

Use of Copernicus Imaging Microwave Radiometer (CIMR) in the Baltic Sea

Jacob Høyer, Mads Hvid Ribergaard and Emy Alerskans
Danish Meteorological Institute

Aim and Outline

Identify challenges in the current satellite observing system and assess impact of the CIMR mission on the operational Copernicus CMEMS SST product in the Baltic Sea

Outline

- CIMR Intro + characteristics
- Challenges with existing satellite constellation
- Experiment setup
- Impact on CMEMS SST product
- Conclusions

Copernicus Imaging Microwave Radiometer (CIMR)

- CIMR Respond's directly to the *Integrated EU Arctic Policy*
- Evolve the Copernicus monitoring program through:
 - CIMR: Copernicus High Priority Candidate Missions,
- Conically scanning multi-frequency microwave radiometer in a coordinated flight with MetOp-SG(1B)
- ~95% global coverage every day, mean 6 hourly-revisit in Arctic Areas, 06:00 dawn dusk orbit, no "hole at the pole"
- In Phase B1, Launch: 2026+

CIMR observation characteristics

- Two primary parameters
- Sea Ice Concentration (≤5 km, 5%)
- SST (15 km, <0.3 K)
- Many secondary:
- Sea Surface Salinity
- Extreme Wind
- Soil Moisture
- Thin Sea Ice Thickness
- Terrestrial Snow extent

Copernicus CMEMS product

The operational CMEMS Level 4 SST product:

- Processing chain used for
 - Operational daily L4 SSTs (Høyer et al., 2014)
 - Reprocessed product 1982-present (Høyer and Karagali, 2016; OSR, JOO 2018)
- include SST from several IR sensors
- Sea ice from CMEMS SI TAC (FMI)
- One-year analysis: Feb 2017-Feb 2018
- Focus here on Baltic Sea

http://marine.copernicus.eu/

Challenges with IR data

5 days averages of Baltic Sea CMEMS coverage from 4 IR sensors(Viirs, SEVIRI (hourly), Metop-A, NOAA 19)

- Large seasonal variation
- ~20 % coverage in winter (Jan-Feb)

Geographical coverage

Day with no observations

- 50-60% missing in Danish straits
- 35-50 % missing in Baltic Sea.

Challenges with IR SST data

AMSR2 is not the solution

PMW Sea ice

Experiment setup

- One year of experiment (Feb 2017-Feb 2018)
- Reference run: Operational data set
- Test run: Included CIMR simulated data
- Impact: difference between two runs

Simulated CIMR observations

- CIMR simulated data:
 - Rain filter using DMI NWP (2 mm/hour)
 - SST from DMI hydrodynamic model (CMEMS BALMFC)
 - 15 km land and ice mask
 - Spatial resolution: 15 km
 - SST uncertainty: 0.3 °C
 - Two passes a day: 6 and 18
- CIMR + IR data ingested in processing, assessing the L4 uncertainty

HBM ocean model

Impact of CIMR obs

Impact of CIMR obs

- Improvements throughout the year
- Largest improvement in winter
 - Related to low IR coverage
 - Important for extreme weather events

Region	Improvements
Danish waters	15 %
Eastern Baltic Sea	18 %
Danish waters+Baltic Sea	17 %

0.9	Baltic — Ref — CIMR	
0.8	——Ref-CIM	IK
0.7	Λ Λ Λ Λ Λ Λ Λ Λ Λ	
0.6 o.5 o.5		V
0.5 0 0.4		\checkmark
LSS 0.4		
0.2		
0.1		V
0		%
	Abr 17 Abr 17 Aun 17 Jul 17 Jul 17 Sep 17	,
	Time	

CIMR in Arctic

Similar issues in the Arctic

Metop AVHRR

Conclusions

15

- Infrared satellite observations of SST have limitations in the Baltic Sea region
- Not feasible to use current Microwave products
- CIMR SST observations have large potential
- Simulated CIMR SST observations show significant improvements
 - 17 % overall improvement in uncertainty (>25 for Danish Straits + Gulf of Finland)
 - Largest impact during winter
- CIMR will facilitate the use of PMW SSTs for coastal and shelf seas.
- Important for the future improvement in Copernicus CMEMS satellite products