

European Space Agency

Exploration of Retrieval Approaches For SLSTR

Andy Harris 08/05/2019

Gary Wick, Gary Corlett, Igor Tomazic, J-F Piollé

20th ghrsst science team meeting

3-7 June 2019 | ESA-ESRIN | Frascati (Rome), Italy

SLSTR: climate quality...

- SLSTR continuation of (A)ATSR series
- (A)ATSR instruments
 - Dual-view to provide robust & accurate SST
 - Highly accurate thermal calibration (<0.03 K/decade)
 - Low thermal detector noise due to active cooling

SLSTR: climate quality...

Climate accuracy requirements are very stringent

- Observing system stability < 0.04
 K/decade
 - Calibration drift
 - Retrieval (including cloud screening)
 - Requirements are no longer just global...
 - ...Change, attribution, decadal forecasting...

How to validate product accuracy?

- Typical *in situ* accuracy ~0.2 K (drifting buoy)
 - Results tend to 0.2 K r.m.s. –
 hard to estimate below this
- Radiometers better (more accurate, closer to actual measurement)
 - Lack of coverage/matches
- ARGO array
 - Design accuracy < 0.01 K

ARGO as a validation source

Image credit argo.ucsd.edu

SLSTR: climate quality...

~400 near-surface measurements per day

Usually, pump is shut off ~few metres from **surface...**

'High-resolution'
 floats sample <1 m
 Must account for
 surface effects down
 to ARGO depth

Diurnal Warming Correction - Sample Model Profile of Warming with Depth

Model simulates full vertical profile of warming

- Enables estimation of warming at arbitrary depth
- Model presently run to a depth of 50 m

Time evolution of vertical temperature profile shown here for idealized forcing with a constant wind speed of 3 m/s and a peak insolation of 800 W/m2

Revised depth adjustment

Harris | ESRIN | 06/06/2019 | Slide 7

Matchup distribution

Reprocessed S3A data, Aug 2016 – Apr 2018 (~177,000 matches) After QC checks (7×7 pixel box: Pclr>0.9, QL=5, ±4h) ~15,300 matches

Nighttime N2

Warm bias in tropics Cool aerosol bias

Nighttime N3

Reduced regional differences

Some aerosolrelated bias still evident

Nighttime D2

Fewer matches (narrower swath)

Greatly reduced aerosol-related bias Still some regional biases

Nighttime D3

Issues largely resolved Low noise

Daytime N2

Warm bias in tropics still evident

Less prominent aerosol-related bias

Cloud screening?

Daytime D2

Subtle regional biases still evident Aerosol issue largely managed

Nighttime depth adjustment

Mostly negative (skin effect) Some residual warming

Daytime depth adjustment

Again, mostly negative (skin effect)

Some warming in a few cases

Nightime 2-channel Uncorrected has slight gradient w.r.t. time difference

Nightime 2-channel Adjusted has ~no gradient w.r.t. time difference and close to zero bias

Daytime 2-channel Uncorrected has slight gradient w.r.t. time difference (opposite to nighttime)

Daytime 2-channel Adjusted has ~no gradient and virtually no bias

Dependence on Pclear

Nighttime 3-channel Very slight trend with probability (to be expected)

Dependence on S.D. 7x7

Nighttime 3-channel Some trend w.r.t. S.D. in 7x7 box Suggests residual cloud?

Dependence on S.D. 7x7

Nighttime Dual-3
Virtually no trend w.r.t.
S.D. in 7x7 box

N.B. Residual cloud in oblique view will produce warm bias

Nighttime 2-channel Distinct trend with higher water vapour *N.B.* Increase in scatter with WV is expected due to lower SNR

Daytime 2-channel Again, distinct trend with higher water vapour

Fewer matches, less slant-path WV N.B. Using WCT QL

Nighttime 3-channel Some trend with WV N.B. Improved noise and linearity due to inclusion of 3.7 µm channel

Nighttime Dual-2

Some structure due to WV (warmer at high values)

Note reduced range of slant-path WV

Nighttime Dual-3
About 0.2 K trend from low to high WV

Some checks using direct regression

Brightness temperatures have been added to the reprocessed MDB

Opportunity to evaluate linearity characteristics

Use OSI-SAF style regression form

$$SST = (a_0 + b_0.S) + \sum T_i(a_i + b_i.S)$$

$$S = sec(SZA) - 1$$

Needed because S varies "continuously" in the matchup data

Direct regression vs slant-path WV

"Simple" split-window has curvature

N.B. The SLSTR algorithm is WV-dependent to flatten this out

Nighttime 2-channel ...but seems to overdo it Note improved scatter at low-mid WV cf. "simple" regression, but -ve bias

Direct regression vs slant-path WV

Nighttime 3-channel 3-channel regression shows ~no trend w.r.t. WV

Nighttime 3-channel 3-channel regression shows ~no trend w.r.t. WV cf. production (~0.2 K gradient)

Direct regression vs slant-path WV

Nighttime Dual-2
Slight curvature in direct regression algorithm

Likely due to complexities of dualview (RTM algorithms can be developed specifically)

Direct regression vs slant-path WV

Nighttime Dual-3
Virtually flat w.r.t. WV

N.B. Dual-3
coefficients are
generally smaller in
magnitude than Dual-2

Nighttime Dual-3 Virtually flat w.r.t. WV N.B. Dual-3 coefficients are generally smaller in magnitude than Dual-2 Again, production has ~0.2 K gradient

Physical retrieval methods

Principle

- Calculate top-of-atmosphere
 brightness temperatures from "initial guess" (a.k.a. prior) information
- Difference between modeled and observed brightness temperature is "measurement" $\Delta y = K\Delta x$
- So, we know Δy and want Δx
- N.B. x = (e.g.) [SST, TCWV]
- K is matrix of partial derivatives of channel BTs w.r.t. components of x

Least Squares

$$\Delta \mathbf{x} = (\mathbf{K}^{\mathrm{T}}\mathbf{K})^{-1}\mathbf{K}^{\mathrm{T}}\Delta \mathbf{y} \ [= \mathbf{G}\Delta \mathbf{y}]$$

Optimal Estimation

$$\mathbf{G} = (\mathbf{K}^{\mathsf{T}} \mathbf{S}_{\mathbf{e}}^{-1} \mathbf{K} + \mathbf{S}_{\mathbf{a}}^{-1})^{-1} \mathbf{K}^{\mathsf{T}} \mathbf{S}_{\mathbf{e}}^{-1}$$

Modified Total Least Squares

$$\mathbf{G} = (\mathbf{K}^{\mathrm{T}}\mathbf{K} + \lambda \mathbf{I})^{-1}\mathbf{K}^{\mathrm{T}}$$

$$\lambda = (2 \log(\kappa) / ||\Delta y||) \sigma_{\text{end}}^2$$

 $\sigma_{\rm end}$ = lowest singular value of $[{f K} \, \Delta {f y}]$

Physical retrieval methods

Revised version of MTLS

- I-matrix applies regularization evenly across retrieval space (SST & TCWV)
- Fletcher (1971) proposed modification to Levenberg-Marquardt - replace I with

$$R = diag\{K^TK\}$$

• Also normalize to preserve λ (*i.e.* sum to 2 in the case of 2-element retrieval)

Other considerations

- RTTOV simulations do not include aerosol
- Note that the RTM is already being used in the Bayesian cloud detection
- N.B. Only using single-pixel information at this very preliminary stage
- Showing the Dual-3 results (i.e. 6 channels in retrieval)

RTTOV output

- Observed vs RTTOV modelled output looks "good"
- N.B. Physical retrieval algorithms function on Δy , so need to check for trends in this

Simple bias correction w.r.t. WV

European Space Agency

Jacobian behaviour

- SST jacobian shows how useful the 3.7 µm channel is
- N.B. Units of WV jacobian are K.kg⁻¹

Dual-3 results: LSQ & OE

- LSQ performs quite well, although slight curve & warm bias
- OE has slightly reduced error & bias

Dual-3 results: MTLS & MTLS2

- MTLS has curvature & increased scatter
- · Revised version with Fletcher regularization shape is better

Optimized'

$$[S_e], S_a =$$

 σ^2 is an overestimate... ... or an underestimate

Perform experiment – insert "true" SST error into S_a^{-1} Can only be done when truth is known, e.g. with matchup data

Dual-3 results: OE2 cf. OE

- "Optimized" OE shows notably reduced scatter and is virtually flat
- Improved accuracy is great, but what about sensitivity?

Error vs. Sensitivity

Substantial range in Sensitivities

- OE has highest sensitivity by far (except LSQ) but some trend
- MTLS & MTLS2 may have very low sensitivity
- Most accurate result (OE2)
 has lowest sensitivity
- Note general trend of <u>less</u> <u>error with lower sensitivity</u>

Summary: Operational SLSTR SSTs

Argo is a powerful validation source for assessing "climate quality"

- Critical to apply <u>diurnal and skin</u> <u>adjustments</u>
- Requires full 1-d model to allow correction to specific depth and also subsequent temporal adjustment at depth

Biases < 0.1 K, S.D. < 0.3 K (dual-3)

Impressive for independent RTM-based algorithms

Some issues remain

- Although Nadir-2 algorithm is least accurate, there are residual biases
- These are probably due to RTM and affect other algorithms
 - Flagging N2 above 35 kg.m⁻² does not address the problem

Summary: Physical retrieval

RTM BTs + Jacobians needed for physical retrieval

- Biases w.r.t. WV in all channels
- "Simple" bias correction allows some tests to be performed
- More sophisticated bias correction may help, but better to fix at source

N.B. Fast RTM generally introduces "noise"

 "Better" fast RTM (OSS, PC-RTM) may help

Could also use IASI matches

However, need to cover high WV regions

Summary: Physical retrieval

Physical retrieval results show promise

- LSQ works quite well
- OE works well "out-of-the-box"
- MTLS may not be configured correctly
- Fletcher regularization shape shows benefit
- "Optimized" OE shows notably better results, but illustrates issue with sensitivity

Many more things to try, e.g.

- Extended OE (can be applied to MTLS & LSQ as well)
- MTLS configuration needs to be examined more closely
- Aerosol information should be incorporated into RTM and retrieval, as it is a factor (and reason for dual-view)
- N.B. Bayesian cloud detection means validation dataset well-matched for OE

