Simulation time series plotting (basics)

Author: Lukas Breitwieser
In this tutorial we show how to collect data during the simulation and plot it at the end.
To this extent, we create a simulation where cells divide rapidly leading to exponential growth.

Let's start by setting up BioDynaMo notebooks.

In [1]:

%jsroot on
gRO0T->LoadMacro("${BDMSYS}/etc/rootlogon.C");

INFO: Created simulation object 'simulation' with UniqueName='simulati
on'

In [2]:

using namespace bdm::experimental;

In [3]:

auto set param = [](Param* param) {
param->simulation time step = 1.0;
b

Simulation simulation("MySimulation", set param);

Let's create a behavior which divides cells with 10% probability in each time step.
New cells should also get this behavior.

Therefore, we have to call AlwaysCopyToNew() .

Otherwise, we would only see linear growth.

In [4]:

StatelessBehavior rapid division([](Agent* agent) {
if (Simulation::GetActive()->GetRandom()->Uniform() < 0.1) {
bdm static cast<Cell*>(agent)->Divide();
}
3

rapid division.AlwaysCopyToNew();

Let's create a function that creates a cell at a specific position, with diameter = 10, and the rapid division
behavior.

In [5]:

auto create cell = [](const Double3& position) {
Cell* cell = new Cell(position);
cell->SetDiameter(10);
cell->AddBehavior(rapid division.NewCopy());
return cell;

};

As starting condition we want to create 100 cells randomly distributed in a cube with min = 0, max = 200

In [6]:

simulation.GetResourceManager()->ClearAgents();
ModelInitializer::CreateAgentsRandom(0, 200, 100, create cell);
simulation.GetScheduler()->FinalizeInitialization();
VisualizeInNotebook();

\ ® @9

e L
-_" :;"4“. °

[L] ™ l‘

[] .- G © ®
Y oeg el o
AN
L . %
l. o @

Before we start the simulation, we have to tell BioDynaMo which data to collect.
We can do this with the TimeSeries: :AddCollector function. In this example we are interested in the

number of agents.

In [7]:

auto* ts = simulation.GetTimeSeries();
auto get num agents = [](Simulation* sim) {

return static_cast<double>(sim->GetResourceManager()->GetNumAgents());
b

ts->AddCollector("num-agents", get num agents);
Now let's simulate until there are 4000 agents in the simulation

In [8]:

auto exit condition = [](){
auto* rm = Simulation::GetActive()->GetResourceManager();
return rm->GetNumAgents() > 4000;

b

simulation.GetScheduler()->SimulateUntil(exit condition);

Now we can plot how the number of agents (in this case cells) evolved over time.

In [9]:

LineGraph g(ts, "My result", "Time", "Number of agents", true, nullptr, 500, 300);
g.Add("num-agents", "Number of Agents");
g.Draw();

My result

Number of agents

2500t S— S— R— N R ofo R
2000t S S S— F— H— Zan T

1500 v EAR EIRN s

1000F{ —— Number of Agents

500[E 7 e = e — S S S—

:IIIIilIIIilIIIillllillllilllIillll

0 5 10 15 20 25 30 35

Time

