
Use of the Julia Programming Language for the Analysis of TESS Data
John Kielkopf1,2

U. of Louisville1 – U. of Southern Queensland2

Overview
The high performance Julia Programming Language is an open source
project offering pre-built binaries that run on most commonly used
platforms. With similarities to Python and Matlab that are often used for
astrophysical data analysis, it is easy for experienced students and
programmers to learn, and to adapt existing code, or to import code from
other languages using its native tools. Although comprehensive libraries
similar to astropy are not available, essential ones such as FITS file
procedures, are supported. We have experimented with Julia for the
analysis of TESS data in cases where the speed of Python is limiting:
transit modeling and fitting, and processing of time series stacks of
TESS Full Frame Images. This poster highlights the features of Julia
programming, contrasts those against the familiar Python and Matlab
languages, and compares the outcomes for test cases. These results
demonstrate a significant decrease in processing time with Julia for large
data arrays, especially when optimized for multiprocessing.

Julia Language
Julia is a young and developing open source computing language
designed for high performance at its foundation. [1 − 3] While not yet
common in astronomy and astrophysics research, it has a growing
community of users and developers, especially in engineering, finance
and pharmaceuticals where data science, simulations, and machine
learning press the limitations of available computing resources [4]. In use
it has the ease of development we find in Python, with the speed of
execution that comes from multitasking and GPU processing associated
with the high performance computing in C and Fortran. Highlights of its
features are

It’s very fast, running native code through LLVM
It uses a just in time compiler and may be used interactively
Pre-built binaries are available for free for Windows, MacOS, and
Linux
Other packages, installed from within Julia, provide a consistent
environment across operating system and hardware landscapes
It is easily learned interactively with effective documentation and
online forums for support

Julia’s core includes components essential for applications in physics and
astronomy. For example, the structures we use from Numpy in Python
are inherent in the arrays that are fundamental to Julia. Broadcast
operations on arrays are performed quickly, and may be programmed
more simply in the style of Julia that resembles Matlab than with the
wrappers that are required by Python. However Julia may run as fast or
faster with loops because its compiler creates optimized code, and for
loops may be dispatched with threading across multiple cores of a single
machine with the introduction of a simple macro into the code. Julia may
also incorporate code from C, Fortran, and Python so that it can provide
a nearly universal platform that almost “does it all,” from prototyping to
production. There is a foundation of key packages too, including

JuliaAstro has astronomical coordinate systems and time keeping,
FITSIO wrapping libcfitsio, WCS wrapping libwcs, ERFA wrapping
liberfa, Earth’s orientation from IERS tables, JPL ephemerides,
translations of the astronomical utilities used in IDL, photometry, and
Lomb-Scargle periodograms
Plots enables complex dynamic visualization simply, and providing a
choice of backends including Plotly that will be familiar to Python
programmers

While the format of Julia code will be familiar to users of Matlab,
Mathematica, or Python, it has its unique features to learn, stumble over,
and re-learn (see Avik Sengupta, Julia High Performance Computing [5])

Indexing is 1-based, not 0-based
Typing is dynamic
Julia favors many small functions which the compiler will optimize and
insert in code in real time
Scoping rules discourage use of global variables when speed is
important

Our use of Julia developed from an interest in exploring the TESS full
frame images (FFIs) as they became available. The TESS Science
Processing Operating Center (SPOC) provides FFI data through MAST
within a month of download from the satellite, and they extract short
period exoplanet candidates for the followup community to study. The
FFIs have other data of course, especially on stellar variability due to
pulsations and rotations, stellar activity associated with flares and space
weather, eclipsing binary stars of all kinds, solar system objects, and
transient events in our galaxy and beyond. They are also ultimately a
powerful resource for training students in the analysis of large
astronomical data. Given the size of the FFI data sets, we found that
Python routines were slow to complete and limited the science that may
be possible. One solution was to move processing to a small cluster
system in our department which provides 192 GB of memory in a node,
up to 720 cores across all nodes, 2 NVIDIA Titan X GPUs, and 100 TB of
primary storage that is shared by several users. Our group also
maintains a server specifically for processing TESS data that has 128
GB of memory, 32 TB of online storage, 20 physical cores, and a Tesla
K20 GPU. Its compute capacity is underutilized with Python and could be
fully exploited with Julia.
Thanks to the recent introduction of TICA FFIs through MAST (see [6])
and the use of parallel processing downloads on the local cluster
system, we have access to the FFIs for a sector within days of their
transmission from the satellite. There is potential for rapid review of them
for targets specifically of interest to our students that would inform
ground based followup for photometry and spectroscopy while the
targets are still visible for most of the night.
We are making progress in learning how to use Julia toward this end,
supplemented with existing Python code, and greatly enabled by
AstroImageJ for stack visualization, target identification, photometry, and
light curve modeling [7]. A few examples are illustrated here, drawn from
Sector 39 data, and analyzed with code during development.

Examples of Julia Applied to TESS Data

AstroImageJ offers interactive visualization and analysis of TESS FFIs.
This screen is from Sector 39, Camera 1, CCD 2. The image is the
difference (mean minus median) of 1024 sequential images from orbit 1.
The mean, median, and difference are computed with one run of a Julia
program, in this case using 10 cores of the cluster with the image stack
in memory. For each pixel (indexed by [i, j]) the code calculates the
median over all images at once in the stack (the sequential, first, axis in
storage for Julia)

median image[i, j] = median(images[:, i, j])

The program loops over columns with threads that dispatch multiple
CPUs to run the loops over rows. Most of the processing time is used to
load the images into memory, and in optimal work once loaded they
would be used for more than one outcome. In this case, to produce the
mean, median and difference of all 1024 images took 10.1 seconds for
the median and 3.2 seconds for the mean. A similar Python code using
broadasting took 4 minutes 5 seconds of CPU time. Swarp, compiled in
C, took, 3 minutes and 50 seconds. Stars are identified as possibly
variable in the stack difference by their appearance as either bright or
dark. Smaller variations add a background which masks detection of
some variable stars. Asteroids make streaks, the faster they go (likely
closer to Earth) the longer the streak. Star designations come from
Simbad through the AstroImageJ functions.

A closer look at the difference image for the stack shows the distinctive
character of variable star images, and the background “noise” in stars
that are not strongly variable. Both well-known and previously
unsuspected variables appear in large numbers for each camera and
CCD image stack. Short period variations over one orbit are most
distinctive.

Alternatively, the stack may be processed to do a fast Fourier transform
(FFT) for all pixels in the time domain when the images are evenly
cadenced. FFTs are done in Julia with the FFTW library and are very
efficiently computed without adding special handling other than the usual
methods of optimizing for high performance. We select a sequence of
images (typically 512 or 1024), inspect them for quality, and replace poor
frames with null ones. For a data cube “images”, the FFT is performed in
one line of code

ffts = abs.(rfft(images,1))
which returns another data cube (“ffts”) with the transform along the first
axis, that is the time series axis in this case. Each frame of the new cube
is a frequency slice of the time dependent cube.

Time Dependence

This a slice of a FFT of 1024 images from orbit 1 of sector 39, camera 1,
ccd 3. The slice has been chosen to show the eclipsing binary star
V1084 Scorpii at its brightest in the frequency space, that is, at the
fundamental frequency of its periodicity. Typically short period eclipsing
binaries (EBs) show recognizable maxima in their Fourier transforms
because of the strong modulation of their light curves. This method is
very effective at finding EBs in TESS FFIs. While Python can generate
FFT stacks, its processing has been prohibitively slow.

As another example of Julia’s potential for TESS data analysis we
consider light curve modeling using the Mandel and Agol protocol
[8− 9,7]. The analytical formulation is widely used and potentially fast for
Markov chain Monte Carlo (MCMC) methods of fitting. It is also used in
AstroImageJ to fit light curves to photometry of transiting planets in real
time. Our implementation in Julia has all of the orbital elements and in
principle allows fitting on any parameter. While not yet optimized, it
reproduces the light curves from AstroimageJ

The observed light curve is from transit observations of a TESS planet
candidate taken in December 2020 with our Mt. Lemmon telescope. The
model curve, computed with Julia, is based on parameters from the
AstroImageJ fit that produce the same fitted curve. The fit was done
without adjusting limb darkening coefficients, and does not allow for
stellar surface structure or even orbital eccentricity, though those
parameters are in the code. Validation of the transitmodel code and its
application to explore more fully multiparameter fitting of transit
photometry and radial velocities is continuing.

References and Followup

1. https://julialang.org/
2. https://www.nature.com/articles/d41586-019-02310-3
3. https://en.wikipedia.org/wiki/Julia(programminglanguage)
4. Emmett Boudreau, What You Need to Know about Julia in 2021 ,

Towards Data Science (May 11, 2021)
5. Avik Sengupta, Julia High Performance Computing, Packt (2019)
6. Michael Fausnaugh, et al., Calibrated Full-frame Images for the

TESS Quick Look Pipeline, Research Notes of the American
Astronomical Society 4 251 (2020)

7. Karen Collins, et al., AstroImageJ: Image Processing and
Photometric Extraction for Ultra-Precise Astronomical Light Curves,
Astronomical Journal 153 77 (2017)

8. Kaisey Mandel and Eric Agol, Analytic Light Curves for Planetary
Transit Searches, Astrophysical Journal 580 L171 (2002)

9. Avi Shporer, Matlab version matransit.m from 2015

If you would like to explore Julia online, or download the compiled binary
and try it on your own computer, this is the place to start

https://julialang.org/ The Julia Programming Language website

A helpful Wikibook may be your guide

Introducing Julia

A collection of Julia code for astronomy is on github

JuliaAstro

kielkopf@louisville.edu www.astro.louisville.edu/shared skies

https://julialang.org
https://llvm.org/
https://docs.julialang.org/en/v1/
https://discourse.julialang.org/
https://juliaastro.github.io/dev/index.html
http://docs.juliaplots.org/latest/
https://www.astro.louisville.edu/software/astroimagej/index.html
https://julialang.org/
https://www.nature.com/articles/d41586-019-02310-3
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://towardsdatascience.com/what-you-need-to-know-about-julia-in-2021-22875f34465b
https://towardsdatascience.com/what-you-need-to-know-about-julia-in-2021-22875f34465b
https://ui.adsabs.harvard.edu/link_gateway/2020RNAAS...4..251F/doi:10.3847/2515-5172/abd63a
https://ui.adsabs.harvard.edu/link_gateway/2020RNAAS...4..251F/doi:10.3847/2515-5172/abd63a
http://iopscience.iop.org/article/10.3847/1538-3881/153/2/77
http://iopscience.iop.org/article/10.3847/1538-3881/153/2/77
https://julialang.org/
https://en.wikibooks.org/wiki/Introducing_Julia
https://juliaastro.github.io/dev/index.html

