
Hierarchical model support
Author: Lukas Breitwieser
Some models require to update certain agents before others. In this tutorial we show how to execute operations
first for large agents and afterwards for small ones. Lastly, we demonstrate how to run a different set of
operations for large and for small agents.

Let's start by setting up BioDynaMo notebooks.

In [1]:

To make this demo easier to understand, we turn off multi-threading and load balancing.

In [2]:

We create a new agent operation which prints out its name and the diameter of the agent it is processing

In [3]:

We create four agents with diameter {20, 10, 20, 10}

In [4]:

We add the new operation to the simulation

INFO: Created simulation object 'simulation' with UniqueName='simulati

on'.

%jsroot on

gROOT->LoadMacro("${BDMSYS}/etc/rootlogon.C");

omp_set_num_threads(1);

ThreadInfo::GetInstance()->Renew();

auto* scheduler = simulation.GetScheduler();

scheduler->UnscheduleOp(scheduler->GetOps("load balancing")[0]);

struct TestOp : public AgentOperationImpl {

 BDM_OP_HEADER(TestOp);

 void operator()(Agent* agent) override {

 std::cout << name << " processing agent with diameter "

 << agent->GetDiameter() << endl;

 }

 std::string name = "";

};

OperationRegistry::GetInstance()->AddOperationImpl(

 "test_op", OpComputeTarget::kCpu, new TestOp());

auto* ctxt = simulation.GetExecutionContext();

for (int i = 0; i < 4; ++i) {

 double diameter = i % 2 == 0 ? 20 : 10;

 ctxt->AddAgent(new SphericalAgent(diameter));

}

In [5]:

Let's simulate one time step and observe the default behavior of BioDynaMo. We expect that the agents are
processed in the order they were added ({20, 10, 20, 10})

In [6]:

Now we want to define the group of large and small agents and tell BioDynaMo that large agents should be
processed before small ones.

This can be done with the following three lines of code.

In [7]:

Let's observe if the output has changed. We expect to see first the large agents {20, 20} , followed by the
small ones {10, 10} .

In [8]:

Let's create two more instances of our TestOp . We define that:

op1 should be run for all agents (large and small).
op2 only for small agents
op3 only for large agents

processing agent with diameter 20

processing agent with diameter 10

processing agent with diameter 20

processing agent with diameter 10

processing agent with diameter 20

processing agent with diameter 20

processing agent with diameter 10

processing agent with diameter 10

auto* op1 = NewOperation("test_op");

scheduler->ScheduleOp(op1);

scheduler->Simulate(1);

auto small_filter = L2F([](Agent* a) { return a->GetDiameter() < 15; });

auto large_filter = L2F([](Agent* a) { return a->GetDiameter() >= 15; });

scheduler->SetAgentFilters({&large_filter, &small_filter});

scheduler->Simulate(1);

In [9]:

Now we want to execute another time step with the updated model. We expect that for each agent two
operations will be executed.

For large agents OpAll and OpOnlyLarge and for small agents OpAll and OpOnlySmall . As before,
we expect that first all large agents are executed, followed by all small agents.

In [10]:

OpAll processing agent with diameter 20

OpOnlyLarge processing agent with diameter 20

OpAll processing agent with diameter 20

OpOnlyLarge processing agent with diameter 20

OpAll processing agent with diameter 10

OpOnlySmall processing agent with diameter 10

OpAll processing agent with diameter 10

OpOnlySmall processing agent with diameter 10

auto* op2 = NewOperation("test_op");

auto* op3 = NewOperation("test_op");

op1->GetImplementation<TestOp>()->name = "OpAll ";

op2->GetImplementation<TestOp>()->name = "OpOnlySmall";

op3->GetImplementation<TestOp>()->name = "OpOnlyLarge";

op2->SetExcludeFilters({&large_filter});

op3->SetExcludeFilters({&small_filter});

scheduler->ScheduleOp(op2);

scheduler->ScheduleOp(op3);

scheduler->Simulate(1);

