
Agent reproduction with behaviors
Author: Lukas Breitwieser
In tutorial ST3-agent-reproduction-mortality we have explored how to add and remove agents from
the simulation. In this tutorial we want to explore different behavior options to control if a new agent gets a
behavior from the original agent, and if a behavior will be removed from the original one.

Let's start by setting up BioDynaMo notebooks.

In [1]:

We define a simple behavior which prints has print behavior .

In [2]:

We define the following experiment which we will run with different options of the print_behavior .
We create a cell, add a copy of the print_behavior , and run all behaviors. We expect that the following
output is created.

mother:

 has print behavior

Afterwards we print a seperator ------- to indicate cell division, divide the mother cell and run the behaviors
of daughter 1 and daughter 2. By definition the original mother cell turns into daugther 1 and the new agent
becomes daughter 2.

In [3]:

Let's run the experiment with default parameters and see what happens.

INFO: Created simulation object 'simulation' with UniqueName='simulati

on'.

%jsroot on

gROOT->LoadMacro("${BDMSYS}/etc/rootlogon.C");

StatelessBehavior print_behavior([](Agent* agent) {

 std::cout << " has print behavior" << std::endl;

});

void Experiment() {

 Simulation sim("my-simulation");

 auto* mother = new Cell();

 mother->AddBehavior(print_behavior.NewCopy());

 std::cout << "mother: " << std::endl;

 mother->RunBehaviors();

 std::cout << "---------------------" << std::endl;

 auto* daughter2 = mother->Divide();

 std::cout << "mother = daughter 1: " << std::endl;

 mother->RunBehaviors(); // mother = daughter 1

 std::cout << "daughter 2: " << std::endl;

 daughter2->RunBehaviors();

}

In [4]:

The print_behavior was not copied to the daughter 2 cell and was not removed from the mother cell.

Let's try to copy the behavior from the mother cell to daughter 2.

In [5]:

Now the print_behavior was copied to the daughter 2 cell and was not removed from the mother cell.

Let's try to remove the behavior from the mother cell.

In [6]:

Now the print_behavior was copied to the daughter 2 cell and was removed from the mother cell.

Let's reset the values to the default.

mother:

 has print behavior

mother = daughter 1:

 has print behavior

daughter 2:

mother:

 has print behavior

mother = daughter 1:

 has print behavior

daughter 2:

 has print behavior

mother:

 has print behavior

mother = daughter 1:

daughter 2:

 has print behavior

Experiment();

print_behavior.AlwaysCopyToNew();

Experiment();

print_behavior.AlwaysCopyToNew();

print_behavior.AlwaysRemoveFromExisting();

Experiment();

In [7]:

Behaviors provide also more fine-grained distinction. Some agents support multiple new agent events
(https://biodynamo.org/docs/userguide/new_agent_event/): neurite branching, neurite bifurcation, side neurite
extension, etc. For each event we can specify if the behavior should be copied to the new, or removed from the
existing agent.

In [8]:

mother:

 has print behavior

mother = daughter 1:

 has print behavior

daughter 2:

mother:

 has print behavior

mother = daughter 1:

daughter 2:

 has print behavior

print_behavior.NeverCopyToNew();

print_behavior.NeverRemoveFromExisting();

Experiment();

print_behavior.CopyToNewIf({CellDivisionEvent::kUid});

print_behavior.RemoveFromExistingIf({CellDivisionEvent::kUid});

Experiment();

https://biodynamo.org/docs/userguide/new_agent_event/

