Replace mechanical interaction force

Author: Lukas Breitwieser
This tutorial demonstrates how to replace BioDynaMo's default interaction force with a user-defined one. The
interaction force is used to calculate forces between agent pairs that are in physical contact with each other.

Let's start by setting up BioDynaMo notebooks.

In [1]:

%jsroot on
gRO0T->LoadMacro("${BDMSYS}/etc/rootlogon.C");

INFO: Created simulation object 'simulation' with UniqueName='simulati
on'

In [2]:

#include "core/operation/mechanical forces op.h"

We modify the simulation max displacement parameter to better visualize the difference of the user-
defined force that we will add.

In [3]:

auto set param = [](Param* p) {
p->simulation max displacement = 50;
b

Simulation simulation("my-simulation", set param);
In our experiment we create two overlapping cells and visualize the starting condition.

In [4]:

void Experiment() {
simulation.GetResourceManager()->ClearAgents();
auto* ctxt = simulation.GetExecutionContext();
auto* scheduler = simulation.GetScheduler();

auto* celll new Cell({0, 0, 0});
auto* cell2 new Cell({10, 0, 0});
celll->SetDiameter(20);
cell2->SetDiameter(20);
celll->SetMass(0.1);
cell2->SetMass(0.1);

ctxt->AddAgent(celll);
ctxt->AddAgent(cell2);

scheduler->FinalizelInitialization();
VisualizeInNotebook();

Let's run our experiment and have a look at the visualization.



In [5]:

Experiment();

We continue by simulating 10 iterations and observe how the mechanical force pushed the two cells away from
each other, until they don't overlap anymore.

In [6]:

auto* scheduler = simulation.GetScheduler();
scheduler->Simulate(10);
VisualizeInNotebook();

Now we want to add our user-defined force implementation. First, we have to subclass InteractionForce
and implement our force. In this case, it is an extremely simple (and unrealistic) implementation.



In [7]:

class MyInteractionForce : public InteractionForce {
public:
MyInteractionForce() {}
virtual ~MyInteractionForce() {}

Doubled4 Calculate(const Agent* lhs, const Agent* rhs) const override {
if (lhs < rhs) {
return {100, 0, 0, 0};
} else {
return {-100, 0, 0, 0};
}
}

InteractionForce* NewCopy() const override { return new MyInteractionForce(); }

};

With the following three lines we instruct BioDynaMo to use our new MyInteractionForce instead of the
default implementation.

In [8]:

auto* myforce = new MyInteractionForce();
auto* op = scheduler->GetOps("mechanical forces")[0];
op->GetImplementation<MechanicalForcesOp>()->SetInteractionForce(myforce);

We create the same starting condition as before.

In [9]:

Experiment();

Because myforce is so strong, it is sufficient to simulate only one iteration to clearly see its impact.



In [10]:

auto* scheduler = simulation.GetScheduler();

scheduler->Simulate(1l);
VisualizeInNotebook();



