Determining the AMSR-E SST Footprint from Co-Located MODIS SSTs

Brahim Boussidi¹, <u>Peter Cornillon¹</u>, Gavino Puggioni² and Chelle Gentemann³

¹Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
² Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI 02881, USA
³Earth and Space Research, Seattle, WA 98121, USA

June 3, 2019

Acknowledgments

Funding:

- NASA Physical Oceanography Program (Grant #NNX16Al24G),
- NOPP (80NSSC18K0837) and
- Partial salary support for P. Cornillon from the .

Acknowledgments

- Funding:
 - NASA Physical Oceanography Program (Grant #NNX16Al24G),
 - NOPP (80NSSC18K0837) and
 - Partial salary support for P. Cornillon from the State of Rhode Island and Providence Plantations.

Acknowledgments

- Funding:
 - NASA Physical Oceanography Program (Grant #NNX16Al24G),
 - NOPP (80NSSC18K0837) and
 - Partial salary support for P. Cornillon from the State of Rhode Island and Providence Plantations.

Outline

Motivation

2 The AMSR-E Footprint

3 Results

5 Conclusions

- A microwave sensor, AMSR-E, carried on the Aqua spacecraft sampled the global ocean twice daily from 2002 through 2011.
- Sea surface temperature (SST) is estimated from the AMSR-E measurements.
- The putative SST footprint was 56 × 56 km² sampled every 10 km; i.e, oversampled

- A microwave sensor, AMSR-E, carried on the Aqua spacecraft sampled the global ocean twice daily from 2002 through 2011.
- Sea surface temperature (SST) is estimated from the AMSR-E measurements.
- The putative SST footprint was 56 × 56 km² sampled every 10 km; i.e, oversampled

- A microwave sensor, *AMSR-E*, carried on the *Aqua* spacecraft sampled the global ocean twice daily from 2002 through 2011.
- Sea surface temperature (SST) is estimated from the AMSR-E measurements.
- The putative SST footprint was $56 \times 56 \,\mathrm{km^2}$ sampled every 10 km; i.e, oversampled

- A microwave sensor, *AMSR-E*, carried on the *Aqua* spacecraft sampled the global ocean twice daily from 2002 through 2011.
- Sea surface temperature (SST) is estimated from the AMSR-E measurements.
- The putative SST footprint was $56 \times 56 \,\mathrm{km^2}$ sampled every 10 km; i.e, oversampled

AMSR-E Sea Surface Temperature Footprint 56 x 56 km

- A microwave sensor, *AMSR-E*, carried on the *Aqua* spacecraft sampled the global ocean twice daily from 2002 through 2011.
- Sea surface temperature (SST) is estimated from the AMSR-E measurements.
- The putative SST footprint was $56 \times 56 \,\mathrm{km^2}$ sampled every 10 km; i.e, oversampled

AMSR-E Sea Surface Temperature Footprint 56 x 56 km

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- A microwave sensor, *AMSR-E*, carried on the *Aqua* spacecraft sampled the global ocean twice daily from 2002 through 2011.
- Sea surface temperature (SST) is estimated from the AMSR-E measurements.
- The putative SST footprint was $56 \times 56 \,\mathrm{km^2}$ sampled every 10 km; i.e, oversampled

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

11/107

AMSR-E Sea Surface Temperature Footprint 56 x 56 km

- A microwave sensor, *AMSR-E*, carried on the *Aqua* spacecraft sampled the global ocean twice daily from 2002 through 2011.
- Sea surface temperature (SST) is estimated from the AMSR-E measurements.
- The putative SST footprint was $56 \times 56 \,\mathrm{km^2}$ sampled every 10 km; i.e, oversampled

AMSR-E Sea Surface Temperature Footprint 56 x 56 km

- A microwave sensor, *AMSR-E*, carried on the *Aqua* spacecraft sampled the global ocean twice daily from 2002 through 2011.
- Sea surface temperature (SST) is estimated from the AMSR-E measurements.
- The putative SST footprint was 56 × 56 km² sampled every 10 km; i.e, oversampled

- A microwave sensor, *AMSR-E*, carried on the *Aqua* spacecraft sampled the global ocean twice daily from 2002 through 2011.
- Sea surface temperature (SST) is estimated from the AMSR-E measurements.
- The putative SST footprint was 56 × 56 km² sampled every 10 km; i.e, oversampled

Our objective was to deconvolve the AMSR-E field to obtain a true 10x10 km resolution SST field

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- A straight deconvolution requires some seed values.
- We have coincident $1 \times 1 \text{ km}^2$ MODIS SSTs in cloud-free areas.
- So we used MODIS to seed the deconvolution
 - We selected a region with a large fraction of clear MODIS pixels
 - Averaged the pixels to the 10 × 10 km AMSR-E grid.
 - And inverted.
 - It didn't work so well! The resulting field was dominated by noise.
- We quickly determined there were two problems:
 - The solution was very sensitive to noise.
 - The putative AMSR-E footprint of 56 × 56 km was not correct.

・ロット (雪) (日) (日)

- It was clear that we needed to:
 - Determine the AMSR-E footprint
 - Characterize the noise in the AMSR-E field.

- A straight deconvolution requires some seed values.
- $\bullet\,$ We have coincident 1 \times 1 $\rm km^2$ MODIS SSTs in cloud-free areas.
- So we used MODIS to seed the deconvolution
 - We selected a region with a large fraction of clear MODIS pixels
 - Averaged the pixels to the 10 × 10 km AMSR-E grid.
 - And inverted.
 - It didn't work so well! The resulting field was dominated by noise.
- We quickly determined there were two problems:
 - The solution was very sensitive to noise.
 - The putative AMSR-E footprint of 56 × 56 km was not correct.

・ ロ ト ・ 雪 ト ・ 目 ト ・

- It was clear that we needed to:
 - Determine the AMSR-E footprint
 - Characterize the noise in the AMSR-E field.

- A straight deconvolution requires some seed values.
- $\bullet\,$ We have coincident 1 \times 1 $\rm km^2$ MODIS SSTs in cloud-free areas.
- So we used MODIS to seed the deconvolution
 - We selected a region with a large fraction of clear MODIS pixels
 - Averaged the pixels to the 10 \times 10 km AMSR-E grid.
 - And inverted.
 - It didn't work so well! The resulting field was dominated by noise.
- We quickly determined there were two problems:
 - The solution was very sensitive to noise.
 - The putative AMSR-E footprint of 56 × 56 km was not correct.

イロト 不得 トイヨト イヨト 三日

- It was clear that we needed to:
 - Determine the AMSR-E footprint
 - Characterize the noise in the AMSR-E field.

- A straight deconvolution requires some seed values.
- We have coincident 1 \times 1 $\rm km^2$ MODIS SSTs in cloud-free areas.
- So we used MODIS to seed the deconvolution
 - We selected a region with a large fraction of clear MODIS pixels
 - Averaged the pixels to the 10 × 10 km AMSR-E grid.
 - And inverted.
 - It didn't work so well! The resulting field was dominated by noise.
- We quickly determined there were two problems:
 - The solution was very sensitive to noise.
 - The putative AMSR-E footprint of 56 × 56 km was not correct.

イロト 不得 トイヨト イヨト 三日

- It was clear that we needed to:
 - Determine the AMSR-E footprint
 - Characterize the noise in the AMSR-E field.

- A straight deconvolution requires some seed values.
- We have coincident 1 \times 1 $\rm km^2$ MODIS SSTs in cloud-free areas.
- So we used MODIS to seed the deconvolution
 - We selected a region with a large fraction of clear MODIS pixels
 - Averaged the pixels to the 10 \times 10 km AMSR-E grid.
 - And inverted.
 - It didn't work so well! The resulting field was dominated by noise.
- We quickly determined there were two problems:
 - The solution was very sensitive to noise.
 - The putative AMSR-E footprint of 56 × 56 km was not correct.

イロト 不得 トイヨト イヨト 三日

- It was clear that we needed to:
 - Determine the AMSR-E footprint
 - Characterize the noise in the AMSR-E field.

- A straight deconvolution requires some seed values.
- We have coincident 1 \times 1 $\rm km^2$ MODIS SSTs in cloud-free areas.
- So we used MODIS to seed the deconvolution
 - We selected a region with a large fraction of clear MODIS pixels
 - Averaged the pixels to the 10 \times 10 km AMSR-E grid.
 - And inverted.
 - It didn't work so well! The resulting field was dominated by noise.
- We quickly determined there were two problems:
 - The solution was very sensitive to noise.
 - The putative AMSR-E footprint of 56 × 56 km was not correct.

- 日本 - 4 日本 - 4 日本 - 日本

- It was clear that we needed to:
 - Determine the AMSR-E footprint
 - Characterize the noise in the AMSR-E field.

- A straight deconvolution requires some seed values.
- We have coincident 1 \times 1 $\rm km^2$ MODIS SSTs in cloud-free areas.
- So we used MODIS to seed the deconvolution
 - We selected a region with a large fraction of clear MODIS pixels
 - Averaged the pixels to the 10 \times 10 km AMSR-E grid.
 - And inverted.
 - It didn't work so well! The resulting field was dominated by noise.
- We quickly determined there were two problems:
 - The solution was very sensitive to noise.
 - The putative AMSR-E footprint of 56 × 56 km was not correct.

- 日本 - 4 日本 - 4 日本 - 日本

- It was clear that we needed to:
 - Determine the AMSR-E footprint
 - Characterize the noise in the AMSR-E field.

- A straight deconvolution requires some seed values.
- We have coincident 1 \times 1 $\rm km^2$ MODIS SSTs in cloud-free areas.
- So we used MODIS to seed the deconvolution
 - We selected a region with a large fraction of clear MODIS pixels
 - Averaged the pixels to the 10 × 10 km AMSR-E grid.
 - And inverted.
 - It didn't work so well! The resulting field was dominated by noise.
- We quickly determined there were two problems:
 - The solution was very sensitive to noise.
 - The putative AMSR-E footprint of 56 × 56 km was not correct.

・ロン ・ 母 と ・ ヨ と ・ ヨ ・

- It was clear that we needed to:
 - Determine the AMSR-E footprint
 - Characterize the noise in the AMSR-E field.

- A straight deconvolution requires some seed values.
- We have coincident 1 \times 1 $\rm km^2$ MODIS SSTs in cloud-free areas.
- So we used MODIS to seed the deconvolution
 - We selected a region with a large fraction of clear MODIS pixels
 - Averaged the pixels to the 10 × 10 km AMSR-E grid.
 - And inverted.
 - It didn't work so well! The resulting field was dominated by noise.
- We quickly determined there were two problems:
 - The solution was very sensitive to noise.
 - The putative AMSR-E footprint of 56 × 56 km was not correct.
- It was clear that we needed to:
 - Determine the AMSR-E footprint
 - Characterize the noise in the AMSR-E field.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

- A straight deconvolution requires some seed values.
- We have coincident 1 \times 1 $\rm km^2$ MODIS SSTs in cloud-free areas.
- So we used MODIS to seed the deconvolution
 - We selected a region with a large fraction of clear MODIS pixels
 - Averaged the pixels to the 10 × 10 km AMSR-E grid.
 - And inverted.
 - It didn't work so well! The resulting field was dominated by noise.
- We quickly determined there were two problems:
 - The solution was very sensitive to noise.
 - The putative AMSR-E footprint of 56 × 56 km was not correct.
- It was clear that we needed to:
 - Determine the AMSR-E footprint
 - Characterize the noise in the AMSR-E field.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

- A straight deconvolution requires some seed values.
- We have coincident 1 \times 1 $\rm km^2$ MODIS SSTs in cloud-free areas.
- So we used MODIS to seed the deconvolution
 - We selected a region with a large fraction of clear MODIS pixels
 - Averaged the pixels to the 10 × 10 km AMSR-E grid.
 - And inverted.
 - It didn't work so well! The resulting field was dominated by noise.
- We quickly determined there were two problems:
 - The solution was very sensitive to noise.
 - The putative AMSR-E footprint of 56 × 56 km was not correct.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

- It was clear that we needed to:
 - Determine the AMSR-E footprint
 - Characterize the noise in the AMSR-E field.

- A straight deconvolution requires some seed values.
- We have coincident 1 \times 1 $\rm km^2$ MODIS SSTs in cloud-free areas.
- So we used MODIS to seed the deconvolution
 - We selected a region with a large fraction of clear MODIS pixels
 - Averaged the pixels to the 10 × 10 km AMSR-E grid.
 - And inverted.
 - It didn't work so well! The resulting field was dominated by noise.
- We quickly determined there were two problems:
 - The solution was very sensitive to noise.
 - The putative AMSR-E footprint of 56 × 56 km was not correct.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

- It was clear that we needed to:
 - Determine the AMSR-E footprint
 - Characterize the noise in the AMSR-E field.

- A straight deconvolution requires some seed values.
- We have coincident 1 \times 1 $\rm km^2$ MODIS SSTs in cloud-free areas.
- So we used MODIS to seed the deconvolution
 - We selected a region with a large fraction of clear MODIS pixels
 - Averaged the pixels to the 10 × 10 km AMSR-E grid.
 - And inverted.
 - It didn't work so well! The resulting field was dominated by noise.
- We quickly determined there were two problems:
 - The solution was very sensitive to noise.
 - The putative AMSR-E footprint of 56 × 56 km was not correct.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

- It was clear that we needed to:
 - Determine the AMSR-E footprint
 - Characterize the noise in the AMSR-E field.

Outline

Motivation

2 The AMSR-E Footprint

3 Results

Deconvolution

Conclusions

The Idea is ...

to use the high-resolution MODIS SST fields with the AMSR-E fields to determine the AMSR-E footprint.

But first some more background.

The Idea is ...

to use the high-resolution MODIS SST fields with the AMSR-E fields to determine the AMSR-E footprint.

But first some more background.

Scanning Geometry – AMSR-E was a Conical Scanner

Scanning Geometry – AMSR-E was a Conical Scanner

Scanning Geometry – AMSR-E was a Conical Scanner

Motivation Footprint Results Deconvolution Conclusions

Determining the AMSR-E Footprint

• Build the AMSR-E - MODIS matchups dataset.

- Nighttime L2 AMSR-E SST pixel,
- A 101 × 125 MODIS L2 SST pixel region.
 - centered on the AMSR-E pixel,
 - with the 125 element dimension is parallel to the nadir track.
 - with at least 90% of the MODIS pixels classified as clear.
- We averaged the MODIS pixels into 4x4 pixel non-overlapping squares.
- This resulted in a total of 775 (25×31) MODIS SST measurements/matchup
- \approx 4,000,000 globally distributed AMSR-E MODIS matchups.

9/40

ヘロト 人間 とくほとく ほとう

Motivation Footprint Results Deconvolution Conclusions

Determining the AMSR-E Footprint

• Build the AMSR-E - MODIS matchups dataset.

- Nighttime L2 AMSR-E SST pixel,
- $\bullet~$ A 101 \times 125 MODIS L2 SST pixel region.
 - centered on the AMSR-E pixel,
 - with the 125 element dimension is parallel to the nadir track.
 - with at least 90% of the MODIS pixels classified as clear.
- We averaged the MODIS pixels into 4x4 pixel non-overlapping squares.
- This resulted in a total of 775 (25×31) MODIS SST measurements/matchup
- \approx 4,000,000 globally distributed AMSR-E MODIS matchups.

Determining the AMSR-E Footprint

• Build the AMSR-E - MODIS matchups dataset.

• Nighttime L2 AMSR-E SST pixel,

• A 101 imes 125 MODIS L2 SST pixel region.

- centered on the AMSR-E pixel,
- with the 125 element dimension is parallel to the nadir track.
- with at least 90% of the MODIS pixels classified as clear.
- We averaged the MODIS pixels into 4x4 pixel non-overlapping squares.
- This resulted in a total of 775 (25×31) MODIS SST measurements/matchup
- \approx 4,000,000 globally distributed AMSR-E MODIS matchups.

• Build the AMSR-E - MODIS matchups dataset.

- Nighttime L2 AMSR-E SST pixel,
- A 101 \times 125 MODIS L2 SST pixel region.
 - centered on the AMSR-E pixel,
 - with the 125 element dimension is parallel to the nadir track.
 - with at least 90% of the MODIS pixels classified as clear.
- We averaged the MODIS pixels into 4x4 pixel non-overlapping squares.
- This resulted in a total of 775 (25×31) MODIS SST measurements/matchup
- \approx 4,000,000 globally distributed AMSR-E MODIS matchups.

- Build the AMSR-E MODIS matchups dataset.
 - Nighttime L2 AMSR-E SST pixel,
 - A 101 \times 125 MODIS L2 SST pixel region.
 - centered on the AMSR-E pixel,
 - with the 125 element dimension is parallel to the nadir track.
 - with at least 90% of the MODIS pixels classified as clear.
 - We averaged the MODIS pixels into 4x4 pixel non-overlapping squares.
 - This resulted in a total of 775 (25×31) MODIS SST measurements/matchup
- \approx 4,000,000 globally distributed AMSR-E MODIS matchups.

- Build the AMSR-E MODIS matchups dataset.
 - Nighttime L2 AMSR-E SST pixel,
 - A 101 \times 125 MODIS L2 SST pixel region.
 - centered on the AMSR-E pixel,
 - with the 125 element dimension is parallel to the nadir track.
 - with at least 90% of the MODIS pixels classified as clear.
 - We averaged the MODIS pixels into 4x4 pixel non-overlapping squares.
 - This resulted in a total of 775 (25×31) MODIS SST measurements/matchup
- \approx 4,000,000 globally distributed AMSR-E MODIS matchups.

- Build the AMSR-E MODIS matchups dataset.
 - Nighttime L2 AMSR-E SST pixel,
 - A 101 \times 125 MODIS L2 SST pixel region.
 - centered on the AMSR-E pixel,
 - with the 125 element dimension is parallel to the nadir track.
 - with at least 90% of the MODIS pixels classified as clear.
 - We averaged the MODIS pixels into 4x4 pixel non-overlapping squares.
 - This resulted in a total of 775 (25×31) MODIS SST measurements/matchup
- \approx 4,000,000 globally distributed AMSR-E MODIS matchups.

- Build the AMSR-E MODIS matchups dataset.
 - Nighttime L2 AMSR-E SST pixel,
 - A 101 \times 125 MODIS L2 SST pixel region.
 - centered on the AMSR-E pixel,
 - with the 125 element dimension is parallel to the nadir track.
 - with at least 90% of the MODIS pixels classified as clear.
 - We averaged the MODIS pixels into 4x4 pixel non-overlapping squares.
 - This resulted in a total of 775 (25×31) MODIS SST measurements/matchup

• ≈4,000,000 globally distributed AMSR-E – MODIS matchups.

- Build the AMSR-E MODIS matchups dataset.
 - Nighttime L2 AMSR-E SST pixel,
 - A 101 × 125 MODIS L2 SST pixel region.
 - centered on the AMSR-E pixel,
 - with the 125 element dimension is parallel to the nadir track.
 - with at least 90% of the MODIS pixels classified as clear.
 - We averaged the MODIS pixels into 4x4 pixel non-overlapping squares.
 - This resulted in a total of 775 (25×31) MODIS SST measurements/matchup
- ≈4,000,000 globally distributed AMSR-E MODIS matchups.

• So the problem we want to solve is:

$$\begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ \vdots \\ a_{N-1} \\ a_{N} \end{pmatrix}_{A} = \begin{pmatrix} m_{1}^{1} & m_{2}^{1} & m_{3}^{1} & \cdots & m_{775}^{1} \\ m_{1}^{2} & m_{2}^{2} & m_{3}^{2} & \cdots & m_{775}^{2} \\ m_{1}^{3} & m_{2}^{3} & m_{3}^{3} & \cdots & m_{775}^{3} \\ m_{1}^{4} & m_{2}^{4} & m_{3}^{4} & \cdots & m_{775}^{4} \\ & & & \vdots \\ m_{1}^{N-1} & m_{2}^{N-1} & m_{3}^{N-1} & \cdots & m_{775}^{N-1} \\ m_{1}^{N} & m_{2}^{N} & m_{3}^{N} & \cdots & m_{775}^{N} \end{pmatrix}_{M} \begin{pmatrix} h_{1} \\ h_{2} \\ h_{3} \\ \vdots \\ h_{775} \end{pmatrix}_{H} + \begin{pmatrix} \epsilon_{1} \\ \epsilon_{2} \\ \epsilon_{3} \\ \epsilon_{4} \\ \vdots \\ \epsilon_{N-1} \\ \epsilon_{N} \end{pmatrix}_{e}$$

<ロ> <問> <問> < 回> < 回 > < 回 > < 回 > = 回

43/107

• Or more compactly: $A_{N\times 1} = M_{775\times N}H_{775\times 1} + \epsilon_{N\times 1}$

where A are the AMSR-E values,

M the MODIS values, *H* the AMSR-E footprint vector containing the weighting elements ar ϵ noise in the data.

- This is simply a regression relation between A and M.
- We want to determine the form of H, which minimizes

arg min $||A_{N\times 1} - M_{775\times N}H_{775\times 1}||^2$

• So the problem we want to solve is:

$$\begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ \vdots \\ a_{N-1} \\ a_{N} \end{pmatrix}_{A} = \begin{pmatrix} m_{1}^{1} & m_{2}^{1} & m_{3}^{1} & \cdots & m_{775}^{1} \\ m_{1}^{2} & m_{2}^{2} & m_{3}^{2} & \cdots & m_{775}^{2} \\ m_{1}^{3} & m_{2}^{3} & m_{3}^{3} & \cdots & m_{775}^{3} \\ m_{1}^{4} & m_{2}^{4} & m_{3}^{4} & \cdots & m_{775}^{4} \\ & & & \vdots \\ m_{1}^{N-1} & m_{2}^{N-1} & m_{3}^{N-1} & \cdots & m_{775}^{N-1} \\ m_{1}^{N} & m_{2}^{N} & m_{3}^{N} & \cdots & m_{775}^{N} \end{pmatrix}_{M} \begin{pmatrix} h_{1} \\ h_{2} \\ h_{3} \\ \vdots \\ h_{775} \end{pmatrix}_{H} + \begin{pmatrix} \epsilon_{1} \\ \epsilon_{2} \\ \epsilon_{3} \\ \epsilon_{4} \\ \vdots \\ \epsilon_{N-1} \\ \epsilon_{N} \end{pmatrix}_{e}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

44/107

• Or more compactly: $A_{N\times 1} = M_{775\times N}H_{775\times 1} + \epsilon_{N\times 1}$

where A are the AMSR-E values,

M the MODIS values, *H* the AMSR-E footprint vector containing the weighting elements and ϵ noise in the data.

- This is simply a regression relation between A and M.
- We want to determine the form of H, which minimizes

 $\arg\min_{H} \|A_{N\times 1} - M_{775\times N}H_{775\times 1}\|^2$

• So the problem we want to solve is:

$$\begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ \vdots \\ a_{N-1} \\ a_{N} \end{pmatrix}_{A} = \begin{pmatrix} m_{1}^{1} & m_{2}^{1} & m_{3}^{1} & \cdots & m_{775}^{1} \\ m_{1}^{2} & m_{2}^{2} & m_{3}^{2} & \cdots & m_{775}^{2} \\ m_{1}^{3} & m_{2}^{3} & m_{3}^{3} & \cdots & m_{775}^{3} \\ m_{1}^{4} & m_{2}^{4} & m_{3}^{4} & \cdots & m_{775}^{4} \\ & & & \vdots \\ m_{1}^{N-1} & m_{2}^{N-1} & m_{3}^{N-1} & \cdots & m_{775}^{N-1} \\ m_{1}^{N} & m_{2}^{N} & m_{3}^{N} & \cdots & m_{775}^{N} \end{pmatrix}_{M} \begin{pmatrix} h_{1} \\ h_{2} \\ h_{3} \\ \vdots \\ h_{775} \end{pmatrix}_{H} + \begin{pmatrix} \epsilon_{1} \\ \epsilon_{2} \\ \epsilon_{3} \\ \epsilon_{4} \\ \vdots \\ \epsilon_{N-1} \\ \epsilon_{N} \end{pmatrix}_{e}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

45/107

• Or more compactly: $A_{N\times 1} = M_{775\times N}H_{775\times 1} + \epsilon_{N\times 1}$

where A are the AMSR-E values,

M the MODIS values, *H* the AMSR-E footprint vector containing the weighting elements and ϵ noise in the data.

• This is simply a regression relation between A and M.

We want to determine the form of H, which minimizes

 $\arg \min_{H} ||A_{N\times 1} - M_{775\times N}H_{775\times 1}||^2$

• So the problem we want to solve is:

$$\begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ \vdots \\ a_{N-1} \\ a_{N} \end{pmatrix}_{A} = \begin{pmatrix} m_{1}^{1} & m_{2}^{1} & m_{3}^{1} & \cdots & m_{775}^{1} \\ m_{1}^{2} & m_{2}^{2} & m_{3}^{2} & \cdots & m_{775}^{2} \\ m_{1}^{3} & m_{2}^{3} & m_{3}^{3} & \cdots & m_{775}^{3} \\ m_{1}^{4} & m_{2}^{4} & m_{3}^{4} & \cdots & m_{775}^{4} \\ & & & \vdots \\ m_{1}^{N-1} & m_{2}^{N-1} & m_{3}^{N-1} & \cdots & m_{775}^{N-1} \\ m_{1}^{N} & m_{2}^{N} & m_{3}^{N} & \cdots & m_{775}^{N} \end{pmatrix}_{M} \begin{pmatrix} h_{1} \\ h_{2} \\ h_{3} \\ \vdots \\ h_{775} \end{pmatrix}_{H} + \begin{pmatrix} \epsilon_{1} \\ \epsilon_{2} \\ \epsilon_{3} \\ \epsilon_{4} \\ \vdots \\ \epsilon_{N-1} \\ \epsilon_{N} \end{pmatrix}_{e}$$

• Or more compactly: $A_{N\times 1} = M_{775\times N}H_{775\times 1} + \epsilon_{N\times 1}$

where A are the AMSR-E values,

M the MODIS values, *H* the AMSR-E footprint vector containing the weighting elements and ϵ noise in the data.

- This is simply a regression relation between A and M.
- We want to determine the form of *H*, which minimizes

$$\arg\min_{H} ||A_{N\times 1} - M_{775\times N}H_{775\times 1}||^2$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

A straight inversion does not work well.

- Bagging (a.k.a. bootstrapping) is a way of dealing with this.
 - Sample *N* values with replacement from the pool of data.
 - Solve
 - Repeat R times
- Average the solutions.
- Example simulation.

- A straight inversion does not work well.
- Bagging (a.k.a. bootstrapping) is a way of dealing with this.
 - Sample *N* values with replacement from the pool of data.
 - Solve
 - Repeat *R* times
- Average the solutions.
- Example simulation.

- A straight inversion does not work well.
- Bagging (a.k.a. bootstrapping) is a way of dealing with this.
 - Sample *N* values with replacement from the pool of data.
 - Solve
 - Repeat *R* times
- Average the solutions.
- Example simulation.

- A straight inversion does not work well.
- Bagging (a.k.a. bootstrapping) is a way of dealing with this.
 - Sample *N* values with replacement from the pool of data.
 - Solve
 - Repeat *R* times
- Average the solutions.
- Example simulation.

- A straight inversion does not work well.
- Bagging (a.k.a. bootstrapping) is a way of dealing with this.
 - Sample *N* values with replacement from the pool of data.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

- Solve
- Repeat R times
- Average the solutions.
- Example simulation.

- A straight inversion does not work well.
- Bagging (a.k.a. bootstrapping) is a way of dealing with this.
 - Sample *N* values with replacement from the pool of data.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Solve
- Repeat R times
- Average the solutions.
- Example simulation.

- A straight inversion does not work well.
- Bagging (a.k.a. bootstrapping) is a way of dealing with this.
 - Sample *N* values with replacement from the pool of data.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Solve
- Repeat R times
- Average the solutions.
- Example simulation.

(a) Imposed footprint. Simulated 250,000 matchups with 0.2 K σ AMSR-E, 0.05 K σ MODIS.

- o) Retrieved footprint (R; N) = (1; 250,000) (c) (1; 2,000) (d) (2,000; 2,000)
- (e) 4×4 moving average of (d).

(a) Imposed footprint. Simulated 250,000 matchups with 0.2 K σ AMSR-E, 0.05 K σ MODIS.

- b) Retrieved footprint (R; N) = (1; 250,000) (c) (1; 2,000) (d) (2,000; 2,000)
- (e) 4×4 moving average of (d).

э

・ロト ・雪 ト ・ ヨ ト ・

(a) Imposed footprint. Simulated 250,000 matchups with 0.2 K σ AMSR-E, 0.05 K σ MODIS. (b) Retrieved footprint (R; N) = (1; 250,000) (c) (1; 2,000) (d) (2,000; 2,000)

(e) 4 imes 4 moving average of (d).

・ ロ ト ・ 雪 ト ・ 目 ト ・

(a) Imposed footprint. Simulated 250,000 matchups with 0.2 K σ AMSR-E, 0.05 K σ MODIS. (b) Retrieved footprint (R; N) = (1; 250,000) (c) (1; 2,000) (d) (2,000; 2,000)

(e) 4 imes 4 moving average of (d).

э

・ロト ・ 同ト ・ ヨト ・ ヨト

(a) Imposed footprint. Simulated 250,000 matchups with 0.2 K σ AMSR-E, 0.05 K σ MODIS. (b) Retrieved footprint (R; N) = (1; 250,000) (c) (1; 2,000) (d) (2,000; 2,000)

(e) 4 imes 4 moving average of (d).

- (a) Imposed footprint. Simulated 250,000 matchups with 0.2 K σ AMSR-E, 0.05 K σ MODIS.
- (b) Retrieved footprint (R; N) = (1; 250,000) (c) (1; 2,000) (d) (2,000; 2,000)
- (e) 4 \times 4 moving average of (d).

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

Motivation

2 The AMSR-E Footprint

5 Conclusions

Footprint by Cell Position

- Using 2,000 iterations of 2,000 samples (R; N) = 2,000; 2,000
- We obtained footprints for all matchups in ranges of 10 cell positions.

Footprint by Cell Position

- Using 2,000 iterations of 2,000 samples (R; N) = 2,000; 2,000
- We obtained footprints for all matchups in ranges of 10 cell positions.

Raw Footprints

э

63/107

Corrected Footprints

э

64/107

Mean (Reference) Footprint

Footprint as a Function of Cell Position, Year and Latitude

イロト イポト イヨト イヨト

Motivation Footprint Results Deconvolution Conclusions

Impact of Footprint on Comparisons with Other Satellite-Derived SSTs

If you average a cloud-free MODIS field to the corresponding AMSR-E field with our footprint

you would expect the difference field to be white noise with AMSR-E sigma

YOU DON'T

Keine Kei

If you average a cloud-free MODIS field to the corresponding AMSR-E field with our footprint you would expect the difference field to be white noise with AMSR-E sigma

YOU DON'T

Keine Kei

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If you average a cloud-free MODIS field to the corresponding AMSR-E field with our footprint you would expect the difference field to be white noise with AMSR-E sigma

YOU DON'T

 \leftarrow Note shouting

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If you average a cloud-free MODIS field to the corresponding AMSR-E field with our footprint you would expect the difference field to be white noise with AMSR-E sigma

YOU DON'T

 $\Leftarrow \textit{Note shouting}$

MODIS-1 - average MODIS to AMSR-E with 56 \times 56 km footprint. MODIS-2 - average MODIS to AMSR-E with our footprint.

э

ъ

→ Ξ →

Outline

Motivation

The AMSR-E Footprint

- Lagrange Multipliers a way of constraining the inversion (not shown)
- David Long solution a more sophisticated constraint
- Artificial Neural Network (ANN)
- Convolutional Neural Network (CNN) will not discuss; results < ANN
- Training
 - With AMSR-E MODIS matchups
 - With LLC-4320 simulated fields.

- Lagrange Multipliers a way of constraining the inversion (not shown)
- David Long solution a more sophisticated constraint
- Artificial Neural Network (ANN)
- Convolutional Neural Network (CNN) will not discuss; results < ANN
- Training
 - With AMSR-E MODIS matchups
 - With LLC-4320 simulated fields.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Lagrange Multipliers a way of constraining the inversion (not shown)
- David Long solution a more sophisticated constraint
- Artificial Neural Network (ANN)
- Convolutional Neural Network (CNN) will not discuss; results < ANN
- Training
 - With AMSR-E MODIS matchups
 - With LLC-4320 simulated fields.

- Lagrange Multipliers a way of constraining the inversion (not shown)
- David Long solution a more sophisticated constraint
- Artificial Neural Network (ANN)
- Convolutional Neural Network (CNN) will not discuss; results < ANN

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Training
 - With AMSR-E MODIS matchups
 - With LLC-4320 simulated fields.

- Lagrange Multipliers a way of constraining the inversion (not shown)
- David Long solution a more sophisticated constraint
- Artificial Neural Network (ANN)
- Convolutional Neural Network (CNN) will not discuss; results < ANN

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Training
 - With AMSR-E MODIS matchups
 - With LLC-4320 simulated fields.

- Lagrange Multipliers a way of constraining the inversion (not shown)
- David Long solution a more sophisticated constraint
- Artificial Neural Network (ANN)
- Convolutional Neural Network (CNN) will not discuss; results < ANN

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Training
 - With AMSR-E MODIS matchups
 - With LLC-4320 simulated fields.

- Lagrange Multipliers a way of constraining the inversion (not shown)
- David Long solution a more sophisticated constraint
- Artificial Neural Network (ANN)
- Convolutional Neural Network (CNN) will not discuss; results < ANN

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Training
 - With AMSR-E MODIS matchups
 - With LLC-4320 simulated fields.

AMSR-E Test Field

Results - David Long Solution

Artificial Neural Network (ANN)

• 3 layers: 54 node input layer, 10 neuron hidden layer & 1 node output layer.

Figure 1. A three-layer Multi-layer perceptron (MLP) feedforward neural network.

イロト 不得 とうほう 不良 とう

3

LLC-4320

Results – ANN Solution

Results – Gradient Fields

What are the neural nets doing?

$\mathsf{Results} - \mathsf{ANN} \ \nabla SST \text{ vs } \mathsf{AMSR}\text{-}\mathsf{E} \ \nabla SST$

Outline

Motivation

The AMSR-E Footprint

3 Results

We have characterized the AMSR-E SST footprint

- The footprint is stable
- Use of the correct footprint is necessary for comparison with other SST fields.
- Neural Networks show promise in deconvolving the fields but not there yet.
 - Seems to be doing the right thing with gradients above the noise level.
 - May benefit from a time series.
 - Training with numerical model output seems to work quite well.
- AMSR-E/MODIS/Model output offers an ideal suite of 'data' with which to explore deconvolution of passive microwave geophysical fields with neural networs.
- Poster 9C: AMSR-E, MODIS, In situ Three-way Analysis of SST Error Variance

イロト イロト イヨト

89/107

- We have characterized the AMSR-E SST footprint
- The footprint is stable
- Use of the correct footprint is necessary for comparison with other SST fields.
- Neural Networks show promise in deconvolving the fields but not there yet.
 - Seems to be doing the right thing with gradients above the noise level.
 - May benefit from a time series.
 - Training with numerical model output seems to work quite well.
- AMSR-E/MODIS/Model output offers an ideal suite of 'data' with which to explore deconvolution of passive microwave geophysical fields with neural networs.
- Poster 9C: AMSR-E, MODIS, In situ Three-way Analysis of SST Error Variance
- Poster 13A: Pixel-to-Pixel Variability of AVHRR and MODIS L2 SST Fields

- We have characterized the AMSR-E SST footprint
- The footprint is stable
- Use of the correct footprint is necessary for comparison with other SST fields.
- Neural Networks show promise in deconvolving the fields but not there yet.
 - Seems to be doing the right thing with gradients above the noise level.
 - May benefit from a time series.
 - Training with numerical model output seems to work quite well.
- AMSR-E/MODIS/Model output offers an ideal suite of 'data' with which to explore deconvolution of passive microwave geophysical fields with neural networs.
- Poster 9C: AMSR-E, MODIS, In situ Three-way Analysis of SST Error Variance
- Poster 13A: Pixel-to-Pixel Variability of AVHRR and MODIS L2 SST Fields

- We have characterized the AMSR-E SST footprint
- The footprint is stable
- Use of the correct footprint is necessary for comparison with other SST fields.
- Neural Networks show promise in deconvolving the fields but not there yet.
 - Seems to be doing the right thing with gradients above the noise level.
 - May benefit from a time series.
 - Training with numerical model output seems to work quite well.
- AMSR-E/MODIS/Model output offers an ideal suite of 'data' with which to explore deconvolution of passive microwave geophysical fields with neural networs.
- Poster 9C: AMSR-E, MODIS, In situ Three-way Analysis of SST Error Variance

<ロト < 同ト < 回ト < 回ト = 三日

92/107

- We have characterized the AMSR-E SST footprint
- The footprint is stable
- Use of the correct footprint is necessary for comparison with other SST fields.
- Neural Networks show promise in deconvolving the fields but not there yet.
 - Seems to be doing the right thing with gradients above the noise level.
 - May benefit from a time series.
 - Training with numerical model output seems to work quite well.
- AMSR-E/MODIS/Model output offers an ideal suite of 'data' with which to explore deconvolution of passive microwave geophysical fields with neural networs.
- Poster 9C: AMSR-E, MODIS, In situ Three-way Analysis of SST Error Variance

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

93/107

- We have characterized the AMSR-E SST footprint
- The footprint is stable
- Use of the correct footprint is necessary for comparison with other SST fields.
- Neural Networks show promise in deconvolving the fields but not there yet.
 - Seems to be doing the right thing with gradients above the noise level.
 - May benefit from a time series.
 - Training with numerical model output seems to work quite well.
- AMSR-E/MODIS/Model output offers an ideal suite of 'data' with which to explore deconvolution of passive microwave geophysical fields with neural networs.
- Poster 9C: AMSR-E, MODIS, In situ Three-way Analysis of SST Error Variance

<ロト < 同ト < 回ト < 回ト = 三日

94/107

- We have characterized the AMSR-E SST footprint
- The footprint is stable
- Use of the correct footprint is necessary for comparison with other SST fields.
- Neural Networks show promise in deconvolving the fields but not there yet.
 - Seems to be doing the right thing with gradients above the noise level.
 - May benefit from a time series.
 - Training with numerical model output seems to work quite well.
- AMSR-E/MODIS/Model output offers an ideal suite of 'data' with which to explore deconvolution of passive microwave geophysical fields with neural networs.
- Poster 9C: AMSR-E, MODIS, In situ Three-way Analysis of SST Error Variance

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

95/107

イロト イポト イヨト イヨト 二日

A Figure of Merit

Results – SST Differences

Results – SST Gradient Differences

э

99/107

Table: AMSR-E Spectral Characteristics

Band	Polarization	Beam	Spatial Resolution	Most sensitive to
(GHz)		Width	(3-dB footprint size)	
		(°)	[km x km]	
6.93	V,H	2.2	75 imes 43	SST
10.65	V,H	1.5	51 × 29	SST, wind speed
18.7	V,H	0.8	27 imes 16	Columnar water vapor
23.8	V,H	0.9	32 × 18	Columnar water vapor
36.5	V,H	0.4	14 × 8	Columnar liquid water, rain
89.0	V,H	0.2	6×4	Rain (Flag)

<ロト < 同ト < 回ト < 回ト = 三日

- 6.9 36.5 GHz channels mapped to common grid.
- SST, wind speed, water vapor, liquid water & rain rate retrieved simultaneously
- SST is determined from a combination of brightness temperatures obtained from pixels of differing spatial extent.
- The shape and size of the SST footprint is not obvious.

Table: AMSR-E Spectral Characteristics

Band	Polarization	Beam	Spatial Resolution	Most sensitive to
(GHz)		Width	(3-dB footprint size)	
. ,		(°)	[km x km]	
6.93	V,H	2.2	75 imes 43	SST
10.65	V,H	1.5	51 imes 29	SST, wind speed
18.7	V,H	0.8	27 imes16	Columnar water vapor
23.8	V,H	0.9	32 imes 18	Columnar water vapor
36.5	V,H	0.4	14 imes 8	Columnar liquid water, rain
89.0	V,H	0.2	6×4	Rain (Flag)

6.9 - 36.5 GHz channels mapped to common grid.

- SST, wind speed, water vapor, liquid water & rain rate retrieved simultaneously
- SST is determined from a combination of brightness temperatures obtained from pixels of differing spatial extent.
- The shape and size of the SST footprint is not obvious.

Table: AMSR-E Spectral Characteristics

Band	Polarization	Beam	Spatial Resolution	Most sensitive to
(GHz)		Width	(3-dB footprint size)	
. ,		(°)	[km x km]	
6.93	V,H	2.2	75 imes 43	SST
10.65	V,H	1.5	51 imes 29	SST, wind speed
18.7	V,H	0.8	27 imes16	Columnar water vapor
23.8	V,H	0.9	32 imes 18	Columnar water vapor
36.5	V,H	0.4	14 imes 8	Columnar liquid water, rain
89.0	V,H	0.2	6×4	Rain (Flag)

- 6.9 36.5 GHz channels mapped to common grid.
- SST, wind speed, water vapor, liquid water & rain rate retrieved simultaneously
- SST is determined from a combination of brightness temperatures obtained from pixels of differing spatial extent.
- The shape and size of the SST footprint is not obvious.

Table: AMSR-E Spectral Characteristics

Band	Polarization	Beam	Spatial Resolution	Most sensitive to
(GHz)		Width	(3-dB footprint size)	
. ,		(°)	[km x km]	
6.93	V,H	2.2	75 imes 43	SST
10.65	V,H	1.5	51 imes 29	SST, wind speed
18.7	V,H	0.8	27 imes16	Columnar water vapor
23.8	V,H	0.9	32 imes 18	Columnar water vapor
36.5	V,H	0.4	14 imes 8	Columnar liquid water, rain
89.0	V,H	0.2	6×4	Rain (Flag)

- 6.9 36.5 GHz channels mapped to common grid.
- SST, wind speed, water vapor, liquid water & rain rate retrieved simultaneously
- SST is determined from a combination of brightness temperatures obtained from pixels of differing spatial extent.
- The shape and size of the SST footprint is not obvious.

Table: AMSR-E Spectral Characteristics

Band	Polarization	Beam	Spatial Resolution	Most sensitive to
(GHz)		Width	(3-dB footprint size)	
. ,		(°)	[km x km]	
6.93	V,H	2.2	75 imes 43	SST
10.65	V,H	1.5	51 imes 29	SST, wind speed
18.7	V,H	0.8	27 imes16	Columnar water vapor
23.8	V,H	0.9	32 imes 18	Columnar water vapor
36.5	V,H	0.4	14 imes 8	Columnar liquid water, rain
89.0	V,H	0.2	6×4	Rain (Flag)

- 6.9 36.5 GHz channels mapped to common grid.
- SST, wind speed, water vapor, liquid water & rain rate retrieved simultaneously
- SST is determined from a combination of brightness temperatures obtained from pixels of differing spatial extent.
- The shape and size of the SST footprint is not obvious.

What are the neural nets doing?

э

Convolutional Neural Network (ANN)

 $\bullet\,$ Input: a 10 \times 10 AMSR-E pixel region and the output is the 10 \times 10 target field minus the AMSR-E field.

A D > A P > A D > A D >

э

Results – CNN Solution

