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dcesa

«  Optimal estimation is only truly optimal if underlying assumptions are met

« Typically, the assumptions are not met, and the retrieval is sub-optimal

« Talk shows how to use reference data to make the retrieval more optimal
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About Optimal-Estimation-(OF) \\\&Q‘\;esa

* A ‘classic’ retrieval theory, effectively applying Bayes’ theorem S o i RN
- Widely applied (clouds, sea ice, aerosol, GHGs, water vapour...) o e
* Applied to SST since 2008 ety acd F i

* Experimentally at OSI-SAF iy i —

© o SST CClTor AVHRRS [
- Why OE is good w“m

«  Well-understood retrievals - R

* Uncertainty and sensitivity o s

 Deals with channel failures etc

« Smooth-atmosphere low noise
 Known limitations (until now)

 Biases

« Covariance matrices
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OE (MAP) formulation for. SST &Q\ifesa

a priori knowledge observation-simulation

\ difference
o

retrieval X a]

RTM
(here: RTTOV)
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OE (MAP) formulation for. SST

error covariance of
prior state

2=1z,+ (K'SZ'K + S71)  KTSZ1(y — F)

Xa

. Z, = [ ]

error covariance of Wq
observations and K oF

simulations

- a_z z; RTM
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5 What does the covariance matrix mean?

It embodies what we know about
e uncertainty
 error correlation

S = O uZ O 'rl’z 1 7"2,3 O uZ O

u, 0 0]'1 11,2 rl,s'[ul 0 0]
O O U3 _7"1’3 7"2,3 1 | O O u3
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A old guesstimate for ebservation-simulation S \\\&;esa

0.11% 0 0 0.15%s2 0 0
Se=1] 0 0.112 0 |+ 0 0.15%s? 0
0 0 0.152 0 0 0.15%s%
\ J |\ }
| |

Estimates of NEDT, origin lost Estimates of RTTOV circa 2003
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Optimality asstmptions

 OE is only actually optimal given certain assumptions
« All error distributions are zero mean (prior, satellite obs, RTM)

« Two error covariance matrices (prior and S-O) are well estimated

« at least to within a common scaling factor

 But in general
 Satellite calibration and RTM are biased
 Prior is biased

« Error covariance matrices are informed guesses

« How to make the assumptions less untrue?
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Determine OE-parameters

Parameters:

B = obs. corr.
Y = prior corr.
Sa
Se
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: Determine OE-parameters

Parameters:

B = obs. corr.
Y = prior corr.
Sa
Se

initialise ) g,y S.
parameter 1
estimation

fix <mmmm converged? S,

|

revise y,S, mmm) optimised OE

for new prior
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Data used

Matches between SEVIRI and drifting

buoy observations

Retrieve SST from 8.7, 10.8 and 12.0 um

2011 for training

«  RTTOV 11.2 simulations using buoy
SST-0.17 K

2012 for application

«  RTTOV 11.2 simulations using SST
climatology

About 90,000 matches in each year
GHRSST QL 5 considered

305
300
295
290
285
280
275
270
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Estimate/biases &\s eéSa

Want parameters for corrections of -
initialise m—— ) B,y Se
< Each channel BT (observation relative to simulation) parameter |

estimation
fix <mmmm converged? S,

* Prior total column water vapour l
« Assume drifting buoy + skin effect provides unbiased SST }

revise y,S, mmm)p optimised OE

for new prior

* With non-zero uncertainty
* Use this SST for RTTOV simulations
* Iterating over many matches, do a simultaneous retrieval

356 Bias Correction Convergence QL = 5

+ the state estimate (SST and TCWV) L=

015 |— 11
— 12

- and these parameters as well o /ﬂ

« Variant of Kalman filtering for state and model parameter _,,|
estimation

—=0.15

-0.20

0 10000 20000 30000 40000 50000
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Estimate’observation error covariance

Use a “Desroziers equation”, increasingly -
. . . . _ _ initialise =) B,y S,
u Sed I n d ata aSSI m I I a_tl 0 n Q. 1. R Meteorol. Soc. (2005), 131, pp. 3385-3396 doi: 10.1256/qj.05.108 oaran l

Diagnosis of observation, background and analysis-error statistics estimation
in observation space

By G. DESROZIERS?, L. BERRE, B. CHAPNIK and P. POLL fix _ conve rged ? Sa

Météo-France, Centre National de Recherches Météorologiques, Toulouse, France
(Received 31 May 2005; revised 31 October 2005)

D 1 I H SUMMARY
O new retrievals using i st ssmiion e ey s cion ey Uk s o s

&
IS
©
how simple consistency diagnostics can be obtained for and estimation S
errors in observation space. Those diagnostics are shown to be nearly Son e e they only combine guanites i S ‘ timised OF S

e sice revise ¥, S, optimise &

available after the analysis, i.e. observed values and their is d
space. A first application of such diagnostics is presented on analyses provided by the French 4D-' Var asumnanon for new prior
8.7 10.8 12.0 )/W A procedure 1o refine backeround and observation-ror variances is also proposed and tested in a simpl toy
a

analysis problem. The possibility to diagnose between ion errors is also i
in this same simple framework. A spectral interpretation of the diagnosed covariances is finally presented, which
allows us to highlight the role of the scale separation between background and observation errors.

KEYWORDS: Estimation theory ~ Optimality criterion  Parameter estimation

1. INTRODUCTION

From the results calculate

O I o ! 2o malism (Lewis and Derber 1985; Courtier and Talagrand 1987, Rabier et al. 2000).

d = y -_ F Z -_ (y -_ F Z ) Such a formalism allows the use of a large spectrum of observations and in particular
r satellite data that are not directly and linearly linked with model variables. However,
those variational algorithms still rely on the theory of least-variance linear statistical

estimation (Talagrand 1997). In the linear estimation theory, each set of information is

d o — F ! F ! given a weight proportional to the inverse of its specified error covariance. The pieces of
a i y - Z a - y - Z a information are classically given by observations and a background estimate of the state

of the atmospheric flow. Analysis systems are then dependent on appropriate statistics

for observation and background errors. Unfortunately those statistics are not perfectly

known and their determination remains a major challenge in assimilation systems.

One source of information on the observation and background errors is contained in

the statistics of the i ions, that is the di between observations and their
background counterparts. Those statistics have for example been used by Hollingsworth
and Lonnberg (1986), ing that back d errors carry lations while

observation errors do not. From a sllghtly different point of view, Dee and da Silva

and use these for better estimate for the i bt e ot

tics. Desroziers and Ivanov (2001) have an approach based on a
criterion of the analysis relying on statistics of observation-minus-analysis differences
H H H H to adapt observation-error statistics. The consistency criterion used in this method was
observation error covariance matrix Is defined by Talagrand (1999). Chapnik e al. (2004) investigated the propertcs of the
algorithm and especially showed that it was equivalent to a maximum likelihood
method, though less expens:ve to u'nplement Chapnik ef al. (2006) also applied the

same algorithm in an op 1o tune observati variances.
This paper presen(s a set of di i hased on inations of observation-
inus-b d (O-B), observati i lysis (O-A) and back 1-mini

analysis (B-A) differences, which provide an additional cons|s!ency check of an
analysis scheme.
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= Estimate/prior-error covariance

Use an expression derived from a “Desroziers equation”

- Do new retrievals using Bs7 Bios BPizo Yw, and S,
* From the results calculate

di = F'(2)— F'(zq) — (F'(z) — F'(z,))
© da=y—F'(z,)—(y —F'(zp)

fix <4mmmm converged? s, £

s
l .
&
s

revise y,S, mmmp optimised OE (&

for new prior

initialise T ) B,y S,
parameter l
estimation $

 and use these to get a better estimate for the prior error covariance matrix is
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= Test for convergence

Use yet another adapted “Desroziers equation” =
initialise T ) B,y Se

g
parameter l S
estimation N
$
3 &
fix <4mmmm converged? s, |8

- Do new retrievals using Bs7 Bios Bi20 Yw, Scand S, l

*  From the results calculate revise 7, S, mmmp optimised O }
¢ d?l =y - F,(Za)_ (y - F,(Za))

Once the whole set of parameters are converged, should have
© (8. + KS,KT)"(d3dS") —1~0

Measure convergence as element-wise sum of squares of LHS

Also check standard deviation of change in retrieved SST change
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e - : : s
New prior biases and tincertainty Q\\»
 Estimate the correction for =
initialise T ) B,y S. N
* Prior SST to be used in the application of the OE parameter. |
« SST CCI climatology fl e S
« 1982 — 2010, cold bias relative to the year 2012 M —— }

« Correction in latitudinal bands
« Estimate the prior SST uncertainty

* Do the above using Kalman-filtering-like method as before
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: Determine OE-parameters

Parameters:

B = obs. corr.
Y = prior corr.
Sa
Se

5 times

-
initialise ) g,y S.

t parameter 1
estimation

fix <mmmm converged? S,

|

revise y,S, mmm) optimised OE

for new prior

1 time

/
\

s Anchored by
. ¢ matched
§ reference data

g
> f Doesn’t use
&  references
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Retrieval

Clim. (prior)
Operational
Untuned OE
Tuned OE

-0.19
0.02
-0.05
0.00

Results for SST retrieval

SD.
diff.
/ K

0.79
0.45
0.44
0.43

0.74
0.39
0.38
0.37

0%
2
71%

79%
/

Retrieval sensitivity — ideally 100%
Scatter / uncertainty estimate — ideally 1
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Uncertainty in Prior TCWV
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Good estimation.of prier SST parameters

« Estimate of prior SST uncertainty from difference to drifters: 0.76 K
« Estimate of same from Desroziers method (independent of drifters): 0.71 K
* Also obtained estimates for prior SST biases/corrections

Prior SST - Buoy -1 x Prior SST correction
08d — Est:matefi .
~——— Buoy - Clim. Prior
¥
0.8 0. : 0.6
0.6 o 7
0.4 0. S
& 044
0.2 0. %
00 v 0 oF
-02 . ;g 0.2 -
-0.4 - 9
-
-0.6 -8
o o 0.0 1
-0.2 T T T T T
-40 =20 0 20 40
Latitude
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Insights’into-noise. & REILOV errors

0.40

« Observation error covariance matrix : o ([ g
parameterized in terms of path (secd) 030 T2- Untume it

-
-
e

------
i =
- —

©
N
wn

i
-

* Given that NEDT is independent of path, infer
that RTTOV simulation uncertainty varies with

S-0 uncertainty / K
© © ©
= - N
o w o

\
1
1
\
1
1
\
\
[
1
1
[l
[
[

- path (greater for longer paths)
« TCWYV (nhear-nadir is also highest TCWV)
« RTTOV 8.7 simulations not as good as other

0.05 A

0.00 “—

1.0
— 8.7-10.8

channels o8 —noer |
* Note contrast in nadir results cf. 11 & 12 T e S il

« RTTOV error correlations are high near the limb : 04
« >=0.5 for all channel pairs -
 Important for retrieval! 001

=0.2 4=




Bias parameters and error covariance parameters are needed for OE

Matches to in situ reference data can inform estimates for these parameters

* Iterative retrieval” of biases and use of “Desroziers” covariance estimates
The “tuned” OE improved the bias, SD, RSD, sensitivity and SST uncertainty
Solid estimates of bias and uncertainty of NWP total column water vapour

* Uncertainty increases with TCWV

* It is half what we previously assumed
Can obtain an estimate of prior SST biases even where there are no in situ
RTTOV simulation uncertainty for SST channels

« varies with channel and TCWV

* Is <0.1 K at nadir and ~0.15 K at —60° (8.7 channel is not this good)
RTTOV simulation errors become strongly correlated (r =0.6) high zenith angle
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Further & Possible work

dcesa

« In SST CCI

Slave Metop A AVHRR to AATSR & SLSTR (harmonization)
OE for 1980s AVHRRs to drifters (in situ patchy)

Switch to ERA-5 (needs a new prior error covariance)
Better constrain Bayesian cloud detection

* Address whole-SST constellation consistency/biases systematically

Exploit metrological in situ (radiometers and new buoys)
Inter-satellite bias correction (Melbourne GHRSST)
« E.g., skin SST of SLSTR as unifying reference
* Or all-pairs approach (consistent parameters for all sensors)
* Note: correct both SST bias and BT bias

« SLSTR A & B nadir-view two-channel wide-swath SST by OE

+ Extend to a more comprehensive state vector

Q. J. R. Meteorol. Soc. (2006), 132, pp. 1205-1223 doi: 10.1256/q.05.143

Retrievals of sea surface temperature from infrared imagery:
origin and form of systematic errors

By C.J. MERCHANT'*, L. A. HORROCKS?, I. R. EYRE® and A. G. O'CARROLL?
!School of GeoSciences, The University of Edinburgh, UK
2Department of Environment Food and Rural Affairs, London, UK
3Met Office, Exeter, UK

(Received 8 July 2005, revised 17 November 2005)

SUMMARY
‘We show that retrievals of sea surface temperature from satellite infrared imagery are prone to two forms
of systematic error: prior eror (familiar from the theory of atmospheric sounding) and error arising from
nonlinearity. These errors have different complex geographical variations, related to the differing geographical
distributions of the main geophysical variables that determine clear-sky brightness-temperatures over the oceans.
‘We show that such errors arise as an intrinsic consequence of the form of the retrieval (rather than as a consequence
of sub-optimally specified retrieval coefficients, as is often assumed) and that the pattern of observed erors
can be simulated in detail using radiative-transfer modelling. The prior error has the linear form familiar from
atmospheric sounding. A quadratic equation for nonlinearity error is derived, and it is verified that the nonlinearity
error exhibits predominantly quadratic behaviour in this case.

KEYWORDS: Advanced Very High i i (AVHRR) Along-track Scanning
(ATSR)

1. SCOPE OF PAPER

Sea surface temperature (SST) has been routinely obtained for over two decades
from broad-band infra-red radiances observed by sensors on satellites. Generally, fol-
lowing the suggestion of McMillin (1975), radi: are exp d as brigh tem-
peratures (BTs) and the SST estimate is a linear (or nearly linear) combination of these:

T=ap+a'y’, 5

where X is the estimated SST, ag is an offset coefficient, a is a column vector of
weighting coefficients and y° contains the observed BTs.

The coefficients in the retrieval equation may be derived by regression of observed
BTs to in situ measurements (e g., McClain et al. 1985; Walton et al. 1998), or by

ion using BTs si d using radi transfer modelling (e.g., Llewellyn-

Jones et al. 1984; Zavody et al. 1995). In nearly linear formulations, the coefficients
are weak functions of a prior or first-guess SST. This retrieval method is convenient and
simple to implement.

Linear retrieval using regression-based coefficients also appears to be conceptually
straightforward. The purpose of 1his paper is to show Lha! this appearance is deceptive.
Linear relneval leads to sy ic errors in SST retrievals that have lex spatial and

In the particular case ill d in this paper, these errors are

known that {SST, TCWV} is limiting
really want at least {SST, WV_EOF1, WV_EOF2, T_EOF1, DD}
but we had no method to estimate S, for such a state vector

« Should be applicable for OE beyond SST

v

generally smaller than 0.3 K. While such errors may in the past have been neglected, our
context is determining SST for climate appllcanons systernauc errors of this magnitude
are significant, and need to be th ghly Such errors are also
unlikely to remain acceptable for numerical weather prediction in the future.

‘We proceed as follows. Firstly, we describe empirically the nature of the systematic
errors found in a particular satellite SST data set, both in observation and in simulation.
A global mean bias is found in the observations, the magnitude of which is readily
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