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Motivation Importance
» Previous work has shown core-powered mass loss can reproduce the observed  Retaining such quantities of H/He reduces the atmosphere's mean molecular weight
dichotomy of super-Earths and sub-Neptunes (e.g., Ginzburg et al. (2016), Gupta & compared to an outgassed secondary atmosphere
Schlichting (2019), Berger et al. (2020)) * This signature could be observable today or in the near future via transmission
* But what is the long-term imprint of this mass loss process on super-Earth spectroscopy (e.g., Benneke & Seager (2012), Fortney et al. (2013), Greene et al. (2016))
atmospheres? » Large amounts of retained H/He after core-powered mass loss would affect the early
Mechanism geochemistry and rock-atmosphere interactions of this common class of planet (e.g.,
* As core-powered mass loss unbinds overlying atmospheres, super-Earth cores can cool =~ Wordsworth et al. (2018), Doyle et al. (2019), Seager et al. (2020))
more quickly * [t therefore affects their potential habitability
 These planets’ cooling timescales eventually become shorter than their mass loss * Such tenuous atmospheres may be susceptible to further processing, e.g. by long-term photo-
timescales, allowing super-Earths to keep small residual H/He envelopes evaporation
Results « TESS and related missions have found and continue to find excellent candidates to test these
» The mass of these retained envelopes increases with planet mass and semi-major axis predictions
* The retained atmospheric mass fraction, f,.,, ranges from <10 to 1% of the planet’s
\total mass and is of order 10~ for a 5 Earth mass planet at T, = 1000 K /
Super-Earth atmosphere evolution ﬂ%esults: Broad range of retained atmospheric mas@ / Observational implications \
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) retgined more massive primordial atmospheres * A number of these planets are amenable to further
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Sub-Neptunes — Super-Earths — * Assumes R, 4,=2R.when timescales become equal characterization with transmission spectroscopy
Figure 1: schematic of the evolution of sub-Neptune and super-Earth planets from disk dispersal. Numerical Results 00 * Such studies will be able to distinguish residual
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* Eventually < t.«« — R, quickly decreases as planet cools \\

KMass loss rate exponentially sensitive to R, — remaining atmosphere preser@ Final atmospheric masses depend on assumptions for mass /

captured from protoplanetary disk
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