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ABSTRACT

Genetic profiling and characterization of lung cancers have
recently emerged as a new technique for targeted therapeu-
tic treatment based on immunotherapy or molecular drugs.
However, the most effective way to discover specific gene
mutations through tissue biopsy has several limitations, from
invasiveness to being a risky procedure. Recently, quanti-
tative assessment of visual features from CT data has been
demonstrated to be a valid alternative to biopsy for the diag-
nosis of gene-addicted tumors. In this paper, we present a
deep model for automated lesion segmentation and classifi-
cation as gene-addicted or not. The segmentation approach
extends the 2D Tiramisu architecture for 3D segmentation
through dense blocks and squeeze-and-excitation layers,
while a multi-scale 3D CNN is used for lesion classifica-
tion. We also train our model with adversarial samples, and
show that this approach acts as a gradient regularizer and
enhances model interpretability. We also built a dataset, the
first of its nature, consisting of 73 CT scans annotated with
the presence of a specific genomics profile. We test our ap-
proach on this dataset achieving a segmentation accuracy of
93.11% (Dice score) and a classification accuracy in identify-
ing oncogene-addicted lung tumors of 82.00%.

Index Terms— XAI, 3D Tiramisu, Lesion Classification

1. INTRODUCTION

In the last decade, evidence of the role of some genes
(such as Epidermal Growth Factor Receptor, EGFR) as a
therapeutic target in advanced stages of lung cancers has
emerged. In these cases, immunotherapy [1] and molecular
target drugs [2] appear to be more effective than standard
chemotherapy alone, showing that tumor genetic charac-
terization and tailored therapeutic treatment may increase
survival chances. The current gold standard technique for
identifying such mutation profiles – deep sequencing – is per-

formed on tissue biopsy, with the related major drawbacks,
from the complexity of detecting tumors making the outcome
operator-dependent, to invasiveness and tumor dissemina-
tion [3]. Computed tomography (CT) is routinely used for
treating lung cancers and it is also gaining an important role
for mutation identification: correlation between low-level
textures and mutational status in non-small-cell lung can-
cer (NSCLC) has been observed [4]. These findings opened a
non-invasive way in tumor genetic profiling, with an expected
positive impact on diagnosis and treatment outcomes.
Deep learning has significantly surpassed traditional visual
feature extraction in a variety of tasks, including medical
image analysis, by learning task-specific features directly
from data. Under these premises, we propose a deep learn-
ing model for automated lesion segmentation and mutation
identification in CT scans of patients affected by NSCLC. We
advocate a segmentation model, designed as a 3D extension
of the Tiramisu network [5], to extract cancer lesions, which
are further processed by a deep 3D classifier that predicts
whether an extracted lesion is gene-addicted or not. Perfor-
mance analysis carried out on a dataset of 73 CT scans, which
so far is the only dataset of this nature, demonstrates the ac-
curacy of our approach, outperforming several baselines.
We also target the problem of interpretability, necessary to
explain model decisions to physicians, by training the clas-
sification network on adversarial attacks. Indeed, adversarial
robustness entails feature interpretability, according to ex-
plainable AI theory [6] and as confirmed by our results.
Our approach is thus able to genomically characterize lung
cancers, while providing interpretable decisions.

2. RELATED WORK

This paper tackles the problem of predicting gene mutation
from the visual analysis of CT scans. The topic is the main-
stream of recent research in radiology — radiogenomics —
that correlates quantitative analysis of imaging data (mainly



Fig. 1. Lesion segmentation and classification networks.
Output layers for deep supervision are not shown for read-
ability. Zoom-in for details about feature maps.

CT), through the extraction of morphological, shape and tex-
ture features [7], to tumor genomics information for a less in-
vasive and safer diagnosis than through tissue biopsy. In par-
ticular, genetic characterization of NSCLC and therapy pro-
gression estimated through feature extraction from imaging
data have been explored with promising results [4, 8]. At
the same time, deep learning has been applied recently to tu-
mor analysis from CT imaging data, for evaluating tumor pro-
gression in response to treatment [9, 10], but, to our knowl-
edge, no method exists for predicting gene mutation. In [9],
a 3D segmentation model is trained to estimate the volume
of lung cancer lesions to quantify immunotherapy effective-
ness by evaluating tumor progression; in [10], a 5-layer CNN
with locally-connected blocks is used to distinguish between
bladder lesions in different stages with and without complete
chemotherapy responses. Thus, recent radiology research has
demonstrated that CT analysis is an effective strategy for as-
sessing mutational status of cancers. Following this trend, we
here face the problem of visual feature learning for the iden-
tification of the mutational status in lung cancer.

3. METHOD

Our deep model (shown in Fig. 1) consists of: a segmentation
network to extract lesions from a CT scan, followed by a
lesion classifier to discriminate gene-addicted lesions from
non-gene-addicted ones. The segmentation model is based
on the Tiramisu network [5], i.e., a 2D fully-convolutional
DenseNet [11] based on the U-Net architecture [12], con-
sisting of a downsampling path for feature extraction and an
upsampling path for output generation, with skip connections
that help to preserve high-resolution details by reusing feature
maps between the two paths. The main differences between
our segmentation model (shown on top in Fig. 1) and the stan-
dard Tiramisu network are: 1) We employ 3D (rather than
2D) convolutional layers to process the whole CT sequence;

2) Residual squeeze-and-excitation layers [13] are used to
emphasize relevant features and improve the representational
power of the model; 3) We apply deep supervision [14] to
the upsampling layers to deal with the vanishing gradient
problem.
The input to the model consists of a subset of resized
slices (for memory issues) from the raw CT scan, i.e.,
256×256×30, with the last dimension equal to the maxi-
mum depth among annotated lesions. This 3D input sample
is initially fed to a standard 3D convolutional layer to expand
the feature dimensions. The resulting feature maps then tra-
verse the downsampling path of the model, going through
a sequence of dense blocks, residual squeeze-and-excitation
layers, and transition-down layers (which internally employ
3D max-pooling). In the downsampling path, the feature
maps at the output of each residual squeeze-and-excitation
layer are concatenated with the input features of the preced-
ing dense block to encourage feature reuse. At the end of the
downsampling path, the bottleneck of the model consists of a
dense block composed by three dense layers. The upsampling
path is symmetric to the downsampling one, with two main
differences: 1) skip connections from the downsampling path
concatenate feature maps at the corresponding layers of the
upsampling path; 2) transition-up layers are implemented
by transposed convolutions; the output of these layers are
used for deep supervision. Finally, one convolutional layer
followed by a softmax layer is applied to the output of each
decoder layer in order to obtain a 2-channel segmentation
map (lesion/non-lesion voxels), on which loss is computed
for deep supervision. The model output is the binary seg-
mentation produced by comparing lesion/non-lesion voxel
likelihoods of the last decoder layer (as shown in Fig. 1).
Our lesion classifier, whose architecture is shown in Fig. 1
(bottom), is a multi-scale 3D CNN that receives a crop of
the CT scan corresponding to a lesion identified by the up-
stream segmentation model, and predicts whether the tumor is
gene-addicted or not. Each branch of the model consists of a
cascade of 3D depthwise separable convolutional layers with
ReLU non-linearities, sharing the number of feature maps but
differing by kernel size (3, 7 and 11). Padding is added to
ensure that feature map sizes are consistent across the three
branches. After multi-scale analysis, the output feature maps
are summed and rescaled to a volume of size 4×4×4 through
adaptive max pooling. A final fully-connected layer maps the
pooled features to a vector of size 2, with gene-addicted and
non-gene-addicted class scores.
We improve the base classification model by enforcing inter-

pretability through robustness to adversarial attacks [6]. To
accomplish this, we employ a white-box attack mechanism –
Projected Gradient Descent (PGD) [15] – based on adversar-
ial training [16] that aims at generating adversarial examples,
through input perturbations, to make the model misclassify
lesions during training. Formally, let xt be the perturbed
input data after t iterations of the algorithm, starting from the



original input x = x0. Each PGD iteration adds a perturba-
tion to the data at the previous iteration and projects the new
data to a point within a L2 hypersphere with radius ε around
x0, to ensure similarity to the original input. The iterative
perturbation process can be described as:

xt+1 = Πx0,ε(xt + ε sign(LXE(xt, y)) (1)

where t is the iteration number, y the label of the input sam-
ple, and LXE(xt, y) the binary cross-entropy loss of the lesion
classifier. Πx0,ε(x̂) is defined as:

Πx0,ε(x̂) =

{
x0 + x̂−x0

||x̂−x0||2 ε if ||x̂− x0||2 > ε

x̂ otherwise
(2)

During training, we feed the PGD-generated samples to
the model with the original y label. This procedure forces the
model to learn features that are less susceptible to input per-
turbations, resulting in increased robustness and interpretabil-
ity.

4. EXPERIMENTAL RESULTS

Dataset and annotations. We built a CT dataset with 73 CT
scans of lung cancer patients, diagnosed by biopsy. For each
biopsy, the presence of a specific genomics profile is noted,
with 21 out of 73 lesions defined as oncogene-addicted, i.e.,
characterized by a single dominant driver gene (either EGFR
or ALK or ROS-1 or BRAF). The remaining 52 cases are
not oncogene-addicted. An expert oncologist annotated each
CT scan by drawing the contours of the biopsied lesion and
selecting a subset of slices containing it. All CT scans were
acquired with the following scanning parameters: 120 kV
tube voltage, reference current of 50 mA, a spatial resolution
of 512×512 pixels, and 100 slices 3 mm thick each.
Training procedure. We train the segmentation and classi-
fication models separately with 5-fold cross-validation: each
test fold contains 5 randomly-selected non-gene-addicted
CTs and 5 gene-addicted scans. During training, the segmen-
tation model receives a tensor of size 256×256×30, obtained
by resizing the height (sagittal axis) and width (frontal axis)
of the original CT scan and using the 30 slices (along the
longitudinal axis) around the annotated lesion as provided
by the radiologists. We compute the Dice loss on the output
of the segmentation network as well as on the intermediate
decoder layers for deep supervision. Mini-batch gradient
descent (batch 2) is performed for minimizing segmentation
loss, using Adam (µ = 0.001, β1 = 0.5, β2 = 0.999).
The classification model is trained on the individual lesions
identified by the segmentation model, padded by 5 voxels (to
account for under-segmentation), and resized to 64×64×30.
Although multiple lesions may be segmented, the biopsied
lesion is generally the most extended in the considered slices:
for this reason, we select the largest mask from the seg-
mentation output and provide it as input to the classification

Model DICE Score (%)

3D-UNet [17] 86.57 ± 7.36
Base model 90.47 ± 6.21
Base model + SE 92.46 ± 5.83
Base model + SE + DS 93.11 ± 4.23

Table 1. Lesion segmentation results

model. As loss function, we employ the standard binary
cross-entropy loss, weighed by 1.5 for gene-addicted lesions
and 0.5 for non-gene-addicted ones to account for class im-
balance in the training set. Perturbed samples for adversarial
attacks are generated by setting ε = 0.1 in the PGD algorithm.
Lesion segmentation results. Segmentation accuracy is re-
ported in terms of the Dice coefficient. Since each CT scan
may have multiple lesions, but only the largest lesion (the one
on which biopsy is carried out) is annotated by radiologists,
we assess the Dice coefficient for that lesion only. We com-
pare the performance of our approach to a state-of-the-art 3D-
UNet [17]. We also perform ablation studies by evaluating
the performance of our “base model” – without squeeze-and-
excitation layers (SE) and deep supervision (DS) – and by
adding them one at a time. Results, given in Tab. 1, show that
our approach outperforms the baselines as well as a standard
state-of-the-art method on our dataset.
Lesion classification results. We then evaluate the accuracy
of the proposed lesion classifier. Due to the lack of established
literature approaches tackling this problem, we compare our
method to the following baselines:
— Classification without segmentation, i.e., our multi-scale
lesion classification model, operating on the entire CT scans.
— Bottleneck features from the segmentation model, i.e.,
forwarding the bottleneck features (size 24×3×16×16 =
18,432) of the segmentation model to three fully-connected
layers of size 1024, 1024 and 2 for lesion classification.
To measure the robustness and interpretability of each ap-
proach, we also evaluate the average Frobenius norm of the
Jacobian matrix, ||J (x)||F , which estimates how the model
is affected by input perturbations. Results are reported in
Tab. 2 and show that our approach outperforms both base-
lines in terms of accuracy and robustness. We can notice that
using the segmented lesion leads (last two lines in Tab. 2) to
better robustness and interpretability (as demonstrated by the
achieved Jacobian norm values). This can be explained by
the fact that using lesion-masked information during classi-
fication prevents the representations learned by the classifier
from being inconsistent with lesions, which is one of the
main reasons for scarce generalization and overfitting in
these applications [18]. Additionally, adversarially training
our classifier yields even lower Jacobian norm values, at the
expense of classification accuracy (82% vs 78%). The ac-
curacy decrease is expected, since adversarial training forces
the model to avoid using non-generalizable features, but en-



Model Accuracy (%) ↑ ||J (x)||F ↓
No segm 58.00 ± 4.47 5.60 ± 4.27
Bottleneck 66.00 ± 5.47 11.06 ± 3.75

Ours 82.00 ± 8.36 0.58 ± 0.37
Ours + adv. training 78.00 ± 4.47 0.35 ± 0.36

Table 2. Classification results. Mean classification accuracy
(in percentage) and Frobenius norm of the Jacobian matrix.

hances generalization capabilities, thus it has to be preferred.

5. CONCLUSION

Visual analysis of CT scans for characterizing NSCLC cancer
is emerging as a valid alternative to biopsy calling for auto-
mated analysis methods. We here propose a deep learning
approach to identify oncogene-addicted tumor lesions from
lung CT scans. Our model consists of a segmentation module
for lesion localization and a classification module for gene-
addiction prediction, trained with adversarial examples in or-
der to increase feature robustness and interpretability. Ex-
perimental results show that our approach achieves promis-
ing classification performance (about 80%), providing at the
same time detailed interpretation maps of model decisions.
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