Magnetic Fields on Low Mass Ultra Fast Rotators using TESS and FORS2

INTRODUCTION

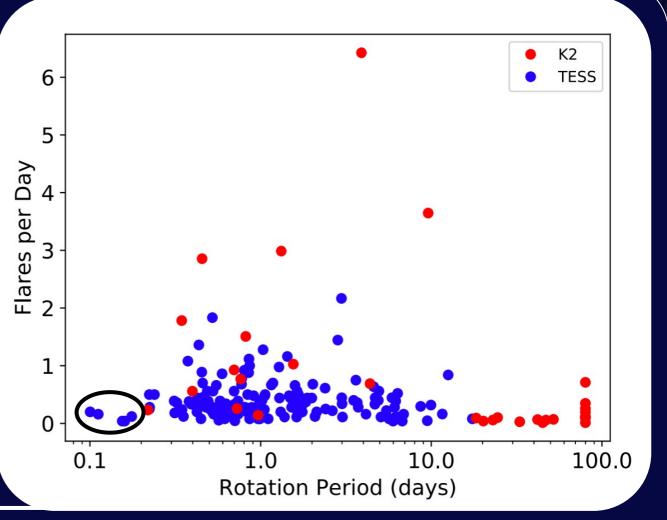
Stars which are rapidly rotating are expected to show high levels of activity according to the activity-rotation relation. However, previous TESS studies have found groups of Ultra Fast Rotating (UFR) stars with periods less than one day displaying low levels of flaring activity. As a result, in this study, we are utilising VLT/FORS2 spectropolarimetric data of 10 low mass UFR stars all with $P_{rot} < 1$ day, to detect the presence of a magnetic field. We also have TESS 2-min lightcurves from cycles 1 & 3 allowing for the investigation of long-term variability in all of our targets.

2. OUR PILOT STUDY

TIC ID	NAME	P _{rot} (days)	MORE FLARE ACTIVE
425937691	UCAC3 53-724	0.10	
15859311	UCAC4 204-001345	0.154	
206544316	UPM J0113-5939	0.322	
156002545	2MASS J0033-5116	0.353	
248354845	GSC 04683-02117	0.522	
229142295	2MASS J0146-5339	0.447	
220539110	GSC 08859-00633	0.773	
166808151	EXO 0235.2-5216	0.740	
141807839	AL 442	0.839	
201861769	2MASS J0232-5746	0.862	

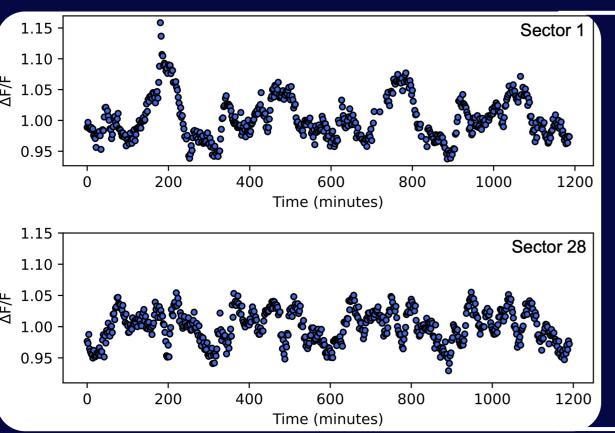
Dr Lauren Doyle¹

In collaboration with Gavin Ramsay², Stefano Bagnulo²


& Gerry Doyle²

¹Department of Physics, University of Warwick, Coventry, CV4 7AL, UK ²Armagh Observatory and Planetarium, College Hill, Armagh, BT61 9DG, UK

1. PREVIOUS STUDIES


Figure 1: Normalised number of flares per day for each star as a function of rotation period. The red represent the stars from Doyle et al. (2018) using K2 short cadence data, and the blue the 149 targets from Doyle et al. (2019) using TESS 2min cadence data.

- ★ In Doyle et al. (2019), we discovered 9 low mass UFRs (black circle in Fig. 1) in sectors 1-3 of TESS data with low levels of flaring activity, rotating with P_{rot} < 0.3 days.
- ★ Ramsay et al. (2020) investigated this further on 609 low mass stars using TESS data from sectors 1-13. The fraction of stars which show flares appears to drop significantly at P_{rot} < 0.2 days.</p>

- ★ Obtained spectropolarimetric observations using the VLT/FORS2 instrument during December 2020.
- ★ Total of 5 period bins, each with one less active and one more active star taken from the larger sample of Doyle et al. (2019).

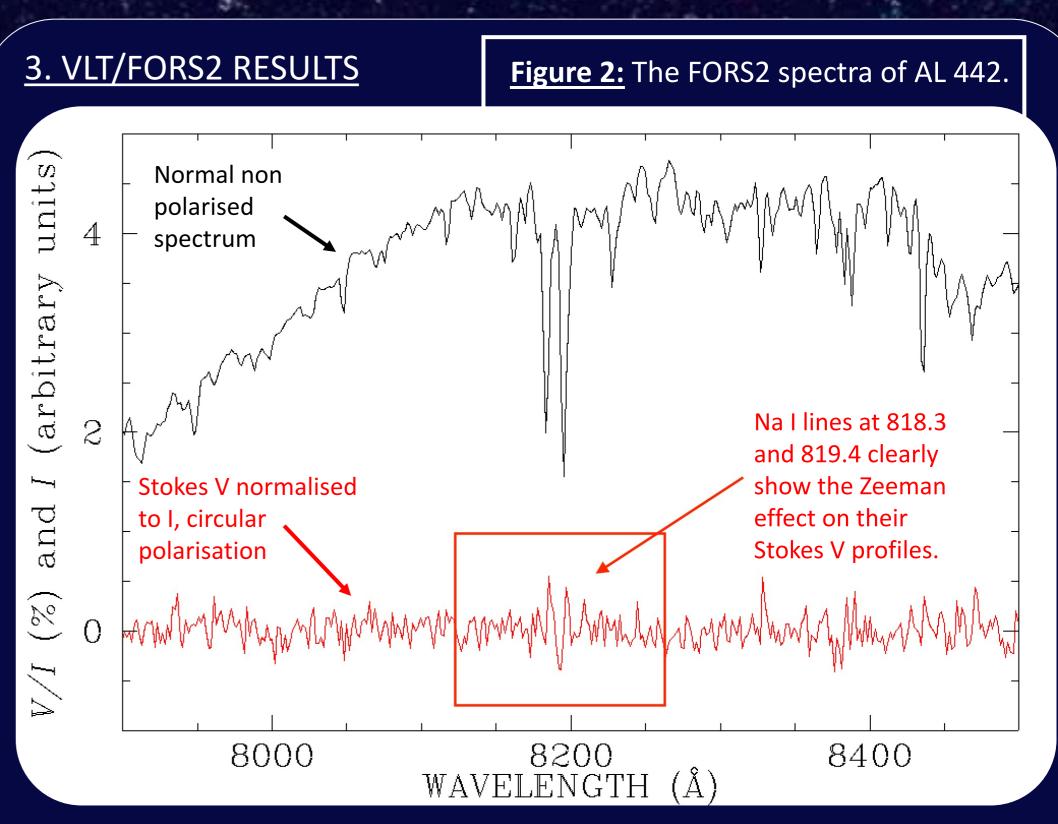
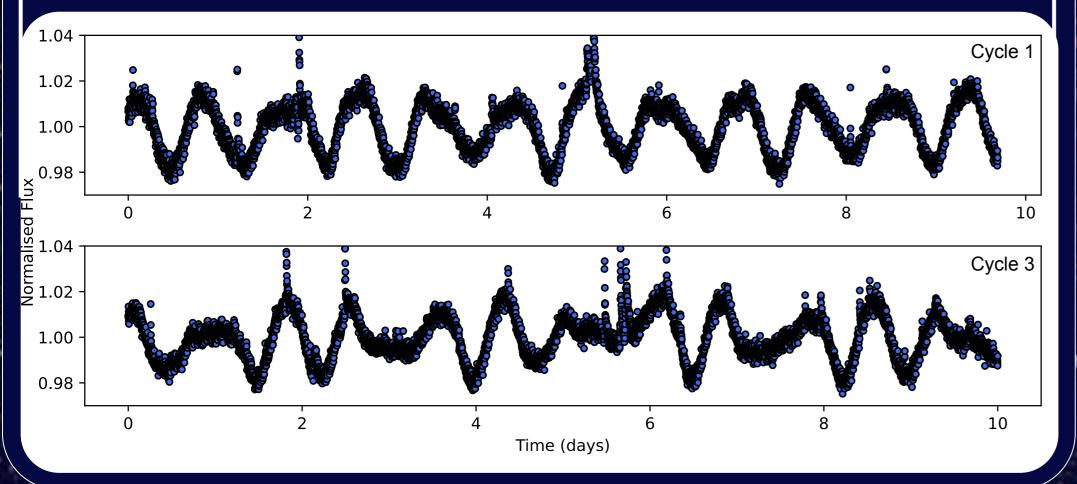

4. VARIATIONS BETWEEN TESS CYCLES

Figure 3: Two portions from TESS lightcurves of the M5.5 dwarf UCAC3 53-724 (TIC 425937691). The upper panel shows a section from sector 1 and the lower panel a section from sector 28, taken approximately 2 years apart.

* **TIC 425937691:** Change in the shape of the rotational modulation

★ This is consistent with Gunther et al. (2020) who find tentative evidence for a drop-in flaring activity at P_{rot} < 0.3 days in the first two months of TESS data.


- ★ Identified **5 stars** (50% of our sample) with a detectable magnetic field.
- ★ Of these, **four** were the **more active stars** in the period bins.
- ★ All magnetic fields detected have a strength < 1 kG.</p>
- ★ We <u>do not</u> detect a magnetic field on our fastest rotating star

caused by manifesting spots resulting in a 10³⁴ erg flare.

★ TIC 141807839: Changes in the shape of the modulation between cycles, no change in flare activity. Could this be migrating spots?

Figure 4:

Two sections of TESS lightcurves from cycle 1 (top panel) and cycle 3 (bottom panel) of the M4.5 dwarf AL~442 (TIC 141807839).

UCAC3 53-724 which has a rotation period of 0.1 days.

5. CONCLUSIONS

1.00

- ★ We used TESS and FORS2 data to conduct a pilot study into the magnetic fields of low mass UFR stars. 50% of our sample showed evidence of a detectable field, out of these four were the more active star in our period bin.
- ★ This tells us the magnetic field configuration of these UFRs is not the key to solving the lack of their flaring activity!
- ★ Two targets (TIC 425937691 and TIC 141807839) show changes in the shape of the rotational modulation and/or flare number between cycle 1 & 3, indicative of long-term variability.

References:

Doyle L., Ramsay G., Doyle J. G., Wu K., (2019), MNRAS, 489, 437 – 445 ; Doyle L., Ramsay G., Doyle J. G., Wu K., Scullion E., (2018), MNRAS, 480 (2), 2153 – 2164 ; Günther et al. (2020), AJ, 159, 60 ; Ramsay G., Doyle J.G., Doyle L., (2020), MNRAS, 497 (2), 2320-2326