure 3.4. The same database browser dialog is used in
multiple places throughout Tellervo, e.g. when adding additional series to graphs and when choosing chronologies
to crossdate against.

The database browser is divided into two main parts. On the left are the browse and search tabs, and on the right
is the series table. Selecting options in the browse or search tab populates the series table on the right with all the
series that match the specified criteria.

The browse tab shows a heirarchical tree view of the contents of your Tellervo database based upon the TRiDaS
data model. The panel will be pre-populated with all the objects in your database but it is possible to ‘drill-down’
by right clicking on an object and choosing ‘Expand branch’. Expanding an object for instance, will show all the
elements associated with that object, and expanding an element will show all the samples associated with the
specified element. To better understand the TRiDaS terminology please read chapter 5, page 27.

By double clicking (or right clicking and choosing ‘Search for associated series’) on an item in the browse panel
Tellervo will search the database for all series that are associated with the specified entity. The results of the
search will be shown in the series table on the right of the screen. This table shows basic metadata about each
search and is sortable by click on any of the column headers. To open a series, simply select one of these series
and click ‘OK’. If the database browser is open in ’multiple series’ mode, then you can use the arrow buttons to
select multiple series to open in one go.

There is also a ‘Show options’ button on the database browser dialog. This adds additional advanced methods for
filtering the series table to help you find the data you are interested in.

∗This doesn’t mean you don’t have to backup your data though! Whoever is in charge of maintaining your Tellervo database should
make sure regular backups are made–preferably offsite.

Getting started 23

Figure 3.4: Screenshot of the database browser dialog.

At the bottom of the list of objects in the browse tab are two categories of ‘tags’: personal tags; and system tags.
The tagging concept in Tellervo is borrowed from the world of social media. Just like you can tag a photo or blog
post in social media tools with a tag, perhaps someone’s name, a keyword, or location name, in Tellervo you can
tag series. For instance with tags like ‘needs checking’, or ‘in progress’. Any tags used will be displayed in the list
and by double clicking on them, all series that have been tagged will be displayed. Tags can be personal (only
visible to you) or system tags. The system tags are useful when you want to share tags with other users of your
database.

3.4 Reconciling data

Tellervo has been developed not only for experience dendrochronologists, but as a tool for teaching students. It
therefore includes a comprehensive ‘reconciling’ tool for supervisors to check the quality of measurements made
by students. The reconcile dialog does a comparison of a measurement series made by a student with a references
series of the same radius measured by the supervisor. The same dialog can also prove useful for comparing
measurements from two experienced dendrochronologists when handling particularly difficult samples.

Open the series you would like to check as normal. Next go to Tools : Reconcile. This will open a database
browser window where you should then locate the reference series you’d like to compare against. The two series
will then be opened in a reconcile window such as the one shown in figure 3.5.

The reconcile window contains: a data table for each of the series; a graph of the two series; and an information
panel describing inconsistencies. The reconcile tool runs a number of tests:

Series length – this simply test checks that the two series are the same length

Trend agreement – this checks that the trend from year n to n+ 1 is in agreement between the two series. For
example if the ring-widths increase from 1950 to 1951 in the reference series then they should also increase
in the test series. Where trends are different the pair of years are marked with a red border.

Error margin – this checks that the ring-width values in the reference and test series are within a 3% error margin.
Where the ring-widths are outside this error margin, then cells are coloured red.

24 Tellervo: A guide for users and developers

Figure 3.5: Example of the reconcile window showing the differences between two dummy datasets. The green cells show
where the series are in agreement, and the red cells and cell-pairs with red borders are where there are conflicts.

In circumstances where the test series includes an extra, or is missing a ring then typically there will be a large
amount of ‘red’ in the tables begin at the point of the error. Such errors are typically easiest seen in the graph.

Errors in the measurements can be fixed from within the reconciliation screen by directly editing the data tables.
Right click popup menus can be used to insert or delete rings where necessary. There is also the option of
remeasuring the current ring. The remeasuring tool allows you to remeasure the same ring multiple times to triple
check you end up with an accurate measurement.

Once you have fixed all the errors you can then click the ‘finish’ button to commit the changes to the test series.

Chapter 4

Measuring platforms

Although it is possible to manually enter the ring-widths of your samples into Tellervo, it is normal to automate this
process using a measuring platform. Tellervo supports the most common measuring platforms including Velmex
and Lintab. However, please note that standard Lintab platforms use a proprietary communications protocol.
Rinntech–the manufacturers of Lintab platforms–claim intellectual property rights over this protocol. During
discussions between the Tellervo development team and Rinntech an agreement was reached whereby the Tellervo
developers agreed not to release details of the protocol. In turn Rinntech has agreed to produce an adapter that
can be attached to Lintab platforms so that they communicate with an open ASCII protocol. Users wishing to use
Lintab platforms with Tellervo (or any software not developed by Rinntech) must therefore contact Rinntech and
purchase an adapter.

Measuring platforms typically use serial ports to communicate to computers. In recent years computer manufac-
turers have been phasing out serial ports so you may need to purchase a serial-USB converter. Modern releases
of MacOSX, Linux and Windows should support most serial-USB adapters out of the box, otherwise you must
install the relevant drivers before continuing. Recent Lintab USB platforms use internal serial-USB converters so
are treated in exactly the same way by Tellervo.

To begin, shut down your computer, attach your platform, then reboot and launch Tellervo. Next, go to the
preferences window and open the hardware tab and you should see an interface that looks like figure 4.1. The
same panel is shown in the setup wizard if this is the first time you have run Tellervo.

In the ‘type’ pull down menu, select the type of measuring equipment you are using. Note that this refers to
the equipment that the computer is attached to, and not necessarily the measuring platform itself. For instance,
Velmex platforms are typically connected through a Metronics digital readout device. Included in this list is the
EveIO device which is an open-source device designed for the Cornell Tree-Ring Laboratory. Circuit drawings for
this device can be obtained from the Cornell lab to enable Hensen measuring platforms to be used with Tellervo
(and other software). If your measuring platform is not included in the list it should be relatively easy for us to add
support so please get in touch and we’ll see what we can do. Alternatively you could implement support yourself
(either personally or by employing an independent developer). Technical details on how to do this are included in
section 15.13, page 89.

Next you must choose the port that your platform is connected to from the pull down menu. In Windows this
will be a COM port, in Linux and Mac this will be a /dev/xxx port. Depending on the type of platform you
choose, you may also need to set various communication parameters. If these boxes are enabled, please check the
documentation that came with your measuring platform to ensure these values are set correctly.

To check whether your platform is working, click the ‘Test connection’ button (see figure 4.2) and attempt to
measure a few rings. Different measuring platforms have different capabilities. For instance, some include a
physical switch for firing measurement events, others also include switches for resetting measurements to zero.
Some platforms (e.g. Lintab) also continuously report the measurement values to the computer. So depending on
the hardware you use, Tellervo will present the you with slightly different options.

26

Figure 4.1: The hardware preferences dialog.

Figure 4.2: Testing the connection to a hardware measuring
platform.

The test dialog includes information about the capabil-
ities of your platform as well as a log window to show
the raw information being received by Tellervo. If you
are having trouble interfacing with your platform, you
should send the communications log to the developers,
along with as much information about your hardware
as possible.

Once you are satisfied that you are getting the correct
results from the measuring platform, click close on the
test window and then close the preferences dialog to
return to the Tellervo home screen.

Chapter 5

Metadata

Metadata is ‘data about data’. In Tellervo this means all the information associated with your physical samples
and measurement series e.g. species, location, who measured it, dimensions, slope, soil type etc.

The metadata in Tellervo, and in fact the entire Tellervo data model, is based on the Tree Ring Data Standard
(TRiDaS). Before you use Tellervo you may find it useful to read Jansma et al. (2010) so that you get a better
understanding of the principles of TRiDaS, but a summary is also provided here.

5.1 Tree Ring Data Standard - TRiDaS

TRiDaS is an XML-based data standard for recording dendrochronological data and metadata. More than 80 den-
drochronologists, computer scientists and specialists from research disciplines that rely on dendrochronology have
so far contributed to its development, including dendroarchaeologists, art and architecture historians, ecologists,
geologists and climatologists. The standard is therefore capable of recording the wide variety of metadata required
by these different fields. TRiDaS builds upon other established standards, such as GML for the recording of locality
information. The extensible nature of XML also means that TRiDaS can evolve to accommodate the changing
needs of dendrochronologists over time.

TRiDaS includes a total of eight data entities: project; object; element; sample; radius; measurementSeries;
derivedSeries; and value. Detailed descriptions of each of these entities are given below and their relationships are
illustrated in figure 5.1.

A project – is defined by a laboratory and encompasses dendrochronological research of a particular object
or group of objects. Examples include: the dating of a building; the research of forest dynamics in a stand
of living trees; the dating of all Rembrandt paintings in a museum. What is considered a “project” is up to
the laboratory performing the research. It could be the dating of a group of objects, but the laboratory can
also decide to define a separate project for each object. Therefore, a project can have one or more objects
associated with it. Due to historical reasons, TRiDaS projects are not currently supported within Tellervo,
although future plans include adding project support.

An object – is the item to be investigated. Examples include: violin; excavation site; painting on a wooden
panel; water well; church; carving; ship; forest. An object could also be more specific, for example: mast
of a ship; roof of a church. Depending on the object type various descriptions are made possible. An
object can have one or more elements and can also refer to another (sub) object. For instance a single
file may contain three objects: an archaeological site object, within which there is a building object, within
which there is a beam object. The list of possible object types is extensible and is thus flexible enough to
incorporate the diversity of data required by the dendro community. Only information that is essential for

28 Tellervo: A guide for users and developers

Figure 5.1: TRiDaS data model showing the relationships between data entities. Most of the entities having a simple
hierarchical relationship (a project has one or more objects, an element has one or more samples.

Metadata 29

dendrochronological research is recorded here. Other related data may be provided in the form of a link to
an external database such as a museum catalogue.

An element – is a piece of wood originating from a single tree. Examples include: one plank of a water well;
a single wooden panel in a painting; the left-hand back plate of a violin; one beam in a roof; a tree trunk
preserved in the soil; a living tree. The element is a specific part of exactly one object or sub object. An
object will often consist of more than one element, e.g., when dealing with the staves (elements) of a barrel
(object). One or more samples can be taken from an element and an element may be dated using one or
more derivedSeries.

A sample – is a physical specimen or non-physical representation of an element. Examples include: core
from a living tree; core from a rafter in a church roof; piece of charcoal from an archaeological trench; slice
from a pile used in a pile foundation; wax imprint of the outer end of a plank; photo of a back plate of
a string instrument. Note that a sample always exists and that it can either be physical (e.g. a core) or
representative (e.g. a picture). A sample is taken from exactly one element and can be represented by one
or more radii.

A radius – is a line from pith to bark along which the measurements are taken. A radius is derived from
exactly one sample. It can be measured more than once resulting in multiple measurementSeries.

A measurementSeries – is a series of direct, raw measurements along a radius. A single measurementSeries
can be standardised or a collection of measurementSeries can be combined into a derivedSeries. The mea-
surements themselves are stored separately as values.

A derivedSeries – is a calculated series of values and is a minor modification of the “v-series” concept
proposed by Brewer et al. (2010). Examples include: index; average of a collection of measurementSeries
such as a chronology. A derivedSeries is derived from one or more measurementSeries and has multiple
values associated with it.

A value – is the result of a single ring measurement. Examples include: total ring width; earlywood
width; latewood width. The values are related to a measurementSeries or a derivedSeries. In case of a
measurementSeries the variable and its measurement unit (e.g. microns, 1/100th mm etc) are recorded as
well. Tellervo supports both total ring width, and early/latewood values. Support for other variables is
planned for a future version.

Working top to bottom, the TRiDaS entities are nested within each other. For instance a project contains one or
more objects, which in turn contains one or more elements, and so on. The benefit of this is that you record data
once and once only. In standard file-based dendrochronological software, when creating measurement series you
are typically required to type the name of the site, the species of tree etc over and over again. This is not only
time consuming, but very error prone.

Keeping data consistent is also difficult. For instance, if it was determined that a tree species was identified
incorrectly, in existing file-based software, the user would need to locate all data series from this tree and manally
update the metdata. This is not the case in Tellervo. A tree is represented just once in Tellervo and samples of
this tree, and the subsequent measurement series reference this one entry. If metadata for this tree needs to be
changed, the tree record is updated in just this one place. Because the measurement series obtain this information
by reference, then all associated series are automatically kept up to date.

30 Tellervo: A guide for users and developers

Figure 5.2: Example of the metadata dialog. The screen is showing the details of a TRiDaS object. Note that the location
geometry field is highlighted and so a description of what is expected in this field is given below.

5.2 Entering sample metadata

The metadata for a series is viewed and edited on the ‘Metadata’ tab of the main window such as that shown
in figure 5.2. You can see the interface is organized according to the TRiDaS data model with separate tabs for
object, through to series.

When creating a new series, the metadata screens must be populated in order. This is necessary because of the
nesting of entities described above. For instance, an element is associated with an object, so an object must be
chosen before an element can be defined. Likewise, an element must be chosen before any samples of this element
can be defined.

Much of the time the entities that you need will already be stored within the database. Instead of re-entering
data, you simply need to select the existing entry from the database, saving a great deal of time. Depending on
the situation, buttons will appear at the top of the dialog to let you ‘choose’ an entry from the database, ‘revert’
to the previously chosen entry, ‘change’ the existing entry to a different one from the database, or create a ‘new’
record.

Please note that the content of these metadata screens is kept read-only by default. To edit the values, you must
first click the padlock icon to unlock the fields. When you have finished making changes you need to press the
save button to write the changes to the database before moving to another metadata screen.

Very few of the metadata fields in the TRiDaS data model are mandatory, but a few are. In this case, these fields
are highlighted with a red star. Note that whether a field is mandatory or not can depend on the other fields that
have been filled in. For instance, the dimensions of an element are not required, but if dimensions are given then
the units for these measurements must also be provided.

A number of the metadata fields are restricted with regards the values that you can enter. These are known
as ‘controlled vocabularies’ in TRiDaS terms. Controlled vocabulary fields are represented by drop down menus.
Similarly fields that expect numerical values (such as element dimensions) will only allow numbers. The final data
entry method is through custom dialogs, for example there is a custom dialog for entering location information.
This accepts coordinates in either decimal degrees or degrees minutes and seconds. Alternatively you can use data
from a GPS handset by providing a GPS Exchange (GPX) format file containing the waypoints. The GPX format
is the most common interchange format for GPS data. You can pick the relevant waypoint from the drop down
menu. You can also preview the defined coordinates on a map using the ‘view on map’ button.

Metadata 31

Figure 5.3: The bulk metadata entry screen. The ‘show/hide columns’ button has been pressed showing how the user can
turn on and off particular columns.

A popular open source GPS communication tool is GPS Babel. It is an easy to use application
which can download data from the majority of GPS handsets. See http://www.gpsbabel.org for
more information.

5.3 Entering bulk metadata

Entering metadata on a sample-by-sample basis works perfectly well, but does not necessarily fit best with the
typical workflow of a laboratory. Samples do not typically arrive in a lab in ones and twos, rather in large quantities
following a field excursion. In this case it is most efficient to enter all the metadata for the samples as they arrive.
This is often best in terms of data accuracy as the metadata can be entered while the field notes are still fresh in
the mind.

To enable the efficient entry of lots of metadata Tellervo includes the bulk data entry interface. This can be
accessed from the file menu and is illustrated in figure 5.3. There are three pages, one each for objects, elements
and samples.

The interface is designed like a spreadsheet so as to be as familiar to users as possible. Each row of the table
represents a new entry in the Tellervo database. The columns that are shown to the user are determined by the
‘show/hide columns’ button on the top right of the screen.

It is common for many of the metadata fields to be the same in a single field collection. For instance, when coring
trees in a forest, they are often of the same species. Rather than requiring the user to repeatedly type the same
data over and over, the ‘copy row’ button can be used to duplicate a record, and then the user can change the
few fields that are different.

Another time saving feature is the ability to cut and paste back and forth between Tellervo and spreadsheet
programs like Microsoft Excel. This can be particularly helpful if you already have large amounts of metadata
entered into a spreadsheet. The best way to do this is to populate a row in Tellervo then copy this into Excel.
This will then show you the order of columns and the format that Tellervo expects data to be in.

When you have entered all the data you want, you can press the ‘Import selected’ button to write the records to
the database. Start on the objects tab, then move to elements then samples.

http://www.gpsbabel.org

32 Tellervo: A guide for users and developers

5.3.1 Toolbar buttons

There are a number of additional features in the bulk data entry interface that can make data entry more efficient.

– Support for GPS data. The user can provide a GPS Exchange (GPX) format file containing the waypoint
locations recorded in the field. Tellervo will add a waypoint column to the spreadsheet with a drop down
menu which will automatically populate the latitude and longitude fields for the record.

– The samples page has the additional feature of creating barcode labels. Once you’ve finished importing
your metadata, simply press the barcode button and a PDF file will be generated ready for printing.

– Another method that makes metadata entry even quicker is through the use of the Open Data Kit (ODK)
features within Tellervo. ODK is an open source project that makes use of tablets and phones for data entry
in the field. Details of how to use the ODK features in Tellervo are given in chapter 6.

– The Bulk Data Entry interface can be populated with records that are already in the database. This is
a good way to check and edit metadata for a large number of records in one go, it also is a good way to
export metadata out into other programs like Excel.

– Where records have coordinate information, Tellervo can use the Geonames service to lookup the country
and closest town name and populate the table.

– The elements and samples tab have the option of using the ‘quick fill’ tool to prepopulate the table with
new records. This is useful if you collect many trees and/or samples from these trees from a site all with
similar metadata.

5.4 Metadata browser

The metadata browser interface provides a convenient way to view all the metadata within your Tellervo database.
It can be accessed through the ‘Administration’ menu from the main screen.

The metadata browser contains two parts: a hierarchical representation of all TRiDaS entities in your database
on the left; and a metadata viewer for the selected entry on the right. This interface is also the best method for
fixing mistakes in your database.

Although Tellervo’s database architecture maintains integrity within your data, it does come at the price of being
a little more complicated to fix mislabelled series. For instance, what if you were to measure a series ’B’ and assign
it to sample ABC-138-A only later to realize you misread the label and it was in fact ABC-188-A. In a traditional
file-based system, you would probably just need to rename the file you’d just created. In Tellervo however, you
need to redefine the relationship of the series within the database and reassign it to the correct sample. This is
best understood when looking at the hierarchical tree in the metadata browser. Hopefully you will see that you
what you need to do is to move the series from its current position in the database to the correct one.

The reorganization of data in this way is achieved by right clicking on items in the hierarchical tree and choosing
either ‘merge’ or ‘reassign’. These functions are only accessible to database administrators. The reassign option
simply moves an entry to a different parent in the database. The merge tool handles the more complicated situation
where a entry has been made in two different places in the database and they need to be combined. For instance in
the case described above if the erronously created ABC-138-A after (the correct) sample ABC-188-A had already
been created and populated. In this case the ‘A’ sample from ABC-138-A would be merged into ABC-188-A,
bringing with it any radii and measurements. Hopefully the metadata for the merged series will be identical, but
in the case of discrepancies, details are noted in the comments field of the finished entity. You should therefore
take the time to check the finished entry and clarify any differences.

Metadata 33

5.5 Laboratory codes

Tellervo uses lab codes to refer to the hierarchical nature of the TRiDaS entities in the database. The separate
parts of the code are delimited by hyphens and depending on the level of the entity you are referring to, will have
a different number of parts. For instance, if you are referring to a tree (an ‘element’ in TRiDaS terminology) then
the lab code will consist of just two parts: the object code and the element code. See figure 5.4 for an illustrated
example.

Lab codes are used throughout Tellervo to describe TRiDaS entities. They can also be used in many places to
specify entities that the user would like to choose. For instance, in the database browser, you can type the lab
code for an object, element, sample, radius or series to search the system for all the series that match the specified
entity. For instance entering ‘ABC-5’ would search for all series associated with element ‘5’ from object ‘ABC’.

34 Tellervo: A guide for users and developers

Example: ABC-1-A-A-1

Radius
A

ABC-1-A-A

ABC-1-A-A-1

Radius Code:
A sample may have many radii, the
first radius receives the letter “A” and
the second “B” and so on. For cores
there is usually only one radius (A) to
measure.

Radius
B

Series
1

Series Code:
A radii will have at least 2 readings.
The final letter in the lab code relates
to the first or second reading. In this
case we are constructing a code for
the first reading '1'. The second
reading would be '2' and so on.

Series
2

ABC-1Element Code:
This tree grew at a site called ‘ABC’.
It was the first tree sampled at the
site and received the element code
of 1.

Element 1

ABC-1-ASample Code:
Two samples were taken from tree 1.
These were labeled A and B. If there
were more than two samples (tends
to happen with charcoal), the third
and fourth would be labeled C and D
and so on. The lab code we are
constructing is for the first sample, A.

Sample
A

Sample
B

Figure 5.4: Illustration of the how lab codes are built in Tellervo. Figure courtesy of Charlotte Pearson.

Chapter 6

Field data collection

Accurate field notes are essential to ensure the greatest value is made of samples. With no metadata associated
with a sample, it is of little more use than firewood. At the same time, though, time in the field is often very
limited therefore there is pressure to record metadata as efficiently as possible.

Dendro field data collection is traditionally done through either handwritten field notebooks or paper forms. The
trade-off between comprehensive metadata collection and time efficiency means that fieldnotes are often abbreviated
with the best intentions to write them up fully in the evening or on the return to the laboratory. These sorts of
pressures typically lead to the bare minimum of metadata being recorded.

In Tellervo, one solution to this problem makes use of the collection of open source tools known as Open Data Kit
(ODK). ODK is a platform that utilises (Android) mobile phones and tablets as simple field data collection devices.
It was originally designed to collect medical information in rural regions of developing countries and has proven to
be extremely effective and reliable. Forms are designed and uploaded to the mobile device, and a simple sequence
of questions enables the field researcher to enter text, categorical, numerical, GPS and photographic data. On
return to base, the data is then uploaded from the device to a database for analysis. The system does not rely on
mobile network signals that are typically weak or non-existent in remote field regions, rather storing the data on
the device and then transfering the data at the end of the day once the researcher returns to base.

The hardware requirements for the mobile application are very low meaning it can run on entry level phones and
tablets. The addition of rugged waterproof cases mitigates for difficult field conditions, and the storage of data
on removeable flash memory cards means that data can often be recovered even when disaster strikes your device.
Entering data via touch screens is now second nature to most people, enabling data entry speeds approaching that
on a traditional keyboard.

6.1 Creating data entry forms

The metadata capabilities of Tellervo are extensive so producing a data entry form with all possible fields would
be unhelpful. The fields required will vary dramatically depending on the researcher and the research questions
being addressed. The Tellervo desktop application therefore has a tool for designing tailored forms for each field
trip. This tool can be accessed via the File : Design ODK Form menu (see 6.1).

The Design ODK Form dialog gives the user the ability to create two types of forms: the first for recording new
objects (sites); and the second for recording elements (trees) and samples. The user should name the form they
are creating, then select the form type, and then pick all the fields that they would like to include. Fields that are
required by Tellervo and TRiDaS are pre-selected.

When you select a field you will see it’s details below depending on the data type that it stores. You can then
modifiy the field’s properties. For instance you can change the name of the field which can be useful when the

36 Tellervo: A guide for users and developers

Figure 6.1: Screenshot of the Design ODK Form dialog.

person using the ODK tool in the field is not familiar with the TRiDaS terminology. The field name ‘element code’
might not be intuitive whereas ‘tree code’ will be. There is also the option to alter the help text that goes with
each field. This is another way to ensure the correct metadata is collected in the field. It is important though that
you don’t change the meanings of these fields as they will be mapped back to the original TRiDaS concept when
you upload the data. For instance regardless of what you choose to name the ‘element code’ field, the contents of
this field will be entered into the ‘element code’ field in the Tellervo database.

If you know in advance the most likely information that the ODK user will want to enter you can set a default
value for a field. In this case the user can quickly confirm the entry is correct without having to enter it each time.
You also have the option of hiding a field from the ODK user. This can be useful when you are certain of that the
contents of a field. For instance if you are collecting in ‘New Mexico’ you might like to include the ‘State’ field,
but set the default value and hide it from the user. This way the state is automatically recorded without the ODK
user even having to confirm.

The ODK system has the ability to record a variety of data types. Depending on the data type a different interface
is shown to the data collection user. For basic text fields, the user is shown the standard on-screen keyboard,
similarly for numeric fields. ODK has the option of using the integrated GPS receiver, in which case the user has
the option of pressing a ‘record location’ button. It can also take photographs, video and sound recordings which
can be associated as ‘files’ on the Tellervo database.

The final data type is the choice data type. In this case a user is displayed a list of options from which to choose.
This is used to restrict the user to a predefined dictionary of terms (e.g. species, location type, object type etc).
In the form builder, choice fields like this are prepopulated with the terms used by Tellervo. In the case of species,
for instance, the list can be very long. Selected the correct item from a long list can be slow and tedious. The
form builder tool therefore allows you to limit the list to a subset of terms. For example, you may know before

Field data collection 37

your field visit that you will collecting one of just a handful of species of trees. Shortening the list to the likely
options makes the data entry much more efficient.

All the predefined field types in the form designer correspond to the fields defined in the Tree Ring Data Standard.
If you want to collect additional metadata not covered by TRiDaS then there is the ability to add user defined
fields. Note, however, that at this time these fields are ignored by Tellervo when you import your metadata into
the Tellervo database. To read data from these fields you should use other ODK compatible software such as ODK
Briefcase or Kobotoolbox to extract to CSV, or Excel files.

Once you have finished defining your form you can press the ‘Generate ODK Form’ button to create an XML form
definition file. This file can then be transferred to the ODK folder on your Android phone or tablet (see section
6.2).

If you would like to save your form definition to reuse and edit later you should use the ‘Save form design’ button.
Note you cannot load an ODK XML form definition file within the Tellervo form designer, only the Tellervo-specific
‘*.odkform form design’ file.

6.2 ODK mobile application

Figure 6.2: Screenshot of the main screen
of the ODK Collect mobile application run-
ning on an Android mobile phone.

Once you have generated your ODK XML form definition file you are
ready to transfer it to your mobile device. Install the ODK Collect App
from the Google Play Store as you would any other application.

The ODK Collect App is designed to work with an ODK Aggregate
server to handle the transfer of data and form definitions. As we will
be transferring data to our Tellervo server we won’t be using ODK Ag-
gregate so we can skip setting up the ODK Aggregate server settings.
We have not yet implemented the ability for ODK Collect to directly
communicate with the Tellervo server, instead preferring the rather sim-
ple method of transferring form definitions and data between the mobile
device and computer via a USB data cable. By connecting your phone
to your computer you should be able to view your phone’s memory as if
it were a USB flash drive. You can then use your computer’s standard
file manager program to copy files to and from the ODK folder on your
device.

With your phone connected to your computer copy your ODK XML form
definition file into the odk/forms folder. Disconnect your phone and
run the ODK Collect app an press the ‘Fill Blank Form’ button. You
should see your form in the list. You can then create a form instance
for each record that you’d like to create in the field. The metadata for
each instance is stored as a separate XML file on your phone in the
odk/instance folder, along with any additional photo, video, or sound
files that you created.

6.3 Importing ODK metadata into Tellervo

Once you have returned from the field, you can import your ODK meta-
data into Tellervo via the Bulk Data Entry interface (see section 5.3). On the Bulk Data Entry toolbar there is a

button that opens up a file dialog where you should select the folder in which your ODK form instances are
stored. Tellervo will recursevely search through this folder and find all the relevant XML files and add them to the

odk/forms
odk/instance

38 Tellervo: A guide for users and developers

Bulk Data Entry table. The metadata can then be checked and altered if necessary before the ‘Import selected’
button is pressed to actually commit the data to the database.

Chapter 7

Mapping

Tellervo includes an integrated open source 3D mapping system (based on NASA’s award winning World Wind Java
SDK) similar to the program Google Earth which you’re no doubt familiar with. As mentioned in the installation
chapter, this mapping system requires an OpenGL 3D capable graphics card. Before you can use the mapping in
Tellervo, you must also have something to map! See the chapter on Metadata (page 27) for information about
adding coordinates to your system.

There are two ways to map data from your database. First of all, you can see a map of all the sites (i.e. TRiDaS
objects) by going to Administration : Site map. This will give you a screen like this:

Figure 7.1: Screenshot showing an example of a site map.

You can also see a map of your current series if you have latitude/longitude metadata by clicking on the map tab
on the main data screen. The map tab is a more recent implementation and contains a number of more advanced

40 Tellervo: A guide for users and developers

features that the seperate Administration : Site map does not. We recommend you use the map tab feature
unless you prefer a full screen map.

7.1 Navigation

Figure 7.2: On-screen navigation controls.

You can navigate around your maps using the on screen controls (figure 7.2), by using your mouse and/or your
keyboard. These controls enable you to explore your location information in 3D such as the example of Mount
Vesuvius in figure 7.3.

7.1.1 Mouse with scroll wheel

Pan Left mouse button click and drag – all directions
Zoom Use the scroll wheel on the mouse or Left and Right mouse (both buttons) click and drag up and down
Tilt Right mouse button click and drag – up and down or use ‘Page Up’ and ‘Page Down’ on the keyboard.
Rotate Right mouse button click and drag – left and right Note: Crossing the top and bottom half of the screen

while rotating will change direction.
Stop Spacebar
Reset Heading N
Reset all R

7.1.2 Single button mouse

Pan Left mouse button click and drag - all directions. L left mouse button click once to center view.
Zoom Hold ‘Ctrl’ on the keyboard and Left mouse button click and drag - up and down
Tilt Hold ‘Shift’ on the keyboard and Left mouse button click and drag - up and down or use ”Page Up” and

”Page Down” on the keyboard.
Rotate Hold ‘Shift’ on the keyboard and Left mouse button click and drag - left and right
Stop Spacebar
Reset Heading N
Reset all R

7.2 Interacting with data

Each marker on the map represents either a TRiDaS object or element in your Tellervo database. By clicking on
these pins you can get more information from the database (see figure 7.3).

Mapping 41

Figure 7.3: Screenshot of a map with information pin expanded

The example above shows the marker is of a site in Napoli called Poggiomarino (code name POG). You can see
the option for searching for all series in the database associated with this site, and also the option for viewing all
the metadata.

7.3 Map layers

Tellervo comes ready configured with basic map layers, including high resolution satellite imagery and basic political
features. You can turn background layers on and off by going to Map : Add layers or using the layer panel at the
side of the map.

Map layers are downloaded on-the-fly so there is likely to be a delay when you initially visit a new region. However,
up to 2Gb of map data can be cache locally to your hard disk, so on future visits, maps should load quickly.

7.3.1 Data layers

Data map layers (i.e. site and sample locations) are controlled with the layer list. When viewing series, you will
have the option of adding layers containing points for all the other series at the current site, and showing all the
sites in the database.

You can use the ‘Add layer’ button to add data layers of the following types:

All Tellervo objects – this adds a single layer containing all the objects within the Tellervo database.

Tellervo entity from database – this adds a layer containing the location of one record from the Tellervo
database. This is specified by labcode e.g. ABC would add a pin for the site ABC, whereas ABC-1 would
add a pin for the element ABC-1.

Elements from an object – this adds a layer containing all the elements for a specified object. The object is
specified by labcode.

42 Tellervo: A guide for users and developers

All ITRDB sites – this downloads the location of all sites currently available in the ITRDB database and adds
them as a single layer.

ESRI Shapefile – this enables you to load an ESRI shapefile stored locally on your computer. Tellervo supports
polygon, polyline and point files, although currently it does not enable you to style this data. Data for a
layer is presented using a random color.

Google Earth KML/KMZ file – like the ESRI shapefile option this enables you to load spatial data from your
computer.

7.3.2 Web Map Service (WMS)

The mapping system in Tellervo includes support for remote map servers that use the OGC Web Mapping Service
(WMS) standard. If you go to Map : Add layers : WMS layers, you will get a dialog with a tab for each WMS
server configured for your system. By default this includes the NASA Earth Observation and Jet Propulsion Lab
servers. By ticking layers in this list you can add data layers to your map.

You can add map data from other WMS servers by clicking the ‘+’ tab and entering the URL of the server you
would like to use. This will give an additional tab with all the available map layers. This server will only be available
for the duration of your current session so will need to be added each time you start Tellervo. If you would like a
particular WMS server to be made permanently available, your Tellervo administrator can do this (see ‘Managing
map services’, on page 75 for further details). Additional WMS servers added in this way will be available to all
users the next time they connect to your Tellervo server.

Your system administrator may host a map server specifically for your lab, for instance, containing high resolution
plans of an archaeological site that you are working on, or environmental data for your study region. Figure 7.4
shows an example overlay of sea surfaces temperatures loaded dynamically from the NASA EO server.

Figure 7.4: Map screenshot with a NASA sea surface temperature overlay dynamically loaded from the NASA WMS server.

7.4 Toobar buttons

– The spatial search button enables you to draw a rectangular bounding box on the map surface to search
for sites and trees. Once you draw your bounding box Tellervo will open a database browser window with

Mapping 43

the bounding coordinates entered into the search tab. You can add additional parameters to further refine
your search.

– Hide/show the north arrow / compass widget

– Hide/show the map navigation control widget

– Hide/show the inset overview map

– Hide/show the UTM map graticule

– Hide/show the MGRS map graticule

– Hide/show place names

– Hide/show political boundaries

– Turn the anaglyphic 3D mode on/off. Requires red/cyan glasses.

– Saves the current map as an image. See section 7.6.

– Add an ESRI Shapefile layer to the map

– Add a Google Earth KML layer to the map

– Add a GIS image layer to the map

– Add a Web Map Service (WMS) layer to the map

– Add a Tellervo database layer to the map. Adds objects or elements from the database via user defined
parameters.

7.5 Layers list

Right clicking in the layers list (specifically over the Tellervo data layers rather than the background layers) provides
a popup menu with a number of additional options. Layers can be removed and renamed from here. They can
also be exported to Google Earth KML files (for use in Google Earth or other GIS applications). It’s also possible
to change the style of the map markers here through the ‘Layer properties’ dialog. This enables the user to change
the colour, shape, size and transparency of the map markers.

7.6 Exporting maps

You can export maps by going to Map : Save current map as image. For best results, maximize your map window
first. You may also like to turn off various map widgets by going to the View menu. The exported image will
include everything you can see on your map screen.

As well as exporting maps as images, it’s also possible to export map data as Google Earth KML files. Simply
right click on the layer in the layer list and select ‘Export to KML’. Note this only works of Tellervo data layers,
not background or other imported GIS layers.

Chapter 8

Graphing

The graphing component is reused in many places throughout the Tellervo desktop application. The following
description although based on the main graphing screen in Tellervo is largely applicable to all dialogs that include
graphs (e.g. crossdating, indexing and reconciliation).

The main method for graphing your tree-ring data is by choosing an option from the Graph menu. Depending on
the type of series you have open, the options available to you will be different. For raw measurement series, you
will just have the option to ‘Graph active series’. This will give you a simple graph of the current series that you
have open. If you have a derived series open, then you may also choose ‘Graph component series’ which will plot
all the series that go to create this series, or ’Graph all series’ which graphs all the component series as well as the
current series.

8.1 Controlling graphs

When newly created graphs are plotted according to the scale on the axes. A feature of Tellervo graphs though is
that they can be manipulated directly on the screen. Both dendrochronology was computerized, dendrochronolo-
gists would plot rings manually on to graph paper. These paper graphs were then placed on lightboxes and moved
around to enable comparisons. The graph function in Tellervo emulates this behaviour allowing users to click and
drag graphs around to test for visual matches.

Figure 8.1 shows an example graph dialog. The mouse is hovering of the blue measurement series at relative year
1040 illustrating Tellervo’s highlighting and guide line capabilities. A feature not shown in this screenshot is the
illustration of sapwood rings. When sapwood rings are present the corresponding years on the chart are denoted
via a heavier line.

The layout of graphs can be changed using both the toolbar buttons and menu options. The type of graph can
be changed between a standard line graph, a semi-log graph and a toothed graph using the radio buttons. The
remaining buttons are as follows:

46 Tellervo: A guide for users and developers

Figure 8.1: An example graph window contain-
ing two undated series of the same sample on a
semi-log graph. Note the legend is visible with
the options for adding or removing series.

Zoom in on the horizontal axis

Zoom out on the horizontal axis

Zoom in on the vertical axis

Zoom out on the vertical axis

Toggle show/hide the grid lines

Toggle show/hide the series labels

Toggle show/hide the vertical axis

Spread the series evening up the vertical axis

Set the baselines of all the series to zero

Resize graph to fit horizontally

Toggle show/hide the legend

There are also a number of keyboard shortcuts that you might find useful:

Tab : Cycles through each graph component
Ctrl+W : Increase vertical scale
Ctrl+S : Decrease vertical scale
Ctrl+A : Increase horizontal scale
Ctrl+D : Decrease horizontal scale
Up arrow : Moves selected graph up by 10 units
Down arrow : Moves selected graph down by 10 units
+ : Moves selected graph up by 1 unit
- : Moves selected graph down by 1 unit
HOME : Scroll to first year of series
END : Scroll to last year of series
PAGE UP : Scroll left by one page width
PAGE DOWN : Scroll right by one page width
SPACE : Sets horizontal origin of all graphs to the same value

Graphing 47

8.2 Exporting graphs

To export your graphs for use in reports you can go to File : Export plot as PDF file, or File : Export plot as PNG
file. This presents you with a dialog for setting the colors, labels and size of the exported image. This functionality
is due for an overhaul in the future to provide more flexible support for publication quality graphics.

Chapter 9

Importing and exporting

Importing and exporting of dendro data in Tellervo is provided through the TRiCYCLE libraries. TRiCYCLE is
a universal dendro data conversion application for converting back and forth between 24 supported data formats
(Brewer et al., 2011). The open source libraries that provide the functionality to TRiCYCLE are incorporated
directly into Tellervo providing support for all these formats.

Belfast Apple Nottingham
Belfast Archive ODF Spreadsheet
Besancon (including SYLPHE variants) Oxford
CATRAS PAST4
Cracow Binary Format Sheffield D-Format (Dendro for Windows)
Comma delimited text files (CSV) Topham
Corina Legacy TRiDaS
DendroDB TRIMS
Heidelberg (TSAP-Win) Tucson (RWL and CRN)
KINSYS-KS Tucson Compact
Microsoft Excel 97/2000/XP VFormat
Microsoft Excel 2007 WinDENDRO

Table 9.1: List of the twenty-four formats supported by Tellervo. See appendices A–X (pages 119–191) for full descriptions.

9.1 Exporting data

Exporting data is initiated by the File : Export data menu. If this is called from the main Tellervo data window,
it will export the current series. If it is called from the Tellervo home screen, then it will present you with the
database browser and allow you to pick one or more series to export. If you use the menu from within the main
data editor then it will export

The export dialog contains two tabs. The first allows the user to choose the format that they would like to export
to and the folder into which to save the result. Note that the user needs to specify a folder not a filename as many
formats are unable to store more than one series in a file. When exporting derived series such as chronologies, the
export dialog may therefore need to create multiple files. The second tab contains advanced options for altering
the behaviour of the exporter:

What to export – This option enables the user to choose between exporting just the current series, or the current
series and all associated series

50 Tellervo: A guide for users and developers

Figure 9.1: Screen showing a series
that has been exported to Besançon
format. In the summary of the ex-
port at the bottom of the screen
you can see the warning to the user
that this format does not have the
ability to represent relative dates
properly.

Grouping – This enables the user to choose to group files into a single export file if possible. For formats that do
not support more than one series in a file, this option is ignored.

Naming – This configures how the output files are named. See section 9.1.1 for more details.

Encoding – This specified the character encoding to use in the exported text file. See section 9.1.2 for more
information.

9.1.1 Naming conventions

The naming convention is used to determine how to name the output files. The naming convention relates to the
filename itself and not the file extension. The file extension is specific to the output format chosen (e.g. Heidelberg
files are .fh and TRiDaS files are .xml).

Numerical – This is the default naming convention. It uses the name of the input data file and appends an
incrementing number if more than one output file is produced.

UUID – This gives all output files a random named based on Universally Unique Identifiers (UUIDs). This is a 36
character hexadecimal code which due to the astronomically large number of possible combinations is guar-
anteed to be universally unique. A typical filename will look like: 550e8400-e29b-41d4-a716-446655440000.

Hierarchical – This uses the hierarchical structure of the TRiDaS data model to provide a meaningful name for
the output file. It joins together the title of each entity in the file beginning with the project name through
to the series name. For files that contain multiple series, the name will contain details of all the entities
shared by all the series in the file. For example, if a file contains several series from the same sample, then
the file name will be projectTitle-objectTitle-elementTitle-sampleTitle. If the file contains several series from
different samples of the same object, then the file would be projectTitle- objectTitle. If multiple output
files end up with the same name then like the numerical convention described above, the files will have
an incremental number appended to the end. Unfortunately, most input data files do not contain rich
name information so files end up being called unnamedProject-unnamedObject-unnamedElement etc. This
convention is therefore more appropriate when converting from TRiDaS to other formats.

Series code – This convention is only applicable to formats that contain just one series. The file is named
according to the series code.

Importing and exporting 51

Series code (8 characters) – Same as ‘Series code’, however the file name is truncated to 8 characters if the
series code is longer.

Keycode – Similar to ‘Series code’ but preferentially uses a keycode (supplied by some file formats) if available.
If a keycode is not provided, then it falls back to using the series code.

Note that some formats (e.g. CATRAS) require the file name to be the same as a field within the file. In this case
the naming convention is overidden, so no matter what convention you specify the filename will be the same. If
you manually rename a CATRAS file you will come across errors when loading it in the CATRAS application.

9.1.2 Character sets

Character sets are the mechanism for pairing computer character codes with the character glyphs that we read. The
widely used standard was originally ASCII, but this does not include diacritic characters, and characters specific
to certain languages. There have since been many character encodings proposed (e.g ISO 8859-1 for Western
Europe and ISO 8859-7 for Greece) as well as some that are specific to Windows and Mac operating systems (e.g.
Windows-1252 and MacRoman). The character set that is becoming most widely used today is Unicode UTF-8.
This is capable of representing the vast majority of characters (107,000+) while remaining backwards compatible
for the 128 characters that ASCII is able to represent.

If an incorrect character encoding is used to interpret a file, normally the majority of characters will display correctly
(where the character sets share the same encodings) but more unusual characters will be displayed incorrectly -
typically square boxes or question marks.

The character encoding is set to the default for the operating system you are running. For instance on MacOSX
this will be MacRoman and for Windows it will be Windows-1250. If you know your input file is in a different
encoding you should set it in the input charset box. If your output file needs to be read on an operating system
other than the one you are currently running, then you may like to override the writer charset. Please note that
for certain writers, the character set used is part of the file specification (e.g. TRiDaS must be UTF-8). In this
case your choice will be ignored.

The final complication with regards character sets is the line feed character(s). For historical reasons different
operating systems use different characters to represent a new line. Depending on the software that is used to read
a file, this can cause problems. Tellervo itself will automatically adapt to files with any type of line feed characters
so reading files in Tellervo will never be a problem. When writing out files, Tellervo will use the default line feed
for the operating system you are running, unless you choose a platform specific character set. For instance if you
run Tellervo on Windows and choose a MacRoman writing charset, Tellervo will use Mac style line feeds.

9.2 Importing data

Although the TRiCYCLE import library can easily read the data from many data files, the process of importing
files is complicated by the need to cross-map which sites, trees etc the data corresponds to and whether they are
already in the database or not.

The data import process is accessed via the File : Import data menu. Choose the file format that you would like
to import, then select on or more files. If you are unsure what format your file is in, you can use appendices A–X
(pages 119–191) to help you. You may also like to download TRiCYCLE∗ which includes a file identification tool
in the help menu.

The Tellervo system is currently limited to reading in raw data files. It does not allow for reading
in of chronology files as these contain a more complex level of metadata. Support for chronology files
will be included in a later release.

∗TRiCYCLE is available from http://www.tridas.org/tricycle

http://www.tridas.org/tricycle

52 Tellervo: A guide for users and developers

Figure 9.2: The data import dialog is used to assign data from legacy data files to the correct entries in the Tellervo
database.

Importing and exporting 53

The Import Data dialog (figure 9.2) provides a spreadsheet-like interface to assign which object, element, sample
and radius in the database each imported data series should be assigned to. It is possible to simply type the code for
each of these entities into the table but for more than a few series this quickly becomes tedious. Instead, you can
automatically populate this table by defining patterns based on the file names, folder names and/or rudimentary
metadata from the files. If your data files follow a rigid naming convention this can dramatically speed up the
import process. To use this feature click the ‘define by pattern’ button to show the define patterns dialog (figure
9.3).

Figure 9.3: Data patterns dialog used to define naming conventions to automate the mapping of legacy data to entries in
the Tellervo database. The example here is for a series with a keycode of ‘POT06A’. The first regular expression extracts
all upper case alphabetical letters at the start of the keycode for the object code. The second regular expression extracts
the digits for the element code. The fixed width pattern extracts the 6 character for the sample code.

For each of the object, element, sample, radius and series codes, you can define patterns for mapping your data
to the database. These codes may be based in whole or in part on: file name; full folder path; final folder; and
keycode extracted from the file. You can specify a variety of methods for extracting information from these fields:

All – This simply takes the entire field you specify. For example if the data file was called abc.rwl and you asked
for ‘all’ of the filename field, then you would get abc.rwl

Fixed width – This allows you to specify a fixed number of characters specified either as an absolute number or
a range. For example, if you were to specify 1-3 for the filename abc.rwl, then you would get abc. This is a
simple method but relies on your data files all following the same convention and with the same number of
characters.

54 Tellervo: A guide for users and developers

Regex – This is a far more powerful method, but more complicated to master. Regex stands for regular expression
and is an advanced language for defining patterns. A full description of the syntax is beyond the scope of
this manual but there are many resources on the Internet to help.

Once you have set your method and pattern you can press the ‘run tests’ button to check your pattern matches
what you expect. The test field will show the result of running the first series in your import through your pattern.
If the results aren’t as you expect you can modify your pattern and re-run the tests. The dialog also has the ability
to load and save your pattern definitions. This is particularly helpful if you are lucky enough to have many data
files that match a specific naming convention.

Once you are satisfied with your patterns you can click OK to return to the data import screen. The fields in
the table will be populated with the matches as defined by your patterns with the entries marked by one of three
icons. These denote whether a record with this code exists in the database, whether it is currently absent from
the database, or whether the database has not yet been searched. Clicking the ‘search database’ will check the
database for all unsearched records turning them from a blue question mark to a red cross or green tick accordingly.

Once you are satisfied that all entries in the table are correct you can go ahead and press the ‘generate missing’
button to create entries in the database for each record currently marked with a red cross, turning them green.
Once the table is full of green ticks, the ‘finish’ button will become enabled. If the ‘open series in editor when
finished’ tickbox is checked, then all these series will be opened in the main window. If your file does not explicity
indicate what units the measurements are in, a dialog box will ask you to specify.

Please note that all the newly generated database entries will be skeleton records. You will need to check and
update the metadata for each of these to ensure they fulfill the requirements of Tellervo. For example, many
mandatory Tellervo fields are missing from legacy data files. Even fields that are present (such as taxon) are
typically not standardised well enough to match the specific controlled vocabularies used in Tellervo.

Chapter 10

Curation and Administration

10.1 Laboratory workflow

Tellervo includes a number of functions to assist you with the curation of your physical sample collection. To
understand how these are designed to assist users, we must first consider the workflow within a laboratory.

In research laboratories, samples generally come to the lab in large batches following field collection. In this case
the typical workflow may be as follows:

1. Collect samples and record field notes as accurately as possible
2. On returning to the lab enter field notes as soon as possible into the ‘bulk data entry’ interface
3. Print sample barcode labels
4. Prepare physical samples and label with barcodes
5. Assign samples to storage boxes
6. Measure samples, using barcodes to recall metadata from database
7. Crossdate samples / build chronologies
8. When all samples from a box are completed register box as archived and then store

For commercial labs offering dendrochronological dating as a service, samples more likely to arrive in smaller
batches. In this case, the bulk data entry interface may not be the most efficient method for entering metadata.
In this case the user may simply prefer to use the File : New method for each sample.

Either way, the concept behind the curation of a collection in Tellervo revolves around the accurately recording as
much metadata about a sample as possible, then labeling the physical sample with a label containing a barcode
for Tellervo and sample code for the user. By entering a sample into the database as soon as it enters the lab, it
can be traced throughout the workflow. When a chronology is built, it is easily to quickly and efficient locate all
samples that have been used. By assigning samples to boxes, groups of similar samples (e.g. from the same site)
can also be easily stored together and located quickly and efficiently.

10.2 Barcodes

Barcodes allow you to keep track of what samples you have and where they are stored. Although it is not essential
to use the barcode functions, we strongly suggest you do because they save time and money, but most importantly
they greatly reduce the scope for erroneous data entry. For instance, when measuring a sample a user simply scans
its barcode and all the relevant metadata is retrieved from the database, rather than relying on them to enter data
manually. Barcodes have been routinely used in the retail industry since the 1980s. They can be equally as useful
in dendrochronology laboratories.

56 Tellervo: A guide for users and developers

Tellervo creates and reads barcodes for samples, measurement series and boxes. Each barcode encodes the unique
identification code stored in the Tellervo database for each of these entities. Due to Tellervo’s use of universally
unique identifiers (UUIDs), these codes are guaranteed to be unique opening the opportunity of labs to loan
samples, much like libraries do with books. There are many styles (or ‘symbologies’) of barcodes in use today, but
Tellervo uses one of the most common (Code 128) which is supported by the vast majority of barcode readers.
For a detailed discussion on the specifications of the Tellervo barcode see section 18.4.

Basic barcode readers are now cheap and widely available, with basic devices retailing for a few tens of dollars.
Most are characterized as ‘keyboard interface devices’ and work like an automated keyboard, typing in a string of
characters when a label is scanned.

Within the Tellervo application, whenever the user is required to specify a box, sample or series, they have the
option of typing the human readable lab code or scanning the barcode. By using the barcode, the user can be sure
they are not entering typographic errors so we recommend using barcodes whenever possible.

The most important barcode is the label for the physical wood sample. These are easily generated through the
Administration : Labels : Sample labels menu entry. Currently the layout of these labels is fixed, but in the future
we aim to provide different styles.

10.2.1 Sample labels

Before labels can be generated, metadata entries the sample level must have been made in the database. This is
typically done using the ‘bulk data entry’ interface (see page 31). If samples are already in the database, the user
needs to select the object of interest in the label creation dialog to see all the available samples. It is then just a
matter of selecting the samples of interest and moving them into the ‘selected’ column. Once the list is populated
(samples from multiple objects can be included), then you can either click ‘Preview’ to see a PDF of the labels, or
‘Print’ to print directly.

Figure 10.1: An example of a sample barcode produced by Tellervo for the Cornell lab. Note the label also includes the
human readable code for the sample.

The current label style is designed to fit on standard core mounts and most samples. There are no widely available
die-cut labels that fulfill this need, so the labels are intended to be printed on archival grade full page sheet labels
(e.g. Avery® layout 6575), and then manually guillotined.

10.2.2 Box labels

The procedure for printing box labels is the same as for samples. Samples must have already been assigned to
boxes before the label is printed (see section 10.3 for details). To print (or preview) box labels go to Administration

: Labels : Box labels. The label style is designed to be printed on 5′′ × 8 1
8

′′
labels, two per sheet such as the

Avery® 6579 layout. An example is shown in figure 10.2.

Until dynamic label styles have been implemented, box labels will print one per page. To make use
of the second label on the page, the same sheet should be fed through the printer a second time.

10.2.3 Series barcodes

Series barcodes are printed at the top of a standard series report (see figure 10.3). These are produced through
the File : Print, or File : Print preview, menus.

Curation and Administration 57

Comments:

No comments recorded

GR38
BOX a3b8761c-bfdf-11de-a207-e37bbc4501c3

Created: October 23, 2009 10:23 AM

Label updated: July 12, 2011 9:40 AM

Object Elements # Samples

KRR 1 1

KSR 1-12 14

KSY 1-14 14

KTM 1-13 13

KYP 1 1

Grand Total 43

Figure 10.2: An example of a box label from the Cornell collection. The label provides a human readable name for the box
(GR38), a barcode for accessing the box details within Tellervo, and a summary of the samples contained within the box.

58 Tellervo: A guide for users and developers

Ring widths:

Wood Completeness:

- Pith is incomplete.

- A total of 54 rings were measured.

- Heartwood is incomplete

- Sapwood is absent

- Bark is absent.

Interpretation:

- The first ring of this series begins in relative year 1001.

- The pith of this radius was laid down in exactly relative year 1001 and died after relative year 1055.

Element and sample details:

- Taxon: Quercus

- Element type: Post

- Sample type: Cross section

C-YMT-1399-A-A-2
Istanbul, Yenikapi Metro

SERIES 191dd500-af8b-11df-9b25-1bfba0ced0da

Created: August 24, 2010 10:23 AM

Last Modified: August 24, 2010 10:23 AM

Measured by: Leann Canady

Supervised by: Charlotte Pearson

1/100th
mm

0 1 2 3 4 5 6 7 8 9

1001 132 79 55 160 111 172 198 177 130

1010 176 166 160 179 255 236 232 273 188 191

1020 182 109 113 92 73 75 69 84 98 121

1030 123 146 239 177 177 198 196 230 236 241

1040 208 161 161 206 246 253 173 189 164 185

1050 149 112 143 145 108

= Single Pinned = Double Pinned

Figure 10.3: An example of a report showing barcode and basic metadata about a series.

Curation and Administration 59

10.3 Storage boxes

Tellervo uses the term ‘box’ to refer to the collection of samples you archive. Many labs (including Cornell) use
cardboard bankers boxes to store samples once they are completed, but the same box concept could refer to draws
or shelves in your collection.

10.3.1 Creating and editing boxes

Records for boxes in the system are created and edited through the Administration : Curation : Box details menu.
To editing an existing box, you can scan the barcode label on the box, or select from the list. To create a new box,
click the ‘Create new box’ button and enter its details. There is no restriction on what boxes should be called, but
it is probably easiest if you use some sort of numerical sequence to assist with organizing the boxes in your store.
The Cornell Tree-Ring Lab, for example, uses a two part name for each, the first being the year of collection, the
second being a sequential number (e.g. 2009-11).

The contents tab lists all the samples that have been assigned to this box. To add new samples, simply click the
‘Add sample to box’ button and scan the sample’s barcode.

10.3.2 Inventory

An important feature of any collection management system is the ability to perform an inventory on the collection.
Even with the most robust system, samples will always go astray so its important to be able to periodically check
that the boxes contain what you expect.

The ‘Contents’ tab of the Box details dialog contains a feature to assist with this. Next to the list of samples that
are recorded as present, there is a temporary checklist column. By checking the boxes for each sample actually
stored in the box it is easy to see which samples have been mislaid. If the ‘Mark unchecked as missing from box’
button is then pressed, the date and time the discrepancy was noted is then recorded in the comments field for
the box.

10.3.3 Checking boxes in and out

Tellervo includes function for checking boxes in and out of a store, much like when a book is borrowed from a
library. The Administration : Curation : Check out box from store and Administration : Curation : Return box
to store menus do just this. You can either scan the box barcode or select the box from the drop down menu.
These options record when a box is checked out/in and by whom. These details can be seen by users in the box
details dialog.

10.3.4 Locating samples

As you might expect, Tellervo also includes a function for locating your physical samples. This is available in the
Administration : Curation : Find a sample menu. There are three methods for locating a sample: via barcode;
via lab code; and manually by object/element/sample.

If you have the sample in your hand and you simply want to know which box it should be returned to you can
scan the barcode. If you are looking for a sample and you know its lab code then you can enter this instead.
Alternatively, you can use the drop down menus to search for one or more samples at once. For instance, you can
locate all the samples for a particular object and element.

Chapter 11

Indexing

Trees tend to put on big rings when they’re young, and smaller rings when they get older. Some trees put on
very large rings, while others put on very small rings. These variations in growth can make it difficult to crossdate
samples. Some dendrochronologists therefore prefer to index or normalize their ring width data before combining
into chronologies.

Indexing is a manipulation you can perform on your data to make it easier to crossdate.

The procedure for indexing is as follows:

1. You open a series (raw data)
2. You ask Tellervo to index it
3. Tellervo shows you some possible curves
4. You pick a curve (based on its graph, statistical scores, and your expectation of how the tree is growing)
5. Tellervo converts each year’s ring width to a ratio of actual growth to expected growth for that year
6. You save the series (indexed data)

Indexing changes the units of a dataset. A raw sample has units of hundredths of a millimeter (0.01 mm) or
microns. An indexed sample has units of parts per thousand (0.1%, or ‰).

This doesn’t cause a problem with crossdating. The t-score normalizes all samples as part of its test, and the
trend only cares if the values are increasing or decreasing. For more information on crossdating and chronology
building, see chapter 12. It does, however, cause a problem with ‘summing’ since summing needs to take the
average (what’s the average of 1mm and 75%?). Therefore, the samples in a sum must be either all raw, or all
indexed.

11.1 Types of index

There are a total of six different indexing methods available in Tellervo:

11.1.1 Exponential Index

This is the most commonly used index as it matches the way trees typically grow. Quickly when young and then
gradually slower. An exponential index is therefore by far the most common index you’ll use as 9 times out of 10
this will be the best choice.

This index tries to fit an equation of the following form to your data, searching for the best values of a, b and p.

I y = a+ be− px

62 Tellervo: A guide for users and developers

This is sometimes called a negative exponential index, because the exponent is negative. Tellervo
doesn’t require that the exponent is negative, but if it’s not, using this index probably isn’t such a good
idea; it means the tree is generally getting bigger, not smaller.

The least-squares algorithm used comes from Cormen et al. (2001); the matrix solving function comes from
Van Loan (1999).

Sometimes the exponential index does a lousy job. If a tree is living in a crowded area and the trees around it
get cut down, suddenly it has much better growing conditions, so it might grow faster as it gets older, instead of
slower. If you tried to use an exponential curve on a tree like this, it would exaggerate this growth, and useful data
would get flattened out.

The result is you’re looking at the growing conditions of this one tree, so it’s not going to crossdate as well.

Alternatively, imagine you are working on a tree with a fire scar that has a few very large rings. An exponential
index wouldn’t take much notice of this, because most of the sample is still shaped like an exponential curve, but
when you applied it they would be grossly out of proportion. For these types of samples, there are other indexing
algorithms available.

11.1.2 Polynomial Index

When you ask Tellervo to perform a Polynomical Index it tries to fit a polynomial curve to your data using the
following equation:

I y = anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x + a0

You decide what degree polynomial, n, to use and Tellervo automatically finds the best values of a0, a1 . . . an, to
fit your data.

11.1.3 Horizontal Line Index

This only changes the magnitude not shape of the curve and is used when you would link to combine raw and
indexed data together. It is a special case of polynomial where the horizontal line is equal to the average value.

I y = xavg

This index is not used for crossdataing because dividing each value by the same value doesn’t change the shape of
the curve, only its magnitude. A horizontal line index is, however, useful because every element in a sum must use
the same units, either raw or indexed. Therefore if you want to include a raw sample with an indexed sample then
a horizontal line index can be used to convert the raw sample without otherwise altering the shape of the curve.

11.1.4 Floating Index

This is a running average of the 11 surrounding years. The adaptive index is generally used as a ‘last resort’ when
both exponential and a high-degree polynomial have failed. It is simply the average of the eleven surrounding
years:

I indi = 1/11(data− i− 5 + datai−4 + . . .+ datai+4 + datai+5)

This index was originally called floating average, probably in reference to the fact that the index curve “floats”
around, not following any explicit y = f(x)-type formula. But people tended to call it floating, and then floating-
point, which means something very different. You might still hear people calling this index by these other names.

Indexing 63

11.1.5 High-Pass Filter Index

The high-pass index is a more general case of the adaptive index. Instead of simply taking the average of 11
values, it takes a weighted average. It’s an example of a “high-pass” filter because high-frequency signals can pass
through, but low-frequency signals are filtered out.

The default is “1-2-4-2-1”, meaning:

I indi = 1/10(datai−2 + 2·datai−1 + 4·datai + 2·datai+1 + datai+2)

This comes from Cook and Peters (1981) who used it as a discrete filter before moving to a cubic spline. Note
that almost half (4/10) of the computed value is simply its old value. The high-pass index is nearly the same as
the input, so the χ2 values are usually the lowest, therefore do not choose this index solely on a low χ2 value.

11.1.6 Cubic Spline Index

Cubic splines are a very specific type of high-pass filter. A cubic spline curve is created by combining a collection
of cubic (3rd degree polynomial) functions.

There are many methods for constructing cubic splines through a dataset. The algorithm used by Tellervo has a
parameter, s, which controls how tightly the spline fits the data. A lower value fits the data more tightly, a higher
value fits the data more loosely. Therefore, s=0 fits the data exactly while s=1 is a simple line. A good starting
point for dendro data seems to be around s = 1x1016.

Cubic splines were first used for dendro by Cook and Peters (1981) using an algorithm from Reinsch (1967).

You can change the s-value used for the subic spline in the preferences. You might use a cubic spline in the same
cases you would use a high-pass filter e.g. when the sample doesn’t generally follow an exponential or polynomial
curve very well, perhaps due to a fire scar.

11.2 Indexing data

To index your data, first you need to open the series you would like to index. Next choose Tools : Index to display
the indexing dialog (figure 11.1).

Figure 11.1: Indexing dialog showing the original data in blue, the exponential index of this data in green, and the normalized
data in red.

64 Tellervo: A guide for users and developers

From the indexing dialog you can then choose which type of index to apply to your data. The table on the right
shows the available options along with the χ2 and p values to help you choose the correct index to use. The graph
shows your original data, the index line and the result of applying the index to the data and changes dynamically
as you pick between different indexing methods. Once you have decided which index you want to use, select it,
and click OK ensuring that you have given your data series a new version number.

Chapter 12

Crossdating and chronology building

All algorithms work in pretty much the same way. There’s a “fixed” sample, and there’s a “moving” sample.
Imagine you have printouts of their graphs on translucent paper. The fixed graph is taped to a table, and you can
slide the moving sample left and right. This is actually how it was originally done, on graph paper, with one inch
per decade. Start with the moving sample to the left of the fixed sample, overlapping it by 10 years. Look at how
well the graphs match: this is the first score that’s computed. Slide the moving sample to the right one year and
so on until you reach the end.

You could do it all simply by moving graphs and eyeballing the crossdates like this but there are hundreds of
sites and millennia of chronologies you’ll want to crossdate your samples against, so that would take a while.
Tellervo has a few algorithms to find likely crossdates almost instantaneously. They aren’t perfect, though, and all
crossdates should be inspected visually to ensure they are a good fit.

12.1 Algorithms

Tellervo includes a total of five different algorithms for crossdating:

12.1.1 T-Score

The t-score is the classic crossdate. Unfortunately, every dendro program seems to have a slightly different
implementation of t-score, so the numbers you get from Tellervo might not be exactly comparable to the numbers
from other programs.

The version Tellervo uses is based on the algorithms given in Baillie and Pilcher (1973), though with some apparent
bugs corrected (Ken Harris pers. comm.). In the following equations, x0, x1, x2, . . . are the data of the fixed sample
in the overlap, y0, y1, y2, . . . are the data of the moving sample in the overlap, and N is the length of the overlap.

The first step is to make each dataset bivariate normal by replacing each value with the mean of the values around
it, and then taking its natural logarithm. The preparation for the t-score is therefore done as follows and is done
to both the fixed and moving series:

I xi ← xi−2+xi+xi+1+xi+2

5

I xi ← ln(xi)

The student’s T computation is then done as follows:

I sxy = Σxiyi −N(xi − xavg)(yi − yavg)

I sxx = Σx2i −N(xi − xavg)2

66 Tellervo: A guide for users and developers

I syy = Σy2i −N(yi − yavg)2

I r =
sxy√

(sxxsyy)

I t = r
√

N−2
1−r2

The t-score is an explorative statistic. There is no univerally accepted threshold above which a t-score is regarded
as significant, however, Baillie and Pilcher (1973) suggest a value of 3.5. For more information see Wigley et al.
(1987).

12.1.2 Trend

Trend is another popular crossdate statistic. It computes the percentage of years with the same trend (going-up- or
going-down-ness). Scores greater than 60%-70% are good. Trend is also referred to as ufigkeitsko-Gleichläeffizient,
Gleichläufigkeit and Eckstein’s W.

The trend is the simplest crossdate. For each sample, it computes the trend of each 2-year interval (1001-1002,
1002-1003, and so on). The trend of a 2-year interval is simply whether the next ring is larger, smaller, or the
same. The trend score is the percentage of intervals in the overlap which are the same. For example, a 75% trend
(a very good score, by the way) means that for 75% of the intervals in the overlap, both samples went up in the
same years and down in the same years.

If one sample stays the same, and the other increases or decreases, Tellervo considers that to be halfway between
a same-trend and different-trend, and gives it half a point. Trend is a “non-parametric” algorithm, because it only
takes into account if a given ring is bigger or smaller than the previous one, not by how much. To the trend, a
drop of “100 1” looks exactly the same as a drop of “100 99”. Two completely random samples will have a trend
of 50%, on average. So you’d expect a trend must be greater than 50% to be significant.

According to Huber and Fletcher (1970), a trend is significant if:

1. tr > 50% + 50√
N

– For example a pair of samples with a 50-year overlap needs a 50 + 50
√

50 = 57.1% trend

to be significant, but at a 400-year overlap need only a 50 + 50
√

400 = 52.5% trend. In practice, however,
this doesn’t tend to work terribly well. Using this scheme, there are typically about three times as many
“significant” trend scores as t-scores, and users want this narrowed down a bit more. So take σ = 3 and
use:

2. tr > 50% + 50σ√
N

– This gives about the same number of significant trend scores as t-scores.

Trends are also used in reconciliation. After they’ve been reconciled, both readings of a sample should have 100%
trend.

12.1.3 Weiserjahre

The Weiserjahre algorithm is used for crossdating summed samples (chronologies) against single samples. All of
the algorithms that have been mentioned so far only compare the ring widths. This works fine for raw samples,
but when crossdating summed samples, there’s a lot more information available, namely, the Weiserjahre data.
Wouldn’t it make sense to count a [20] 19× 1 ring more heavily than a [1] 1÷ 0 ring? 19 out of 20 samples think
it’s an increasing year, not just 1.

This is what the Weiserjahre cross does: for each possible overlap, it starts by counting the number of significant
intervals of the master for that overlap. A significant interval is one with at least 3 samples, where at least 75%
of them have the same trend. Then it computes the percent agreement (like the trend) between the master and
the raw sample for only those significant years of the overlap. Of course, for the trend of the master, it doesn’t

Crossdating and chronology building 67

use the trend of the master; it uses the trend of the majority of its elements. They’re usually the same, but not
necessarily.

Another way to think about the Weiserjahre crossdate is: it’s like a trend, but ignoring years where the sum has
only 1 or 2 samples, or where there isn’t an overwhelming trend in the sum. Also like the trend, the results are
given as a percentage.

12.1.4 R-Value

The R-value, or correlation coefficient, is a crossdate which you’ll almost never use. It’s not terribly useful to
dendrochronologists, but statisticians might want to know its value, so Tellervo makes it available.

The R-value is used in the T-Score, the T-score being defined in terms of the r-value and the overlap, N. If you
look at the equations for calculating a T-Score you will see on the penultimate line:

I r =
sxy√

(sxxsyy)

An r-value can range from 0.0 (no correlation) to 1.0 (perfect correlation).

12.2 Crossdating series

12.3 Managing chronologies

Chapter 13

The Tellervo server

For basic day-to-day running of the Tellervo server, you simply need to make sure that the server is running.
All other interaction and managment (creating users, granting permissions, accessing data) is done through the
Tellervo desktop application. This section, however, outlines a number of aspects of the server that advanced users
may find useful.

13.1 Backing up and restoring your database

As with any computer system it is important for you to back regular backups of your data to guard against hardware
(as well as human!) errors. The two main methods for doing this are outlined below:

13.1.1 Backup whole Virtual Appliance

The simplest method is to make a copy of your entire Virtual Appliance, but this does have a number of drawbacks.
The first is that you need to shut down your server before you can make the backup so this is only possible if
server ‘downtime’ is not a problem for your lab. The second drawback is that it makes a copy of your entire server
including the whole operating system, therefore each backup takes a lot more space.

1. Open VirtualBox
2. If you server is running you will need to do a full shutdown. From the server console type sudo halt then

once it has halted you can close the console window and select ‘Power off the machine’.
3. Select your virtual machine in the list on the left and go to File : Export Appliance.
4. Follow the wizard, specifying a file where you’d like to back the server up to. Keep in mind that this will

contain a complete copy of the server (including operating system) so could be 1Gb or more.

13.1.2 Restoring a Virtual Appliance backup

If you have followed the instructions in section 13.1.1 to backup your Virtual Appliance the steps to restoring your
server are very similar to how your initially installed it. Simply open VirtualBox, then go to File : Import Appliance
and select the backup file that you made. Follow the wizard and it should restore your server. You can restore
onto the same computer that was originally running the virtual machine (remember to give it a new name though
if this is the case) or alternatively to any other computer with VirtualBox installed. This method can therefore be
used to share entire databases.

70 Tellervo: A guide for users and developers

13.1.3 Backup PostgreSQL database

The more standard way of backing up your database is to do a dump of the PostgreSQL database itself into a large
text file. This is a little more involved, so it is only recommended if you are familiar with command line and/or
Linux. You can create the file with a command like the one below, but you should read up on pg dump so that
you understand the possible options that you can use.

pg dump -Fc /folder/and/file/to/make/mybackup.sql database name

For example the following line will backup the database called ‘tellervo’ (the standard name for your database)
into a file called backup.sql in the tmp folder. Keep in mind that the tmp folder is cleaned each time the server is
booted.

pg dump -Fc /tmp/backup.sql tellervo

It then makes sense to transfer this backup off the virtual machine onto a separate computer as per normal backup
procedures. If you are familiar with Linux you could do this by using SCP or similar transfer protocols. If you
just want a quick and dirty method, you could save the backup.sql file to /var/www/tellervo-server/ and then you
can access the file from any web browser at the address http://your.server.ip/tellervo-server/backup.sql. Keep
in mind though that anyone could potentially download the file as long as it is left there so you will want to
delete it as soon as you have transferred it. You can do this from the server command line by typing sudo rm
/var/www/tellervo.org/backup.sql.

13.1.4 Restoring a PostgreSQL database

To restore your database from a backup file you can use the standard PostgreSQL command line tool psql to
populate an empty database:

createdb tellervo new

psql tellervo new < /tmp/backup.sql

13.2 Upgrading the server

Upgrading the server requires you to type a few commands into the Linux command line. First of all please ensure
that you back up your Virtual Appliance and/or database before continuing. We will always endeavour to make
sure that nothing happens to your database, even if the upgrade fails for some reason (in which case the system
should roll back to your previous version again), but things don’t always go to plan.

1. Log in to your Tellervo server console

2. Type the following commands:

cd /tmp

wget http://url.of.new.server.file

dpkg --install tellervo-server-X.X.X.deb

The URL of the new file can be obtained from the Tellervo website.

It would be possible for us to set up an mechanism which server administrators could opt-in to to upgrade Tellervo
servers automatically. We may deploy this in the future, but we’d rather keep the process of upgrading as a

The Tellervo server 71

conscious decision for the foreseeable future, but especially until we are confident that the upgrade process will
not compromise your database.

13.3 Graphical Interface to the Virtual Appliance

For those of you that are unfamiliar with Linux, the basic command line prompt is not likely to be very comfortable.
If you are interesting in looking at the server in more detail you may therefore prefer to install a full graphical
interface. Unlike Windows, there are a number of different graphical interfaces (or desktops) to choose from in
Linux, the most popular being Gnome and KDE. To install one of these you need to type one of the commands
listed below. The first line installs Gnome and the second KDE. Windows users that are new to Linux may find
KDE more familiar, but Apple users may be more at home with Gnome.

sudo apt-get install ubuntu-desktop

sudo apt-get install kubuntu-desktop

13.4 Security

The basic installation of the Tellervo server includes the standard configuration for Apache, PHP and PostgreSQL.
Although these products are considered secure by default, there are a number of measures that can be taken to
make them more so. If your server is only accessible within your local intranet (e.g. behind a robust firewall) then
you may not feel it necessary to modify the standard setup. Precautions may be deemed more important if you
server is accessible from the internet. In this case it would be wise to contact your local network administrator for
further information.

13.4.1 Usernames and passwords

There are a number of default usernames and passwords setup on your server. If your server is accessible for the
internet we strongly advise you to change these defaults and anyone with knowledge of the Tellervo server could
access and compromise your machine.

System user - these are the credentials you use to log in to the command prompt in your Tellervo Virtual
Appliance. By default the user is ‘tellervo’ and the password is ‘dendrochronology’. To change this log in
to the command prompt and type passwd and follow the instructions. There is no easy way to recover this
password if you loose it.

PostgreSQL database user - these are the credentials used by the webservice to read and write to the database
and are set by the database administrator during the initial configuration of the Tellervo server. You are
only ever likely to need this again if you want to directly access the database from a third party tool like
PGAdminIII. You can reset this password from the Tellervo Virtual Appliance command prompt by typing
tellervo-server --reconfigure

Tellervo admin user - these are the admin credentials that you use to log in with in your Tellervo desktop
application. Be default the user is ‘admin’ and the password is ‘qu3rcu5’. You should change these the first
time you open the Tellervo desktop application by going to Admin : Change password.

13.4.2 Authentication and encryption

Tellervo uses a relatively sophisticated method to ensure that unauthorised users cannot access the Tellervo database
through the webservice. It is loosely based around http digest authentication and uses a challenge and response

72 Tellervo: A guide for users and developers

scheme. This makes use of cryptographic hashes (a relatively short digital fingerprint of some data but which
cannot be decompiled to retrieve the original data) and nonces (a pseudo-random string used just once). All
hashes used in the Tellervo webservice use the MD5 algorithm. This decision will be periodically reviewed to
ensure that MD5 is the most appropriate and secure algorithm to use. Whilst an MD5 hash of a short phrase can
be compromised, the length and randomness of the original data means with current cracking techniques this is
very difficult. For a complete description of Tellervo’s authentication procedure see section 18.1.

The default Tellervo server setup, however, uses standard HTTP protocol to communicate between the server
and the desktop application. This is the same protocol used for the majority of web pages on the internet and a
determined hacker could eavesdrop on this communication. Depending on how important and private you perceive
your data you may choose to use Secure Socket Layer (SSL) to encrypt this communication. This is the same
technology used by websites such as online banking. To make full use of this upgrade in security you will however
also require a SSL certificate from an official licensing authority. These certificates typically cost several hundred
dollars per year.

13.5 Directly accessing the database

Although the Tellervo database is designed to only be accessed by the Tellervo desktop application via the Tellervo
server’s webservice, you may decide that you’d like to directly access the database yourself. For instance, you
may like to write complicated SQL queries to probe your database in ways not currently supported by the Tellervo
desktop client.

Any changes made to the database may have drastic consequences. We strongly recommend that
you never write changes directly to the database as this can cause loss of data and corrupt future
upgrades to Tellervo.

13.5.1 PGAdminIII

One of the easiest ways to access the PostgreSQL database is through the application PGAdminIII. This is a cross-
platform open source application for communicating with PostgreSQL databases. You can install PGAdminIII on
your desktop computer and access the remotely running database using your database user credentials.

For security reasons by default the Tellervo database cannot be accessed from computers outside of the Tellervo
server. This may sound peculiar because the webservice can be accessed from computers anywhere on the web,
but the database is actually accessed by the webservice, which is essentially a user running on the same computer
as the database. To access the database directly from a remote computer you must therefore open access first.
This is done by adding an entry to the file ‘/etc/postgresql/9.1/main/pg hba.conf’. My personal command line
text editor of choice is vim, but it is a little confusing to the uninitiated. If you are unfamiliar with command line
text editing you are probably best to use pico:

sudo pico /etc/postgresql/9.1/main/pg hba.conf

Scroll down passed all the comments, to the bottom of the file. Add the following line:

host all all IPADDRESS/32 md5

Make sure you replace IPADDRESS with the IP address of the computer you are trying to connect from. This is
just one style of pg hba.conf entry. There are many others which allow you to restrict to specific users, computers,
networks etc. See the online PostgreSQL documentation for more details. Save your changes and exit by doing
CTRL+X.

Next you need to make sure the PostgreSQL server is listening to requests from other IP addresses. To do this
you need to edit the postgresql.conf file like this:

The Tellervo server 73

sudo pico /etc/postgresql/9.1/main/postgresql.conf

making the following changes:

Old line - #listen_addresses = ’localhost’

New line - listen_addresses = ’*’

Make sure you remove the hash character at the beginning of the line. Save the file and finally restart the Tellervo
server:

sudo tellervo-server --restart

You should now be able to access your database through PGAdminIII. To do this open the application and go to
File : Add server. Specify your server’s IP address is the host field, and your database username and password.

13.5.2 ODBC

It is also possible to connect to your Tellervo database via an ODBC connection. This allows limited access to the
database from a variety of database applications including programs like Microsoft Access for which further details
are given here. To use ODBC you will need to install the PostgreSQL ODBC driver (http://www.postgresql.
org/ftp/odbc/) on your desktop computer.

Once you’ve installed the driver you can then open a blank database in Access and go to Files, Get external data
then Link tables. In the file dialog box change the file type to ODBC Databases(). Next, select the PostgreSQL
Unicode driver, then fill out the server details. You should then be able to open the tables and views from the
Tellervo server database directly from within Access as if they were local tables. Be warned though that Access
and ODBC have many limitations compared to PostgreSQL, especially with regards data types. For this reason
we strongly recommend using this for read only purposes. Using the ODBC connection to write changes to your
PostgreSQL database is quite likely to cause serious issues.

13.5.3 PSQL

The final, and most advanced method is to use the psql client on your server. This is a command line client which
can be used to interrogate the database. If you’re not already familiar with psql it is unlikely that this is a good
method for you to use!

13.6 Tellervo server configuration

13.6.1 Standard server configuration

The Tellervo server can be configured using the command line tool that is installed on both the Virtual Appliance
and native server installs. It is the same tool that is run at the end of the native server install, but can be run at
any time to reconfigure or test your system. It must be run with superuser privileges therefore sudo is required
before the command. For instance to get help on usage type:

sudo tellervo-server --help

Possible options to pass the server are:

I ‘--help’ – Display a list of the possible options
I ‘--version’ – Display the version of the Tellervo server webservice and database currently installed
I ‘--test’ – Run tests on the current configuration

http://www.postgresql.org/ftp/odbc/
http://www.postgresql.org/ftp/odbc/

74 Tellervo: A guide for users and developers

Figure 13.1: Example of the output from the tellervo-server test.

I ‘--configure’ – Configure the Tellervo server from scratch.
I ‘--reconfigure’ – Reconfigure the Tellervo server. This should be done if the database name or user

credentials change, or if the
I ‘--network’ – Check network settings and reset if necessary
I ‘--emptylog’ – Clean the log files and database table logs
I ‘--sysconfig’ – Generate the systems configuration file
I ‘--set-db-pwd’ – Reset the PostgreSQL database password
I ‘--set-admin-pwd’ – Reset the Tellervo desktop login for the admin user
I ‘--start’ – Start the Tellervo server
I ‘--stop’ – Stop the Tellervo server
I ‘--restart’ – Restart the Tellervo server
I ‘--upgrade-db’ – Run database upgrade scripts
I ‘--add-wms-name’ – Name of a web mapping server to add to database
I ‘--add-wms-url’ – URL of a web mapping server to add to database
I ‘--del-wms-name’ – Name of a web mapping server to delete from database

Figure 13.1 shows an example of asking the server to test the configuration, with all tests passed successfully.

The command line tool stores the majority of settings in the config.php file stored in the base directory of your
Tellervo webservice. In theory you could make changes direct to this file, but we do not recommend this unless
you know exactly what you’re doing.

13.6.2 Advanced server configuration

In addition to the standard configuration options offered on the command line there are a number of other options
that can be set. These are not accessible via the command line because as a rule they should only be altered by
the Tellervo developers. They are primarily for use by the developers as an alternative to hard coding values within
the server files. For instance, one such value is the TRiDaS version being used by the server. This value will only
ever need to be changed alongside other substantial changes to the code.

The Tellervo server 75

13.7 Managing map services

There is currently no interface in Tellervo desktop that lets you specify the WMS mapping services that should
automatically be available to your Tellervo users. Each user can add servers temporarily (see section 7.3) but these
will disappear at the end of each session.

To add web mapping services for all uses to a database, you need to use the Tellervo server command line client.
Two parameters are needed: the friendly name you’d like to give the server; and the URL. A new WMS can be
added like this:

sudo tellervo-server --add-wms-name NAMEOFSERVER --add-wms-url URLOFSERVER

Similarly a WMS can be removed with the command:

sudo tellervo-server --del-wms-name NAMEOFSERVER

Chapter 14

Help and support

14.1 Getting help

At the moment your options for getting help are largely limited to contacting Peter Brewer! Once the user-base
of Tellervo expands we will set up forums and mailing lists to assist.

14.2 Support for future development

Both Tellervo Desktop and Server are free software available under the General Public License v3 (see appendix Z).
This means you are free to use Tellervo in both academic and commercial environments. However, when we talk
about ‘free software’ (as the license explains) we are talking about freedom of use, not free as in price. Tellervo
has inevitably cost a great deal to develop over the years and while you are not asking for a direct contribution,
we do need your support for future development.

If there is particular functionality that you would like to see implemented in Tellervo, under the open-source model
this can be done in a number of ways:

Implement the feature yourself! – If you are able to program in Java then we would be delighted to assist you
to implement new features. You could do this in isolation∗ but we hope you will do this collaboratively with
us and make the new feature available to the rest of our community. Please contact the developers and we
will organize a developers Github account for you to contribute to the source code.

Request a feature from the developers – Contact the Tellervo developers and discuss the feature that you
would like implemented. If the feature is relatively easy to implement and/or deemed useful for the labora-
tories that develop Tellervo then we may be able to implement the feature for you.

Pay a third party developer – If you know a third party developer that can make the changes for you then this
is also possible. Again, we would ask that you do this in consultation with the existing developers so that
any improvements can be contributed back to the community.

Collaborative development – If you have an idea for exciting new functionality we would be pleased to discuss
the possibility of collaborative development–for example as part of a grant funded project. The chances of
success when applying for infra-structure projects from federal agencies are much greater when proposed as
part of a collaborative multi-laboratory project.

∗Note that although the GPL license allows you to develop Tellervo separately, it does include clauses that require you to make the
source code of the software you create also freely available under GPL or a compatible license. If you ‘fork’ the code in this way you
will find it increasingly difficult to benefit from improvements made to the official Tellervo code.

Part II

Developers guide

Chapter 15

Developing Tellervo Desktop

Tellervo is open source software and we actively encourage collaboration and assistance from others in the com-
munity. There is always lots to do, even for people with little or no programming experience. Please get in touch
with the development team as we’d love to hear from you.

15.1 Source code

This section describes how to access the Tellervo source code, but as you are no doubt aware it is normal (if
not essential) to use an integrated development environment for developing any more than the most simplistic
applications. If you plan to do any development work, it is probably best to skip this section and move straight on
to the ‘Development environment’ section which includes instructions for accessing the source code directly from
your IDE. If, however, you just want to browse the source code please continue reading.

The Tellervo source code is maintained in a Git repository at github.com. The simplest way to see the source
code is via the web viewer on the Github website: https://github.com/ltrr-arizona-edu/tellervo. You
can also examine the Javadoc documentation of the code on the Tellervo website.

An overview of the development can be seen through the Tellervo Openhub pages at https://www.openhub.

net/p/tellervo. Openhub provides graphics summarizing the code over time, including timelines of commits by
user.

15.2 Development environment

The IDE of choice of the main Tellervo developers is Eclipse (http://www.eclipse.org). There are many other
IDEs around and there is no reason you can’t use them instead. Either way, the following instructions will hopefully
be of use.

We have successfully developed Tellervo on Mac, Windows and Linux computers over the years. The methods for
setting up are almost identical.

The first step is to install Eclipse, Java 7 JDK, Subversion and Maven. These are all readily available from their
respective websites. On Ubuntu they can be install from the command line easily as follows:

sudo apt-get install eclipse subversion openjdk-7-jdk maven2

Once installed, you can then launch Eclipse. To access the Tellervo source code you may need to install one or
more Git plugins. Go to Help : Install new software then select the main Update site in the ‘Work with’ box, then
locate the Git plugins under collaboration. You will also need to install the m2e Maven plugin to Eclipse. You may

https://github.com/ltrr-arizona-edu/tellervo
https://www.openhub.net/p/tellervo
https://www.openhub.net/p/tellervo
http://www.eclipse.org

82 Tellervo: A guide for users and developers

need to add the Maven update site as this plugin may not be available in the main Eclipse repository. You can
do this by clicking the ‘Add’ button and using the URL http://m2eclipse.sonatype.org/sites/m2e. Once
installed you will need to restart Eclipse before continuing.

Next you need to get the Tellervo source code. Go to File : Import : Git - Projects from Git, then in the dialog
select ‘clone from URI’. Enter the URI of the Tellervo repository: https://github.com/ltrr-arizona-edu/

tellervo.git, select the master branch and ‘import existing projects’ from the subsequent pages.

To launch Tellervo, you will need to Run : Run Java application. Create a new run configuration with the main
class set to ‘org.tellervo.desktop.gui.Startup’.

15.3 Dependencies

Tellervo uses the Maven build system due to it’s excellent handling of dependencies. This has become more of an
issue as the Tellervo project as grown, as it is now dependent on over 80 different open source libraries.

In an ideal world, any library that your code is dependent on should be available in central Maven repositories and
downloaded and installed seamlessly as part of the build process. Maven should also handle transient dependencies
(i.e. dependencies of dependencies) automatically. Therefore if a developer knows he needs the functions within
a particular library, he simply needs to supply the details of this library without having to worry about the other
libraries that this new library is in turn dependent on. Maven also manages versions much more efficiently. If a
library is dependent on a particular version of another library this is specified within the Maven build mechanism.
This means it is much easier to keep dependencies up-to-date without having to worry about the cascading issues
that upgrades often have. In short, Maven is intended to save developers from ‘JAR hell’.

In practice, life is not necessarily that simple. Although Maven assists developers in many ways, it also has its
own particular quirks and annoyances. The main problem is how to handle the situation when the dependencies
you need are not available in central repositories. To solve this you either need to install these jars into your local
Maven repository, or make them available in a 3rd party Maven repository. For the ease of developement we have
set up a Maven repository as part of the TRiDaS project which can be browsed at http://maven.tridas.org/.
This repository is already configured within the Tellervo project so assuming this repository is still alive, then your
Tellervo project should automatically build. If not, then you will need to install the few non-standard jars. These
jars will continue to be maintained in the Tellervo Github repository and can be installed as follows:

I On your command line navigate to the Libraries folder of your Tellervo source code
I On Linux and Mac you can then simply run the MavenInstallCommands script
I On Windows you will need to manually run the commands located in this file

For the record, Tellervo currently depends upon the libraries listed in table 15.1. The table also specifies the
licenses that these libraries are made available under.

15.4 Code layout

Tellervo has been actively developed since 2000, so has seen contributions by many different developers. Coding
practices have also changed in this time so inevitably there are some inconsistencies with how the source code
is organized. For instance, the most recent interfaces have been implemented using the Model-View-Controller
(MVC) architecture whereas earlier interfaces contain both domain and user logic in single monolithic classes.

http://m2eclipse.sonatype.org/sites/m2e
https://github.com/ltrr-arizona-edu/tellervo.git
https://github.com/ltrr-arizona-edu/tellervo.git
http://maven.tridas.org/

Developing Tellervo Desktop 83

Library License

Apache commons lang Apache 2.0
TridasJLib Apache 2.0
Batik Apache 2.0
RXTXcomm LGPL
JDOM Apache 2.0
Swing layout LGPL
Log4J Apache 2.0
JNA LGPL
Apache mime 4J Apache 2.0
Commons codec Apache 2.0
Http Client LGPL
Http core Apache 2.0
Http mime Apache 2.0
Jsyntaxpane Apache 2.0
L2fprod-common-shared Apache 2.0
L2fprod-common-sheet Apache 2.0
L2fprod-common-buttonbar Apache 2.0
iText GAPL
PDFRenderer LGPL
DendroFileIO Apache 2.0
Java Simple MVC MIT
JGoogleAnalyticsTracker MIT
gluegen BSD
JOGL BSD+ nuclear clause
WorldWindJava NOSA
SLF4J MIT
JFontChooser LGPL
MigLayout BSD
PLJava BSD
PostgreSQL PostgreSQL License (BSD/MIT)
Forms BSD
JXL LGPL
Netbeans Swing Outline GPLv2

Table 15.1: Tellervo’s primary and major first order dependencies along
with the licenses under which they are used. Note there are a total of 82
libraries upon which Tellervo draws.

Library License

Apache commons lang Apache 2.0
Launch4J BSD/MIT
NSIS zlib/libpng
Ant Apache 2.0
Eclipse Eclipse Public License - v1.0
ResourceBundle Editor LGPL
M2Eclipse Eclipse Public License - v1.0
Subversive Eclipse Public License - v1.0

Table 15.2: Additional tools/libraries typically used in the development of
Tellervo.

84 Tellervo: A guide for users and developers

Perhaps the most important inconsistency to understand is due to the transistion to the TRiDaS data model. In
earlier versions of Tellervo used the concept of a ‘Sample’∗ to represent each data file. Although large portions of
Tellervo have been refactored to use the TRiDaS data model classes, there are still some places where the Tellervo
Sample remain.

15.5 Multimedia resources

Tellervo includes infrastructure for multimedia resources such as icons, images and sounds within the Maven
resource folder ‘src/main/resources’. The most extensive is the Icons folder which contains many icons at various
sizes ranging from 16× 16 to 512× 512 as PNG format files. The icons are accessed via the static Builder class.
This has various accessor functions which take the filename and the size required, and return the icon itself or a
URI of the icon from within the Jar.

15.5.1 Ring remarks

There are two types of ring remarks in Tellervo: TRiDaS controlled remarks and Tellervo controlled remarks. The
end user does not know the difference between the two, the only difference between them is how they are handled
behind the scenes. TRiDaS remarks are those designated in the TRiDaS schema, whereas Tellervo remarks are
those defined specifically for Tellervo. They are represented differently in TRiDaS files like this:

<tridas:remark normalTridas="double pinned"/>

<tridas:remark normal="Tellervo" normalStd="insect damage" normalId="165" />

To add a new remark type to Tellervo you will need to first enter it in the database table tlkpreadingnote specifying
the vocabulary as ‘2’ (Tellervo). To display a custom icon for this remark in the software, you will need to
add a 16 × 16 and a 48 × 48 version to the resources an then add an entry to the TellervoRemarkIconMap in
org/tellervo/desktop/remarks/Remarks.java. The 16× 16 icon is used in the editor interface, and the 48× 48 in
PDFs.

15.6 Translations

There is internationalization infrastructure in place to enable Tellervo to be offered in multiple languages. This is
done through the use of Resource Bundles, one for each language. Within the code, whenever a string is required,
it is provided using the I18n.getText() function which then retrieves the correct string for the current locale. If
no string is found, then the default language (English) string is returned. There is an Eclipse plugin to assist with
this task called ResourceBundle Editor and it can be downloaded from http://eclipse-rbe.sourceforge.net.
Once installed it provides a GUI that allows you to simultaneously update all languages at once.

The I18n.getText() function can be passed variables for insertion into the translation next e.g. file name, data
value, line number etc. These can be passed either as a string array, or as one or more strings. The values are
inserted into the translation string at the points marked 0, 1 etc. For instance, the translation string “File 0 exists.
Rename to 1?” would accept two strings the first being the original filename and the second being the filename to
rename to. For obvious reasons, only non-translateable strings should be passed in this way as they will be inserted
indentically in all languages.

The Resource Bundle also includes support for menu mnemonics (to enable navigation of the menus with the
keyboard) and accelerator keys (to enable keyboard shortcuts to bypass menus). Mnemonic are set by adding an

∗To avoid confusing the original Tellervo class named ‘Sample’ will be referred to as ‘Tellervo Sample’ throughout this documentation.
Within the code all TRiDaS data model classes are prefixed with ‘Tridas’ to help avoid confusion. The ‘Sample’ class is therefore not
at all associated with the ‘TridasSample’ class.

http://eclipse-rbe.sourceforge.net

Developing Tellervo Desktop 85

ampersand before the letter of interest (e.g. &File for File) in the resource bundle. Accelerators are set by adding
the keyword ‘accel’ with the key of interest inside square brackets after the resource bundle entry. Some examples
include:

I &Graph active series [accel G]
I Graph &component series [accel shift G]

What key the ‘accel’ keyword refers to depends on the operating system Tellervo is being run on. In Windows and
Linux it is normally ‘ALT’ wheras on a Mac it is usually the Apple command key.

There are currently minimal translations for UK English, German, French, Dutch, Polish and Turkish. These are
by no means complete, and there are number of interfaces that are not internationalized at all. Further assistance
is required from native speakers to complete this task.

15.7 Logging

Logging in Tellervo is handled by the SLF4J and Log4J packages. Rather than write debug notes directly to
System.out, Log4J handles logging in a more intelligent way. First of all, each log message is assigned a log level
which are (in order of severity) fatal, error, warn, info, debug and trace. Through a log4j.xml configuration file
contained within the resources folder, we can control the level at which messages are displayed. For instance while
we develop we would likely show all messages up to and including ‘trace’, but when we deploy we might only want
to show messages up to and including ‘warn’.

Log4J also enables us to log to several places (known as appenders), e.g. console, log file or a component within our
application. It is also possible to change the level of logging depending on the log type, so minimal messages can
be sent to the console but verbose messages to the log file. Tellervo has the following four appenders configured:

I Standard log file (tellervo.log) that rolls over up to 2mb of messages

I Submission log file (tellervo-submission.log) that contains the last 100kb of verbose messages and is used by
the bug submission tool to enable users to notify developers of problems.

I Console – standard messages to the console when launched from command line

I Swing GUI – a swing component for displaying basic logs to the users in the application.

To alter the way these appenders are configured you need to edit the log4j.xml file. See the Log4J documentation
for further information.

Using the logging framework is very simple. Just define a Logger as a static variable in your class like this:

private final static Logger log = LoggerFactory.getLogger(MyClassName.class);

where MyClassName is the name of the current class. Then you can log messages simply by calling log.warn(‘My
message’), log.debug(’My message’) etc.

Before managed logging was introduced to Tellervo, debugging was often handled through the use of System.out
and System.err messages. To ensure that these messages are not lost we use another package called SysOutOver-
SLF4J. This redirects messages sent to System.out and System.err to the logging system. This is a temporary
solution so when working on older classes, please take the time to transition these older calls to the proper logging
calls. We can then remove the need for SysOutOverSLF4J.

86 Tellervo: A guide for users and developers

15.8 Preferences

It is helpful to remember certain user preferences e.g. colors, fonts, usernames, URLs, last folder opened etc so
that they don’t have to do tasks repeatedly. This is achieved through the use of a preferences file. This file is
stored in a users home folder and consulted to see if a preference has been saved, otherwise Tellervo falls back to
a default value.

The preferences are accessed from the static member App.prefs. To set a preference you can do the following:

App.prefs.setPref(PrefKey.PREFKEY, "the value to set");

where PrefKey.PREFKEY is an enum containing a unique string to identify the preference, and the second value is
the string value to set. There are other specific methods for different data types e.g. setBooleanPref(), setIntPref(),
setColorPref() etc.

To retrieve a preference, you use a similar syntax:

App.prefs.getPref(PrefKey.PREFKEY, "default value");

When you get a preference the second parameter contains the default value to return if no preference is found.
Like the setPref() method, there are also a host of getPref() methods for different data types.

15.9 Build script

Tellervo is built using Maven and is controlled through the pom.xml file stored in the base of the Tellervo source
code. Previous versions of Tellervo used Ant but managing the increasing number of dependencies as Tellervo has
grown became too onerous (see section 15.3 for more details).

Earlier versions of Tellervo were deployed using Java WebStart technology primarily because this is platform
independent and requires just a single click for a user to install. However, this was replaced some time ago with
native installers for the major platforms due to various complications associated with native libraries (see section
15.9.3) required for 3D graphics and serial port hardware. We have also found most users are more comfortable
with the standard install procedures that they are used to on their operating systems.

While you develop, Maven should automatically build Tellervo for you in the background. Specific build commands
are only required as you approach a release. We use the standard Maven ‘life cycle’ for building, packaging and
deploying Tellervo. The method for doing this in Eclipse is by right clicking on the pom.xml file and selecting Run
as : Maven package etc. If the option you want is not displayed, you will need to create an entry in the build
menu by going to Run : Run configurations, then create a new Maven Build with the required ‘goal’. The main
goals are as follows:

clean - This deletes any previously compiled classes and packages in the target folder. It should only be necessary
to run this occassionally if Maven has got a bit confused. If this is the case you may also need to force
Eclipse to clean too by going to Project : Clean...

generate-sources - Runs JAXB to generated classes representing the entities within the Tellervo schema (see
section 15.10 for further details). The classes are also generated for TRiDaS entities, but these are deleted
in favour of using those provided by the TridasJLib library.

package - This compiles Tellervo and builds a single executable JAR containing all dependencies (thanks to the
maven-shade-plugin) along with native Windows, MacOSX and Linux packages. These are all placed in
structured folders within ‘target
Binaries’ ready for deploying on a website.

install - This installs the compiled jar in your local Maven repository. This is normally used when you are building
a library that is being used by another program. It is therefore not necessary for Tellervo.

Developing Tellervo Desktop 87

deploy - This uploads the compiled jar into the maven.tridas.org repository. Note that you will need to either run
this phase from the command line or by setting up a custom run configuration in Eclipse.

15.9.1 Building native installers

A pragmatic decision was made to use the closed source Install4J install for packaging. Although an open source
tool is preferable (NSIS was used for some time), Install4J is the only tool we’ve found that gives us the one click
package and coding signing for all three target platforms (Windows, OSX and Linux). Install4J is a commercial
tool although the distributing company (EJ Technologies) provides free licenses to approved open source projects.
The lead developed (Peter Brewer) has license keys to run Install4J for Tellervo. The drawback with this approach
is that only Peter can produce the final releases.

Install4J includes a GUI application for generating and editing the configuration files used to compile the final
packages. The configuration is saved in the tellervo.install4j file within the Native folder. During the ‘package’
phase of the life cycle, Maven runs Install4J and produces Linux, OSX, Windows, and Unix installer packages in
the target/binaries folder.

15.9.2 Code signing

From Windows Vista and MacOSX 10.7 (Lion) onwards code signing has become important. Windows applications
that are not signed result in terrifying warning messages, and in OSX by default they cannot even be run. The
idea behind code signing is that it provides some level of security for the user as code signing certificates can be
revoked if an application is deemed to be malicious.

To sign an application you first need a code signing certificate. In fact you need two: one for Windows and
Java; and another for OSX as Apple only support certificates issued by themselves. A generic Windows and Java
certificate can be purchased from a variety of suppliers (e.g. Verisign etc) the Apple certificate must be purchased
through the Apple Developer Connection.

Code signing the Java jars and Windows installers is handled within Maven and Install4J. The current set up in
the Maven pom.xml file is configured for Ubuntu Linux. If you are developing on another platform you will need
to make changes.

The Java jars are signed using a Java utility called jarsigner that comes with your JDK so there is nothing to
install. The pom.xml is currently hard coded to access the certificate and key files stored on the lead Tellervo
development machine. You will need to alter these settings accordingly if you want to sign them yourself.

With the inclusion of the GateKeeper technology in OSX 10.7, code signing has become almost essential in OSX.
The jar wrapped in native apps will fail to load under default security settings and the OS reports the file as
’damaged’ because the JavaApplicationStub used has an existing signature and the contents of the package has
changed. This signature must be removed or replaced with another before the application can be launched. If a
self-signed or third party certificate is used then the GateKeeper will block the application saying that it isn’t from
a trusted developer. It is possible for users to go to the System Properties : Security and Privacy and set the
application security level to ’any developer’ but this is long and involved for novice users and results in a lot of
warnings.

The best way to fix the issue is to sign the application using an Apple certified Developer ID certificate and
GateKeeper will allow the application to launch with the default security settings. Obtaining this certificate is
a fairly involved process and requires an annual subscription to Apple Developer Connection. Note that your
certificate must begin with ’Developer ID’ to work. Other Apple-provided certificates are used for distributing your
application through the Mac App store and will not work.

The OSX code signing is only possible within OSX or on other platforms using the Install4J application. No
other cross-platform code signing is currently available. This is one of the primary reasons for choosing Install4J to

88 Tellervo: A guide for users and developers

package Tellervo. Assuming you have your Apple certification correctly installed the OSX code signing is performed
automatically by Install4J during the Maven ‘package’ life cycle. Again the location of the certificates is currently
hard coded in the pom.xml to the lead developers machine.

15.9.3 Native libraries

Although Tellervo is written in Java, it requires a number of native libraries to make use of OpenGL 3D graphics
capabilities and to access the serial port of the computer. This libraries are different for each operating system,
and they are also different for 32 and 64 bit machines. The correct libraries must be made available to the OS and
are therefore typically installed outside of the jar file as part of the installation process.

On Windows these libraries take the form of Dynamic Link Libraries (DLL) files which are normally placed in the
same folder as the executable:

I gluegen-rt.dll
I jogl awt.dll
I jogl cg.dll
I jogl.dll
I rxtxSerial.dll

On MacOSX the libraries come as JNILIB files and on Linux as .so files e.g.:

I libgluegen-rt.jnilib and libgluegen-rt.so
I libjogl awt.jnilib and libjogl awt.so
I libjogl cg.jnilib and libjogl cg.so
I libjogl.jnilib and libjogl.so
I librxtxSerial.jnilib and librxtxSerial.so

On Linux systems this are installed into the /usr/lib folder and on MacOSX they are included within the .app file.

We have experimented with techniques for packaging the libraries within the jar, then extracting the correct libraries
based on architecture and dynamically loaded at runtime. This seemed to work relatively well for JOGL/Gluegen,
but not rxtx. On certain graphics cards the JOGL/Gluegen libraries also caused a SIGSEGV fault. All native
libraries are therefore now handled by the installer for the respective platforms.

15.10 Java Architecture for XML Binding - JAXB

Java Architecture for XML Binding (JAXB) is a technology that automatically maps Java classes to XML schemas
and vice versa. It includes the ability to marshall data from Java classes to XML files and unmarshall data from
XML files into Java class representations.

JAXB is used by TridasJLib to create Java class representations of the TRiDaS data model. It is also used directly
in Tellervo to create classes for the Tellervo web service. Although the Tellervo webservice is based heavily on
TRiDaS (the two were developed in parallel), the Tellervo schema extends TRiDaS by including classes such as
dictionaries and the ‘box’ concept which are required for a lab data management application.

The Tellervo JAXB classes are automatically built by Maven using the ’maven-jaxb2-plugin’ and placed within the
‘src/main/generated’ folder. Please note that any manual changes to these classes will automatically be overriden
the next time Maven is run. If you feel that changes are necessary to these classes then it is likely that one or
more of the following needs modification:

I The Tellervo schema located in ‘src/main/resources/schemas’
I The Tellervo JAXB bindings located in ‘src/main/resources/binding’
I The specification for how JAXB is run located in the ‘pom.xml’ file

Developing Tellervo Desktop 89

Please note that JAXB supports plugins and extensions for enhancing the classes that it produces. One thing to
note in the Maven pom.xml is a nasty workaround when running JAXB. As the Tellervo schema depends on the
GML and TRiDaS schemas, these classes are also built by JAXB. These classes however are already provided by
the DendroFileIO library. It should be possible to use a feature called ‘episodes’ to handle this but this seems
buggy and causes issues. For now, we use an antrun task to delete the duplicate classes immediately after they
are produced.

15.11 Java version

Tellervo requires Java 7 or later to run. Support for Java 6 was dropped following it’s end of life in 2013.

Tellervo will continue to support Java 7 for the near future although it too reached it’s end of life in 2015. We
recommend you use the most recent version of Java possible for security reasons.

Tellervo has been tested with Java distributions from both Oracle and OpenJDK.

15.12 Developing graphical interfaces

Like the rest of the code, a number of different styles and methods have been used for the creation of interfaces in
Tellervo. Many of the earlier interfaces were hand coded, but in recent years WYSIWYG graphical designers have
been used to enable the creation of more complex designs. Most interfaces are now Swing-based although AWT
widgets are used in places.

Some interfaces were created using the graphical designed in Netbeans IDE. These can be identified by the presence
of companion .form files and warning comments in the code indicating which sections are autogenerated. The
major drawback with the Netbeans form designer is that it cannot cope with externally made changes. If changes
are made to the files outside of Netbeans, then the Netbeans form designer can no longer edit these files so please
make sure you are certain this is how you want to proceed. The classes generated by Netbeans are typically used
by a subclass via inheritance so that any changes can be external to the form designer generated files.

More recently the Google WindowBuilder Pro tool has been used for interface design. This has the benefit of
(usually) being able to parse existing code enabling the modification of existing dialogs. WindowsBuilder does
have its quirks though so make sure you keep up-to-date with new releases.

15.13 Supporting measuring platforms

The support for hardware measuring platforms has been designed to be as modular and extensible as possible.
Adding support for additional measuring platform types should therefore be quick and painless!

To begin, you need to extend the abstract class org.tellervo.desktop.hardware.AbstractSerialMeasuringDevice.
You can of course also extend the class implementation of another platform if you only need to modify a few
settings. This is the case for both the QC10 and QC1100 devices which extend the GenericASCIIDevice class. The
implementation code is identical for all three, but the derived classes set the port settings to the default values for
the two QuadraChek boxes.

There are a number of methods that you will need to override from the base class. If you use Eclipse to generate
the class it will create placeholders for all the relevant methods. The toString() method enables you to return
the name for the device you are implementing, whereas all the is. . .() methods enable Tellervo to understand the
capabilities of the device. For instance some devices will accept requests to zero the current measurement and/or
request the current measurement value, while others will not (instead they rely on hardware buttons on the device

90 Tellervo: A guide for users and developers

itself). Some devices can have the port settings (such as baud, parity, stopbits etc) altered and the corresponding
is. . .Editable() functions indicate whether this is possible. All user interfaces in Tellervo are modified in accordance
with these methods and show the user only relevant buttons.

The guts of the work in the class are performed in the following methods:

setDefaultPortParams() – this method sets all the default port communications parameters. The abstract class
already sets typical values so you only need to override this if they need to change.

doInitialize() – this method is run when the platform is initialized. If your platform needs to do any sort of
handshaking then this is where this should be done.

serialEvent() – this method handles any events that are detected from the serial port. All new data received
from the platform is decoded here. Values and errors are passed on via the fireSerialSampleEvent() method.
Remember that all values should be sent as measurements in microns. If the platform has the ability to
work in different units the UnitMultiplier value must be used to ensure the units set by the user are handled
correctly.

zeroMeasurement() – if your platform responds to requests to zero the measurement value this is where you
should implement this.

requestMeasurement() – if your platform responds to requests to send the current measurement value then you
should implement this functionality here.

Once your new class is complete you need to inform Tellervo that it exists. To do this you need to register the
device in org.tellervo.desktop.hardware.SerialDeviceSelector. You should then be able to launch Tellervo and test
your new device in the preferences dialog. The relevant parts of the dialog will be enabled/disabled depending
on how you set the corresponding is. . .Editable() methods in your class. The dialog also includes a seperate test
window with a console for debugging the raw data received from the serial port.

15.14 Writing documentation

The documentation in Tellervo is written in the well established typesetting language LATEX 2ε. LATEX is a great
tool for producing high quality documentation with a good structure and style. Unlike standard WYSIWYG (what
you see is what you get) word processing applications like Microsoft Word, LATEX uses simple plain text code to
layout a document so that it is often described as WYSIWYM (what you see is what you mean)! The style of a
LATEX document is handled separated enabling the author to concentrate on content. By removing the possibility
for authors to tinker with font sizes etc, LATEX forces you to create clear, well structured documents. For further
details see http://en.wikibooks.org/wiki/LaTeX/.

The master document is ‘Documentation/tellervo-manual.tex’ and imports each chapter file. To build the docu-
mentation you will need a editor to update and compile to PDF. One of the easiest editors is the online service
Sharelatex.com. Alternatively, if you want to write offline: on Linux I would suggest Kile; on MacOSX TeXShop;
and on Windows WinEdt. To add or edit bibliography entries you will also need a BibTEX editor such as JabRef
or BibDesk.

LATEX has fantastic cross-referencing and citation functionality built in. Please follow the lead of the existing
documentation!

15.15 Recording screencast tutorials

One way we are trying to support users is by making clear video screencast tutorials of the major workflows in
Tellervo. I will describe the steps require to use a combination of ffmpeg, x11grab and Pitivi to do this in Linux,

http://en.wikibooks.org/wiki/LaTeX/

Developing Tellervo Desktop 91

but there are many other tools available so if you prefer to use them please be my guest. I will, however, note
that making the tutorials high resolution is extremely important as lower quality video codecs make it very difficult
to read screens. So far I’ve been unable to use the simple wrapper tools like recordMyDesktop to record at high
resolution.

The highest resolution video accepted by Youtube and Vimeo at the time of writing is HD720 (1280×720). We
will therefore work towards recording our tutorials to this level. By natively recording a section of our desktop of
this size we remove the need for shrinking and distoring our video so it is best to ensure all the action goes on
within a rectangle of this size. I’ve created a desktop wallpaper with these dimensions marked from the upper left
hand corner.

To do the recording we need to install the following:

sudo apt-get install ffmpeg pitivi x264

15.16 Making a new release

Making a new release should be a relatively quick and simply process, but there are still a few things to remember:

I Make sure this documentation is up-to-date!

I Update the logging appenders to an appropriate level so that the user is not swamped by debug messages

I If this release relies upon a certain version of the Tellervo server, make sure you set this correctly in ‘/s-
rc/main/java/org/tellervo/desktop/versioning/Build.java’. This is important to ensure that users aren’t
working against an old version of the server which could have unexpected side-effects.

I Increment the build version number in the pom.xml

I Increment the build version in the tellervo.install4j file

I Update the splash screen and background graphics.

I Check the code in Eclipse and eliminate as many warnings as possible.

I Make sure the developers metadata is correct in the pom.xml. Add any new developers that have joined the
project since the last release.

I Run Maven package.

I TEST!

I Deploy to maven.tridas.org by running Maven deploy.

I Copy ‘/target/binaries’ to the http://www.tellervo.org/download/ folder. The new release will auto-
matically be added to the options for download.

I If this new release should be the recommmended release for internal and/or external uses, alter the index.php
page to reflect this.

http://www.tellervo.org/download/

Chapter 16

Developing Tellervo Server

The Tellervo server is made up of a PHP webservice run by Apache, connecting to a PostgreSQL database.

The Tellervo webservice is written entirely in PHP. Like the Desktop Client, the server is developed with Eclipse
so most of the setup steps are identical (see chapter 15). You will, however, probably want to install the PHP
development plugin so that you get syntax highlighting etc. See the Eclipse PDT website (http://www.eclipse.
org/pdt/) for further information.

16.1 Webservice

Before making any changes to the webservice you will need to understand its architecture first. Chapter 17 contains
details of the communications specification.

16.1.1 Creating new series

Due to the complications arising from the virtual measurement concept, creating new series in Tellervo is necessarily
more complicated than any other of the TRiDaS entities. The workflow required to create a new series is illustrated
in figure 16.1.

16.2 Server package

The Ubuntu server package is built by Maven at the same time as the desktop package (see section 15.9) during
the package goal.

The server packaging is done as a secondary execution of the JDeb plugin. JDeb is configured in the pom.xml by
including all the files that need to be copied along with where in the target file system they should be placed. The
database files are installed to ‘/usr/share/tellervo-server’ and the webservices files to ‘/var/www/tellervo/’.

The metadata for the deb file is included in the control file located in Native/BuildResources/LinBuild/ServerCon-
trol. JDeb makes use of Ubuntu’s excellent package management system to handle the dependencies. Adding or
editing dependencies is simply a matter of changing the ‘depends’ attribute control file.

The ServerControl folder also contains scripts called preinst, postinst, prerm and postrm, which are launched
before and after installation, and before uninstalling. These files are called with different parameters depending
on whether this is part of a fresh install, an upgrade, or an aborted install. There are a number of rules that the
resulting deb package should follow (e.g. if a program is configured twice, then the second run should know and

http://www.eclipse.org/pdt/
http://www.eclipse.org/pdt/

94 Tellervo: A guide for users and developers

Insert row into
tblmeasurement Update tblmeasurement

Lastmodified timestamp

Insert multiple rows into
tblreading

Create vmeasurement
row using

createnewvmeasurement()

Add new notes using
addreadingnote()

createnewvmeasurement()
inserts row into

tblvmeasurement
vmeasurementmodified-

trigger()

CreateMetaCache()

getvmeasurementresult()

Qappvmeasurementreading-
result() inserts into

tblvmeasurementreading-
result()

Insert row into
tblvmeasurementmeta-

cache

Calculate extra fields
data and insert into

tblvmeasurementmeta-
cache

addreadingnote()
inserts row into

tblvmeasurementrelyear-
readingnote

VmeasurementRelYear-
NoteTrigger() does error

checking on notes

Webservice step

DB trigger

DB function

CPGDBJ function

Figure 16.1: Illustration of the steps that happen during the creation of a new measurement series. The stages are presented
top to bottom in the approximate order in which they are executed. The majority of the processing is done as a result of
the database function createnewvmeasurement() being called by the webservice.

Developing Tellervo Server 95

understand about previously provided details), the details of which can be found in the Debian Policy Manual∗,
along with information how and when each of the pre and post scripts is run. Hopefully this side of the server
packaging will not need to be touched again, but if you are making changes and are doing anything more than
simple tweaks, please consult the Debian policy documentation.

If changes are required, figure 16.2 highlights the order that the pre and post scripts are run and with what
parameters.

The postinst script is used to trigger the interactive script that helps the user configure the Tellervo server (described
further in section 16.2.1). The steps are as follows:

I Check the user running the script is root as we’re doing privileged functions
I Generated scripts from templates
I Configure PostgreSQL database, creating users and/or database if requested otherwise obtaining details if

they already exist
I Configure PostgreSQL to allow access to the specified database user
I Configure Apache to access the webservice
I Verify setup by checking Apache and PostgreSQL are running, that the webservice is accessible, the database

is accessible and that various configuration files can be read
I Print test report to screen

16.2.1 Tellervo server script

At the heart of most of the configuration and control of the Tellervo server is the tellervo-server script. This is a
command line PHP script that is launched after installation and can be re-run by the user to make changes to the
configuration. Although such a script would normally be written in Bash or similar, we decided to go with PHP
because of the requirement to interact with the Tellervo PostgreSQL database.

The script isolates the common tasks performed into functions. It uses the getopt() function to read both long
(e.g. –blah) and short (e.g. -b) arguments from the command line. These depending on the arguments given, the
script then calls the relevant functions.

To comply with standard protocols, the script uses the exit() function to return whether the requested task was
successful or not. Returning zero means the script was successful, and returning any other integer means the script
failed. This is important so that the package management system knows when things have gone wrong, and can
then attempt to roll back if possible.

The script includes a number of helper functions and classes that you may find useful when modifying the script:

echoTruncatedString($str, $length – echos a string to the console but truncates it to $length if necessary. If
the string is shorter than $length, then it is padded with spaces. This is useful to ensure the following text
is displayed aligned, e.g. test results.

requireRoot() – check whether the user running the script has root privileges.

checkServiceIsRunning($service) – checks whether the named service is running on the system. This is per-
formed by checking whether the provided string is present in the response from the shell command ‘ps
ax’.

setConfigVariable($var, $value) – does a search and replace for a placeholder variable in the config.php file,
replacing with $value. Placeholders should be stored in the config.php template as %%VARIABLENAME%%.

promptForPwd($isCreating=TRUE) – is an interactive script for getting a password from the user. It checks
that the password is strong and asks for it twice to check for typos.

∗Debian Policy Manual – http://www.debian.org/doc/debian-policy/ but a more accessible description is found at http:

//wiki.debian.org/MaintainerScripts

http://www.debian.org/doc/debian-policy/
http://wiki.debian.org/MaintainerScripts
http://wiki.debian.org/MaintainerScripts

96 Tellervo: A guide for users and developers

Upgrade from version 1.2-3 to 1.2-4

1.2-4->preinst upgrade 1.2-3

1.2-4->postinst configure 1.2-3

OK

Successful exit

OK

1.2-4->postrm abort-upgrade 1.2-3FAILED

Exit with error message

OK

 FAILED

Files are unpacked

"Half Installed"
(1.2-3)

"Reinst required"

"Installed"
(1.2-4)

"Failed-Config"
(1.2-3)

1.2-3->prerm upgrade 1.2-4

OK

1.2-3->postrm upgrade 1.2-4

OK

1.2-4->prerm failed-upgrade 1.2-3
FAILED

OK

1.2-3->postinst abort-upgrade 1.2-4

OK

"Installed"
(1.2-3)

1.2-3->postinst abort-upgrade 1.2-4FAILED

 OK

"Installed"
(1.2-3)

 FAILED

"Reinst required"

"Unpacked"
(1.2-3)

 FAILED

FAILED

OK

Exit with error message

FAILED

"Failed-Config"
(1.2-4)

1.2-3->preinst abort-upgrade 1.2-4
FAILED

1.2-4->postrm abort-upgrade 1.2-3

OK

1.2-3->postinst abort-upgrade 1.2-4

OK

OK

1.2-4->postrm failed-upgrade 1.2-4 FAILED

 FAILED

 FAILED

"Unpacked"
(1.2-3)

"Half Installed"
(1.2-3)

"Reinst required"

Old files are deleted

"Installed"
(1.2-3)

Standard installation procedure

preinst install

postinst configure

OK

Successful exit

OK

postrm abort-installFAILED

Exit with error message

OK

 FAILED

FAILED

Files are unpacked

"Not Installed" "Half Installed"
"Reinst required"

"Installed" "Failed-Config"

Figure 16.2: Flow chart showing how the prerm, preinst, postrm, postinst scripts are run along with the parameters passed
to them when installing and upgrading.

Developing Tellervo Server 97

class Colors – can be used to display coloured text on the console. Useful for highlighting errors and test results.

16.3 Handling version dependencies

In an ideal world, the API for how clients talk to the Tellervo server would never change. Unfortunately, we don’t
live in an ideal world! New features in Tellervo will require changes to the API, as will changes to TRiDaS. In
anticipation of such changes, the Tellervo server includes a mechanism for detecting when a client is too old to
handle the API that it is using. In this case the server will refuse to handle the request. A similar complementary
mechanism is in place in the client for instances when a client is attempting to talk to an older server that it no
longer supports.

Although the Tellervo desktop client is the primary software that talks to the Tellervo server, there are others
including PAST4 and a prototype R client. As such, it is important to include the ability to specify the oldest
versions of clients that are able to connect, and also to be able to specify different versions for different types of
clients.

It is also necessary to include the ability to allow or disallow access to the server by unknown client applications.
If a new program is written by other developers and it attempts to access the server it could contain bugs (or
even malicious code†) that interferes with the server. For a production instance of the server this is obviously
undesirable, therefore the systems configuration option ‘onlyAllowKnownClients’ is set to TRUE.

16.3.1 Client requiring a recent server

In the event that changes are made to the client that means it needs a particular version of the server to run, then
this information is specified in the static string App.earliestServerVersionSupported. This value should be a three
part version number e.g. 1.1.1. No other changes are required. When the user tries to connect to a server with a
version prior to the minimum version specified, they will be shown an error message explaining that they need to
get the Tellervo administrator to upgrade the server.

16.3.2 Server requires a recent client

In the event that changes are made to the server which mean that a recent version of the client is required, then
this information is stored in the database in the tblsupportedclient table. The ‘client’ field should contain a unique
portion of the HTTP USER AGENT header provided by the client. The version number field should be a 2 or 3
part number e.g. 1.1 or 1.1.1. In the event that a user tried to connect to a Tellervo server using a client that is
too old, then they will be given a clear error message informing them that they need to upgrade.

16.4 Handling server configuration

The Tellervo server is configured using two main PHP files: config.php and systemconfig.php. The configuration
is split into two primarily because the config.php values are considered to be editable by the server administrator,
whereas those in systemconfig.php should normally only be edited by Tellervo developers.

If you want to make configuration options editable by the administrator of the Tellervo server, then these should be
implemented within the config.php file. There is a config.php.template file which is used to construct the config.php
file on the users system. Simply adding hardcoded entries to this file is the simplest way when a default value is

†Keep in mind though that a user with the necessary privileges would need to provide this new program with their credentials for
it to make changes to data.

98 Tellervo: A guide for users and developers

appropriate. If the value of your field needs to be generated either by asking the administrator a question (e.g.
name of lab), or dynamically at the time of installation (e.g. IP address of the server) then this template file should
contain placeholder values which can then be replaced by the tellervo-server configuration script. For instance the
config.php.template file contains a placeholder for the hostname of the server like this: $hostname = "%%IP%%";.
The value is set by the tellervo-server script using the function setConfigVariable($var, $value). Keep in
mind though, that during an upgrade, the config.php is maintained and not replaced. If you make additions to the
config.php.template you will also need to make provision for handling changes to the end users existing config.php.

If you want to add new configuration fields that don’t need to be edited by the system administrator, these
should be handled in the systemconfig.php file. The systemconfig.php file is automatically generated during
installation/upgrade of the server from entries in the database table tblconfig. This means that any changes to
the system configuration can be handled as part of the database upgrade simply by adding new rows or editing
existing rows in tblconfig. Each entry in this table is made available to the webservice as a global variable once the
tellervo-server script has been run. For instance the row containing key=wsversion and value=1.0.0 is available as
the variable $wsversion within the webservice.

16.5 Making a new release

As mentioned in section 16.2, the server package is created at the same time as the desktop binaries as part of
the Maven package procedure. There are, however, a number of steps you need to undertake to make sure this
goes smoothly.

I Make sure this documentation is up-to-date!

I Increment the <serverversion> tag in the pom.xml file

I Make sure that any upgrades that need to be made to the database are included in a new and unique SQL
file stored in Databases/db-upgrade-patches. Each file from this folder is run by the installer unless it has
previously been run.

I If this version of the server needs a particular version of the client then you’ll need to set this value in the
tblsupportedclient table by including a relevant SQL statement in your db-update-patches script e.g.:

UPDATE tblsupportedclient SET minversion=’2.13’ WHERE client=’Tellervo WSI’;

I Run maven package to produce the server deb file.

I Create a clean Ubuntu VirtualBox installation with the user ‘tellervo’ and the password ‘dendrochronology’

I Install the deb file and dependencies as normal, configuring the server with temporary settings

I Run sudo tellervo-server --deploy to remove the temporary settings and set up ready for users first
run

I Shutdown the virtual appliance then export. Add in all the metadata as required.

I Copy the virtual appliance file and the native deb file to the web server for release. The server PHP code
will automatically pick up the extra files and offer them to users.

I Update the download/index.php file to reflect the ‘preferred’ version choice for users.

I TEST! If users are running this as an upgrade, then we need to ensure this goes smoothly. Although they
are told to backup their database before running we should assume they’ve ignored the warning and that we
are altering precious data. Test both a fresh install and an upgrade from the previous version.

Developing Tellervo Server 99

16.6 Administering the Maven repository

The following information is only necessary for the lead-developer and outlines the steps necessary to install and
maintain the central Maven repository for Tellervo. This Maven repository should provide all other developers with
the libraries required to develop Tellervo and which are bundled in the release packages.

The repository tool that we currently use is Apache Archiva. Installation is relatively simple:

1. Download the zip bundle from the Apache Archiva website

2. Unzip and place on the server in a suitable location (e.g. usr/share/apache-archiva)

3. Run ‘sudo bin/archiva start’

If you have an existing backup of the Archiva database then you can place this in the data folder and you should
be good to go. If not you will need to do the following steps to configure the repository from scratch:

1. Go to ‘http://www.tridas.org:8080/archiva/’ in your web browser and set up the admin account. If you’re
setting this up on another domain remember you’ll need to change the repository URLs in both the distri-
butionManagement and repositories sections of your pom file

2. In the repositories tab you need to configure both releases and snapshot repositories

3. Set up users with ‘Repository Manager’ permissions for each user that would like to deploy to the repository.
They will need to configure their .m2/settings.xml file to do this

4. Set up the guest user to have ‘Repository Observer’ permissions for each repository. This means that people
can anonymously access artefacts from the repository

5. Add the following remote repositories:

Geotk – Identifier: geotk; URL: http://maven.geotoolkit.org/

Geomajas repository for JPedal – Identifier: maven.geomajas.org; URL: http://maven.geomajas.org/

maven.iscpif.fr – Identifier: maven.iscpif.fr; URL: http://maven.iscpif.fr/snapshots/

thirdparty.maven.iscpif.fr – Identifier: thirdparty.maven.iscpif.fr; URL: http://maven.iscpif.fr/thirdparty/

6. Add proxy connectors for the above repositories

7. Run the MavenDeployCommands.sh script to deploy the handful of repositories that we need that are in no
repositories

8. You will need to run a similar file to deploy dependencies for TRiDaSJLib. See the tridas source code for
details

The remote repositories contain libraries maintained by others that are not (at the time of writing) in the central
Maven repositories. We include them here to ensure they are cached in our repository and so are available to our
developers even if these external repositories go down. Our new repository will be populated with these external
artefacts when a developer first requests them. They are retrieved from the external repositories and cached in
ours.

It is possible to manually deploy artifacts to the repository using the web interface, but this is slow and tedious.
We normally deploy direct from Eclipse using the maven deploy goal.

Chapter 17

Webservice specifications

This chapter outlines the basic syntax required for talking to the Tellero webservice and is largely aimed at
developers who want to create new clients to interact with the Tellervo server.

The Tellervo database is accessed solely through the webservice interface. A webservice is an interface designed
to be accessed by programs that send requests and receive responses. Tellervo uses a style of HTTP+POX (Plain
Old XML) to send and receive requests via an HTTP POST. In simple terms the Tellervo client sends an XML
document that describes the request via POST to the Tellervo server. The server then reads the XML request,
performs the request and then compiles the information that has been requested, finally returning the information
to the client as another XML document. The syntax of the XML document containing the request and response
is determined by the Tellervo XML schema and makes heavy use of the TRiDaS XML schema for describing
dendrochronological entities.

The Tellervo schema is the final authority on what is allowed in a request or response so if you find a conflict
between this documentation and the schema then it is most likely because the documentation is out-of-date, or
it’s simply incorrect. As you become familiar with the schema you’ll probably find it easier to refer to it rather
than this documentation to understand what is expected.

One of the best ways of understanding the structure of requests and reponses is to use the XML
monitor in the Tellervo Help menu to view the documents being sent and received by the Tellervo client.

17.1 Basics of sending requests

The webservice accepts requests via the POST mechanism of HTTP. The simplest way to understand this is to
think of this as a standard webpage. If you add the following HTML code to a webpage it will give you a simple
form. If you type your XML request document into the form and click submit the Tellervo server will respond with
an XML document containing the answer to your query.

1 <form method=”p o s t ” a c t i o n =”h t t p : / / name . o f . your . s e r v e r / t e l l e r v o /”>
2 <t e x t a r e a name=”x m l r e q u e s t ”/>
3 < i n p u t t y p e=”submit ” v a l u e=”submit ” >
4 </form>

A page with just such a form is available in the root of your Tellervo server installation as the page post.php.

When the response is viewed in a web browser, it will be rendered using a style sheet, but if you view the source
code, you’ll see the underlying XML document. A simple HTML form like this can be handy for helping you send
some rough requests to the server to help you understand how things work.

102 Tellervo: A guide for users and developers

The Tellervo client (or any other client that wants to talk to the Tellervo server) does exactly this. It sends XML
formatted request documents to the server as POST requests, and the server returns an XML document containing
the reply. The client then reads the XML reply and displays the result to the user in any way it sees fit.

17.2 Standard request/response

The request XML document you send the server needs to validate against the Tellervo XML schema (available
in the schema folder of your Tellervo server or in the /src/main/resources/schemas/ folder in the Subversion
repository. The schema is a detailed representation of what tags are allowed, when they are obligatory and what
possible values they can contain. We strongly suggest getting hold of an XML validation tool to help you check
that the requests you send the server are valid. The server will do the same and respond with an error message if
it is not valid, but the textual error is a lot harder to understand than the graphic display of a desktop validation
tool.

The general layout of the request file is as follows:

1 <?xml v e r s i o n =”1.0” e n c o d i n g=”UTF−8”?>
2 < t e l l e r v o xmlns=”h t t p : / /www. t e l l e r v o . org / schema / 1 . 0 ” xmlns : gml=”h t t p : / /www. o p e n g i s . n e t /gml”

xmlns : x l i n k =”h t t p : / /www. w3 . org /1999/ x l i n k ” xmlns : t r i d a s =”h t t p : / /www. t r i d a s . o rg /1.2.2” >
3 <r e q u e s t t y p e=””>
4 . . .
5 . . .
6 </r e q u e s t>
7 </ t e l l e r v o >

I Line 1 contains the XML declaration and tells the server that we’re using UTF-8 character encoding. This
is the only encoding currently supported.

I Line 2 starts the root tag and defines the namespaces used by Tellervo. In this example the default namespace
is the Tellervo schema itself, but it also refers to the TRiDaS, GML and XLink namespaces that Tellervo
also makes use of. See section 17.2.1 for more details.

I Line 3 begins the request tag which contains the request itself.

When you send such a request XML document to the Tellervo server the typical response returned is structured
as follows:

1 <?xml v e r s i o n =”1.0” e n c o d i n g=”UTF−8”?>
2 < t e l l e r v o xmlns=”h t t p : / /www. t e l l e r v o . org / schema / 1 . 0 ” xmlns : gml=”h t t p : / /www. o p e n g i s . n e t /gml”

xmlns : x l i n k =”h t t p : / /www. w3 . org /1999/ x l i n k ” xmlns : t r i d a s =”h t t p : / /www. t r i d a s . o rg /1.2.2” >
3 <header>
4 . . .
5 </header>
6 <content>
7 . . .
8 </content>
9 </ t e l l e r v o >

The header contains standard information about the request and also includes error and warning messages. The
content tag contains the actual data being returned.

17.2.1 Namespaces

For newcomers to XML, namespaces and their definition can be quite confusing. Namespaces are used in XML to
enable us to incorporate multiple schemas within the same XML file.

Webservice specifications 103

Schema Namespace

Tellervo http://www.tellervo.org/schema/1.0
TRiDaS http://www.tridas.org/1.2.2
GML http://www.opengis.net/gml
XLink http://www.w3.org/1999/xlink

Table 17.1: The namespaces used in the Tellervo schema

In the case of Tellervo, that means we can use entities defined in both TRiDaS (to describe dendro data) as well as
for instance GML (to describe location information). Rather than reinvent the wheel, we use established standards
like GML so that we can leave the experts in each field to handle their own datastands. We need a method of
clarifying which schema each entity in the XML file is referring to and for that we use namespaces.

Namespaces are typically defined in the root tag of the XML file using the attribute ‘xmlns’. Multiple namespaces
can be described by adding prefix definitions. For example xmlns: tridas =’http://www.tridas.org /1.2.2’ means that any
tag prefixed by ‘tridas:’ in the XML document refers to an entry in the TRiDaS schema. Namespaces are URIs
and are typically URLs. There is quite often documentation about the schema at the namespace URL, but this is
not necessarily the case. Information is certainly not retrieved from this location. The namespace just needs to
be unique and must match what is defined by the schema. The prefix itself though can be whatever you want.
If you have just a few prefixes, then it is common to just use a single character prefix, perhaps ‘t’ for TRiDaS to
keep the file small. Some people prefer to be more explict though and using longer prefixes to ensure there are no
confusions. Table 17.1 lists the namespaces used by Tellervo.

If the majority of your XML file contains tags from one namespace, with just a handful of tags from another, you
may prefer to define a default namespace. In this case all tags from the default namespace do not require prefixes.
The following namespace declarations are therefore all valid and equivalent:

I < tellervo xmlns=”http://www.tellervo.org/schema/1.0” xmlns:gml=”http://www.opengis.net/gml”

xmlns: xlink =”http://www.w3.org/1999/xlink” xmlns:tridas=”http://www.tridas.org/1.2.2”>

I <t: tellervo xmlns:t=”http://www.tellervo.org/schema/1.0” xmlns:gml=”http://www.opengis.net/gml”

xmlns: xlink =”http://www.w3.org/1999/xlink” xmlns:tridas=”http://www.tridas.org/1.2.2”>

I < tellervo xmlns=”http://www.tellervo.org/schema/1.0” xmlns:g=”http://www.opengis.net/gml”

xmlns:x=”http://www.w3.org/1999/xlink” xmlns:t=”http://www.tridas.org/1.2.2”>

17.2.2 Errors and warnings

The webservice uses two tags within the header section of the return document to inform about errors and warnings.
These tags are the status and message tags. The status tag can be set to: OK; Notice; Warning; or Error.

When there is an error, the message tag includes a code attribute along with the actual error message. The list of
possible error codes is provided in appendix Y. An example of a typical error response is shown below:

1 <?xml v e r s i o n =”1.0” e n c o d i n g=”UTF−8”?>
2 <c : t e l l e r v o xmlns : c=”h t t p : / /www. t e l l e r v o . org / schema /1.0”>
3 <c : header>
4 <c : s e c u r i t y U s e r i d =”1” username=”admin ” f i r s t N a m e=”Admin” lastName=”u s e r ” />
5 <c : w e b s e r v i c e V e r s i o n >1.1.0</ c : w e b s e r v i c e V e r s i o n >
6 <c : c l i e n t V e r s i o n >T e l l e r v o WSI n u l l (h t t p c o r e 4 . 1 ; H t t p C l i e n t 4 . 1 . 1 ; t s n u l l . ${

r e v i s i o n n u m })</c : c l i e n t V e r s i o n >
7 <c : r e q u e s t D a t e >2012−04−02T15:01:59−04:00 </ c : r e q u e s t D a t e>
8 <c : queryTime u n i t =”s e c o n d s ”>0.07</ c : queryTime>
9 <c : r e q u e s t U r l >/ t e l l e r v o /</c : r e q u e s t U r l >

10 <c : requestType>d e l e t e </c : requestType>
11 <c : s t a t u s >E r r o r </c : s t a t u s >

104 Tellervo: A guide for users and developers

12 <c : message code=”907”>F o r e i g n key v i o l a t i o n . You must d e l e t e a l l e n t i t i e s a s s o c i a t e d
w i t h an o b j e c t b e f o r e d e l e t i n g t h e o b j e c t i t s e l f .</ c : message>

13 </c : header>
14 </c : t e l l e r v o >

17.3 Authentication requests

There are two methods for authenticating yourself against the Tellervo server: plain and secure. We strongly
recommend you use the secure method as the user name and password are sent in plain text over the internet
when using the plain method. This goes against so much of the hard work we’ve put in to making the system
secure. It is quite likely that we will disable the plain authentication method by default in the future. For now it
will be left in place as it makes testing new clients much easier.

For further details and discussion about the authentication design please see section 18.1, page 109.

17.3.1 Plain authentication

If you still want to go ahead and use plain authentication despite all the risks, then this is how you do it.

1 <?xml v e r s i o n =”1.0” e n c o d i n g=”UTF−8”?>
2 < t e l l e r v o xmlns=”h t t p : / /www. t e l l e r v o . org / schema / 1 . 0 ” xmlns : t r i d a s =”h t t p : / /www. t r i d a s . o rg

/1.3”>
3 <r e q u e s t t y p e=” p l a i n l o g i n ”>
4 <a u t h e n t i c a t e username=”yourusername ” password=”y o u r p a s s w o r d ” />
5 </r e q u e s t>
6 </ t e l l e r v o >

17.3.2 Secure authentication

Although this is much more secure, it is also somewhat more complicated because it involves a challenge and
response scheme using cryptographic nonces and hashes.

The first step is for the client to request a nonce from the server. This is done as follows:

1 <?xml v e r s i o n =”1.0” e n c o d i n g=”UTF−8”?>
2 <c : t e l l e r v o xmlns : c=”h t t p : / /www. t e l l e r v o . org / schema / 1 . 0 ” xmlns : gml=”h t t p : / /www. o p e n g i s . n e t /

gml” xmlns : x l i n k =”h t t p : / /www. w3 . org /1999/ x l i n k ” xmlns : t r i d a s =”h t t p : / /www. t r i d a s . org
/1.2.2” >

3 <c : r e q u e s t t y p e=”nonce ” />
4 </c : t e l l e r v o >

The returned document will include a nonce header tag like this: <c:nonce seq=”176378”>97566d4d2e8b8c5696b6667fef8429f5

</c:nonce>. Armed with your nonce you can then send a request to log in securely as follows:

1 <?xml v e r s i o n =”1.0” e n c o d i n g=”UTF−8”?>
2 <c : t e l l e r v o xmlns : c=”h t t p : / /www. t e l l e r v o . org / schema / 1 . 0 ” xmlns : gml=”h t t p : / /www. o p e n g i s . n e t /

gml” xmlns : x l i n k =”h t t p : / /www. w3 . org /1999/ x l i n k ” xmlns : t r i d a s =”h t t p : / /www. t r i d a s . org
/1.2.2” >

3 <c : r e q u e s t t y p e=” s e c u r e l o g i n ”>
4 <c : a u t h e n t i c a t e username=”admin ” cnonce=”3 f 9 7 5 c 5 6 9 f 9 7 8 7 3 1 e 5 7 0 ” snonce =”97566

d 4 d 2 e 8 b 8 c 5 6 9 6 b 6 6 6 7 f e f 8 4 2 9 f 5 ” hash=”d 3 1 5 e c 5 0 f 7 f 1 8 0 9 4 9 2 d 5 e f 1 3 2 a d 4 a a 0 6 ” seq =”176378” />
5 </c : r e q u e s t>
6 </c : t e l l e r v o >

Webservice specifications 105

The authenticate attributes are filled as follows. The username is simply the username for a user with permission
to access the Tellervo server. The cnonce (client nonce) is a random string of your choosing that is used in the
hash. The snonce (server nonce) is the nonce you’ve just obtained from the server. The seq (sequence) is the value
also obtained from the server. Finally the hash is an MD5 hash of “username:md5hashofpassword:snonce:cnonce”.
If all is well the server will respond with the details of the person that is logging in.

17.3.3 Cookies and sessions

The webservice uses a session cookie so that the user doesn’t need to authenticate with each request. The cookie
lasts for up to 30 minutes of inactivity, after which point the server will request the user to re-authenticate before
it will serve a request. Any client attempting to access the Tellervo server will therefore need to handle cookies
and be ready to respond to requests to re-authenticate.

If a session does time out, a request to the server will result in an response with the header containing an error
status with code ‘102’ (see section 17.2.2 and appendix Y) and the nonce tag ready for the client to re-authenticate.

17.3.4 Logout

The session cookie will ensure that a user is logged out after a period of inactivity, but if you want to force a
logout you can simply use the following type of request:

1 <?xml v e r s i o n =”1.0” e n c o d i n g=”UTF−8”?>
2 <c : t e l l e r v o xmlns : c=”h t t p : / /www. t e l l e r v o . org / schema /1.0”>
3 <c : r e q u e s t t y p e=”l o g o u t ”>
4 </c : t e l l e r v o >

17.4 Reading records

The method for reading records from the Tellervo database is largely the same for any of the types of data the
server handles. The basic template for a read request is as follows:

1 <?xml v e r s i o n =”1.0” e n c o d i n g=”UTF−8”?>
2 <c : t e l l e r v o xmlns : c=”h t t p : / /www. t e l l e r v o . org / schema /1.0”>
3 <c : r e q u e s t t y p e=”r e a d ” format=” ”>
4 <c : e n t i t y t y p e=” ” i d =” ” />
5 </c : r e q u e s t>
6 </c : t e l l e r v o >

The entity type is one of: project; object; element; sample; radius; measurementSeries; derivedSeries; box; securi-
tyUser; or securityGroup. The id attribute should be the database identifier for the entity you would like to read.
In Tellervo these are typically a UUID like this: 339d8ea6-7448-11e1-ad85-9b6d022add7a. The format attribute
should be one of: minimal; summary; standard; or comprehensive depending on how much detail you require about
the entity. Keep in mind that a comprehensive request is likely to take much longer to fulfill than a minimal request
so it’s best for your user, if you use the simplest request that fulfills your need.

17.5 Deleting records

The method for deleting records in Tellervo is very similar to reading records. You simply use the request type
‘delete’ and specify the entity type and id. The basic template for a delete request looks like this:

106 Tellervo: A guide for users and developers

1 <?xml v e r s i o n =”1.0” e n c o d i n g=”UTF−8”?>
2 <c : t e l l e r v o xmlns : c=”h t t p : / /www. t e l l e r v o . org / schema /1.0”>
3 <c : r e q u e s t t y p e=” d e l e t e ”>
4 <c : e n t i t y t y p e=” ” i d =” ” />
5 </c : r e q u e s t>
6 </c : t e l l e r v o >

Cascading deletes are not permitted in Tellervom therefore only entities that are not used by other entities in the
database can be deleted. For example, you cannot delete an object which has elements associated, you would
need to delete in the elements first. Attempts to delete an entity which still has associated records will cause the
webservice to return a ‘907-Foreign key violation’ error.

17.6 Creating records

New records are are typically created by passing a TRiDaS representation of the entity you’d like to create inside
a ‘create’ request. The basic template of a create request looks like this:

1 <?xml v e r s i o n =”1.0” e n c o d i n g=”UTF−8”?>
2 < t e l l e r v o xmlns=”h t t p : / /www. t e l l e r v o . org / schema / 1 . 0 ” xmlns : t r i d a s =”h t t p : / /www. t r i d a s . o rg

/1.2.2” >
3 <r e q u e s t t y p e=” c r e a t e ” p a r e n t E n t i t y I D =” ”>
4 < t r i d a s : sample>
5 . . .
6 </ t r i d a s : sample>
7 </r e q u e s t>
8 </ t e l l e r v o >

The request tag should include the parentEntityID attribute with the ID of the parent entity in the database e.g.
the TRiDaS element to which a sample belongs for instance. Please note that there are a number of mandatory
fields for each TRiDaS entity. These must be populated otherwise the webservice will return a ‘902-Missing user
parameter’ error.

In addition to handling the standard TRiDaS project, object, element, sample, radius, measurementSeries, de-
rivedSeries entities, the Tellervo webservice can also create some Tellervo specific records. These are securityUser,
securityGroup, box and permission. How to create and alter permissions records is described in more detail in
section 17.8 as they are more complicated, but securityUser, securityGroup and boxes are handled in the same way
as TRiDaS entities.

17.7 Updating records

Updating existing records in Tellervo is done in much the same way as creating records. The basic template is as
follows:

1 <?xml v e r s i o n =”1.0” e n c o d i n g=”UTF−8”?>
2 <c : t e l l e r v o xmlns : c=”h t t p : / /www. t e l l e r v o . org / schema / 1 . 0 ” xmlns : t r i d a s =”h t t p : / /www. t r i d a s . o rg

/1.2.2” >
3 <c : r e q u e s t t y p e=”update”>
4 < t r i d a s : e lement>
5 . . .
6 </ t r i d a s : e lement>
7 </c : r e q u e s t>
8 </c : t e l l e r v o >

Webservice specifications 107

The main difference is that you must specify the TRiDaS < identifier > tag containing the ID of the record you are
trying to update.

17.8 Reading and setting permissions

1 <r e q u e s t t y p e=” c r e a t e ”>
2 <p e r m i s s i o n >
3 <p e r m i s s i o n T o C r e a t e>t r u e </p e r m i s s i o n T o C r e a t e>
4 <permiss ionToRead>t r u e </permiss ionToRead>
5 <permiss ionToUpdate>t r u e </permiss ionToUpdate>
6 <p e r m i s s i o n T o D e l e t e>t r u e </p e r m i s s i o n T o D e l e t e>
7 <e n t i t y t y p e=” o b j e c t ” i d =”760 a19e2−229c−11e1−8756−03 b 2 a f f 2 f e 3 3 ”/>
8 <s e c u r i t y G r o u p i d =”3”/>
9 </p e r m i s s i o n >

10 </r e q u e s t>

1 <r e q u e s t t y p e=”r e a d”>
2 <p e r m i s s i o n >
3 <e n t i t y t y p e=” o b j e c t ” i d =”760 a19e2−229c−11e1−8756−03 b 2 a f f 2 f e 3 3 ”/>
4 <s e c u r i t y G r o u p i d =”3”/>
5 </p e r m i s s i o n >
6 </r e q u e s t>

1 <r e q u e s t t y p e=”update”>
2 <p e r m i s s i o n >
3 <p e r m i s s i o n T o C r e a t e>f a l s e </p e r m i s s i o n T o C r e a t e>
4 <permiss ionToRead>f a l s e </permiss ionToRead>
5 <permiss ionToUpdate>f a l s e </permiss ionToUpdate>
6 <p e r m i s s i o n T o D e l e t e>f a l s e </p e r m i s s i o n T o D e l e t e>
7 <e n t i t y t y p e=” o b j e c t ” i d =”136a70a6−566b−546b−a3ae−c48cb046e4cd”/>
8 <s e c u r i t y G r o u p i d =”1”/>
9 <s e c u r i t y G r o u p i d =”3”/>

10 </p e r m i s s i o n >
11 </r e q u e s t>

1 <r e q u e s t t y p e=” d e l e t e ”>
2 <p e r m i s s i o n >
3 <e n t i t y t y p e=” o b j e c t ” i d =”136a70a6−566b−546b−a3ae−c48cb046e4cd”/>
4 <s e c u r i t y G r o u p i d =”1”/>
5 </p e r m i s s i o n >
6 </r e q u e s t>

Chapter 18

Systems architecture

The centralised nature of the Cornell Tree-Ring Lab data required a server-client architecture of some type. In
Corina this was achieved simply by having users save their data in a network folder stored on a central server.
Whilst this method was adequate, it has many data storage issues that can be largely solved by moving the data
storage infrastructure to a relational database management system.

Although it would be possible (and arguably simpler) to have refactored Corina to talk directly to one central
database server it was decided to go a step further and implement a Web Services orientated server-client archi-
tecture for Tellervo.

A web services approach decouples the desktop client from the server so that the server can work on its own.

18.1 Authentication design

The authentication mechanism is loosely based around http digest authentication and uses a challenge and response
scheme. This makes use of cryptographic hashes (a relatively short digital fingerprint of some data but which cannot
be decompiled to retrieve the original data) and nonces (a pseudo-random string used just once). All hashes used
in the Tellervo webservice use the MD5 algorithm. Whilst an MD5 hash of a short phrase can be compromised,
the length and randomness of the original data means that using current cracking techniques would require a
very substantial amount of processing power e.g. supercomputer or large botnet. Flaws in the MD5 hash are also
mitigated by the time-sensitive nature of the Tellervo nonce, meaning that any attack would need to be successful
within a 2 minute window. New weaknesses in security are, however, revealed on a fairly regular basis so the
authentication architecture will be periodically reviewed to ensure that it still meets our needs.

The first time a client attempts to retrieve data from the webservice (or when the client’s credentials are incorrect
or have expired) the following events occur:

I Server returns an message requesting authentication. This message includes a nonce (a hash of the current
date and time to the nearest minute) which we will call ‘server nonce’.

I The client creates a second nonce (client nonce) which is a random hash of it’s choosing, and a response
which is a hash of “username:hashofpassword:servernonce:clientnonc”. It sends this response, along with the
username and client nonce back to the server but does not send the original server nonce.

I The server computes the same “username:hashofpassword:servernonce:clientnonce” hash using the informa-
tion it has stored in the database. As the server nonce is constant for a minute the two response should
match. If not the server recomputes the server nonce for one minute ago and tries again. This ensures that
the server nonce sent to the client is valid for between 1 and 2 minutes.

I Once the server authenticates the user a session cookie is sent to the client. On subsequent requests the
server recognises the session id and doesn’t request authentication again.

110 Tellervo: A guide for users and developers

As the user’s password is hashed at all points, even if the communication is hijacked the attacker will not be able
to derive the users password. The user’s password is also stored in hash form within the database. This also means
that system administrators do not have access to the passwords either.

The use of the server nonce within the response means that it will only be valid for a maximum of two minutes.
This minimizes the possibility of a replay attack.

18.2 Database permissions design

The database has a user and group based security scheme at three TRiDaS levels: object, element and series. A
user can be a member of one or more groups, and groups can be members of zero or more other groups. The
current implementation allows for one nested level of groups within groups however this could be extended if
required. Security is set on a group-by-group basis rather than on a single user to ensure ease of management.

There are five types of permissions granted: create, read, update, delete and no permission. Each permission is
independent of each other with the exception of ’no permission’ which overrides all other permissions.

A group can be assigned one or more of the permissions types to any of the sites, trees or measurements in the
database. Intermediate objects such as subsites, specimens and radii inherit permissions from their parent object.
For instance if a group has permission to read a site then it will have permission to read all subsites from that site.

It is envisaged that most of the time, permissions will be set on a site-by-site basis. It will not be necessary to
explicitly assign permissions to trees and measurements as all permissions will be inherited. So assuming that no
permissions are set on a tree for a particular group, the permissions for the tree will be derived from the site from
which the tree was found. If, however, permissions are assigned to the tree, then these will override those of the
site. In this way it will be possible to allow a group to read the data from one particular tree from a site in which
there otherwise do not have permission to access.

Privileges are cumulative. This means that if a user is a member of multiple groups then they will gain all the
privileges assigned to those groups. If one of the groups that the user is a member of has ‘no privileges’ set on an
object it will however override all other privileges. Therefore if a user is a member of groups A and B, and group
A has read privilege and group B has ‘no privilege’ then the user will not be able to access the record.

A special ‘admin group’ has been created into which only the most trusted users are placed. Members of the admin
group automatically gain full privileges on all data within the database. They also have permission to perform a
number of administrative tasks that standard users are insulated from.

18.3 Universally Unique Identifiers

All entities in the Tellervo database have a primary key based on the Universally Unique Identifier (UUID) concept.
This is a randomly created 128-bit number which due to the astronomically large number of possibilities (3×1038)
means that it is guaranteed to be unique across all installations of Tellervo. This code is typically represented by
32 hexadecimal digits and 4 hyphens like this: 550e8400-e29b-41d4-a716-446655440000.

18.4 Barcode specifications

Barcodes in Tellervo are based on the UUID primary keys of database entities. Because they are used for different
entities in Tellervo (boxes, samples and series) it was also necessary to incorporate a method for determining what
type of entity a barcode represents. This is done by appending a single character and a colon to the beginning of
the UUID: ‘B:’ for box; ‘S:’ for sample; ‘Z:’ for series.

Systems architecture 111

The barcodes in Tellervo use the Code 128 scheme. This symbology was chosen as it allows the encoding of
alphanumeric characters in a high-density label and can be read by all popular barcode scanners. While it would
have been possible to create a barcode of plain UUIDs, the 36 (or even 32) characters would result in a barcode
wider than many scanners could read. Most scanners on the market have a maximum scan width of at least 80mm,
so this was used as the baseline to work to.

To make the barcodes less than 80mm, the UUID (with prepended entity type character code) are Base64 encoded.
For example the series with UUID 3a8f4336-d17d-11df-abde-c75e325aebae would be encoded from Z:3a8f4336-
d17d-11df-abde-c75e325aebae to become: Wjo6j0M20X0R36vex14yWuuu

Chapter 19

Tellervo Database

The database behind Tellervo is run on the popular open source relational database management system, Post-
greSQL (Postgres).

19.1 Spatial extension

Tellervo uses the PostGIS extension to Postgres to store and query spatial data within the database. Rather than
storing coordinate axis in separate fields, a single specialist ‘geometry’ field type is used.

19.2 CPGDB functions

The Tellervo Postgresql Database (CPGDB) functions are a set of functions for searching, processing, and manip-
ulating the data in the postgresql database. All functions are in thecpgdbschema, to allow for easy development
alongside the database without modifying the database or its structure.

Thus, to execute a cpgdb function, you must preface the function name with cpgdb, e.g.:

SELECT * FROM cpgdb.GetVMeasurementResult(’xxxx’);

GetVMeasurementResultID – This function populates the tblVMeasurementResult and tblVMeasurementRead-
ingResult tables, returning a single varchar which contains the tblVMeasurementResult ID. You probably want
to use GetVMeasurementResult instead.

GetVMeasurementResult – This function returns a table row from tblVMeasurementResult which has been
populated with information from the provided VMeasurement ID.

GetVMeasurementReadingResult – This function is provided as a convenience method. It requires a VMea-
surementResultID obtained from one of the above two functions. Data is returned sorted by year, ascending.

FindVMChildren – This function reverse traverses the database and gives a list of derived VMeasurements. This
is most useful when given the ID of a direct VMeasurement, to find any sums, redates, or others based upon
it.

FindVMParents – This function traverses the database and gives a list of parents VMeasurements. This is most
useful when given the ID of a Sum, Redate, or Index, to find which VMeasurements it was based on.

FindChildrenOf – This function returns a list of all VMeasurements derived from something. Given ‘tree’ and
‘16’, for instance, it will find all VMeasurements derived from Tree ID 16. e.g.:

114 Tellervo: A guide for users and developers

select * from cpgdb.findchildrenof(‘specimen’, 1);

Does not traverse through object relationships. Will only return children of a single particular object.
See FindChildrenOfObjectAncestor()

FindChildrenOfObjectAncestor – This function returns a list of all VMeasurements derived from a particular
object and its descendants. The output is the same format as FindChildrenOf.

FindObjectTopLevelAncestor – Returns the toplevel ancestor object of a given object. Will return the given
object if it has no toplevel ancestor.

FindObjectAncestors – Returns the ancestor objects of a given object, guaranteed from bottom to top. Can
return an empty set.

FindObjectDescendants – Returns the descendant objects of a given object using a depth-first traversal. Can
return an empty set.

FindObjectDescendantsByCode – Convenience wrapper around FindObjectDescendants which takes an object
code rather than ID.

FindObjectsAndDescendantsWhere – Returns the objects and that match a given WHERE clause and their
descendants. Does not return duplicates.

FindElementObjectAncestors – Returns the ancestry tree of objects, given an element id. Really just a helper
function for FindObjectAncestors().

GetGroupMembership – This function returns a unique list of all the groups the specified user is a member of.

GetGroupMembershipArray – This function returns an integer array of all the securityGroupIDs the specified
user is a member of.

GetUserPermissions – Returns an array of the permissions the specified user has for a particular object ID. The
function backtracks tree : site : default and site : default if no explicit permissions are found. If ‘No
permission’ is returned it is the only member of the array. If a user is a member of group 1 (admin), they
automatically get all permissions.

MergeObjects – This function merges two objects together. The first object is taken as the basis with all its
fields maintained unchanged. Any fields that are different in the second object are noted in the comments
field for checking later. If a field is null in the first object but present in the second, then this value is used.
The function cascades through the entity hierarchy merge subordinate entities where required using the other
merge functions.

MergeElements – As for MergeObjects but for elements.

MergeSamples – As for MergeObjects but for samples.

MergeRadii – As for MergeObjects but for radii.

19.3 Complex database functions

Beyond the standard database functions discussed in section 19.2, the Tellervo database uses PLJava perform
for more complex tasks. PLJava means that we can leverage the full power of Java to perform calculations
and analyses on the database.

During the standard build process a small jar called tellervo-pljava.jar is created. This contains
classes from the packages: org/tellervo/cpgdb/** and |org/tellervo/indexing/**|. This jar is
stored within the sqlj schema of the Tellervo database and the classes called as required by Postgres functions.

Tellervo Database 115

So unless you make changes to files within these packages, you have no need to worry about PLJava. If you
do need to make changes, then you will need to add the new jar to the database. To do this you use the
pljava functions within Postgres.

The main calls you need to make are:

SELECT sqlj.replace jar(’file:///usr/share/tellervo-server/tellervo-pljava.jar’,

’tellervo jar’, false); SELECT sqlj.set classpath(’cpgdb’, ’tellervo jar’);

The first replaces the existing jar with the one specified. PLJava requires a name for the jar to use within
the database and so we use ‘tellervo jar’. The second command sets the classpath for the specified schema
(the first argument) to the contents of the specified jar (the second argument). Once you have done this
you should be able to call your Java functions from within Postgres.

Please note that if you add dependencies to your classes that are not provided by the standard Java virtual ma-
chine these must also be added to the tellervo-pljava.jar. You can get rather cryptic NoClassDefFoundError
errors that do not necessarily name the additional dependency, but the class from which it is called.

Part III

Appendices

Appendix A

Belfast Apple

Format name Belfast Apple
Other name(s) None known
Type Text file
Extension(s) Various (typically txt and dat)
Read/write support Read and write
Reference implementation No original software is known to exist so TRiCYCLE is pro-

posed as the reference implementation
Data / metadata Data only with comment
Calendar type n/a
Absolute dating support No
Undated series support Yes
Relative dating support No
Multi series support No
Original designer John Pilcher

A.1 Description

Belfast Apple is a simple text file format (see also Belfast Archive) originating from the Queens University Belfast
lab and originally designed for use on an Apple II computer. This format is not known to be actively used but a
large amount of data (especially at Belfast) is archived in this format.

I Line 1 - name of the site or object the data refers to.
I Line 2 - identifier for the sample the data refers to.
I Line 3 - number of data values in the file
I Lines 4+ - line feed delimited data values as integers in 1/100th mm
I Final line contains a comment typically starting with ‘COMMENT -’

120 Tellervo: A guide for users and developers

A.2 Example file

1 EXAMPLE SITE
2 A1805
3 106
4 188
5 165
6 184
7 112
8 103
9 111

10 239
11 226
12 132
13 143
14 146
15 140
16 100
17 176
18 139
19 124
20 115
21 78
22 80
23 156
24 75
25 110
26 80
27 130
28 83
29 157
30 99
31 115
32 102
33 110
34 108
35 87
36 135
37 107
38 96
39 70
40 128
41 119
42 86
43 101
44 106
45 129
46 88
47 101
48 151
49 106
50 97
51 110
52 97
53 91
54 93
55 100
56 124
57 99
58 134
59 125
60 105
61 96
62 COMMENT − PB 15−NOV−99

Appendix B

Belfast Archive

Format name Belfast Archive
Other name(s) None known
Type Text file
Extension(s) Various (typically arx, txt and dat)
Read/write support Read only
Reference implementation No original software is known to exist so TRiCYCLE is pro-

posed as the reference implementation
Data / metadata Data with limited metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer Martin Munro

B.1 Description

Belfast Archive is a simple text file format based on the original Belfast Apple format at the Queens University
Belfast lab. It shares the same features as Belfast Apple but with the addition of a number of metadata fields at
the end of the file.

I Line 1 - name of the site or object the data refers to.
I Line 2 - identifier for the sample the data refers to.
I Line 3 - number of data values in the file
I Lines 4+ - line feed delimited data values as integers in 1/100th mm
I The lines "[[ARCHIVE]]" and "[[END OF TEXT]]" denote the start and finish of the metadata section

The metadata section contains the following lines:

I Line 1 - start year as an integer.
I Line 2 - unknown
I Line 3 - Double representing the resolution of data values e.g. .1= 1/10ths mm, .01 = 1/100th mm, .001

= microns etc
I Line 4 - unknown
I Line 5 - unknown
I Line 6 - unknown

122 Tellervo: A guide for users and developers

I Line 7 - title of the data series
I Line 8 - unknown
I Line 9 - unknown

B.2 Example file

1 EXAMPLE SITE
2 1
3 176
4 342
5 338
6 334
7 409
8 362
9 308

10 360
11 264
12 325
13 318
14 51
15 48
16 47
17 60
18 49
19 48
20 ” [[ARCHIVE]] ”
21 1277
22 9177
23 . 0 1
24 1.035795
25 0.212144
26 BOB 25/03/95
27 EXAMPLE SITE #01
28 P i t h F Sap 32
29 ””
30 ” [[END OF TEXT]] ”

Appendix C

Besançon

Format name Besançon
Other name(s) SYLPHE
Type Text file
Extension(s) txt
Read/write support Read and write
Reference implementation Not known
Data / metadata Data and some structured metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support Yes
Relative dating support No
Multi series support Yes
Original designer Georges Lambert

C.1 Description

The Besançon format is most commonly used in a number of French laboratories. The format allows for multiple
series in the same file. Each series (or element block in Lambert’s notation) is made up of a header line, optional
metadata and a data block each of which are delimited by a line feed.

The header line begins with a dot character, then one or more spaces, then an element name (without spaces)
followed by a space and any number of ignored characters.

The metadata fields are space or line feed delimited. Each field is recorded using a key of three letters. The format
allows for the full spelling out of the field if preferred, but it is the first three letters that are read by software so
LON is the same as LONGEUR. Some fields are ‘unimodal’ in that their presence is all that is required e.g. CAM
means that cambium was observed. Other fields are ‘bimodal’ which means they require a value to be associated
with them. In this case the field key is followed by a space and then an integer or string value e.g. POS 1950.
The accepted metadata fields are as follows:

LON Number of data values

POS The temporary first ring date given relatively to a group

ORI The year for the first ring

TER The year for the last ring. Should be the same as ORI + LON

124 Tellervo: A guide for users and developers

MOE Pith present

CAM Cambium present

AUB Number of the first sapwood ring

All other information in the metadata block should be ignored. This feature is often used to allow the inclusion of
multi-line comments.

The data block begins with the marker line VAL (like metadata keys, subsequent characters are ignored so some-
times the rest of this line is used for comments). Subsequent lines contain integer values delimited by a space or
line feed. Missing rings are marked with a comma character and the end of the data is marked with a semicolon.

C.2 Additional information

I There is nothing in the specification to say what precision the data values should be in. Following conversa-
tions with users it appears that Besançon files are mostly 1/100th mm but this is not always the case. Some
files include a Précision field, but this is not documented or standardised.

I There are a number of additional fields that are commonly used but which do not appear in the format
specification. These are also supported by the DendroFileIOLib
ESP Species
ECO Bark present

C.3 Example file

1 . abc22 /43
2 Lon 129
3 Esp q u e r c u s sp Nat l a m b r i s
4 P r e c i s i o n 1/100
5 M o e l l e non p r e s e n t e
6 Aub 0
7 v a l e u r s
8 149 119 156 146 170 187 197 146 191 177
9 137 108 160 108 120 177 136 174 190 109

10 189 176 170 162 114 126 133 152 146 127
11 119 131 146 133 147 82 57 77 77 82
12 96 49 97 76 88 82 72 83 81 90
13 85 87 78 104 111 132 141 105 104 120
14 111 121 115 89 94 88 90 115 111 106
15 107 120 80 92 98 84 97 82 100 86
16 99 65 85 113 90 82 57 57 99 94
17 95 105 120 110 93 96 131 133 123 122
18 113 119 95 127 88 104 , , , ,
19 , , , , , , , , ;

Appendix D

CATRAS

Format name CATRAS
Other name(s) None known
Type Binary
Extension(s) cat
Read/write support Read and write
Reference implementation CATRAS
Data / metadata Data and some structured metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support Yes
Relative dating support No
Multi series support No
Original designer Roland Aniol

D.1 Background

The CATRAS format (Aniol, 1983) is the only known binary dendro data format. As such it can’t be read by
a simple text editor, and can’t be imported by spreadsheet or database programs. The format was designed by
Roland Aniol for use in his program of the same name. The binary nature of the format means the files are typically
much smaller than text files containing similar data. The closed nature of the format originally meant that users
were tied to the application. The fact that users can’t manually edit the file means that the validity of files is not
a problem like it is with most other dendro formats.

The format was originally decoded in the early 1990’s and permission was granted by Aniol for a converter to
be included in Henri Grissino-Mayer’s CONVERT5 application. Subsequently others have independently released
application and code that can read CATRAS files to a greater or lesser extent.

Following its original release in 1983, CATRAS was updated several times, the most recent version (v4.42) was
released in 2010. The code in DendroFileIOLib is based in part on Matlab, Fortran and C code of Ronald Visser,
Henri Grissino-Mayer and Ian Tyers.

126 Tellervo: A guide for users and developers

D.2 Reading byte code

Reading byte code is more complicated than reading text files. Each byte is 8-bits and therefore can represent up
to 256 values. Depending on the type of information each byte contains, the bytes are interpreted in one of four
ways:

D.2.1 Strings

Some of the bytes in CATRAS files contain character information. In this case each byte represents a letter. In
java an array of bytes can be directly decoded into a string.

D.2.2 Integers

As a byte can only represent 256 values, whenever an integer is required it is stored as a byte pair. Each byte
pair consists of a least significant byte (LSB) and a most significant byte (MSB). The order that they appear in
files typically varies between platforms and is known as ’endianness’. As CATRAS solely runs on Microsoft (x86)
processors we can safely assume that all CATRAS files will be using little-endian (i.e. LSB MSB). The counting
in a byte pair therefore works as follows:

Value LSB MSB

1 1 0
2 2 0
3 3 0

.
256 0 1
257 1 1
258 2 1
.

A byte pair can therefore store 256x256=65536 values (more than enough for most number fields).

D.2.3 Real numbers

Statistical values–such as arithmetic mean, standard deviation, first-order autocorrelation, and mean sensitivity–are
given for all the ring widths and optionally for the ring widths in a restricted part of the series. The real numbers
are given in standard format defined by the IEEE 754 Standard for Floating-Point Arithmetic.

D.2.4 Categories

Categories are typically recorded as single bytes as most categories have just a few possible values. They can
therefore be conceptualized as being integers where 0=first option, 1=second option etc. The exception to this
is for species because there are more than 256 species. In this case, a byte pair is used in exactly the same way
as described for integers above. The only problem for species is that the codes are unique to each laboratory and
refer to values enumerated in a separate ’.wnm’ file. Without this dictionary the species code is of little use.

CATRAS 127

D.2.5 Dates

The date of the creation of the series and the date of the last amendment to the series are stored as three single
bytes each, one for day, one for month, and one for year. The year is stored with an offset of 1900. Therefore
numbers from 1 to 100 belong to the 20th century (calendar year 1901 to 2000) and numbers from 101 to 200
belong to the 21th century (calendar year 2001 to 2100).

D.3 Metadata

The first 128 bytes contain the file header information and the remainder of the file contains the ring-width data
and sample depth data (if series is a chronology). If a series is only partly suitable for further analysis then this
indicated in bytes 49–52. The quality code at position 58 is an overall rating for the series. This helps to exclude
poor series from analyses other than dating.

D.4 Data

The remaining bytes in the file contain the actual data values stored as integer byte pairs. All data are stored in
multiples of 128 bytes. If the number of data bytes given in the header at position 45–46 is not a multiple of 128
the file is padded with extra bytes accordingly. Padded bytes should be ignored.

D.4.1 Ring widths

Ring widths are stored in hundredths of a millimetre in the same order as the tree had been grown. When working
with archaeological or geological wood it might occur that a particular ring is damaged and therefore its width
cannot be determined precisely. To indicate that fact and to exclude this particular ring from further calculations
its measured width is stored negative. In the CATRAS program a negative ring width will be taken into account
neither in the calculation of tree curves and chronologies nor in the statistics or in comparisons with other series.

D.4.2 Chronologies

Chronology files are indicated at position 84 in the file header and contain additional data in respect to raw data
files. After the block of ring width data three additional data blocks follow. Firstly the number of ring widths
averaged at a particular position follows (the sample depth). Then the number of series with the same trend
between subsequent ring widths at a particular position follows. Then the number of series with the opposite trend
between subsequent ring widths at a particular position follows. All data blocks are stored in multiples of 128
bytes. If the number of data bytes given in the header at position 45-46 is not a multiple of 128 each block is
padded with extra bytes accordingly. Padded bytes should be ignored.

128 Tellervo: A guide for users and developers

Bytes Data type Field Description

1–32 C Series name
33–40 C Series code. Must be upper case and match file name.
41–44 C File extension
45–46 I Series length
47–48 I Sapwood length
49–50 I First valid ring Used if a portion of the series is unreliable
51–52 I Last valid ring Used if a portion of the series is unreliable

53 B Scope 1=pith; 2=waldkante; 3=pith to waldkante; 4=bark;
5=pith to bark

54 B State of last ring 0=last ring complete; 1=last ring only early wood
55–56 I First ring Calendar year of first ring: 0=not dated; ¡0=B.C.;

¿0=A.D.
57 B Number of valid characters in series name
58 B Quality code 0=not known; 1=very good . . . 5=uncertain

59–60 I Species code Requires an associated catras.wnm file
61–63 D Creation date DMY, Y offset 1900
64–66 D Last updated DMY, Y offset 1900

67 B Real number format normally 1=IEEE
68 B Type of series 0=ring widths; 1=early wood widths; 2=late wood

widths
69–81 Reserved

82 C Special sources A=averaged; D=digitized; E=extern; H=manual input
83 B Protection 0=no protection; 1=not to be deleted; 2=not to be

amended
84 B File type 0=raw; 1=tree curve; 2=chronology

85–88 C Creator Initials of creator

Statistics for total series
89–92 R Arithmetic mean
93–95 R Standard deviation

96–100 R First-order autocorrelation
101–104 R Mean sensitivity
105–106 I Number of rings for mean
107–108 I Number of rings for autocorrelation

Statistics for restricted part of series
109–112 R Arithmetic mean
113–116 R Standard deviation
117–120 R First-order autocorrelation
121–124 R Mean sensitivity
125–126 I Number of rings for mean
127–128 I Number of rings for autocorrelation

Table D.1: Summary of the metadata portion of CATRAS files. Data types are: strings (C); integers (I); real numbers (R);
binary categories (B); and dates (D). Bytes 89–128 contain descriptive statistics for the file. Bytes 89–108 concern the
entire series, and bytes 109–128 a subset of the series where some poor quality data (defined in bytes 49–52) have been
excluded.

Appendix E

Cracow Binary Format

Format name Cracow Binary Format
Other name(s) Cracow
Type Binary file
Extension(s) AVR and AVS
Read/write support Read
Reference implementation Unknown
Data / metadata Data only
Calendar type n/a
Absolute dating support No
Undated series support Yes
Relative dating support No
Multi series support No
Original designer Unknown

E.1 Description

This is a binary format used primarily in Polish labs (e.g. AGH-UST in Cracow, Universities in Szczecin, Torun
and Katowice). It is a simple data-only format with no support for calendars or dating. There are two types of file
(AVR and AVS) but the format for them is identical, the only difference being that the AVR extension indicates
the file is a measurement series file and AVS extension indicates a chronology file.

The file begins with a six character header:

1. Zero
2. Ring number where sapwood begins
3. Zero
4. Ring number where sapwood ends (also length of sample)
5. Zero
6. Zero

If there is no sapwood recorded, then bytes 2 and 4 will both be zero. The zero bytes at positions 1, 3, 5 and 6
can be used as a signature to check the file is in Cracow format.

Following the six header bytes, there comes the ring width values. Each ring value is stored in two bytes, the
second containing the values from 0 to 99 and the first contains the values ¿100. For instance the ring value 345
would be stored in two values, 3 and 45.

Appendix F

Comma Separated Values

Format name Comma Separated Values
Other name(s) CSV
Type Text file
Extension(s) Various (typically txt or csv)
Read/write support Read and write
Reference implementation n/a
Data / metadata Data only
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support No
Original designer n/a

F.1 Description

Comma separated values format is a simple text format for representing tabular data. It is not specific to den-
drochronology data and is supported by most spreadsheet and database applications. Data is delimited into columns
using a comma character to indicate cell boundaries.

Support for CSV files in TRiCYCLE is limited to a particular layout of data. The expected layout is the same as
for Excel and ODF spreadsheet files:

I Row 1 - Header names for each column
I Column A - Year values
I Column B+ - One column for each series containing data values. Cells are left empty if no data is available

for a series because it does not extend to a particular year. Data must be continuous for each series, so
missing/unmeasured rings should be included as zero.

132 Tellervo: A guide for users and developers

F.2 Example file

1 Year , MySample1 , MySample2
2 5 0 0 , 0 . 3 3 ,
3 5 0 1 , 0 . 2 6 , 0 . 2 6
4 5 0 2 , 0 . 2 , 0 . 2
5 5 0 3 , 0 . 1 4 , 0 . 1 4
6 5 0 4 , 0 . 0 8 , 0 . 0 8
7 5 0 5 , 0 . 0 2 , 0 . 0 2
8 5 0 6 , 0 . 2 , 0 . 2
9 5 0 7 , 0 . 1 4 , 0 . 1 4

10 5 0 8 , 0 . 0 8 , 0 . 0 8
11 5 0 9 , 0 . 2 ,
12 5 1 0 , 0 . 3 3 ,
13 5 1 1 , 0 . 0 8 ,
14 5 1 2 , 0 . 3 3 ,
15 5 1 3 , 0 . 2 2 ,

Appendix G

Corina Legacy

Format name Corina Legacy
Other name(s) Corina
Type Text file
Extension(s) Various including raw, rec, ind, cln, sum)
Read/write support Read and write
Reference implementation Corina
Data / metadata Data and some structured metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support Yes
Multi series support No
Original designer Robert ‘Mecki’ Pohl

G.1 Description

The Corina Legacy format is the file format used by the Corina software prior to version 2, when it transferred to
using TRiDaS. The format was originally designed for use with the MS-DOS version of Corina but was also used
as the native file format in the later Java versions (up to and including v1.1).

A Corina file contains yearly data (ring-width and number of samples for that year), some fixed metadata, and
optionally weiserjahre data and a listing of element samples (for summed samples).

The title comes first, on a line by itself, followed by a blank line. The title is repeated later, so this is only to make
it easier for people or external programs to read the title.

The metadata section comes next. The syntax is ;TAG value. Tags are all uppercase. Their order is fixed. Some
values are terminated by a newline, others by the next semicolon. Valid tags, and their internal names are:

I ID - 8 character ID used when exporting to Tucson format
I NAME - Name of the series
I DATING - Either R (relative) or A (absolute)
I UNMEAS PRE - Number of unmeasured rings towards the pith
I UNMEAS POST - Number of unmeasured rings towards the bark
I FILENAME
I COMMENTS, COMMENTS2 etc - Free text comments
I TYPE - either C (core), H (charcoal) or S (section)

134 Tellervo: A guide for users and developers

I SPECIES
I SAPWOOD - Count of sapwood rings
I PITH - either P (present), * (present but undateable), or N (absent)
I TERMINAL - either B (bark), W (waney edge), v (near edge), vv (unknown)
I CONTINUOUS - referring to the outer ring, either C (continuous), R (partially continuous) or N (not

continuous)
I QUALITY - either + (one unmeasured ring), ++ (more than one unmeasured ring)
I FORMAT - either R (raw) or I (indexed)
I INDEX TYPE - type of index used
I RECONCILED - Y or N indicating whether the series has been reconciled against another series

The data section comes next and this always starts with the line ;DATA and for reasons lost in time there are nine
spaces afterwards.

Data lines come in pairs, the first line containing the year and data values, the second containing the sample
depth/count for each value. For reasons unknown, the first and last data line pair have a slightly different syntax
to the others.

I First data line begins with a space and an integer for the first year in the line. There then follows 9 spaces
followed by the integer data value for the first ring. The remaining data values (often less than a full decades
worth) on that line follow as integers left padded by spaces to take up 6 characters.

I The sample depth line that pairs with this follows next starting with 16 spaces, followed by the sample depth
value enclosed in square brackets. The remaining sample depth values follow in square brackets left padding
with spaces to take up 6 characters.

I Next comes the first normal data line. This begins with a space, followed by an integer year value. The data
values follow as integers left padded by spaces to take up 6 characters. A data line has a decades worth of
data values.

I Next comes the normal sample depth line. It begins with 7 spaces followed by each of the sample depth
values enclosed in square brackets and left padded with spaces up to 6 characters.

I Data lines continue in pairs until the last line is reached. This is the same as a normal data line except it
includes an extra data value 9990 as a stop marker. This data line may have less than a full decade of values.

I The final sample depth line is the same as normal except it is shifted left by 4 characters. A sample depth
value is also included for the dummy 9990 stop marker year.

Following the data block there is a blank line and two option blocks of data that are only included if the file is a
chronology file.

The next block of information in a chronology file is denoted by a line ;ELEMENTS. The following lines contain
the file names of the data files that have contributed to the creation of the chronology.

Following this is an optional block denoted by the line ;weiserjahre followed by the weiserjahre data. Each weiser-
jahre data line begins with a space followed by a integer year value for the first year in the line. The weiserjahre
value is left padded with spaces to fill 6 characters and the value itself is written as X/Y where X is the number
of samples that show an upward trend in width; and Y is the number of samples that show a downward trend in
width. The weiserjahre value is forward facing so the value for ring 1001 shows the trend between ring 1001 and
1002. There is therefore one less weiserjahre value in the final row than there are ring-widths.

The final line of Corina data files contains the author’s name preceded by a tilde.

Corina Legacy 135

G.2 Example file

1 Trebenna , B y z a n t i n e F o r t r e s s , NW tower 1AB
2

3 ; ID 907010;NAME Trebenna , B y z a n t i n e F o r t r e s s , NW tower 1AB; DATING R ; UNMEAS PRE 1 ;UNMEAS POST
1

4 ; FILENAME G:\DATA\TRB\TRB1AB .SUM
5

6

7 ; TYPE S ; SPECIES J u n i p e r u s sp . ; FORMAT R ; PITH +
8 ; TERMINAL vv ; CONTINUOUS N; QUALITY +
9 ; RECONCILED Y

10 ;DATA
11 1001 125 219 207 139 62 107 29 91 65
12 [1] [1] [1] [1] [1] [1] [1] [1] [1]
13 1010 71 132 74 150 75 156 122 81 46 57
14 [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]
15 1020 147 78 89 126 73 121 67 71 64 129
16 [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]
17 1030 149 155 122 126 53 136 90 65 100 67
18 [1] [1] [1] [1] [1] [1] [1] [1] [1] [2]
19 1040 67 101 132 102 40 67 42 36 62 29
20 [2] [2] [2] [2] [2] [2] [2] [2] [2] [2]
21 1050 30 44 46 40 34 61 55 29 44 63
22 [2] [2] [2] [2] [2] [2] [2] [2] [2] [2]
23 1060 62 38 22 26 26 28 37 21 21 27
24 [2] [2] [2] [2] [2] [2] [2] [2] [2] [2]
25 1070 17 18 50 21 33 12 17 16 27 20
26 [2] [2] [2] [2] [2] [2] [2] [2] [1] [1]
27 1080 18 11 9 8 9990
28 [1] [1] [1] [1] [1]
29

30 ; ELEMENTS
31 G:\DATA\TRB\TRB1A . REC
32 G:\DATA\TRB\TRB1B . REC
33 ; w e i s e r j a h r e
34 1001 1/0 0/1 0/1 0/1 1/0 0/1 1/0 0/1 1/0
35 1010 1/0 0/1 1/0 0/1 1/0 0/1 0/1 0/1 1/0 1/0
36 1020 0/1 1/0 1/0 0/1 1/0 0/1 1/0 0/1 1/0 1/0
37 1030 1/0 0/1 1/0 0/1 1/0 0/1 0/1 1/0 0/1 1/1
38 1040 2/0 2/0 0/2 0/2 2/0 0/2 0/2 2/0 0/2 2/0
39 1050 2/0 1/1 0/2 0/2 2/0 0/2 0/2 2/0 2/0 1/1
40 1060 0/2 0/2 2/0 1/1 2/0 2/0 0/2 1/1 2/0 0/2
41 1070 1/1 2/0 0/2 2/0 0/2 2/0 1/1 1/0 0/1 0/1
42 1080 0/1 0/1 0/1
43 ˜ Unknown User

Appendix H

DendroDB

Format name DendroDB
Other name(s) None known
Type Text file
Extension(s) dat
Read/write support Read only
Reference implementation DendroDB website
Data / metadata Data and some structured metadata
Calendar type Astronomical
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer Simon Brewer

H.1 Description

The DendroDB format is an export file format produced by the DendroDB website/database. There is no known
software that can natively read DendroDB files so a ‘writer’ for this format has not been developed.

The format is self-explanatory, beginning with a copyright line, followed by 7 metadata lines, then the data itself.
There are eight possible data variables: Total width; Earlywood width; Latewood width; Min. Density; Max.
Density; Earlywood density; Latewood density; Average density. Ring width data is provided in microns but the
units for density measurements are not document.

As of Feb 2011, the DendroDB database does not contain data prior to 441AD so handling of BC/AD transition
has not been tested. The DendroDB web interface suggests that BC dates should be entered as negative integers,
but it also allows request for data from year 0. This suggests the database uses an Astronomical calendar and this
is how the DendroIOLib treats it.

http://dendrodb.cerege.fr/indexBAD.htm

138 Tellervo: A guide for users and developers

H.2 Example file

1 Data downloaded from DendroDB . P l e a s e acknowledge a u t h o r s
2 S i t e : Example s i t e
3 Contact : A N Other
4 S p e c i e s : L a r i x s i b i r i c a
5 Parameter : Latewood width
6 L a t i t u d e : 5 3 . 2 5
7 L o n g i t u d e : 5 7 . 3 5
8 E l e v a t i o n : 1670
9 Tree Core Year Latewood width

10 1 1 1648 16
11 1 1 1649 21
12 1 1 1650 8
13 1 1 1651 10
14 1 1 1652 6
15 1 1 1653 8
16 1 1 1654 11
17 1 1 1655 13
18 1 1 1656 9
19 1 1 1657 10
20 1 1 1658 10
21 1 1 1659 4
22 1 1 1660 5
23 1 1 1661 7
24 1 1 1662 4
25 1 1 1663 8
26 . . .

Appendix I

Heidelberg

Format name Heidelberg
Other name(s) TSAP, FH
Type Text file
Extension(s) fh
Read/write support Read and write
Reference implementation TSAP-Win
Data / metadata Data and extensible metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support Yes
Relative dating support Yes
Multi series support Yes
Original designer Frank Rinn

I.1 Description

The Heidelberg format (Rinn, 2008) is the native file format for Rinntech’s TSAP-Win software. It supports
metadata in the form of keyword-value pairs. There are more than 140 standard keywords specified in the docu-
mentation, but users can extend these with their own. This makes the format extremely flexible, but the absence
of any checking of data types (strings, numbers categories etc) and no method of validation means that there can
be problems interpreting metadata entries.

Heidelberg files can store one or more series in a single file. Each series is represented by a header and a data
block.

The header block begins with a line HEADER:. This is followed by lines of metadata, with one field on each line,
in the format keywords=value much like a standard Windows INI file. As mentioned previously there are a number
of predefined keywords, all of which are outlined here:

I AcceptDate
I Age
I AutoCorrelation
I Bark
I BHD
I Bibliography

I Bibliography[n]
I BibliographyCount
I Bundle
I CardinalPoint
I ChronologyType
I ChronoMemberCount

140 Tellervo: A guide for users and developers

I ChronoMemberKeycodes
I Circumference
I Client
I ClientNo
I Collector
I Comment
I Comment[n]
I CommentCount
I Continent
I CoreNo
I Country
I CreationDate
I DataFormat
I DataType
I DateBegin
I Dated
I DateEnd
I DateEndRel
I DateOfSampling
I DateRelBegin[n]
I DateRelEnd[n]
I DateRelReferenceKey[n]
I DateRelCount
I DeltaMissingRingsAfter
I DeltaMissingRingsBefore
I DeltaRingsFromSeedToPith
I Disk
I District
I EdgeInformation
I EffectiveAutoCorrelation
I EffectiveMean
I EffectiveMeanSensitivity
I EffectiveNORFAC
I Key
I EffectiveNORFM
I EffectiveStandardDeviation
I Eigenvalue
I Elevation
I EstimatedTimePeriod
I Exposition
I FieldNo
I FilmNo
I FirstMeasurementDate
I FirstMeasurementPersID
I FromSeedToDateBegin
I GlobalMathComment[n]
I GlobalMathCommentCount
I GraphParam
I Group
I HouseName
I HouseNo
I ImageCellRow

I ImageComment[n]
I ImageFile[n]
I ImageCount
I ImageFile
I Interpretation
I InvalidRingsAfter
I InvalidRingsBefore
I JuvenileWood
I KeyCode
I KeyNo
I LabotaryCode
I LastRevisionDate
I LastRevisionPersID
I Latitude
I LeaveLoss
I Length
I Location
I LocationCharacteristics
I Longitude
I MajorDimension
I MathComment
I MathComment[n]
I MathCommentCount
I MeanSensitivity
I MinorDimension
I MissingRingsAfter
I MissingRingsBefore
I NumberOfSamplesInChrono
I NumberOfTreesInChrono
I PersId
I Pith
I Project
I ProtectionCode
I Province
I QualityCode
I Radius
I RadiusNo
I RelGroundWaterLevel
I RingsFromSeedToPith
I SampleType
I SamplingHeight
I SamplingPoint
I SapWoodRings
I Sequence
I SeriesEnd
I SeriesStart
I SeriesType
I ShapeOfSample
I Site
I SiteCode
I SocialStand
I SoilType

Heidelberg 141

I Species
I SpeciesName
I StandardDeviation
I State
I StemDiskNo
I Street
I Timber
I TimberHeight
I TimberType
I TimberWidth
I TotalAutoCorrelation
I TotalMean
I TotalMeanSensitivity
I TotalNORFAC

I TotalNORFM
I TotalStandardDeviation
I Town
I TownZipCode
I Tree
I TreeHeight
I TreeNo
I Unit
I UnmeasuredInnerRings
I UnmeasuredOuterRings
I WaldKante
I WoodMaterialType
I WorkTraces

The meaning of many of these keywords is fairly self-explanatory but others are a little more obscure. As there is
no data typing or validation the format of the contents of these fields cannot be predicted. This is particularly a
problem when trying to compare fields such as Latitude, Longitude and FirstMeasurementDate, but is especially a
problem when comparing files produced in different labs.

The header section is followed by a data section denoted by a line containing the keyword DATA: followed by the
type of data present which can be one of Tree; HalfChrono; Chrono; Single; Double; Quad. Tree, HalfChrono and
Chrono are the original keywords supported by early versions of TSAP but these are now deprecated in preferences
of the more generic Single, Double and Quad terms. The terms Single, Double and Quad are largely interchangeable
with Tree, HalfChrono and Chrono respectively, but not completely. Double can refer to both Tree and HalfChrono
format data. When the newer terms are used, the header keyword DataFormat is used to record whether the data
is equivalent to Tree, HalfChrono or Chrono.

Single format - data is typically used for storing raw measurement series. Each data line contains 10 data values
each being a left space padded integer taking up 6 characters. Any spare data values in the final data line
are filled with zeros. Alternatively it appears that TSAP-Win also accepts this data section as single integer
values one per line.

Double format - data is for storing data with sample depth information - typically chronologies. Like the single
format section, data is stored as 10 integer values, each taking up 6 characters and left padded with spaces.
The values are in pairs of ring-widths and sample depths, therefore five rings are stored per line.

Quad format - data is for storing chronologies with sample depth as well as data on how many of the constituent
series increase and decrease. This format therefore requires four numbers for each data point: ring-width;
sample depth; increasing series; decreasing series. Numbers are stored as integers, left space padded as
before, but this time only using 5 characters not 6. Four data points are included on each line, therefore this
means there are 16 numbers per row and each row is 80 characters long.

142 Tellervo: A guide for users and developers

I.2 Example file - raw series

1 HEADER:
2 DateEnd=−66
3 KeyNo=27
4 P r o j e c t=Growth s t u d i e s
5 Length =103
6 L o c a t i o n=Example s i t e
7 S p e c i e s=PISY
8 SapWoodRings=14
9 WaldKante=WKF

10 S t a t e=C o l o r a d o
11 P e r s I d=FR
12 KeyCode=271017
13 Country=USA
14 DateOfSampl ing =19950506
15 TreeNo=5
16 CoreNo=1
17 E x p o s i t i o n=North−West
18 C r e a t i o n D a t e =19970526
19 S o i l T y p e=Sand
20 DATA: Tree
21 125 130 99 120 115 145 151 130 135 151
22 200 190 151 170 170 174 170 200 210 130
23 180 197 210 160 180 155 180 199 140 150
24 146 140 145 150 155 110 115 113 120 130
25 110 120 150 120 120 110 115 160 160 145
26 135 145 125 115 145 149 120 150 160 99
27 110 75 70 82 96 90 120 151 155 130
28 132 133 149 110 130 120 128 118 125 115
29 95 90 110 98 80 85 97 88 70 100
30 90 70 80 90 85 78 95 84 70 90
31 80 75 70 0 0 0 0 0 0 0

I.3 Example file - chronology

1 HEADER:
2 KeyCode=ABCK0530
3 DataFormat=Hal fChrono
4 S e r i e s T y p e=Mean c u r v e
5 Length=60
6 DateBegin =987
7 DateEnd=1046
8 Dated=Dated
9 L o c a t i o n=Example s i t e

10 S p e c i e s=QUSP
11 GlobalMathCommentCount=0
12 CommentCount=0
13 DATA: Double
14 125 1 125 2 264 2 206 2 115 2
15 111 2 188 2 308 2 197 2 419 2
16 238 2 227 2 279 2 293 2 271 2
17 309 2 170 2 204 2 163 2 175 2
18 164 2 211 2 134 2 141 2 107 2
19 72 2 74 2 91 2 110 2 47 2
20 87 2 87 2 35 2 47 2 80 2
21 66 2 38 2 82 2 78 2 65 2
22 63 2 76 2 67 2 91 2 73 3
23 39 3 41 3 78 3 57 3 54 3
24 41 3 39 3 52 3 53 3 43 3
25 48 3 32 3 32 3 48 3 59 3

Appendix J

KINSYS-KS

Format name KINSYS-KS
Other name(s) KINSYS, KINSYS/KS-Sauvala, MIT
Type Text file
Extension(s) .MIT
Read/write support Read
Reference implementation KINSYS-KS
Data / metadata Data and structured metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer Unknown

J.1 Description

The KINSYS-KS format was designed for use with the application of the same name at the Finnish Forest Research
Institute – Metla. The format is for raw measurement series and contains both data and structured metadata.
The primary focus of the metadata fields included are for forestry sampling.

The format allows for multiple data series within a single file, with each series beginning with a 14 line header,
followed by multiple data lines, and finishing with the line *** DATA END ***.

The first line of the header contains the date and time the file was created. All subsequent header lines are
numbered #0, #1, #2 etc and contain one or more metadata fields delimited with a backslash as shown below:

I Measurement timestamp
I #0 - Project code / Project name / Responsible person
I #1 - Sampling date
I #2 - Ycoord / Xcoord / Elevation
I #3 - Experiment / Period of measurement / Location
I #4 - Plot / Subplot
I #5 - Measurement series code / ID Code
I #6 - Tree species code
I #7 - Last measurement year / Subsample code
I #8 - Incomplete growth / estimated age increase / Last ring type

144 Tellervo: A guide for users and developers

I #9 - Sampling azimuth / measurement direction / Sample height / Sample height code
I #10 - User defined parameters
I #11 - Number of tree rings in sample / Data type / Columns / Number of decimals
I #12 - Number of tree rings measured

The meanings and formats of these fields are as follows:

Measurement timestamp - This is the date and time that the file was created. It is in the format dd-mm-yy
hh:mm:ss

Project code - Administrative code for the project
Project name - Administrative name for the project
Responsible person - Person responsible for the project
Sampling date - Date the sample was taken formated dd.mm.yy
Ycoord - Y coordinate of the location of the site in Finnish KKJ Uniform Grid coordinates
Xcoord - X coordinate of the location of the site in Finnish KKJ Uniform Grid coordinates
Elevation - Elevation of the site in metres
Experiment -
Period of measurement -
Location - Name of site
Plot - Code number for the plot being sampled
Subplot - Code number of the sub-plot being sampled
Measurement series code - Code for the measurement series
ID Code -
Tree species code - Species code using either the ITRDB or VMI Finnish National Forest Inventory schemes
Last measurement year - Calendar year for the last measurement
Subsample code - Code for if the sample is broken into pieces - marked a,b,c etc. ‘x’ marks a problematic samples

where there are difficulties in analysis
Incomplete growth - If the last incomplete growth ring is measured that this is set to ‘1’, otherwise it is ‘0’
Estimated age increase - Estimate for the number of tree-rings between the birth of the tree and the pith at

the sample height. Taken from VMI correction tables produced on a site and regional basis
Last ring type - If the last incomplete ring is earlywood then this is marked as ’1’, otherwise it is marked as ‘2’
Sampling azimuth - Either a letter code for the radii measured, or an angle in degrees of the azimuth along the

measurement radius
Measurement direction - Pith-to-bark = 0, Bark-to-pith = 1
Sample height - Height at which sample was taken
Height code -
User defined parameters - Free-text information
Number of tree rings in sample - Number of rings in sample including those not measured. If all rings were

measured then this is indicated with a full-stop
Data type - Coded as: 90=ring-width, 91=height shoots, 92=volume growths, 93=earlywood, 94=latewood.

Defaults to 90=ring-width.
Column with - Number of digits the data is stored in. Default=3.
Number of decimals - Number of decimal places the values are stored in. Default=2;
Number of tree rings measured - Number of rings that have been measured.

KINSYS-KS 145

J.2 Example file

1 30−05−09 1 1 : 0 9 : 0 5
2 # 0 P r o j e c t I n d e x /Timonen
3 # 1 3 0 . 0 5 . 2 0 0 9
4 # 2 4905692/7596282/365
5 # 3 100// K a l m a n k a l t i o
6 # 4 110/1
7 # 5 19/6787
8 # 6 1
9 # 7 2008

10 # 8 0
11 # 9 a
12 # 10 F i r e s c a r s
13 # 11 .
14 # 12 25
15 57
16 57
17 74
18 76
19 57
20 51
21 59
22 90
23 82
24 95
25 67
26 78
27 99
28 79
29 87
30 112
31 87
32 88
33 81
34 77
35 94
36 110
37 81
38 108
39 129
40 ∗∗∗ DATA END ∗∗∗

Appendix K

Microsoft Excel 97/2000/XP

Format name Microsoft Excel 97/2000/XP
Other name(s) Binary Interchange File Format, BIFF
Type Binary file
Extension(s) xls
Read/write support Read and write
Reference implementation Microsoft Excel
Data / metadata Data only
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer Microsoft

K.1 Description

The Excel file format is a widely used format for storing spreadsheet data. It is a proprietary binary format created
by Microsoft but suppported by many spreadsheet and statistical applications. It is not to be confused with
the Office Open XML format which was introduced by Microsoft with MS Office 2007 and typically has the file
extension xlsx.

Although Excel files can contain multiple sheets in a workbook, only the first sheet is considered. Like the CSV
and ODF Spreadsheet formats, support for Excel files is limited to a particular layout or style of spreadsheet. The
layout of the data sheet should be as follows:

I Row 1 - Header names for each column
I Column A - Year values
I Column B+ - One column for each series containing data values. Cells are left empty if no data is available

for a series because it does not extend to a particular year. Data must be continuous for each series, so
missing/unmeasured rings should be included as zero.

Appendix L

Microsoft Excel 2007

Format name Microsoft Excel 2007
Other name(s) Office Open XML Spreadsheet, OOXML, OpenXML
Type XML file
Extension(s) xlsx
Read/write support Read and write
Reference implementation ISO 29500
Data / metadata Data only
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer Microsoft

L.1 Description

This is the new XML file format introduced by Microsoft with Excel 2007. Unlike the binary format used by
the previous version of Excel, this format is an open standard. However, it should not be confused with the
OpenDocument Format standard that was developed by the OASIS consortium.

The layout of the data sheet should be just as for the Excel 97/2000/XP format:

I Row 1 - Header names for each column
I Column A - Year values
I Column B+ - One column for each series containing data values. Cells are left empty if no data is available

for a series because it does not extend to a particular year. Data must be continuous for each series, so
missing/unmeasured rings should be included as zero.

See the screenshot in the Microsoft Excel 97/2000/XP format to see how an example of how the spreadsheet
should look.

Appendix M

Nottingham

Format name Nottingham
Other name(s) Nottingham Laboratory format
Type Text file
Extension(s) txt
Read/write support Read and write
Reference implementation Unknown
Data / metadata Data only
Calendar type n/a
Absolute dating support No
Undated series support Yes
Relative dating support No
Multi series support Yes
Original designer Cliff Litton

M.1 Description

The Nottingham format was designed by Cliff Litton. It is a simple text format with no support for metadata.

Line 1 contains a series name and an integer indicating how many data values there are in the file. Subsequent
lines contain the data represented as 1/100th mm integers in twenty columns seemingly in either 4 characters or
3 characters + 1 space.

There is no known reference implementation for this format and few known examples of data so little is known
about how it should handle unusual situations such as negative values, values > 999 etc.

152 Tellervo: A guide for users and developers

M.2 Example file

1 ABCD01 176
2 342 338 334 409 362 308 360 264 325 318 134 151 219 268 290 222 278 258 173 198
3 294 202 170 176 172 121 87 130 114 108 170 135 131 126 87 100 86 104 103 127
4 112 94 96 120 168 149 119 124 79 67 88 90 93 77 49 42 53 38 57 43
5 50 41 56 66 62 55 55 45 47 63 58 60 44 45 49 50 62 61 43 54
6 91 60 56 43 52 51 65 68 55 44 41 75 94 78 63 69 58 75 55 47
7 58 46 62 45 52 50 77 50 63 75 77 64 66 57 80 57 78 65 68 75
8 65 98 85 82 119 89 85 87 83 108 129 123 160 117 129 121 88 69 97 77
9 96 106 71 89 50 65 133 89 88 50 60 95 95 91 102 158 83 55 98 70

10 45 46 40 36 64 58 52 58 56 94 51 48 47 60 49 48

Appendix N

ODF Spreadsheet

Format name ODF Spreadsheet
Other name(s) ODF, ODS, OpenDocument Spreadsheet, OpenOffice.org

Spreadsheet,
Type XML file
Extension(s) ods
Read/write support Read and write
Reference implementation ISO/IEC 26300:2006
Data / metadata Data only
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer OASIS consortium

N.1 Description

The OpenDocument Format (ODF) spreadsheet format is an XML-based specification developed by the Organi-
zation for the Advancement of Structured Information Standards (OASIS) consortium. It should not be confused
with the similarly named Office Open XML format developed by Microsoft. The ODF spreadsheet format is an
open standard which can be read by most modern spreadsheet applications including MS Excel, OpenOffice.org
and Google Docs.

Support for ODF spreadsheets in TRiCYCLE is necessarily limited to a particular layout of spreadsheet:

I Row 1 - Header names for each column
I Column A - Year values
I Column B+ - One column for each series containing data values. Cells are left empty if no data is available

for a series because it does not extend to a particular year. Data must be continuous for each series, so
missing/unmeasured rings should be included as zero.

Appendix O

Oxford

Format name Oxford
Other name(s) Dan Miles Format, English Heritage Format
Type Text file
Extension(s) Various including dan, ddf but often none
Read/write support Read and write
Reference implementation Various English Heritage applications
Data / metadata Data only
Calendar type Gregorian
Absolute dating support Yes
Undated series support Yes
Relative dating support Yes
Multi series support No
Original designer Ancient Monuments Laboratory of English Heritage

O.1 Description

The Oxford format seems to be only currently used in the Oxford Dendrochronology Laboratory. It was designed
in the 1980s for use with a number of DOS based applications for the English Heritage Ancient Monuments
Laboratory. It is still actively used by the Oxford Lab with these programs and a number of newer Windows
applications.

The file is a text file format containing two header lines following by a block of data values and an optional block
of count/sample depth values. Some files also contain a number of comment lines at the end of the file.

Line 1 contains the following fields:

I Char 1 - Apostrophe
I Chars 2-8 - Series name
I Char 9-10 - spaces
I Char 11 - <
I Chars 12-15 - First year in sequence (when series is securely dated). Year should be left padded with spaces

if less than 4 characters.
I Char 16 - hyphen
I Chars 17-20 - Last year in sequence (when series is securely dated). Year should be left padded with spaces

if less than 4 characters.
I Char 21 - space

156 Tellervo: A guide for users and developers

I Char 22+ - Description - typically name of site/building etc
I Final char - optional apostrophe

Line 2 contains:

I Integer number of years
I Comma
I Integer start year

The start year on line 2 and the first year on line 1 will be the same for securely dated series. When the series is
tentatively or relatively dated the first year (and/or) the last year on line 1 will be left blank. For undated series
the start year is set to 1001.

The data lines follow the two header lines. These typically contain 10 data values per line, but there can be more
(if rings have been added) or less e.g. last line. The values are in 1/100th mm integers and can only contain three
digits (e.g. max 999 1/100th mm). Data values are space delimited. Some example files contain values that are
left padded with zeros if the value is on 1 or 2 characters wide (e.g. ’025’ rather than ’ 25’).

Following the data values there should be an empty line followed by an optional sample count/depth block. The
count block is formatted in largely the same way as the data values block. The values are stored in columns 2
characters (rather than 3 characters) wide. Like the data values, the count values are space delimited integers,
typically (but not always) 10 per line.

The file is terminated with 0, 1 or 2 free-text comment lines. A number of Oxford data files have been seen
that terminate with the ASCII control character referred to variably as ’SUB’, ’SUBSTITUTE’ or ’CTRL+Z’
(represented in Unicode as character dec 26 - hex 1A). It is not clear whether this is necessary for any particular
programs to function.

O.2 Limitations

I Only holds whole ring-width data
I Does not cope with data values > 999 1/100th mm
I Does not cope with chronologies of > 99 samples
I Does not allow dates before 1AD

Oxford 157

O.3 Example file

1 ’ABCD <1850−1925> A F i c t i o u s s i t e − abcd1 abcd2 ’
2 75 ,1850
3 422 582 355 266 225 271 361 235 387 395
4 794 611 446 248 277 359 111 226 189 711
5 464 172 190 239 128 153 234 828 207 157
6 768 180 178 168 204 163 160 255 166 136
7 182 201 142 188 223 186 150 135 134 666
8 191 122 223 555 123 126 108 133 137 134
9 161 222 93 100 132 104 86 277 101 141

10 185 151 261 110 145
11

12 1 2 2 2 2 2 2 2 2 2
13 2 2 2 2 2 2 2 2 2 2
14 2 2 2 2 2 2 2 2 2 2
15 2 2 2 2 2 2 2 2 2 2
16 2 2 2 2 2 2 2 2 2 2
17 2 2 2 2 2 2 2 2 2 2
18 2 2 2 2 2 2 2 2 2 2
19 2 2 2 2 1

Appendix P

PAST4

Format name PAST4
Other name(s) P4P PAST4 Project File
Type Text file
Extension(s) p4p
Read/write support Read and write
Reference implementation PAST4
Data / metadata Data and some structured metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer Bernhard Knibbe

The PAST4 format (Knibbe, 2008) is the native file format for SCIEM’s PAST4 software. It is a hybrid XML file,
containing most metadata in structured XML but some metadata and all data as plain text. It is unique amongst
dendro data formats in that it contains not only data and metadata but also settings information for the PAST4
software such as details on what colours to use in graphs, which series should be displayed on screen etc. The
general structure of a P4P file is as follows:

I Project header (required)
I Settings (optional)
I Groups (required, repeatable)
I Records (required, repeatable)

The root XML tag for the file is <PAST_4_PROJECT_FILE>. Inside this is the <PROJECT> tag which contains the
following attributes:

I ActiveGroup - Zero based index specifying which group is active
I EditDate - Date the file was last edited
I Groups - Number of groups within this project
I Locked - Either TRUE or FALSE indicating whether a password is required to open the file
I Name - Name of the project
I Password - Password used to lock the project
I PersID - Abbreviation of the authors name
I Records - Number of records in the project
I Reference - Zero based index indicated which is the reference series (-1 if none selected)
I Sample - Zero based index indicating which is the selected sample (-1 if none selected)

160

I Version - Version number for this PAST4 format. At the time of writing only one version exists (400).

Of these fields only Name, Groups and Records are mandatory. The project tag can also contain a <![CDATA[tag
which allows the storing of a project description in plain text.

Next comes the <SETTINGS> tag. This is one very large XML tag with many attributes controlling the what
PAST4 should display the data. The contents of this tag are optional and are therefore irrelevant for the transfer
of dendro data.

Next comes one or more <GROUPS> tags. A group is an arbitrary collection of series, perhaps representing a number
of measurements of a single object, or perhaps an administrative collection of series. Groups can be nested in a
hierarchy, but rather than use the hierarchical nature of XML files, the format instead lists all groups side-by-side
and maintains the relationships through the use of an ’owner’ attribute containing the index of the parent group.
This arrangement means than any changes to the hierarchy, or the deletion of a group requires all indices to be
carefully updated to avoid corrupting the file. The group tag has the following attributes:

I Name - Name of the group
I Visible - Either TRUE or FALSE indicating whether the group should be shown in graphs
I Fixed - Either TRUE or FALSE indicating whether the group can be moved
I Locked - Either TRUE or FALSE. If locked the group can be used in the calculation of further mean values.
I Changed - Internal TRUE or FALSE value for keeping track of changes
I Expanded - TRUE or FALSE value indicating whether the group should be expanding in the project navigator

window
I UseColor - TRUE or FALSE value for is content should be displayed in color
I HasMeanValue - TRUE or FALSE indicating if the group has a dynamic mean value
I IsChrono - TRUE or FALSE indicating if the group mean is calculated with sample depth information
I Checked - TRUE or FALSE indicating if the group is locked and checked
I Selected - TRUE or FALSE indicated in the group is selected in the project navigation window
I Color - 24bit integer indicating the RGB volor value for the group using Borland format
I Quality - Integer value describing the quality of the group mean
I MVKeycode - String code for the group. If empty the Name field is used
I Owner - Integer pointing containing the index of the parent group if this group is in a hierarchy. If its a top

level group it should be -1.

As with the project tag, the group tag can also contain a <![CDATA[section for storing a plain text description of
the group.

The final tag type in the file is the <RECORDS> tag. These contain the actual data series and most of the metadata.
Like group tags, records tags are placed side-by-side in the file and are placed into the group hierarchy by the use
of the ’owner’ attribute. In addition, the tag also has the following attributes:

I Keycode - Name of the series
I Length - Integer for the number of rings
I Owner - Integer index to the group to which this record belongs
I Chrono - TRUE or FALSE indicating whether this record has density information
I Locked - TRUE or FALSE indicating in the record can be moved
I Filter - TRUE or FALSE indicating if an indexing function is appled to the data
I FilterIndex - Integer index for the filter used
I FilterS1 - Parameter 1 for the filter
I FilterS2 - Parameter 2 for the filter
I FilterB1 - Additional filter parameter
I FilterWeight - Additional filter parameter
I Offset - Position of the first ring
I Color - 24bit RGB color for record in Borland format
I Checked - TRUE or FALSE indicating is the record is selected for use in the dynamic group mean

PAST4 161

I !VShift - Temporary integer value added to data value to shift vertically in graphs
I IsMeanValue - TRUE or FALSE indicating if this is a dynamic mean value
I Pith - TRUE or FALSE
I SapWood - Integer storing the number of sapwood rings
I Location - String location information
I Waldkante - String description of presence of waney edge
I FirstValidRing - Integer indicating which ring is the first valid ring. If ¿0 then some rings are discarded
I LastValidRing - Integer indicating which ring is the last valid ring. If ¿0 then some rings are discarded
I UseValidRingsOnly - TRUE or FALSE - internal use only
I Quality - Integer indicating the quality of the record

The record tag then contains a <HEADER> tag with a <![CDATA[section which includes additional free-text header
information. There are no requirements as to how information should be laid out in this field however many users
seem to adopt the Heidelberg style of keyword=value.

Next comes the <DATA> tag which is empty except another <![CDATA[section. This is where the actual ring-width
data is stored. Each data value is recorded on a separate line (using CR LR line breaks). Each line contains the
following six tab delimited fields:

I Ring width as a floating point number
I Sample depth
I Number of sample increasing
I Latewood percentage as a floating point value 0-1 (0 if not known)
I Duplicate/backup ring-width value to store the original ring-width value. If an index is applied the ring-width

value in column 1 is altered.
I Comment string about this particular ring

P.1 Dating

PAST4 contains an option for enabling/disabling the year 0 but it does not record within the data file whether
the option was set when the file was created. By default the year 0 is disabled therefore the library treats PAST4
files as if they use the Gregorian calendar but it is possible that files were in fact created with the Astronomical
calendar in mind.

162 Tellervo: A guide for users and developers

P.2 Example file

1 <?xml v e r s i o n =”1.0”?>
2 <PAST 4 PROJECT FILE>
3 <PROJECT Name=” t i t l e 0 ” V e r s i o n =”400” Locked=”FALSE” Password=””
4 C r e a t i o n D a t e =”04/05/2006 2 : 1 3 : 5 1 PM” E d i t D a t e =”09/01/2010 13 :02” A c t i v e G r o u p =”0”
5 R e f e r e n c e =”−1” Sample=”−1” Pers ID=” i n v e s t i g a t o r 0 ” Groups =”2” Records=”3”>
6 <![CDATA[d e s c r i p t i o n 0
7]]></PROJECT>
8 <SETTINGS/>
9 <GROUP Name=” t i t l e 1 ” V i s i b l e =”TRUE” F i x e d=”FALSE” Locked=”FALSE” Changed=”FALSE”

10 Expanded=”TRUE” UseCo lo r=”TRUE” HasMeanValue=”FALSE” I s C h r o n o=”FALSE”
11 Checked=”FALSE” S e l e c t e d =”FALSE” C o l o r =”0” MVKeycode=”” Owner=”−1”>
12 <![CDATA[]]></GROUP>
13 <GROUP Name=”Unnamed Group ” V i s i b l e =”TRUE” F i x e d=”FALSE” Locked=”FALSE” Changed=”FALSE”
14 Expanded=”TRUE” UseCo lo r=”TRUE” HasMeanValue=”FALSE” I s C h r o n o=”FALSE” Checked=”FALSE

”
15 S e l e c t e d =”FALSE” C o l o r =”0” MVKeycode=”” Owner=”−1”><![CDATA[]]></GROUP>
16 <RECORD Keycode=” t i t l e 6 ” Length =”4” Owner=”0” Chrono=”FALSE” Locked=”FALSE” F i l t e r =”

FALSE”
17 F i l t e r I n d e x =”−1” F i l t e r S 1 =”100” F i l t e r S 2 =”100” F i l t e r B 1 =”FALSE” F i l t e r W e i g h t =””

O f f s e t =”0”
18 C o l o r =”0” Checked=”FALSE” V S h i f t =”0” IsMeanValue =”0” P i t h=”FALSE” SapWood=”0”
19 L o c a t i o n=”locat ionComment1 ” S p e c i e s =”Quercus ” Waldkante=”” F i r s t V a l i d R i n g =”0”
20 L a s t V a l i d R i n g =”0” U s e V a l i d R i n g s O n l y=”FALSE”>
21 <HEADER><![CDATA[U n i t =1/100 th m i l l i m e t r e s
22]]></HEADER>
23 <DATA><![CDATA[1 2 3 1 1 0 123
24 123 1 1 0 123
25 123 1 1 0 123
26 125 1 1 0 125
27]]></DATA>
28 </RECORD>
29 <RECORD Keycode=” t i t l e 6 ” Length =”4” Owner=”0” Chrono=”FALSE” Locked=”FALSE” F i l t e r =”

FALSE”
30 F i l t e r I n d e x =”−1” F i l t e r S 1 =”100” F i l t e r S 2 =”100” F i l t e r B 1 =”FALSE” F i l t e r W e i g h t =””

O f f s e t =”0”
31 C o l o r =”0” Checked=”FALSE” V S h i f t =”0” IsMeanValue =”0” P i t h=”FALSE” SapWood=”0”
32 L o c a t i o n=”locat ionComment1 ” S p e c i e s =”QUSP” Waldkante=”” F i r s t V a l i d R i n g =”0”
33 L a s t V a l i d R i n g =”0” U s e V a l i d R i n g s O n l y=”FALSE”>
34 <HEADER><![CDATA[U n i t =1/100 th m i l l i m e t r e s
35]]></HEADER>
36 <DATA><![CDATA[1 2 3 1 1 0 123
37 123 1 1 0 123
38 123 1 1 0 123
39 125 1 1 0 125
40]]></DATA>
41 </RECORD>
42 <RECORD Keycode=”Unnamed s e r i e s ” Length =”2” Owner=”1” Chrono=”FALSE” Locked=”FALSE”
43 F i l t e r =”FALSE” F i l t e r I n d e x =”−1” F i l t e r S 1 =”100” F i l t e r S 2 =”100” F i l t e r B 1 =”FALSE”
44 F i l t e r W e i g h t =”” O f f s e t =”0” C o l o r =”0” Checked=”FALSE” V S h i f t =”0” IsMeanValue =”0”
45 P i t h=”FALSE” SapWood=”0” L o c a t i o n =”” S p e c i e s =”” Waldkante=”” F i r s t V a l i d R i n g =”0”
46 L a s t V a l i d R i n g =”0” U s e V a l i d R i n g s O n l y=”FALSE”>
47 <HEADER><![CDATA[U n i t=Wierd u n i t s
48]]></HEADER>
49 <DATA><![CDATA[9 6 1 1 0 96 f i r e d a m a g e ; f i r e d a m a g e ;
50 34 1 1 0 34 f i r e d a m a g e ; f i r e d a m a g e ;
51]]></DATA>
52 </RECORD>
53 </PAST 4 PROJECT FILE>

Appendix Q

Sheffield

Format name Sheffield
Other name(s) D Format
Type Text file
Extension(s) d
Read/write support Read and write
Reference implementation Dendro for Windows
Data / metadata Data and some structured metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support Yes
Multi series support No
Original designer Ian Tyers

Q.1 Description

Sheffield format (Tyers, 1999) is a dendro specific text file designed by Ian Tyers for his Dendro for Windows
application. It is probably most widely used in the UK but is also used in continental Europe as well as New
Zealand.

The format contains both data and some structured metadata with each field/value stored one per line. The order
of fields is fixed so missing data must be indicated by the use of a question mark. The data present on each line
is as follows:

1. Site name/sample number - Free form text not including ,"() up to 64 characters
2. Number of rings - Whole positive number
3. Date type - Single character; A = absolute date, R = relative date
4. Start date - Whole number (can be negative). If absolute year then add 10000 to value so 1AD = 10001
5. Raw data type or Mean data type

I Single character; R = annual raw ring-width data (NB earlier versions used some other codes here for
species e.g. ABEFPSU these are all interpreted as equivalent to R)

I Single character; W=timber mean with signatures, X=chron mean with signatures, T = timber mean,
C = chron mean, M = un-weighted master sequence

6. Raw sapwood number or mean number of timbers/chronologies
I Whole positive number or 0
I Whole positive number

164 Tellervo: A guide for users and developers

7. Raw edges inf. or Mean chronology type
I Single character; Y = has bark, ! = has ?bark, W = terminal ring probably complete (i.e. possibly

Winter Felled), S = terminal ring probably incomplete (i.e. possibly Summer Felled), B = has h/s
boundary, ? = has ?h/s boundary, N = has no specific edge, (NB but may have sap), U = sap/bark
unknown, C = charred outer edge, P = possibly charred outer edge

I Single character; R = raw unfiltered data, 5 = 5 year running mean, I = indexed data, U = unknown
mean type

8. Author and comment - Free form text not including ,"() up to 64 characters
9. UK National grid reference - 2 characters +even no of digits up to 14 characters in all, ? = not known e.g.

TQ67848675
10. Latitude and longitude - Either decimal format e.g. 53.382457;-1.513623 or previously N51^30 W1^20
11. Pith - single character; C = centre of tree, V = within 5 years of centre, F = 5-10 years of centre, G =

greater than 10, ? = unknown
12. Cross-section code - Two character code; first character, A = whole roundwood, B = half round, C quartered,

D radial/split plank, E tangential/sawn plank. second character, 1 untrimmed, 2 trimmed, X irregularly
trimmed. or, X = core /unclassifiable, ? unknown/unrecorded

13. Major dimension - whole number in mm, 0 if unrecorded or mean
14. Minor dimension - whole number in mm, 0 if unrecorded or mean
15. Unmeasured inner rings - single character+whole number; use pith codes + number of rings or, H =

heartwood, N = none
16. Unmeasured outer rings - single character+whole number; use edges code + number of rings except that

S = sapwood with no edge and V is the spring felling equivalent other codes are, H = heartwood with no
edge, N = none

17. Group/Phase - free form text not including , ” () up to 14 characters
18. Short title - free form text not including , ” () up to 8 characters
19. Period - single character; C = modern, P = post medieval, M = medieval, S = Saxon, R = Roman, A =

pre Roman, 2 = duplicate e.g. repeat measure, B = multiperiod e.g. long master, ? = unknown
20. ITRDB species code - 4 character code - refer to ITRDB species codes
21. Interpretation and anatomical notes - ? =no interpretation/notes. The interpretation and the anatomical

notes can be in any order but each must consist of three parts, a single character A or I for anatomy or
interpretation, a separator , for interpretations the date of the start, for anatomy the ringno, a separator
, for anatomy the anatomical code for interpretations P for plus, 0 for felled and a number for the length
of the range, where more than one record is present these are separated by , there must not be a terminal
separator and each record must consist of the tree parts. The anatomical codings can be anything of a single
character but supported usage is based on Hans-Hubert Leuschners anatomical codes; D = Density Band,
R = Reaction Wood, L = Light Latewood, H = Dense Latewood, F = Frost Ring, K = Small Earlywood
Vessels - oak, G = Great Latewood Vessels - oak, T = Wound Tissue, N = Narrow Latewood, A = Light
Latewood End, P = Narrow and Light Latewood, Q = Narrow and Dense Latewood

22. Data type - single character; D = ring widths, E = early-wood widths only, L = late-wood widths only, R
= late+early wood widths (i.e. reverse of normal rings), I = minimum density, A = maximum density, S =
early, late; (i.e. sequentially and separately), M = mixed (?means of others)

The remaining lines contain the data:

I For each width (equivalent to the value of length) the individual increments etc. if a C X T or W type mean.
No negatives or zeros

I Check field - Single character H
I For each width the individual weightings of the mean sequences. If an X or W type mean. No negatives or

zeros.
I Check field - Single character R
I For each width the number of individual series with rising values. No negatives or zeros.
I Check field - Single character F
I For each width the number of individual series with falling values. No negatives.

Sheffield 165

Q.2 Dating

The format copes with the problem of the non-existent year 0AD/BC by adding 10000 to all year values. Therefore:

Year Value in file

1AD 10001
1BC 10000
9999BC 2
10000BC 1

Q.3 Example file

1 Ship wreck 4 t i m b e r mean
2 170
3 A
4 10784
5 W
6 4
7 R
8 made PB 22/6/2004
9 ?

10 ?
11 ?
12 ?
13 0
14 0
15 N
16 N
17 A
18 Example
19 M
20 QUSP
21 ?
22 D
23 391
24 454
25 309
26 314
27 270
28 273
29 229
30 319
31 267
32 276
33 128
34 163
35 221
36 269
37 214
38 201
39 218
40 199
41 198
42 209
43 156
44 177
45 . . .

Appendix R

Topham

Format name Topham
Other name(s) Instrument format
Type Text file
Extension(s) txt
Read/write support Read and write
Reference implementation Not known
Data / metadata Data only
Calendar type n/a
Absolute dating support No
Undated series support Yes
Relative dating support No
Multi series support No
Original designer John Topham

R.1 Description

The Topham format is probably the most simplistic of formats consisting of just a column of decimal data values
and no metadata whatsoever. Each data value is a decimal ring width in millimetres.

R.2 Example file

1 3 . 4 2
2 3 . 3 8
3 3 . 3 4
4 4 . 0 9
5 3 . 6 2
6 3 . 0 8
7 3 . 6 0
8 2 . 6 4
9 3 . 2 5

10 3 . 1 8
11 3 . 4 2
12 3 . 3 8
13 . . .

Appendix S

TRiDaS

Format name TRiDaS
Other name(s) Tree-Ring Data Standard, TRiDaS XML
Type Text file
Extension(s) xml
Read/write support Read and write
Reference implementation TRiCYCLE
Data / metadata Data and structured metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support Yes
Relative dating support Yes
Multi series support Yes
Original designer Esther Jansma, Peter Brewer and Ivo Zandhuis

S.1 Description

TRiDaS (Tree-Ring Data Standard see http://www.tridas.org) is a data format designed by over 80 den-
drochronologists, computer scientists and users of dendrochronological data from a variety of associated fields as
part of the DCCD project and the Dendro Data Standard forum. It is designed to accurately represent any dendro
data and metadata and it is hoped over time the dendro community will accept TRiDaS as the de facto standard
for all dendro data.

The format uses extensible markup language (XML) which means the standard can be extended and evolve as
future needs change. The format is structured around the eight data entities described below:

A project is defined by a laboratory and encompasses dendrochronological research of a particular object or group
of objects. Examples include: the dating of a building; the research of forest dynamics in a stand of living
trees; the dating of all Rembrandt paintings in a museum. What is considered a “project” is up to the
laboratory performing the research. It could be the dating of a group of objects, but the laboratory can
also decide to define a separate project for each object. Therefore, a project can have one or more objects
associated with it.

An object is the item to be investigated. Examples include: violin; excavation site; painting on a wooden panel;
water well; church; carving; ship; forest. An object could also be more specific, for example: mast of a ship;
roof of a church. Depending on the object type various descriptions are made possible. An object can have
one or more elements and can also refer to another (sub) object. For instance a single file may contain three
objects: an archaeological site object, within which there is a building object, within which there is a beam

http://www.tridas.org

170 Tellervo: A guide for users and developers

object. The list of possible object types is extensible and is thus flexible enough to incorporate the diversity of
data required by the dendro community. Only information that is essential for dendrochronological research
is recorded here. Other related data may be provided in the form of a link to an external database such as
a museum catalogue.

An element is a piece of wood originating from a single tree. Examples include: one plank of a water well; a
single wooden panel in a painting; the left-hand back plate of a violin; one beam in a roof; a tree trunk
preserved in the soil; a living tree. The element is a specific part of exactly one object or sub object. An
object will often consist of more than one element, e.g., when dealing with the staves (elements) of a barrel
(object). One or more samples can be taken from an element and an element may be dated using one or
more derivedSeries.

A sample is a physical specimen or non-physical representation of an element. Examples include: core from a
living tree; core from a rafter in a church roof; piece of charcoal from an archaeological trench; slice from
a pile used in a pile foundation; wax imprint of the outer end of a plank; photo of a back plate of a string
instrument. Note that a sample always exists and that it can either be physical (e.g. a core) or representative
(e.g. a picture). A sample is taken from exactly one element and can be represented by one or more radii.

A radius is a line from pith to bark along which the measurements are taken. A radius is derived from exactly
one sample. It can be measured more than once resulting in multiple measurementSeries.

A measurementSeries is a series of direct, raw measurements along a radius. A single measurementSeries can be
standardised or a collection of measurementSeries can be combined into a derived- Series. The measurements
themselves are stored separately as values.

A derivedSeries is a calculated series of values and is a minor modification of the “v-series” concept proposed
by Brewer et al. (2010). Examples include: index; average of a collection of measurementSeries such as
a chronology. A derivedSeries is derived from one or more measurementSeries and has multiple values
associated with it.

A value is the result of a single ring measurement. Examples include: total ring width; earlywood width; latewood
width. The values are related to a measurementSeries or a derivedSeries. In case of a measurementSeries
the variable and its measurement unit (e.g. microns, 1/100th mm etc) are recorded as well.

For a full description of the standard see Jansma et al. (2010).

S.2 Example file

1 <? xml v e r s i o n=” 1 . 0 ” e n c o d i n g=”UTF−8”?>
2 < t r i d a s x m l n s : x s i=” h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ”
3 x s i : s c h e m a L o c a t i o n=” h t t p : //www. t r i d a s . o rg / 1 . 2 . 1 . . / dev / s o u r c e f o r g e / t r i d a s /XMLSchema

/ 1 . 2 . 1 / t r i d a s −1 . 2 . 1 . xsd ”
4 xmlns=” h t t p : //www. t r i d a s . org / 1 . 2 . 1 ” x m l n s : x l i n k=” h t t p : //www. w3 . org /1999/ x l i n k ”>
5 <p r o j e c t>
6 < t i t l e>Aegean D e n d r o c h r o n o l o g y P r o j e c t</ t i t l e>
7 < i d e n t i f i e r domain=” dendro . c o r n e l l . edu ”>C</ i d e n t i f i e r>
8 <createdTimestamp c e r t a i n t y=” e x a c t ”>1997−02−01 T14:13 :51 . 0 Z</ createdTimestamp>
9 <l a s t M o d i f i e d T i m e s t a m p c e r t a i n t y=” e x a c t ”>1997−02−01 T14:13 :51 . 0 Z</

l a s t M o d i f i e d T i m e s t a m p>
10 <t y p e>Dat ing</ t y p e>
11 <d e s c r i p t i o n>Our key long−r a n g e g o a l i s to b u i l d l o n g m u l t i−m i l l e n n i a l s c a l e t r e e−

r i n g
12 c h r o n o l o g i e s i n t h e Aegean and Near East t h a t w i l l e x t e n d from t h e p r e s e n t to

t h e
13 e a r l y Holocene to cover , b r o a d l y s p e a k i n g , t h e l a s t 10 ,000 y e a r s o f human and
14 e n v i r o n m e n t a l h i s t o r y . Our r a i s o n d ’ e t r e i s to p r o v i d e a d a t i n g method f o r t h e

s t u d y
15 o f h i s t o r y and p r e h i s t o r y i n t h e Aegean t h a t i s a c c u r a t e to t h e y e a r . Th i s k i n d

o f
16 p r e c i s i o n has , up to now , been l a c k i n g i n a n c i e n t s t u d i e s o f t h i s a r e a . Indeed ,

few

TRiDaS 171

17 a r c h a e o l o g i c a l p rob lems s t i m u l a t e as much r a n c o r as c h r o n o l o g y , e s p e c i a l l y t h a t
o f

18 t h e E a s t e r n M e d i t e r r a n e a n . The work o f t h e Aegean and Near E a s t e r n
D e n d r o c h r o n o l o g y

19 P r o j e c t aims to h e l p to b r i n g some k i n d o f r a t i o n a l and n e u t r a l o r d e r to Aegean
and

20 Near E a s t e r n c h r o n o l o g y from t h e N e o l i t h i c to t h e p r e s e n t . </ d e s c r i p t i o n >
21 < l a b o r a t o r y >
22 <name>Malcolm and C a r o l y n Weiner L a b o r a t o r y f o r Aegean and Near E a s t e r n

Dendrochrono logy </name>
23 <a d d r e s s>
24 <a d d r e s s L i n e 1 >B48 Goldwin Smith H a l l </a d d r e s s L i n e 1 >
25 <a d d r e s s L i n e 2 >C o r n e l l U n i v e r s i t y </a d d r e s s L i n e 2 >
26 <cityOrTown>I t h a c a </cityOrTown>
27 <s t a t e P r o v i n c e R e g i o n >NY</s t a t e P r o v i n c e R e g i o n >
28 <posta lCode >14853</ posta lCode>
29 <count ry>USA</count ry>
30 </a d d r e s s>
31 </ l a b o r a t o r y >
32 <c a t e g o r y>Archaeo logy </c a t e g o r y>
33 < i n v e s t i g a t o r >P e t e r I Kuniholm</ i n v e s t i g a t o r >
34 <p e r i o d >1976−p r e s e n t </p e r i o d>
35 <r e f e r e n c e >r e f e r e n c e 1 </ r e f e r e n c e >
36 <o b j e c t >
37 < t i t l e >White Tower , T h e s s a l o n i k i </ t i t l e >
38 < i d e n t i f i e r domain=”dendro . c o r n e l l . edu ”
39 >28acb483−f337−412 f−a063−59d911c37594</ i d e n t i f i e r >
40 <createdTimestamp c e r t a i n t y =”e x a c t ”>1997−02−01 T14:13 :51 . 0 Z</createdTimestamp>
41 <l a s t M o d i f i e d T i m e s t a m p c e r t a i n t y =”e x a c t ”>1997−02−01 T14:13 :51 . 0 Z</

l a s t M o d i f i e d T i m e s t a m p>
42 <t y p e normalStd=”C o r i n a D i c t i o n a r y ” n o r m a l I d =”4” normal=” B u i l d i n g ”>B u i l d i n g </

type>
43 <d e s c r i p t i o n >The White Tower o f T h e s s a l o n i k i was o r i g i n a l l y c o n s t r u c t e d by t h e

Ottomans
44 to f o r t i f y t h e c i t y ’ s h a r b o u r .</ d e s c r i p t i o n>
45 <c o v e r a g e>
46 <coverageTempora l>Ottoman</ coverageTempora l>
47 <c o v e r a g e T e m p o r a l F o u n d a t i o n>S t y l i s t i c</ c o v e r a g e T e m p o r a l F o u n d a t i o n>
48 </ c o v e r a g e>
49 < l o c a t i o n>
50 < l o c a t i o n G e o m e t r y x m l n s : g m l=” h t t p : //www. o p e n g i s . n e t /gml”>
51 <g m l : P o i n t srsName=” u r n : o g c : d e f : c r s : E P S G : 6 . 6 : 4 3 2 6 ”>
52 <g m l : p o s>40.6263 22.9485</ g m l : p o s>
53 </ g m l : P o i n t>
54 </ l o c a t i o n G e o m e t r y>
55 < l o c a t i o n P r e c i s i o n>20</ l o c a t i o n P r e c i s i o n>
56 <locat ionComment>T h e s s a l o n i k i , Greece</ locat ionComment>
57 </ l o c a t i o n>
58 <o b j e c t>
59 < t i t l e>Fourth f l o o r</ t i t l e>
60 <t y p e>F l o o r</ t y p e>
61 <e l e m e n t>
62 < t i t l e>C−TWT−65</ t i t l e>
63 < i d e n t i f i e r domain=” dendro . c o r n e l l . edu ”
64 >89 dbd409−03a3−42a0−9391−62 c6be7009ad</ i d e n t i f i e r>
65 <createdTimestamp c e r t a i n t y=” e x a c t ”>1997−02−01 T14:13 :51 . 0 Z</

createdTimestamp>
66 <l a s t M o d i f i e d T i m e s t a m p c e r t a i n t y=” e x a c t ”
67 >1997−02−01 T14:13 :51 . 0 Z</ l a s t M o d i f i e d T i m e s t a m p>
68 <t y p e normalStd=” C o r i n a D i c t i o n a r y ” n o r m a l I d=”3” normal=” R a f t e r ”>R a f t e r<

/ t y p e>
69 <d e s c r i p t i o n>15 th R a f t e r from t h e s o u t h</ d e s c r i p t i o n>
70 <taxon normalStd=” C a t a l o g u e o f L i f e Annual C h e c k l i s t 2008 ” normal=”

Quercus ”
71 n o r m a l I d=” 49139 ”>Quercus sp .</ taxon>

172 Tellervo: A guide for users and developers

72 <d i m e n s i o n s>
73 <u n i t n o r m a l T r i d a s=” metre s ”/>
74 <h e i g h t>1</ h e i g h t>
75 <width>1</ width>
76 <depth>1</ depth>
77 </ d i m e n s i o n s>
78 <a u t h e n t i c i t y>O r i g i n a l</ a u t h e n t i c i t y>
79 <sample>
80 < t i t l e>C−TWT−65−A</ t i t l e>
81 < i d e n t i f i e r domain=” dendro . c o r n e l l . edu ”
82 >f f 6883 57−b2d4−4394−a21a−90696 cd4558c</ i d e n t i f i e r>
83 <createdTimestamp c e r t a i n t y=” e x a c t ”
84 >1997−02−01 T14:13 :51 . 0 Z</ createdTimestamp>
85 <l a s t M o d i f i e d T i m e s t a m p c e r t a i n t y=” e x a c t ”
86 >1997−02−01 T14:13 :51 . 0 Z</ l a s t M o d i f i e d T i m e s t a m p>
87 <t y p e normal=” C o r i n a D i c t i o n a r y ” n o r m a l I d=”1” normalStd=” S e c t i o n ”
88 >S e c t i o n</ t y p e>
89 <sampl ingDate c e r t a i n t y=” e x a c t ”>1981−07−25</ sampl ingDate>
90 <s t a t e>Dry</ s t a t e>
91 <r a d i u s>
92 < t i t l e>C−TWT−65−A−B</ t i t l e>
93 < i d e n t i f i e r domain=” dendro . c o r n e l l . edu ”
94 >5 b7baa8b−cd4e−4b3b−88fa −82939420 e544</ i d e n t i f i e r>
95 <createdTimestamp c e r t a i n t y=” e x a c t ”
96 >2006−05−04 T18:13 :51 . 0 Z</ createdTimestamp>
97 <l a s t M o d i f i e d T i m e s t a m p c e r t a i n t y=” e x a c t ”
98 >2006−05−04 T18:13 :51 . 0 Z</ l a s t M o d i f i e d T i m e s t a m p>
99 <woodCompleteness>

100 <p i t h p r e s e n c e=” a b s e n t ”/>
101 <heartwood p r e s e n c e=” i n c o m p l e t e ”/>
102 <sapwood p r e s e n c e=” complete ”/>
103 <bark p r e s e n c e=” p r e s e n t ”/>
104 </ woodCompleteness>
105 <m e a s u r e m e n t S e r i e s>
106 < t i t l e>C−TWT−65−A−B−A</ t i t l e>
107 < i d e n t i f i e r domain=” dendro . c o r n e l l . edu ”
108 >8 c50234e−8eda−41bb−b578−01cc881d1ea1</ i d e n t i f i e r>
109 <createdTimestamp c e r t a i n t y=” e x a c t ”
110 >1997−02−01 T14:13 :51 . 0 Z</ createdTimestamp>
111 <l a s t M o d i f i e d T i m e s t a m p c e r t a i n t y=” e x a c t ”
112 >1997−02−01 T14:13 :51 . 0 Z</ l a s t M o d i f i e d T i m e s t a m p>
113 <a n a l y s t>Laura S t e e l e</ a n a l y s t>
114 <d e n d r o c h r o n o l o g i s t>P e t e r I Kuniholm</ d e n d r o c h r o n o l o g i s t>
115 <measuringMethod normalStd=” C o r i n a D i c t i o n a r y ” n o r m a l I d=”1”
116 >Measur ing p l a t f o r m</ measur ingMethod>
117 < i n t e r p r e t a t i o n>
118 < f i r s t Y e a r s u f f i x=”AD”>1254</ f i r s t Y e a r>
119 <s t a t F o u n d a t i o n>
120 <s t a t V a l u e>8 . 3</ s t a t V a l u e>
121 <t y p e>t−s c o r e</ t y p e>
122 <u s e d S o f t w a r e>C o r i n a 2 . 1 0</ u s e d S o f t w a r e>
123 </ s t a t F o u n d a t i o n>
124 <deathYear s u f f i x=”AD”>1535</ deathYear>
125 <p r o v e n a n c e>P o s s i b l y from t h e r e g i o n o f S e r r e s</

p r o v e n a n c e>
126 </ i n t e r p r e t a t i o n>
127 <v a l u e s>
128 <v a r i a b l e n o r m a l T r i d a s=” Ring width ”/>
129 <u n i t n o r m a l T r i d a s=” 1/100 th m i l l i m e t r e s ”/>
130 <v a l u e v a l u e=”54”/>
131 <v a l u e v a l u e=” 111 ”/>
132 <v a l u e v a l u e=”71”/>
133 <v a l u e v a l u e=”40”/>
134 <v a l u e v a l u e=”56”/>
135 </ v a l u e s>

TRiDaS 173

136 </ m e a s u r e m e n t S e r i e s>
137 </ r a d i u s>
138 </ sample>
139 </ e l e m e n t>
140 </ o b j e c t>
141 </ o b j e c t>
142 </ p r o j e c t>
143 </ t r i d a s>

Appendix T

TRIMS

Format name TRIMS
Other name(s) None known
Type Text file
Extension(s) rw
Read/write support Read and write
Reference implementation
Data / metadata Data only
Calendar type Gregorian
Absolute dating support Yes
Undated series support Yes
Relative dating support No
Multi series support No
Original designer Unknown

This is a simple data only text file format. These files were originally produced using the Henson rotary micrometer
measuring stages but have largely been phased out.

I Line 1 - Initials of user that created the series
I Line 2 - Date the file was created in dd/MM/YY format
I Line 3 - Year of first data value (0 treated as undated series)
I Line 4+ - Space character followed by an integer data value in 1/100th mm
I Final line - Space character + 999 denoting end of series.

T.1 Example file

1 pb
2 05/10/94
3 1816
4 169
5 96
6 165
7 85
8 139
9 87

10 112
11 . . .
12 999

Appendix U

Tucson

Format name Tucson
Other name(s) Decadal, RWL, CRN, ITRDB, Time series format, TSF
Type Text file
Extension(s) Various including tuc, rwl, dec, crn
Read/write support Read and write
Reference implementation COFECHA
Data / metadata Data with some structured metadata, however, standardisa-

tion of metadata is very poor resulting in metadata often being
little more than free text comments

Calendar type Astronomical
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer Richard Holmes (based on early punch card format)

U.1 Description

The Tucson format is perhaps the most widely used dendro data format. Unfortunately it seems there was never
definitive documentation. Support for the format has been incorporated into a number of dendro applications
but without format documentation there are variations in these implementations resulting in quite a lot of subtle
differences in files. The often tight association between the Dendro Program Library (DPL) and the ITRDB means
that perhaps the most definitive documentation for the format is the ITRDB website.

The Tucson format is best considered as covering two different sub-formats which are often referred to by their
file extensions (RWL and CRN). RWL files are used for storing ring-width data, whereas CRN files are used for
storing chronologies.

The ITRDB website includes detailed information on how to include structured metadata in Tucson format files.
Unfortunately there are no tools for creating and/or validating Tucson files so the vast majority of files circulating
in the community today (including those in the ITRDB) do not adhere to these standards.

178 Tellervo: A guide for users and developers

U.2 RWL files

Tucson RWL files begin with three lines of metadata. Strictly these lines should contain structured metadata, but
with no software to assist in this, users either only partially stick to these rules, or reject them entirely instead
using the three lines as free-text comment lines. The metadata should be set out as follows:

I Line 1 - Chars 1-6 Site ID
I Line 1 - Chars 10-61 Site Name
I Line 1 - Chars 62-65 Species Code followed by optional ID number
I Line 2 - Chars 1-6 Site ID
I Line 2 - Chars 10-22 State/Country
I Line 2 - Chars 23-30 Species
I Line 2 - Chars 41-45 Elevation
I Line 2 - Chars 48-57 Lat-Long in degrees and minutes, ddmm or dddmm
I Line 2 - Chars 68-76 1st and last Year
I Line 3 - Chars 1-6 Site ID
I Line 3 - Chars 10-72 Lead Investigator
I Line 3 - Chars 73-80 comp. date

Then follows the data lines which are set out as follows:

I Chars 1-8 - Series ID - the series ID should be unique in the file so that it is clear where one series ends and
another begins when multiple series are present in the same file.

I Next 4 chars - Year of first value in this row.
I Ten data values consisting of a space character and 5 integers. The file and last data line for a series may

have less than 10 data values so that the majority of lines begin at the start of a decade.

The final data value should be followed by a a stop marker which is either 999 or -9999. When a stop marker of
999 is used this indicates that the integer values in the file are measured in 0.01mm (1/100th mm) units, whereas
if a -9999 stop marker is used the units are 0.001mm (microns). The stop marker is therefore used to indicate the
end of the data series and the units the data are stored in.

There appears to be no official specification as to how missing rings should be encoded, but the standard notation
seems to be to use -999 or 0.

U.3 CRN files

Tucson CRN files are used to store chronology data. In addition to each data values they also have space for a
sample depth or count value to record how many values were combined to give each data value. CRN files should
strictly begin with the same 3 header lines that are described above for RWL. Like RWL files the specification is
often partially adhered to and at times ignored completely.

The data lines for CRN files are quite different to RWL:

I Chars 1-6 - Series ID
I Next 4 chars - Year of first value in this row.
I Ten data value blocks consisting of four integer characters for the data value, then a space, then two integer

characters for sample depth.

The stop marker in a CRN file should be 9990.

Tucson 179

U.4 Workarounds and quirks

I No information was given as to how to handle the non-existent year 0AD/BC. For data files with years all
in the AD period, this is not a problem. Most dendro software seem to treat year numbers in Tucson files
as using the ’Astronomical Calendar’ whereby 1 = 1AD, 0=1BC, -1=2BC etc. This goes against what most
dendrochronologists assume (and do) when using Tucson files. For instance most people that work entirely
in the BC period use negative integers to represent BC years e.g. -5 as 5BC. With no clear specification and
different people interpreting the format in different ways, there is no way of being certain what data negative
year numbers in Tucson files mean.

I Tucson format places a restriction of just four characters to the year values. This means that strictly the
earliest value a Tucson file can represent is -999. Some users work around this by steeling the last character
of the series ID to give them five characters for the year. For example: ABCDEFG-9999. This conversely
limits the series ID to 7 characters. To add to the confusion, other users have been known to add an arbitrary
number (e.g. 5000) to all year numbers to overcome this problem.

I The fact that 999 is used as the stop marker for series in 1/100th mm means that Tucson files cannot store a
ring value of 9.99mm. In the unlikely event that a sample should have this large a ring, it should be rounded
up or down to 998 or 1000.

I Some programs appears to add padding values after the stop marker to fill the rest of the 10 data values in
the row.

I Some data files seem to use 9990 as a stop marker
I Some files appears to use a full-stop character to indicate empty data values after the stop marker.
I Data values in RWL files are space delimited, however some programs use tabs instead.
I When reading Tucson files, COFECHA and ARSTAN ignore all lines that do not match the standard data

line format. As such, some users have used this to enable them to include multiple comment lines in their
files.

I The ITRDB documentation says they should be recorded as DDMM or DDDMM, but this along with sign
(N,S,E,W,+ or -) would require 11 characters, when the Tucson specification only allows for 10. Perhaps
this was due to an assumption that all places would be in the northern hemisphere? This has resulted in
a large amount of variation in the way that coordinates are recorded making it extremely difficult to parse
them without error. Here are some examples (including some that use 11 chars not 10):

– 4652N01101E
– +4652-01101
– N4652E01101

– 4652-01101
– 465201101
– 4652 01101

180 Tellervo: A guide for users and developers

U.5 Example file - raw series

1 107 1 OBERGURGL
2 107 2 AUSTRIA NORWAY SPRUCE 6726 4652 N01101E 1911 1959
3 107 3 GIERTZ 08 76
4 107011 1911 78 93 43 100 93 110 135 115 102
5 107011 1920 92 125 110 135 98 80 75 125 102 110
6 107011 1930 105 105 95 120 135 140 110 120 130 135
7 107011 1940 120 130 130 165 135 145 155 160 88 135
8 107011 1950 140 150 140 130 115 130 130 110 110 135
9 107011 1960 125 120 135 160 15 102 105 135 105 140

10 107011 1970 120 115 100 110 110 999
11 107012 1862 450 580 550 480 620 420 390 420
12 107012 1870 360 370 300 360 470 460 410 430 510 500
13 107012 1880 500 510 500 410 380 430 340 380 350 400
14 107012 1890 290 260 270 320 340 370 330 310 240 170
15 107012 1900 280 300 300 310 350 400 300 280 280 180
16 107012 1910 190 290 270 210 230 300 220 360 240 260
17 107012 1920 200 270 250 230 270 210 160 210 220 200
18 107012 1930 170 250 200 130 140 210 210 180 190 180
19 107012 1940 170 180 190 190 190 200 190 180 110 180
20 107012 1950 220 230 180 220 200 240 220 210 240 999

Tucson 181

U.6 Example file - chronology

1 107089 1 Anta lya , E l m a l i I s l e t m e s i CDLI
2 107089 2 Turkey Cedar 1800M 3640 02955 1370 1988
3 107089 3 P e t e r I . Kuniholm
4 1070001370 567 11115 1 798 11105 11407 1 398 1 436 1 543 1 490 1 225 1
5 1070001380 127 1 39 1 29 1 69 1 178 1 445 1 227 1 510 11020 11120 1
6 10700013901390 11310 1 979 11585 11111 1 444 1 214 1 520 1 275 1 224 1
7 1070001400 153 1 371 1 567 1 711 1 835 1 687 1 322 1 291 1 291 1 218 1
8 1070001410 168 1 378 1 557 1 410 1 315 1 202 1 531 1 765 1 797 1 840 1
9 1070001420 440 1 774 1 946 1 838 1 397 1 380 1 206 1 510 1 695 1 521 1

10 1070001430 461 1 978 1 967 1 857 1 978 1 733 1 522 1 333 1 577 1 477 1
11 1070001440 730 1 752 1 932 1 955 1 898 1 629 11170 1 738 1 920 1 363 1
12 1070001450 863 1 896 1 965 1 390 1 172 1 126 1 69 1 209 1 313 1 883 1
13 10700014601255 11220 11364 11035 11364 11282 11364 11611 11369 11273 1
14 10700014701797 12035 11821 11927 11819 11807 11464 21421 21009 21089 2
15 10700014801042 21040 21404 2 955 21291 2 982 21186 21042 2 728 2 781 2
16 1070001490 800 21040 2 503 2 869 21387 21365 21574 21591 22178 21594 3
17 10700015001629 31282 31126 31409 31433 31406 31239 31479 3 990 31063 3
18 10700015101026 31035 31175 31217 31500 31358 31171 31140 31005 31340 3
19 10700015201225 31164 31283 31496 31439 31603 31335 3 982 3 973 31147 3
20 10700015301086 31146 41403 41454 41209 41451 41292 4 964 41003 41289 4
21 1070001540 895 4 951 4 745 4 835 4 800 41182 4 952 41097 4 973 4 973 4
22 10700015501158 41370 41245 41392 41215 41047 51133 5 847 5 961 51295 5
23 10700015601287 51082 5 899 51012 51195 51409 51107 5 962 5 970 51031 5
24 1070001570 990 51028 51206 51092 51414 51209 51090 51265 51261 51019 5
25 1070001580 791 5 995 5 956 5 933 61144 61022 61001 61007 61097 61290 6
26 10700015901263 6 902 71002 71151 71032 8 968 8 592 8 940 8 936 81131 8
27 10700016001098 81128 81334 81255 91136 91097 101273 101075 10 952 10 897 10
28 1070001610 915 10 991 10 735 10 708 10 627 10 848 101010 10 872 10 959 101138 10
29 10700016201173 101122 101191 101146 10 928 10 820 10 935 10 741 10 812 101126 10
30 10700016301123 10 781 101111 101054 101275 101052 101068 101049 101016 10 970 10
31 10700016401093 101159 101023 101159 101060 101117 101314 10 843 101057 101040 10
32 10700016501030 101268 10 971 101059 101078 101170 101159 101388 101194 101260 10
33 1070001660 917 101222 101052 101165 101325 101608 101161 121181 12 931 12 992 12
34 1070001670 750 12 675 12 614 12 638 12 624 12 600 12 506 12 681 12 887 12 708 12
35 1070001680 797 12 940 12 955 12 886 12 878 12 970 12 916 12 861 12 861 121021 13
36 1070001690 928 13 961 131043 13 936 13 939 131003 13 619 13 846 13 838 13 822 13
37 1070001700 717 13 699 14 746 14 900 141022 14 781 14 968 141028 141051 141341 14
38 1070001710 980 14 817 14 718 14 642 14 554 14 589 14 637 14 677 16 710 16 877 16
39 1070001720 930 16 931 16 718 16 721 16 616 16 576 16 519 16 790 161046 161067 16
40 10700017301047 171141 181080 181128 181144 181112 191066 191252 19 971 191076 19
41 10700017401284 191242 191001 191145 191219 191162 19 576 20 979 231148 231062 23
42 10700017501119 231255 231267 231352 231397 231487 231116 231092 231150 23 938 23
43 10700017601118 241240 241258 241023 24 971 241071 241124 241225 241135 241114 24
44 10700017701072 241171 24 853 24 964 241075 24 820 241154 241059 241270 241022 24
45 10700017801098 24 903 241038 241147 241141 241162 24 782 241221 241424 241208 24
46 1070001790 974 241265 241256 241281 241166 241580 24 889 24 955 241158 241101 24
47 1070001800 949 24 990 24 813 24 758 24 821 24 914 24 889 24 999 24 991 241163 24
48 10700018101068 241184 24 852 24 870 241037 241070 241132 241047 24 978 24 852 24
49 1070001820 839 241063 241045 24 957 24 958 24 997 24 841 241209 241053 241013 24
50 1070001830 920 241103 241151 241166 24 850 24 962 24 944 24 871 24 989 24 906 24
51 1070001840 697 24 973 24 779 24 647 24 689 24 731 24 981 24 709 24 949 24 580 24
52 1070001850 619 24 345 24 545 24 688 24 723 241046 24 738 24 785 24 742 24 815 24
53 1070001860 842 241015 24 888 24 884 24 792 24 594 24 902 24 885 24 841 24 770 24
54 1070001870 822 24 710 24 838 24 783 24 697 24 768 24 515 24 670 24 855 24 793 24
55 10700018801021 25 932 25 799 25 902 251038 251017 25 739 25 750 25 963 251149 25
56 1070001890 798 24 871 24 870 24 625 24 772 24 827 241046 241182 24 701 24 704 24
57 1070001900 977 241237 241249 241162 241118 241007 241271 241123 241116 241045 24
58 10700019101167 24 827 24 482 24 952 241370 241260 24 783 241169 241096 241108 24
59 10700019201387 241484 241293 241182 241282 241527 241261 241146 24 920 24 859 24
60 10700019301235 241335 24 799 24 819 241000 24 763 241111 241019 24 916 241252 24
61 10700019401537 241387 231217 23 929 23 685 23 894 231106 231123 231089 23 896 23
62 10700019501384 231172 231151 231130 231244 231187 231118 231144 231268 239990 0

Appendix V

Tucson Compact

Format name Tucson Compact
Other name(s) Compact
Type Text file
Extension(s) rwm
Read/write support Read and write
Reference implementation Various DPL programs including FMT
Data / metadata Data only
Calendar type Astronomical
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer Richard Holmes

V.1 Description

The Tucson Compact format was design by Richard Holmes for use with a number of the applications in the
Dendro Program Library (DPL). Holmes designed it as a space saving alternative to the standard Tucson format
at a time when disk space was expensive. The format never really caught on, perhaps due to the complexity and
variability of the format.

The key feature of Tucson Compact format is the inclusion of a code that describes the layout of the data within
the series. This code means that only the required amount of space is allocated to each data value in the text file
with little wastage. No space is provided for metadata.

Tucson Compact files can contain one or more series of data so the description of a data series below can be
repeated multiple times in a single file. All lines should be 80 characters long and the first line of a series is
denoted by a tilde () in the final column. This meta line contains four fields:

I Chars 0-9 = number of data values terminated with =N
I Chars 11-19 = start year terminated with =I
I Chars 21-68 = series title
I Chars 69-79 = fortran format descriptor
I Char 80 = Tilde marker

The Fortran format descriptor in the example below is -2(26F3.0). The constituent parts are as follows:

184 Tellervo: A guide for users and developers

I -2 = this is the scaling factor for the data values. In this case -2 = 10-2 = 0.01. Please note that in the
Convert5 program this scaling factor is only read once in the first header line so files with multiple series
each with different scaling factors will read incorrectly.

I 26F = means there are 26 values in each line
I 3.0 = means that each data value should be read as 3 integer values

The example below therefore means there are 26 data values per line each consisting of 3 digits which should be
interpreted by multiplying by 0.01 (i.e. values are in 1/10ths mm).

V.2 Example file

1 176=N 1277= I ABCD01 −2(26F3 . 0) ˜
2 142338334409362308360264325318134151219268290222278258173198294202170176172121
3 87130114108170135131126 87100 86104103127112 94 96120168149119124 79 67 88 90
4 93 77 49 42 53 38 57 43 50 41 56 66 62 55 55 45 47 63 58 60 44 45 49 50 62 61
5 43 54 91 60 56 43 52 51 65 68 55 44 41 75 94 78 63 69 58 75 55 47 58 46 62 45
6 52 50 77 50 63 75 77 64 66 57 80 57 78 65 68 75 65 98 85 82119 89 85 87 83108
7 129123160117129121 88 69 97 77 96106 71 89 50 65133 89 88 50 60 95 95 91102158
8 83 55 98 70 45 46 40 36 64 58 52 58 56 94 51 48 47 60 49 48

Appendix W

VFormat

Format name VFormat
Other name(s) OJ Format
Type Text file
Extension(s) Various depending on data type but commonly !oj
Read/write support Read and write
Reference implementation VFormat
Data / metadata Data with some structure metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer Thomas Reimer and Hans-Hubert Leuschner

W.1 Description

A relatively extensive format which includes highly encoded header lines for metadata. VFormat files have an array
of file extensions depending on the type of data the files contain.

VFormat files can contain mutliple data series. Each series contains 2-4 header lines followed by a number of data
lines. The metadata fields are encoded into the header lines in specific character positions. In line 1 the character
positions are as follows:

I 1-12 = Series identifier. The series identifier also determines the filename. If there is just one series in the
file then the series identifier will be the same as the filename. For files with multiple series, the filename will
use characters 1-7 of the series identifiers that are the same throughout the file with the remaining (different)
characters replaced by an underscore. The 8th character of the filename would contain a running number for
files that would otherwise be named the same. The series identifier is made up of the following characters:

– 1 = Code representing the project or country
– 2 = Code representing the region of ecological area
– 3-4 = Code number for sample site (optionally encoded using hexadecimal or hexatresimal to enable

values greater than 99).
– 5-6 = Series/tree number (optionally encoded using hexadecimal or hexatresimal to enable values

greater than 99).
– 7 = Height code encoded as follows: 1 = 1m, 2=2m, 9=9m, A=10m, B=11m, S = Lumber height

30cm, T = breast height =130cm.

186 Tellervo: A guide for users and developers

– 8 = Running number if several series have the same values in columns 1-7.
– 9 = Fixed as a dot character
– 10 = Either ! (single), % (partial), # (mean curves or chronologies)
– 11 = Code for statistical treatment. One of F (frequency filtered series); I (index); M (mean); O

(original); P (pointer-year stat); Q (cluster-pointer-year stat); R (residual); S (moving deviation or
variance); T (trend, fitted curve, model); W (wuchswert); X (series with standardized running mean
and variance); Z (central moment, deviation or variance between several series).

– 12 = Code for the measured parameter. One of D (mean density); F (earlywood width); G (maximum
density); J (ring width); K (minimum density); P (percentage latewood); S (width of latewood).

I 13-15 Measurement units
I 16-20 Length of series
I 21-24 Species either encoded using ITRDB taxon codes or by using the first two letters of the genus and

species.
I 25-30 Year of the last ring
I 31-50 Description
I 51-58 Measurement date (ddMMyy or ddMMyyyy)
I 59-60 Initials of author
I 61-68 Last modified date (ddMMyy or ddMMyyyy)
I 69-70 VFormat version identifier (00,01 etc)
I 71-73 Estimated number of missing rings as the start of the series
I 74-75 Standard error of this estimate (. if unknown)
I 76-78 Estimated number of missing rings at the end of the series
I 79-80 Standard error of this estimate (. if unknown)

The second data line is a free text comment up to 80 characters.

VFormat files from version 10 onwards then contain a third header line. This contains 8 floating point numbers of
10 digits each. These represent:

I Longitude
I Latitude
I Altitude
I Height of the tree’s measurement
I Four other user definable numbers

VFormat files from version 20 onwards contain a forth header line. This is of the same format as line 3 but each
of the values is user definable.

Following the 2-4 header lines come the data lines. These lines are made up of 10 data fields each containing 8
characters. Each data field is made up as follows:

I Two character code for validity and importance:
– space = full validity
– ! = not yet used
– ” = not yet used
– # = not yet used
– $ = no validity for long-term evaluations
– % = no validity for single-value evaluations
– & = no validity except for cumulative stats
– ’ = no validity at all, unknown value

The second character is a pseudo-binary character used to define a weighting factor. For full details of the complex
method for calculating this weighting factor see the VFormat documentation.

I One character user definable code for recording information about the data value
I Five digit floating point data value which is divided by 100 for interpretation

VFormat 187

W.2 Example file

1 G1101020 . ! OJmm 81Qusp 1510FLA−02 32 /572 HL01 . 0 4 . 9 0 0 2 810 10 .
2 G1101020 . ! OJ/ S20102 0 . ! OJ/
3 281 221 225 169 178 197 126 103 112 130
4 132 207 176 175 126 150 99 131 187 204
5 218 172 202 115 135 130 196 135 142 129
6 144 116 92 71 109 120 137 98 86 117
7 64 79 72 61 62 82 75 81 83 69
8 83 66 84 95 85 94 87 99 92 109
9 150 108 70 113 119 120 122 107 111 114

10 123 145 112 145 164 158 122 177 155 182
11 153
12 G1101050 . ! OJmm 121 Qusp 1516FLA−05 13 /586 HL01 . 0 4 . 9 0 0 2 1510 13 .
13 G1101050 . ! OJ/ S20105 0 . ! OJ/
14 448 286 341 213 346 371 745 719 580 466
15 487 353 279 323 422 436 351 238 135 172
16 179 210 277 145 165 261 263 190 194 183
17 127 110 144 189 135 154 217 110 115 99
18 106 101 106 198 191 185 185 160 112 152
19 93 95 83 176 165 193 139 101 93 113
20 85 145 174 157 132 130 74 52 114 138
21 174 132 144 125 83 124 118 127 150 189
22 152 133 117 91 104 96 56 90 130 126
23 103 163 92 103 174 99 117 85 123 116
24 147 127 145 133 155 144 114 115 121 111
25 174 113 112 89 99 130 111 104 164 110
26 139

Appendix X

WinDENDRO

Format name WinDENDRO
Other name(s) None known
Type Text file
Extension(s) txt
Read/write support Read only
Reference implementation WinDENDRO
Data / metadata Data with some structured metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support Yes
Relative dating support No
Multi series support Yes
Original designer Regent Instruments

X.1 Description

WinDENDRO format is a dendro text file format designed by Regent Instruments for their WinDENDRO software.
Regent Instruments claims the format is proprietary. Although it is unclear whether such a claim is legally binding
for a plain text file, the authors of DendroFileIOLib have decided to comply by not implementing a WinDENDRO
format writer. However, in the interests of the dendro community and to ensure users can gain access to their
data, DendroFileIOLib does include support for reading WinDENDRO format files.

WinDENDRO files differ from most other formats in that they contain a great deal of information specific to the
image used to measure the sample. The WinDENDRO software allows users to measure ring widths from scans
or photographs of samples rather than by using a traditional measuring platform.

WinDENDRO files are really just tab-delimited text files with data in columns in a specific order with a few
additional header lines.

Line 1 should contain 8 tab-delimited fields

I Field 1 = WINDENDRO
I Field 2 = WinDENDRO file format version number, either 3 or 4
I Field 3 = Orientation of the data: R = in rows; C = in columns. All WinDENDRO files are in rows
I Field 4 = The column number where the data values begin. For version 3 files this is 13 and version 4 files

this is 36
I Field 5 = The direction the data is recording in: P = pith to bark; B = bark to pith

190 Tellervo: A guide for users and developers

I Field 6 = Whether the data is recorded incrementally (I) or cumulatively (C). WinDENDRO files are always
incremental.

I Field 7 = Whether the bark width has been measured (Y or N). If yes, then there will be one more data
value than there are rings

I Field 8 = RING

Line 2 contains the field names. For version 3 files these are:

I TreeName - The name of the tree being measured
I Path identification - ID of the path along which the series is measured
I Site identification - Name of the site from which the tree was taken
I YearLastRing - Year of the last ring in the series
I Sapwood - Distance (in mm) from the start of the sample to the start of the sapwood.
I Tree height - Height of tree in metres
I Tree age - Age of the tree. If unknown this should be 0, then it is assumed to be equal to the number of

rings
I SectionHeight - Height up the tree in metres at which the sample was taken
I User variable - User defined variable - must be numerical
I RingCount - Number of rings the series contains
I DataType - Keyword indicating the type of data measured. This can be: RINGWIDTH; EARLYWIDTH;

LATEWIDTH; EARLYWIDTH%; LATEWIDTH%; DENSITY; EARLYDENSITY; LATEDENSITY; MAX-
DENSITY; MINDENSITY; RINGANGLE.

I OffsetToNext - The number of lines to skip to go to the next data line of the same type. For instance a
file can contain earlywood and latewood data for multiple samples. If this is the case then each sample will
have two rows, one for each variable, and the OffsetToNext field will be 1.

In additional to these fields, version 4 files also include the following:

I ImageName - The filename for the image used to do this analysis. If the image was taken directly from the
scanner or camera then this field will be SCANNER

I Analysis Date Time - Date and time the measurements were initially saved to disk in format dd/mm/YYYY
HH:mm

I Acquisition Date Time - Date and time the image file was acquired in format dd/mm/YYYY HH:mm
I Modified Date Time - Date and time the file was last modified in format dd/mm/YYYY HH:mm
I ImageSize H V NBits Channel - The image size in pixels followed by bits per pixel per channel (8 or 16),

channel used for analysis (Grey, RGB, R G or B)
I CalibMethod XCal YCal EditedDendro - Method of calibration: Intr (Intrinsic); Obj (ObjKnownDiam). This

is followed by the size of a pixel and Y or N indicating if the image has been edited in WinDENDRO
I ScannerCamera Make Model Software - Details about the imaging hardware
I LensFocLength [35mm] - The 35mm equivalent focal length of the imaging lens
I PathBegX BegY EndX EndY Width - The coordinates for the start of the path/radius followed by the path

width
I RingBoundary AutoMan Meth Precise - Details about the path taken. Ring boundary - Tg (tangent to ring)

or Perp (perpendicular to path); Detection method - A (automatic) or M (manual); Ring detection method
- Int (intensity differences) or T&S (teach and show); whether the ’more precise detection’ method is active
(Y) or not (N)

I EarlywoodDef - Earlywood-latewood transition criteria
I DensActive Media Calib - Density Analysis active (Y or N); Density Media setting (F - negative file or photo,

W wood direct xray, positive film or photo); Light calibration setting (Acq - after image acquisition, Man -
manual; No - none)

I DensNSteps MatDens Interpol - Number of steps and the density of the step wedge used for calibration
followed by the interpolation method used between steps: Lin (Linear) Spl (Spline)

I DensStepsThick - The thickness of each step of the wedge used for density calibration

WinDENDRO 191

I DensStepsLightInt - The light intensity of each step of the wedge determined during the light intensity
calibration

I DensStepsWoodDens - Equivalent wood density of each step of the wedge determined during light intensity
calibration

I DiskArea - Area of the sample
I DiskPerim - Perimeter of the sample
I DiskAvgDiam - Average diameter of the sample
I DiskFormCoef - Sample area form coefficient
I CompWoodArea - Total area occupied by the compression areas
I VoidArea - Total area occupied by the void areas
I PathLength - Length of radius measured

Lines 3+ contain the actual data and metadata, one line for each series. Following the 13 or 36 columns of
metadata (depending on file version) there are x number of columns containing ring values. The values are
recorded as floating point data. The units for these data values are: mm for widths; % for percentages; g/cm3 for
densities; radians for angles.

Appendix Y

XML Error Codes

Table Y.1: The Tellervo webservice provides error feedback by means of an error code and description.

Section Code Description

General 001 Error connecting to database
002 Generic SQL error

Authentication 101 Authentication failed
102 Login required
103 Permission denied
104 Unsupported request
105 Invalid server nonce
106 User unknown
107 Unsupported client
108 Unsupported client version
109 Password needs to be updated
110 Password upgrade required

Miscellaneous 666 Unknown Error
667 Program bug

Internal 701 Internal SQL error
702 Feature not yet implemented
703 Invalid XML being returned by webservice
704 Configuration error

User 901 Invalid user parameter(s)
902 Missing user parameter(s)
903 No records match
904 Parameters too short
905 Invalid XML request

194

Table Y.1: The Tellervo webservice provides error feedback by means of an error code and description.

Section Code Description
906 Record already exists
907 Foreign key violation
908 Unique constraint violation
909 Check constraint violation
910 Invalid data type
911 Series with this version number already exists
912 There must be at least one administrator

Appendix Z

GNU General Public License

The Tellervo server and desktop client are released under the GNU General Public License (GPL) version 3.

Copyright © 2016 Peter Brewer

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

Z.1 Preamble

Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU
General Public License is intended to guarantee your freedom to share and change all versions of a program–to make sure it remains free software for all
its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this
way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain
responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you
received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal
permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free software. For both users’ and authors’ sake,
the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so.
This is fundamentally incompatible with the aim of protecting users’ freedom to change the software. The systematic pattern of such abuse occurs in the
area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit
the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future
versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on
general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively
proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

http://fsf.org/

196 Tellervo: A guide for users and developers

Z.2 Terms and Conditions

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”. “Licensees” and “recipients”
may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of
an exact copy. The resulting work is called a “modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement
under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with
or without modification), making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a
computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and prominently visible feature that
(1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties
are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of
user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means any non-source form
of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces
specified for a particular programming language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging
a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component,
or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Component”, in this
context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable
work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate, install, and (for an executable work)
run the object code and to modify the work, including scripts to control those activities. However, it does not include the work’s System Libraries,
or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of
the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for
shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or
control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions
are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is
covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or
other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force.
You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities
for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright.
Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that
prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it
unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the
WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is
effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification
of the work as a means of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in

GNU General Public License 197

accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along
with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms
of section 4, provided that you also meet all of these conditions:

(a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

(b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This
requirement modifies the requirement in section 4 to “keep intact all notices”.

(c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore
apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged.
This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately
received it.

(d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces
that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and
which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate”
if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what the individual
works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these ways:

(a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding
Source fixed on a durable physical medium customarily used for software interchange.

(b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer,
valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone
who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically
performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.

(c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is
allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.

(d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding
Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source
along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server
(operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object
code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to
ensure that it is available for as long as needed to satisfy these requirements.

(e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source
of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included
in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally used for personal, family, or
household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a typical
or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses,
or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial,
industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other information required to install and
execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification
has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part
of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term
(regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation
Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User
Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to
a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

198 Tellervo: A guide for users and developers

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented
(and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or
copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional
permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are
valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions,
but the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional
permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

(a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or

(b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices
displayed by works containing it; or

(c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable
ways as different from the original version; or

(d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

(e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or

(f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with
contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors
and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If the Program as you received
it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove
that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered
work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms
that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above
requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify
it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of
section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and
until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you
cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this
License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material
under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring
solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than
this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that
work, subject to this License. You are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization,
or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy
of the work also receives whatever licenses to the work the party’s predecessor in interest had or could give under the previous paragraph, plus a
right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable
efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose
a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim

GNU General Public License 199

or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or
any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work
thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor, whether already acquired or hereafter
acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not
include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition,
“control” includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s essential patent claims, to make, use,
sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party
means to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to
copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you
must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for
this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream
recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying the covered work in a country,
or your recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to
believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work,
and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy
of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the
non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party
to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on
the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered
work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be
available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate
you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and
this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version
3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue
to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning
interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License
“or any later version” applies to it, you have the option of following the terms and conditions either of that numbered version or of any later
version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you
may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright
holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHER-
WISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

200 Tellervo: A guide for users and developers

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO
USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts
shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or
assumption of liability accompanies a copy of the Program in return for a fee.

References

Aniol, R., 1983. Tree-ring analysis using CATRAS. Den-
drochronologia 1, 45–53.

Baillie, M., Pilcher, J., 1973. A simple crossdating pro-
gram for tree-ring research. Tree-Ring Bulletin 33,
7–14.

Brewer, P., Murphy, D., Jansma, E., 2011. TRiCYCLE:
a universal conversion tool for digital tree-ring data.
Tree-Ring Research 67, 135–144.

Brewer, P., Sturgeon, K., Madar, L., Manning, S., 2010.
A new approach to dendrochronological data manage-
ment. Dendrochronologia 28, 131–134.

Cook, E., Peters, K., 1981. The smoothing spline: A
new approach to standardizing forest interior tree-ring
width series for dendroclimatic studies. Tree-Ring Bul-
letin 41, 45–53.

Cormen, T., Leiserson, C., RL, R., C, S., 2001. Intro-
duction to Algorithms. The MIT Press.

Huber, B., Fletcher, J., 1970. Dendrochronology in Eu-
rope.

Jansma, E., Brewer, P., Zandhuis, I., 2010. TRiDaS 1.1:
The tree-ring data standard. Dendrochronologia 28,
99–130.

Knibbe, B., 2008. PAST4 - Personal Analysis System
for Treering Research software version 4.5. SCIEM.

Reinsch, C., 1967. Smoothing by spline functions. Nu-
merische Mathematik 10, 177–183.

Rinn, F., 2008. TSAP-Win software. Rinntech, Heidel-
berg.

Tyers, I., 1999. Dendro For Windows program guide.
ARCUS Report 500.

Van Loan, C., 1999. Introduction to Scientific Com-
puting: A Matrix-Vector Approach Using MATLAB.
Prentice Hall.

Wigley, T., Jones, P., Briffa, K., 1987. Cross-dating
methods in dendrochronology. Journal of Archaeo-
logical Science 14, 51–64.

	Preface
	I User Guide
	Installation
	Introduction
	Server installation
	Install as Virtual Appliance
	Ubuntu native installation
	Advanced install on other operating systems

	Installing the desktop application
	First time launch
	Mapping support

	Upgrading Tellervo desktop
	Upgrading Tellervo Server
	Uninstalling
	Tellervo desktop application
	Tellervo server

	Tellervo-lite
	Launching Tellervo-lite
	Tellervo-lite interface
	Data tab
	Metadata tab

	Measuring a new sample
	Loading existing files
	Inserting, deleting and remeasuring rings
	Saving

	Getting started
	Main window
	Measuring a new sample
	Opening existing data
	Reconciling data

	Measuring platforms
	Metadata
	Tree Ring Data Standard - TRiDaS
	Entering sample metadata
	Entering bulk metadata
	Toolbar buttons

	Metadata browser
	Laboratory codes

	Field data collection
	Creating data entry forms
	ODK mobile application
	Importing ODK metadata into Tellervo

	Mapping
	Navigation
	Mouse with scroll wheel
	Single button mouse

	Interacting with data
	Map layers
	Data layers
	Web Map Service (WMS)

	Toobar buttons
	Layers list
	Exporting maps

	Graphing
	Controlling graphs
	Exporting graphs

	Importing and exporting
	Exporting data
	Naming conventions
	Character sets

	Importing data

	Curation and Administration
	Laboratory workflow
	Barcodes
	Sample labels
	Box labels
	Series barcodes

	Storage boxes
	Creating and editing boxes
	Inventory
	Checking boxes in and out
	Locating samples

	Indexing
	Types of index
	Exponential Index
	Polynomial Index
	Horizontal Line Index
	Floating Index
	High-Pass Filter Index
	Cubic Spline Index

	Indexing data

	Crossdating and chronology building
	Algorithms
	T-Score
	Trend
	Weiserjahre
	R-Value

	Crossdating series
	Managing chronologies

	The Tellervo server
	Backing up and restoring your database
	Backup whole Virtual Appliance
	Restoring a Virtual Appliance backup
	Backup PostgreSQL database
	Restoring a PostgreSQL database

	Upgrading the server
	Graphical Interface to the Virtual Appliance
	Security
	Usernames and passwords
	Authentication and encryption

	Directly accessing the database
	PGAdminIII
	ODBC
	PSQL

	Tellervo server configuration
	Standard server configuration
	Advanced server configuration

	Managing map services

	Help and support
	Getting help
	Support for future development

	II Developers guide
	Developing Tellervo Desktop
	Source code
	Development environment
	Dependencies
	Code layout
	Multimedia resources
	Ring remarks

	Translations
	Logging
	Preferences
	Build script
	Building native installers
	Code signing
	Native libraries

	Java Architecture for XML Binding - JAXB
	Java version
	Developing graphical interfaces
	Supporting measuring platforms
	Writing documentation
	Recording screencast tutorials
	Making a new release

	Developing Tellervo Server
	Webservice
	Creating new series

	Server package
	Tellervo server script

	Handling version dependencies
	Client requiring a recent server
	Server requires a recent client

	Handling server configuration
	Making a new release
	Administering the Maven repository

	Webservice specifications
	Basics of sending requests
	Standard request/response
	Namespaces
	Errors and warnings

	Authentication requests
	Plain authentication
	Secure authentication
	Cookies and sessions
	Logout

	Reading records
	Deleting records
	Creating records
	Updating records
	Reading and setting permissions

	Systems architecture
	Authentication design
	Database permissions design
	Universally Unique Identifiers
	Barcode specifications

	Tellervo Database
	Spatial extension
	CPGDB functions
	Complex database functions

	III Appendices
	Belfast Apple
	Description
	Example file

	Belfast Archive
	Description
	Example file

	Besançon
	Description
	Additional information
	Example file

	CATRAS
	Background
	Reading byte code
	Strings
	Integers
	Real numbers
	Categories
	Dates

	Metadata
	Data
	Ring widths
	Chronologies

	Cracow Binary Format
	Description

	Comma Separated Values
	Description
	Example file

	Corina Legacy
	Description
	Example file

	DendroDB
	Description
	Example file

	Heidelberg
	Description
	Example file - raw series
	Example file - chronology

	KINSYS-KS
	Description
	Example file

	Microsoft Excel 97/2000/XP
	Description

	Microsoft Excel 2007
	Description

	Nottingham
	Description
	Example file

	ODF Spreadsheet
	Description

	Oxford
	Description
	Limitations
	Example file

	PAST4
	Dating
	Example file

	Sheffield
	Description
	Dating
	Example file

	Topham
	Description
	Example file

	TRiDaS
	Description
	Example file

	TRIMS
	Example file

	Tucson
	Description
	RWL files
	CRN files
	Workarounds and quirks
	Example file - raw series
	Example file - chronology

	Tucson Compact
	Description
	Example file

	VFormat
	Description
	Example file

	WinDENDRO
	Description

	XML Error Codes
	GNU General Public License
	Preamble
	Terms and Conditions

	References

