Recovery of TESS Stellar Rotation Periods with Deep Learning
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Convolutional Neural Networks (CNNs) have the power to peer through TESS systematics to predict stellar rotation periods.
We use CNNSs to obtain periods for stars in TESS full-frame images (FFIs).

Data

Our training dataset consists
of 1 million simulated light
curves. The simulations, made
using butterpy [*], are based
on sunspot emergence and
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noiseless light curves.
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A realistic training set should
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systematics.
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We extract galaxy light
curves from TESS FFls

and
our
curves

inject them
synthetic

into
light
emulate

TESS data products.
[*] github.com/zclaytor/butterpy
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Architecture

The noise-injected, synthesized light
curves are normalized sector-by-
sector, and we compute their
wavelet power spectra (WPS). We
feed the 2D WPS as an image into a
CNN. The CNN uses 2D convolution
and 1D max-pooling to optimize
extraction of frequency information
while learning to recognize noise
and systematic features.
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CNNs take advantage of
computer vision technology
and can learn the difference
between noise and signal.
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Train

We partition the input dataset
80%/10%/10% into training,
validation, and test sets. The CNN
fully trains in about 4 hours on an
NVIDIA RTX-2080. Using a
Laplacian log-likelihood loss function
allows us to predict both the rotation
period and its uncertainty.

accl0 = 46%; acc20 = 69%
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Predicting the period uncertainty lets
us select objects with more
confident estimates. With this
selection, we recovery 46% (69%) of
objects’ periods to within 10% (20%)
accuracy.

The trained network can
predict periods for new
input data in a fraction of a
second!
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We successfully
KELT stars with existing measurements.
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recover

the correct rotation period.
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Even in cases where traditional
periodograms are dominated by
systematics, our CNN recovers

Takeaways

> We recover known rotation
periods from TESS data using
Deep Learning.

> Our CNN can see beyond TESS
systematics to predict periods.

> Predicting period uncertainty
gives an added measure of
confidence in our estimates.

> We are using the trained network
to predict new rotation periods
for TESS FFI stars
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https://github.com/zclaytor/butterpy
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