
Magnetically-driven hotspot reversals
in ultra-hot Jupiter atmospheres

Background
I Hot Jupiter (HJ) atmospheres generally have eastward

(prograde) hotspot o�sets [1]
I Eastward hotspots are explained by hydrodynamic

simulations & theory of synchronously-rotating HJs [2]
I Five observations of westward/oscillating-east-west

hotspots/brightspots: HAT-P-7b (Kepler) [3]; CoRoT-2b
(Spitzer) [4]; Kepler-76b (Kepler) [5]; WASP-12b (Spitzer);
WASP-33b [7] (TESS)

I 3D magnetohydrodynamic (MHD) simulations show that
HJs with strong magnetic fields may experience equatorial
wind variations, hence westward hotspots [8]

I Other explanations: cloud asymmetry [3] and
non-synchronous rotation [9]. To date, not well-explained
in ultra-hot Jupiters [10]

Atmospheric magnetic
field geometry

The Astrophysical Journal, 794:132 (12pp), 2014 October 20 Rogers & Komacek

Figure 3. Magnetic field evolution. The viewpoint is looking onto the nightside of the planet. Top row shows field lines for M2b2, with color representing the toroidal
field magnitude, with red/magenta positive (with maximum of 5 G), blue negative (with minimum of −5 G), and yellow representing values between ±1 G. Middle
and bottom rows show field lines for M7f1b1 and M7f1b2, respectively. Again, color represents toroidal field strength, with red/magenta positive with maximum of
260 G, blue negative with minimum −260 G, and yellow representing field strengths in the range ±20 G. Times are different for each model and are meant only to
give a qualitative picture of magnetic field evolution.

Figure 4. Time evolution of horizontally averaged toroidal field as a function of
depth for models M7b1 (solid lines) and M7b2 (dotted lines). Induced toroidal
field peaks around 0.1–0.2 bars, where vertical shear is large. The field strength
increases with time starting at 330 Prot and increasing in increments of ∼115 Prot
to 1500 Prot.

Figure 5. Day–night temperature differential as a function of pressure. The
solid line is the hydrodynamic version, dotted lines are 10 G MHD models,
and dashed lines are 30 G MHD models. Red lines represent cool models, M2,
M2b1, and M2b2, and black lines represent hot models, M7, M7b1, and M7b2.
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Figure 1: Taken from [8]. Evolution of magnetic field profiles
in three-dimensional MHD simulations. Colours represent
toroidal field magnitude (red/magenta positive; blue/green
negative; yellow moderate)

Shallow-water MHD
(SWMHD) model

I Aim: understand mechanics of reversals with reduced model
Chapter 2. A Cartesian SWMHD Model for Hot Jupiter Atmospheres
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Figure 2.7: The forced reduced-gravity SWMHD model schematic. An active layer sits upon
an infinity-deep quiescent fluid layer, where both layers have constant densities (⇢ and ⇢l). No
magnetic flux is permitted across the active layer’s upper and lower boundaries, which are material
surfaces that evolve in time. Newtonian forcing is used to generate horizontal pressure gradients in
the active layer: the active layer thickness (h) is relaxed towards an imposed radiative equilibrium
thickness profile (heq) over a radiative timescale (⌧rad). The resulting horizontal pressure gradients
drive horizontal motion.

RTeq, of the modelled planet’s atmosphere, where cg, R and Teq respectively denote the

shallow-water gravity wave speed, the specific gas constant and the equilibrium reference

temperature. Since this analogy adjusts the physical interpretation of the quantity g⇤H,

we hereafter drop the star superscript notation on g⇤.

This mass exchange treatment proves useful for including thermal forcing in our re-

duced gravity SWMHD model. However, we must be careful that the mass exchange

is physically meaningful and does not violate physical conservation laws or the model

assumptions we discussed in Section 2.2.2.

We ensure that the mass exchanges conserve specific horizontal momentum, hu, by

using a vertical mass transport term, R, which is added to the righthand side of Equa-

tion (2.59a). In “cooling” regions (Q < 0) mass sinks from the active layer to the quiescent

layer and without causing any net accelerations to either the active layer or the quiescent

layer8. However, in “heating” regions (Q > 0) the upward transport of motionless fluid

causes deceleration of horizontal active layer velocities. This deceleration due to heating

8The momentum that is removed from the active layer is transferred to the quiescent layer. However,
since the quiescent layer is infinitely-deep, the momentum of the transferred mass plus the quiescent layer
is conserved with no change to the quiescent layer’s velocity.
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Figure 2: Schematic of the SWMHD model (le�); SWMHD
solutions (right), with substellar points (white) & hotspots
(cyan) marked, and velocity vectors & white magnetic field
lines overlaid (solid positive; dashed negative)
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Figure 3: Schematic of magnetic reversal mechanism, with
grey temperature contours and white magnetic field lines
(solid positive; dashed negative) [12]

Criteria for hotspot reversals
I Hotspots reverse when VA ≥ VA,crit, where VA is the Alfvén speed, and

VA,crit
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I The toroidal field strength (Bq) is related VA by
Bq =

√
`0dVA

I The deep-seated magnetic field strength (Bdip) is
related to Bq by Bq ∼ RmBdip [8, 11], where

Rm =
UqH
[

, [ = 230 × 10−4
√
T

je(T , d)
m2 s−1

I je and, therefore, Rm are highly T dependent
I Rm & 1 for Teq & 1500 K
I At P = 10mbar, 100G . Bq,crit . 450G
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Figure 4: Equation (1) vs. simulations. [12]
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Figure 5: Teq vs. Bdip,crit (at P = 10mbar), for HJs in the exoplanet.eu dataset.
Reference lines at 14G (dashed; Jupiter’s polar surface magnetic field
strength) and 28G (do�ed; twice this) are included. Calculated for
Tday = Teq + ΔT , with ΔT/Teq = 0.1, 0.2, 0.3 (blue, orange, red) or with
ΔT/Teq based on phase curve measurements (annotated error bars). [13]

Guiding future
TESS research

I Can indicate HJs likely to exhibit
magnetic signatures

I Guiding future work, with B. Jackson &
E. Adams, investigating the following HJs
of interest (see Brian Jackson’s poster):

Candidate Teq/K Bdip,c,0.1 Bdip,c,0.2
Qatar-10bTESS 1955 13G 7G
WASP-3bTESS 1997 29G 16G
Kepler-7bKepler 1632 50G 19G
KELT-18bTESS 2083 7G 4G
WASP-48bTESS 2059 7G 4G
Table 1: A Reversal criteria, Bdip,c,0.1
(taking ΔT/Teq = 0.1) and Bdip,c,0.2 (taking
ΔT/Teq = 0.2), at P = 10mbar tabulated
with Teq.
I 65 HJs of interest are highlighted in [13]
I Future observations can inform on

typical HJ Bdip values
I Note: HAT-P-7b & Kepler-76b’s observed

brightspot oscillations∼10-100days [3, 5]
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