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T0I-682: two mini-Neptunes, one transiting &
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TESS spots a transiting mini-Neptune PFS RVs reveal eccentricity and a non-transiting planet
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| i ] Figure 2. PFS radial velocities (RVs) of TOI-682, phased to the period of TOI-682b (left) and TOI-682¢c (right), after removing the
B i model of the other planet in each case. We also simultaneously fit for activity-induced RVs variation, finding a strong correlation
1.0005— — between the S-index and the RVs. Uncertainties related to this activity fit are propagated through the EXOFASTVZ global fit. The
- § % # } key stellar and planetary properties are displayed in the table below.
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Figure 1. The TESS light curve of TOI-682, which was observed in Sectors 9 and 36. Top: PDCSAP flux processed by the SPOC T [K] 952 + 10 715 6+7.6
pipeline. The individual 2-minute cadence fluxes are shown in gray, and the in-transit cadences are highlighted in blue. The = o *0=7.8
brown dashed line is the spline model used to detrend the data. The times of spacecraft pointing corrections are denoted by | [deg] 89_41i8-‘5}(1) < 87.8

purple tick marks on the bottom x axis. Note the 740-day break between sectors. Middle: The flattened light curve after dividing
out the spline model. Binned out of transit data are shown in brown. Bottom: The phase-folded, binned, TESS light curve (blue _ T0|-682

circles) along with the best-fit transit model (orange) from our EXOFASTv2 (Eastman et al. 2019) global fit.
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- § 3 Figure 5. We explore the architecture of the system through N- ,_.o" ;
= _ body simulations by drawing orbital parameters and masses from ~0.104 \ ~0.10 f
, i 300 our posteriors and varying the mutual inclinations between the | T | -
| L 1 planets. While we cannot rule out most inclinations - at least ~30% T e T o e
1 2 3 4 5678910 20 30 40 of simulated systems remain stable for mutual inclinations up to Figure 6. An example simulated orbit, with mutual
Mass (Mg, 65 degrees - >80% are stable for a 25 degree mutual inclination. I~ inclination 25 degrees. The positions of the planets
conjunction with a high eccentricity for T0I-682b, the mutual are plotted for 5 years after the first TESS transit,
Figure 3. A mass-radius diagram showing RV masses with better than 5-sigma precision. Models are from Zeng et al. 2019. TOI- inclination can help constrain the system's formation pathway. during which slight inclination variation is apparent.
682b (large diamond) lies along the low-density upper envelope of mini-Neptunes. Its density (1.58 g/cm3), reasonably deep
transit (1.3 mmag), and host star's relative brightness (J=8.5) make it a promising target for transmission spectroscopy. —
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* - © O o ® ] as00 highly irradiated mini-Neptunes. This is of Figure 7. An inclination variation may be observable and would  so too will the transit duration. Here we show the
2F ® - particular interest given the observation of provide constraints on the mutual inclination. Example simulations  predicted transit duration for initial mutual inclination of
= o e o 1 4000 atmospheric hazes in cooler mini-Neptunes are shown as colored lines for a series of mutual inclinations. The 25 degrees (blue line). There is not yet strong evidence
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TE E temperature (950 K] therefore suggest that blue circles. However, there is a 190 - il degeneracy, so continued  but the predicted variation grows in the coming years.
- ] T01-682b is a good candidate for observation monitoring is necessary to constrain the evolution. The same is true for the eccentricity of T0I-682b.
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