
Dynamic scheduling
Author: Lukas Breitwieser

This tutorial demonstrates that behaviors and operations can be added and removed during the simulation.
This
feature provides maximum flexibility to control which functions will be executed during the lifetime of a
simulation.

Let's start by setting up BioDynaMo notebooks.

In [1]:

In [2]:

Define a helper variable

In [3]:

We define a standalone operation TestOp which prints out that it got executed and which removes itself from
the list of scheduled operations afterwards. The same principles apply also for agent operations.

In [4]:

Let's define a little helper function which creates a new instance of TestOp and adds it to the list of scheduled
operations.

INFO: Created simulation object 'simulation' with UniqueName='simulati

on'.

%jsroot on

gROOT->LoadMacro("${BDMSYS}/etc/rootlogon.C");

auto* ctxt = simulation.GetExecutionContext();

auto* scheduler = simulation.GetScheduler();

int test_op_id = 0;

struct TestOp : public StandaloneOperationImpl {

 BDM_OP_HEADER(TestOp);

 void operator()() override {

 auto* scheduler = Simulation::GetActive()->GetScheduler();

 std::cout << name << " processing iteration "

 << scheduler->GetSimulatedSteps()

 << std::endl;

 auto* op = scheduler->GetOps("test_op")[test_op_id++];

 scheduler->UnscheduleOp(op);

 std::cout << " " << name

 << " removed itself from the simulation " << std::endl;

 }

 std::string name = "";

};

OperationRegistry::GetInstance()->AddOperationImpl(

 "test_op", OpComputeTarget::kCpu, new TestOp());

In [5]:

Let's define a new behavior b2 which prints out when it gets executed and which adds a new operation with
name OP2 to the simulation if a condition is met.

In this scenario the condition is defined as simulation time step == 1 .

In [6]:

We define another behavior b1 which prints out when it gets executed, removes itself from the agent, and
which adds behavior b2 to the agent.

In [7]:

Now all required building blocks are ready. Let's define the initial model: a single agent with behavior b1 .

In [8]:

We also add a new operation to the simulation.

In [9]:

Let's simulate one iteration and think about the expected output.

Since we initialized our only agent with behavior b1 , we expect to see a line B1 0-0
Furthermore, b1 will print a line to inform us that it removed itself from the agent, and that it added
behavior b2 to the agent.

void AddNewTestOpToSim(const std::string& name) {

 auto* op = NewOperation("test_op");

 op->GetImplementation<TestOp>()->name = name;

 scheduler->ScheduleOp(op);

}

StatelessBehavior b2([](Agent* agent) {

 std::cout << "B2 " << agent->GetUid() << std::endl;

 if (simulation.GetScheduler()->GetSimulatedSteps() == 1) {

 AddNewTestOpToSim("OP2");

 std::cout << " B2 added OP2 to the simulation" << std::endl;

 }

});

StatelessBehavior b1([](Agent* agent) {

 std::cout << "B1 " << agent->GetUid() << std::endl;

 agent->RemoveBehavior(agent->GetAllBehaviors()[0]);

 std::cout << " B1 removed itself from agent " << agent->GetUid() << std::endl;

 agent->AddBehavior(b2.NewCopy());

 std::cout << " B1 added B2 to agent " << agent->GetUid() << std::endl;

});

auto* agent = new SphericalAgent();

agent->AddBehavior(b1.NewCopy());

ctxt->AddAgent(agent);

AddNewTestOpToSim("OP1");

Because changes are applied immediately (using the default InPlaceExecCtxt) also B2 will be
executed. However the condition inside b2 is not met.
Next we expect an output from OP1 telling us that it got executed.
Lastly, we expect an output from OP1 to tell is that it removed itself from the simulation.

In [10]:

Let's simulate another iteration.

This time we only expect output from B2 .
Remember that B1 and OP1 have been removed in the last
iteration.

This time the condition in B2 is met and we expect to see an output line to tell us that a new instance of
TestOp with name OP2 has been added to the simulation.

In [11]:

Let's simulate another iteration.
This time we expect an output from B2 whose condition is not met in this
iterations, and from OP2 that it got executed and removed from the simulation.

In [12]:

Let's simulate one last iteration.
 OP2 removed itself in the last iteration. Therefore, only B2 should be left.
The condition of B2 is not met.

In [13]:

In summary: We initialized the simulation with B1 and OP1 .

In iteration:

0. B1 removed, B2 added, OP1 removed
1. OP2 added

B1 0-0

 B1 removed itself from agent 0-0

 B1 added B2 to agent 0-0

B2 0-0

OP1 processing iteration 0

 OP1 removed itself from the simulation

B2 0-0

 B2 added OP2 to the simulation

B2 0-0

OP2 processing iteration 2

 OP2 removed itself from the simulation

B2 0-0

scheduler->Simulate(1);

scheduler->Simulate(1);

scheduler->Simulate(1);

scheduler->Simulate(1);

2. OP2 removed

