ASTROPHYSICS
 TOI-682: two mini-Neptunes, one transiting

Samuel N. Quinn¹, Jonathan Horner², Karen A. Collins', Jason D. Eastman¹, Laura Kreidberg³, Joseph E. Rodriguez4, Andrew Vanderburg5, Robert A. Wittenmyer², George Zhou², R. Paul Butler6, Jeffrey D. Crane7, Stephen A. Shectman7, Johanna K. Teske ${ }^{6}$, lan Thompson7, Sharon X. Wang ${ }^{8}$

TESS spots a transiting mini-Neptune

Figure 1. The TESS light curve of TOI-682, which was observed in Sectors 9 and 36. Top: PDCSAP flux processed by the SPOC pipeline. The individual 2 -minute cadence fluxes are shown in gray, and the in-transit cadences are highlighted in blue. The brown dashed line is the spline model used to detrend the data. The times of spacecraft pointing corrections are denoted by purple tick marks on the bottom x axis. Note the 740-day break between sectors. Middle: The flattened light curve after dividing out the spline model. Binned out of transit data are shown in brown. Bottom: The phase-folded, binned, TESS light curve (blue circles) along with the best-fit transit model (orange) from our EXOFASTv2 (Eastman et al. 2019) global fit.

A complement to existing transmission spectroscopy

figure 3. A mass-radius diagram showing RV masses with better than 5 -sigma precision. Models are from Zeng et al. 2019. TOl682b (large diamond) lies along the low-density upper envelope of mini-Neptunes. Its density ($1.58 \mathrm{~g} / \mathrm{cm}^{3}$), reasonably deep transit (1.3 mmag), and host star's relative brightness ($\mathrm{J}=8.5$) make it a promising target for transmission spectroscopy.

PFS RVs reveal eccentricity and a non-transiting planet

Figure 2. PFS radial velocities (RVs) of TOI-682, phased to the period of TOI-682b (left) and TOI-682c (right), after removing the model of the other planet in each case. We also simultaneously fit for activity-induced RVs variation, finding a strong correlation between the S-index and the RVs. Uncertainties related to this activity fit are propagated through the EXOFASTv2 global fit. The key stellar and planetary properties are displayed in the table below.

EXOFASTv2 stellar and planetary properties

	TOI-682b	TOI-682c
P (days)	$6.83968_{-0.00100}^{+0.0096}$	$16.134_{-0.040}^{+0.041}$
$\mathrm{R}_{\mathrm{P}}\left(\mathrm{R}_{\oplus}\right)$	$3.49_{-0.11}^{+0.12}$...
$M_{p} \sin (i)\left(M_{\oplus}\right)$	$12.29{ }_{-0.99}^{+1.00}$	9.6-1.4 ${ }^{+1.3}$
e	$0.411_{-0.031}^{+0.033}$	$0.072_{-0.050}^{+0.061}$
$\mathrm{T}_{\text {eq }}(\mathrm{K})$	952 ± 10	$715.6_{-7.8}^{+7.6}$
i (deg)	$89.41_{-0.51}^{+0.40}$	§ 87.8
	TOl-682	
$M_{\star}\left(M_{\odot}\right)$	$0.969_{-0.048}^{+0.055}$	
$\mathrm{R}_{\star}\left(\mathrm{R}_{\odot}\right)$	$0.966_{-0.026}^{+0.027}$	
[Fe/H]	+0.440 ${ }_{-0.069}^{+0.060}$	
$\mathrm{T}_{\text {eff }}(\mathrm{K})$	$5309{ }_{-75}^{+73}$	

TOI-682 b and c: highly, or just slightly, misaligned?

Figure 5 . We explore the architecture of the system through N body simulations by drawing orbital parameters and masses from our posteriors and varying the mutual inclinations between the planets. While we cannot rule out most inclinations - at least $\sim 30 \%$ of simulated systems remain stable for mutual inclinations up to 65 degrees - $>80 \%$ are stable for a 25 degree mutual inclination. In conjunction with a high eccentricity for TOI-682b, the mutual inclination can help constrain the system's formation pathway.

Figure 7. An inclination variation may be observable and would Figure 7. An inclination variation may be observable and would
provide constraints on the mutual inclination. Example simulations are shown as colored lines for a series of mutual inclinations. The value derived from TESS Year 1 and Year 3 transits are plotted as value derived from TESS Year 1 and Year 3 transits are plotted as
blue circles. However, there is a $\mid 90$ - i| degeneracy, so continued blue circles. However, there is a 190 - il degeneracy
monitoring is necessary to constrain the evolution.

Figure 6. An example simulated orbit, with mutual inclination 25 degrees. The positions of the planets are plotted for 5 years after the first TESS transit, during which slight inclination variation is apparent

Figure 8. As the inclinations (and eccentricities) change, so too will the transit duration. Here we show the predicted transit duration for initial mutual inclination of 25 degrees (blue line). There is not yet strong evidence for transit duration variation (between Year 1 and Year 3) but the predicted variation grows in the coming years. The same is true for the eccentricity of TOI-682b

