
Agent reproduction advanced
Author: Lukas Breitwieser
In the tutorials so far we used Cell::Divide to create new agents. In this demo we want to show how to
define your own "process" that creates a new agent. Furthermore, we will explain the purpose of the functions
Agent::Initialize and Agent::Update .

Assume that we want to create a new agent type Human which should be able to GiveBirth .

Let's start by initializing BioDynaMo notebooks.

In [1]:

In [2]:

Let's start by creating the ChildBirthEvent . In this example we do not need any attributes.

In [3]:

We continue by defining the class Human which derives from SphericalAgent .

In [4]:

The implementation of GiveBirth only requires two lines of code.

INFO: Created simulation object 'simulation' with UniqueName='simulati

on'.

%jsroot on

gROOT->LoadMacro("${BDMSYS}/etc/rootlogon.C");

auto* ctxt = simulation.GetExecutionContext();

auto* scheduler = simulation.GetScheduler();

struct ChildBirthEvent : public NewAgentEvent {

 ChildBirthEvent() {}

 virtual ~ChildBirthEvent() {}

 NewAgentEventUid GetUid() const override {

 static NewAgentEventUid kUid =

 NewAgentEventUidGenerator::GetInstance()->GenerateUid();

 return kUid;

 }

};

class Human : public SphericalAgent {

 BDM_AGENT_HEADER(Human, SphericalAgent, 1);

 public:

 Human() {}

 explicit Human(const Double3& position) : Base(position) {}

 virtual ~Human() {}

 void GiveBirth();

 void Initialize(const NewAgentEvent& event) override;

};

In [5]:

First, creating an instance of the event.
Second, invoking CreateNewAgents function which is defined in class Agent .

The first parameter of CreateNewAgents takes an event object, and the second a vector of agent
prototypes. The size of this vector determines how many new agents will be created. In our case: one. If twins
should be born we could change it to CreateNewAgents(event, {this, this}); .

But why do we have to pass a list of agent pointers to the function?

The answer is simple: we have to tell CreateNewAgents which agent type it should create. In our use case
we want to create another instance of class Human . Therefore, we pass the this pointer.

The only part missing is to tell BioDynaMo how to initialize the attributes of the new child. This decision is
encapsulated in the Initialize function which we override from the base class. Don't forget to also call the
implementation of the base class using Base::Initialize(event) . Otherwise the intialization of the base
class is skipped.

In our example we define that the child should be created next to the mother in 3D space.

In [6]:

This concludes all required building blocks. Let's try it out!

In [7]:

In [8]:

void Human::GiveBirth() {

 ChildBirthEvent event;

 CreateNewAgents(event, {this});

}

void Human::Initialize(const NewAgentEvent& event) {

 Base::Initialize(event);

 auto* mother = bdm_static_cast<Human*>(event.existing_agent);

 SetPosition(mother->GetPosition() + Double3{2, 0, 0});

}

auto* human = new Human();

ctxt->AddAgent(human);

human->GiveBirth();

In [9]:

As expected the simulation consists of two "humans".

Let's take this one step further. Let's assume that class Human was provided in a library that we don't want to
modify. However, we want to add two more attributes:

the number of offsprings
the mitochondiral dna (Note: the mitochondrial dna is inherited solely from the mother)

Let's create a new class called MyHuman which derives from Human and which adds these two attributes.

In [10]:

In [11]:

As in the example above, the Initialize method is used to set the attributes during new agent events. In
this example, we have to set the mitochondrial dna of the child to the value from the mother. The following
function definition does exactly that and prints out the value.

scheduler->Simulate(1);

VisualizeInNotebook();

using MitochondrialDNA = int;

class MyHuman : public Human {

 BDM_AGENT_HEADER(MyHuman, Human, 1);

 public:

 MyHuman() {}

 explicit MyHuman(const Double3& position) : Base(position) {}

 virtual ~MyHuman() {}

 void Initialize(const NewAgentEvent& event) override;

 void Update(const NewAgentEvent& event) override;

 int num_offsprings_ = 0;

 MitochondrialDNA mdna_;

};

In [12]:

The only task left is to update the attributes of the mother. This is done by overriding the Update method.
Again, do not forget to call the implementation of the base class for correctness. We increment the
num_offsprings_ attribute by the number of newly created agents. Although we could just have

incremented the attribute by one, the solution below is generic enough to handle e.g. twin births.

In [13]:

Let's create a new MyHuman , set its mitochondrial dna to 123 and output the current value of
num_offsprings_ , which we expect to be 0 .

In [14]:

Now we can call GiveBirth again. We expect the output of two lines.

The first coming from the child informing us about the initialization of its mdna_ attribute
and the second from the mother telling us about the update of num_offsprings_

In [15]:

To double check, let's output the value of num_offsprings , which we expect to be 1

In [16]:

(int) 0

Initialize child attributes: mitochondrial dna set to 123

Update mother attributes: num_offsprings incremented to 1

(int) 1

void MyHuman::Initialize(const NewAgentEvent& event) {

 Base::Initialize(event);

 auto* mother = bdm_static_cast<MyHuman*>(event.existing_agent);

 mdna_ = mother->mdna_;

 std::cout << "Initialize child attributes: mitochondrial dna set to "

 << mdna_ << std::endl;

}

void MyHuman::Update(const NewAgentEvent& event) {

 Base::Update(event);

 num_offsprings_ += event.new_agents.size();

 std::cout << "Update mother attributes: num_offsprings incremented to "

 << num_offsprings_ << std::endl;

}

auto* my_human = new MyHuman();

my_human->mdna_ = 123;

my_human->num_offsprings_

my_human->GiveBirth();

my_human->num_offsprings_

