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Abstract—Server monitoring pipelines are key to deploying
highly available datacenter services. Monitoring data is collected
from across the stack, transferred to a stream processor, and
analyzed to quickly detect and understand failures, so they can
be resolved to restore normal service operation. Unfortunately,
scaling such an architecture to support large number of servers
is challenging as it suffers from the network transfer of massive
volumes of monitoring data while query analysis requires a large
amount of compute resources.

We propose Jarvis, a monitoring system that pushes queries
near the data source by partitioning a query across data source
and stream processor. Jarvis addresses two major issues of
state-of-the-art monitoring systems. Unlike conventional coarse-
grained operator-level partitioning schemes, Jarvis employs fine-
grained data-level partitioning to process only a part of the
input on each operator, thereby enabling resource-intensive
operators to execute under resource constraints. Unlike fully
centralized query planners, Jarvis makes decentralized near-data
query refinement decisions, thereby enabling quick adaptation to
dynamic resource conditions on each data source. Our evaluation
of Jarvis on a diverse set of monitoring queries and data suggests
that Jarvis converges to a stable query partition within a few
seconds of a resource change occurring on data source, and
handles up to 75% more data source nodes while improving
throughput in resource-constrained scenarios by 1.2-4.4x when
compared to state-of-the-art partitioning strategies.

Index Terms—analytics, stream processing, server monitoring,
scale, adaptation, query partitioning

I. INTRODUCTION

Today’s large-scale datacenters use thousands of servers to
host important services, such as web search, database systems,
and machine learning (ML) pipelines, for millions of users.
Operating these services with high availability requires that
datacenter operators quickly detect performance and reliability
issues, such as high network latency, disk failures, service
outages from software bugs [1]–[7], and resolve these issues in
a timely manner to restore normal service operation [8]–[10].

To deliver highly available services, datacenter operators
deploy a dedicated monitoring system that analyzes real-time
events collected across datacenter servers using a stream pro-
cessor, as shown in Figure 1. By processing the collected data,
the stream processor further enables operators to visualize
the behavior of the monitored system via dashboards and
generate alerts upon observing issues impacting service avail-
ability. Monitoring data streams are diverse, including service-
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Fig. 1: Overview of a datacenter monitoring system.

level application logs and host-level metrics (e.g., network
latency and CPU utilization) used to monitor the health of
various system resources. Large-scale monitoring pipelines
can generate up to 10s of PBs per day, processing data from
hundreds of thousands of servers [10], [11]. Transferring such
a high volume of data to remote stream processors can cause
network bottlenecks. Moreover, the stream processor may
require thousands of CPUs to keep up with such massive data
streams while satisfying low time-to-detection requirements
for reliability issues [9]. If more data is processed at the data
source, amount of data transferred and processed by the stream
processor can be significantly reduced.

Challenges. Not surprisingly, several monitoring pipelines
have leveraged available compute resources on data sources
(i.e. server nodes) to deploy a monitoring agent. Because
available resources on the data source typically result from re-
source over-provisioning to handle peak resource demands [9],
[12]–[15], often the monitoring agent is restricted to run a
subset of query operations (e.g., aggregation, filtering) within
a given compute budget to minimize interference with the
hosted service. Prior work statically decides which operations
to run on data source [16]–[18]. However, there is variability
in monitoring data across time and between data sources. Thus
static partitioning may be too conservative or, alternately, may
affect query performance during periods of high peak resource
demands by the agent’s query operators [9], [11].

In the network telemetry domain, Sonata [8] has proposed
a query cost model-based optimization approach to distribute
query execution across programmable switches and stream
processor. The query partitioning in Sonata, occurring at the
operator level [16]–[18], is dynamically adjusted by a central
query planner running on stream processor. A query operator
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is deployed to the switch only if the switch’s available compute
resources are sufficient to process all of the incoming data of
the operator. Unfortunately, operator-level query partitioning
is not effective in scenarios where available compute resource
is highly constrained, such as data sources in monitoring
systems. Furthermore, solving an expensive optimization using
a centralized query planner is unsuitable for making frequent
decisions in systems with data sources that exhibit fast chang-
ing resource conditions.

Our proposal. We propose Jarvis, a monitoring system
that targets large-scale systems generating high-volume data
streams with high variability across time and data sources.
Jarvis identifies independently for the query workload on each
data source, a fine-grained data-level partitioning strategy by
controlling the amount of data processed per query operator,
namely load factor. Jarvis can make frequent partitioning
decisions by combining a model-based technique that quickly
finds initial per-operator load factors with a model-agnostic
technique that monitors query execution and fine-tunes the
load factors if needed. Fine-grained data-level partitioning
allows Jarvis to fully utilize the limited and dynamic com-
pute resources over data sources while minimizing network
data transfers. Jarvis is implemented in a fully decentralized
manner, enabling it to scale to large number of data sources.

To achieve these goals, Jarvis introduces novel extensions
to the pipeline of conventional query execution: the Control
proxy and the Jarvis runtime. Control proxy is a light-weight
routing logic—associated with a query operator—that given
the current load factor decides “how many” incoming records
should be forwarded to the associated query operator, realizing
data-level partitioning per operator. In each data source, the
local Jarvis runtime interacts with all the control proxies to
identify their state (e.g., idle, congested, or stable) and fine-
tune the load factors of the control proxies. On observing state
changes for the control proxies, Jarvis runtime refines its plan
for the data-level partitioning to keep the query execution in
each data source stable.

We have built a fully functional proof-of-concept of Jarvis.
Our evaluation with monitoring queries on host-level network
latency metrics and application logs demonstrate that Jarvis
enables a stream processor node to handle up to 75% more
data sources while improving query throughput by up to 4.4x
over state-of-the-art partitioning strategies. Jarvis converges to
a stable query configuration within seven seconds of a resource
change occurring on data source.

Contributions. In summary, we make the following contri-
butions: (1) we propose a fine-grained data-level partitioning
mechanism with the goal of minimizing network data transfers
while maximizing resource utilization on each data source
node, (2) we design a fully decentralized query workload parti-
tioning engine which quickly adapts its data-level partitioning
strategy to dynamic resource conditions on each data source
node while scaling to a large number of data sources, and (3)
we experimentally evaluate our system with several monitoring
queries and show its effectiveness.

II. BACKGROUND AND CHALLENGES FOR LARGE-SCALE
SERVER MONITORING

The monitoring systems we target must be able to inves-
tigate timestamped measurement data from individual data-
center nodes corresponding to health of hardware, OS, and
runtime systems [2], [4], [7], and/or textual logs generated
by a specific service which spans a large number of nodes
to be hosted [11], [19]. Although numerous useful scenarios
correspond to large-scale server monitoring in real world [1],
[4], [9], we introduce the following two monitoring scenarios
in an enterprise company that guide the design of Jarvis:

• Scenario 1: Network team deploys PingMesh [2] agents on
each datacenter node to collect probe latency data between
server pairs. An internal Search team uses PingMesh to
monitor network health of their latency sensitive service and
generate an alert if median probe latency of nodes hosting
their service exceeds a threshold. The threshold is determined
by the search service SLA.

• Scenario 2: A log processing system (e.g. Helios [9])
enables live debugging of storage analytics services (e.g. Cos-
mos [20]). A bug in cluster resource manager leads to service
resources being under-provisioned. To temporarily mitigate
performance degradation, multiple TBs of log streams [9] are
processed quickly to identify impacted tenants. Their latency
and CPU/memory utilization data are queried to predict re-
source needs and make scaling decisions.

The above scenarios require processing different types of
monitoring data. Scenario 1 requires processing metrics which
are structured numeric data and generated periodically. Queries
on this data consist of operations such as filtering and aggre-
gation. On the contrary, Scenario 2 requires processing logs
which are unstructured strings and are generated aperiodically.
Queries consist of string processing operations such as parsing,
splitting, search, etc. We observe the following common
challenges facing modern monitoring pipelines in supporting
the two scenarios:

Voluminous data transfer: A monitoring system must
process up to tens of TB data per day or millions of events
every second per monitoring task [2], [11], [21], straining
compute, memory, and network capacities of the monitoring
system. As an example, we illustrate how costly data transfer
can be for network latency monitoring in Scenario 1, assuming
a traditional approach where the entire data is aggregated into
stream processor to be analyzed. Assume that a datacenter has
200k servers. Guided by [2], each server may probe 20k other
servers with a probing interval of 5 seconds. Then, the data
generation rate for this system alone is estimated at 512.6 Gbps
as a result of large-scale probing performed by 200K servers.
Similarly, logs collected from applications (as in Scenario 2)
can generate up to 971 Gbps [11]. To keep up with these
high data generation rates, stream processors need to employ
a large number of compute cores, making it costly to build the
monitoring system. This pressing issue suggests that achieving
high efficiency and scalability is a key design challenge for
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Fig. 2: Pipeline of stream operations for motivating example
query (detailed query in Listing 1).

large-scale server monitoring.

Highly varying data: Monitoring input data and their genera-
tion rates vary significantly across different data source nodes.
Section ?? describes in detail how metrics data differs across
data source nodes. Recent works [9], [11] have also described
high variation in ingestion rates for log streams generated in
production monitoring systems. To keep up with high varying
data, monitoring pipelines are equipped with large amount of
compute and memory resources, which are highly distributed
across dedicated nodes. To handle processing load from a large
number of data source nodes, the stream processor may inte-
grate several levels of computing nodes. Query optimization
techniques need to support the requirements of highly dynamic
workloads in a complex distributed environment.

III. MONITORING WORKLOAD CHARACTERISTICS

Datacenter operators assign the monitoring system only a
limited amount of HW resources (e.g., only few cores) from
individual data source nodes to promise little interference with
foreground services. The resources allowed per monitoring
query could be even more scarce as multiple queries with
different monitoring tasks could run on the system at the same
time. Many prior works take an approach to pre-process the
query on limited resources by pushing a subset of query com-
putations close to data source, reducing data movements over
the network [8], [16], [22]. In this section, we discuss one of
our target scenarios in detail to reveal workload characteristics
that limit effectiveness of the existing approaches.

A. Network Latency Monitoring Example

We use a real-world trace on datacenter network latency
monitoring, Scenario 1, collected from Pingmesh in Microsoft.
In Pingmesh, servers in the datacenter probe each other to
measure network latency for server pairs across the datacenter.
A server sending a probe message generates a 86B record,
including timestamp (8B), source IP address (4B), source
cluster ID (4B), destination IP address (4B), destination cluster
ID (4B), round trip time (4B), and error code (4B). The round
trip time is in microseconds.

/* 1. create a pipeline of operators */
query = Stream
.Window(10_SECONDS)
.Filter(e => e.errorCode == 0)
.GroupApply((e.srcIp, e.dstIp))
.Aggregate(c => c.avg(rtt) && c.max(rtt) && c

.min(rtt))
/* 2. Execute the pipeline */
Runner r( /* config info */ );
r.run(query);
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Fig. 3: Non-uniform data generation rates across data source
nodes in real network latency monitoring trace.

Listing 1: A temporal query for server-to-server latency
probing in every 10-second fixed-size window.

This rich set of record fields allows exhaustive analyses:
e.g., zoom-in/out latency probes by grouping them across
datacenter network hierarchy to identify issues at the cluster,
ToR or spine switch and server level [2], [23]. Here, we
describe implementation of a real query based on Pingmesh
dataset in Listing 1. As can be seen, we adopt a declarative
programming model used by popular stream engines such as
Flink [24] and Spark Streaming [25], which express a query
using dataflow operations. Figure 2 shows a pipeline of how
data flows between operators for the query in Listing 1.

B. Variabilities in the Wild

Datacenter monitoring workloads exhibit variabilities in
many aspects. We describe four aspects that make precisely
estimating resource requirements of queries at scale highly
complicated.

Data generation rates across data source nodes: Data
source nodes often generate monitoring data tightly asso-
ciated with their targets to monitor (e.g., # HW devices)
and occurrences of anomalies (e.g., # high-latency events for
network/storage), which happen to be non-uniform across the
nodes. For example, in network latency monitoring, some
servers probe a larger set of peers to cover a larger network
range on behalf of other servers in the same ToR switch [2].
More recent works have reported variability in data generation
rates in a variety of monitoring scenarios as well [9], [11]. As
a result, the resource requirements of data source nodes would
be different and independent of each other.

To show the significance of such variability in Pingmesh,
we measure data rates of network probe messages generated
by individual data sources, and show the results in Figure 3.
The data rates are normalized to the highest one observed
among data source nodes. Data generation rates exhibit high
variability, with 58% of nodes generating 50% or lower of the
highest data rate we observe.

Quantitative analysis of resource usage across operators:
Popular declarative operators used in monitoring queries in-
clude Filter(F), Grouping(G), Reduction(R), Join(J), Project(P)
and Map(M) [24], [26], [27]. These operators are compu-
tationally different and their costs are highly dynamic. For
example, Filter (stateless operator) drops uninteresting records
by applying the predicates on each record and typically oper-
ates at a low computational cost. Grouping (stateful operator)
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Fig. 4: Profiling of query operators.

organizes records by key fields and hence requires key lookups
and moving of records, making it an expensive operator. Join
(stateful operator) joins between an input stream and a static
table on data source1.

Next, we observe dynamic costs of operators by profiling
F, G+R2 and J operator using our trace on a stream processor
node with 4 2.4 GHz cores. We configure data input rate to
be 26.2 Mbps (10x scaled up) to ease our measurements (see
Pingmesh in Section VIII for details). We then adjust several
parameters that affect operator resource usage: (i) filtering
predicate for F operator to obtain different filter-out rates
(between 20-80%), (ii) output group counts for G+R operator
reflecting a range of grouping granularity and (ii) the size of
static table for J operator which is joined with an input stream
to add ToR switch IDes given server IP addresses to each
record (for grouping by ToR IDes). We observed that for a
range of filter-out rates, F operator requires 17-25% CPU, i.e.,
low compute cost and variance. However, Figure 4 shows that
when the number of groups and the table size changes for G+R
and J operators respectively, CPU usage varies substantially
between 50%-350%.
Data reduction through a pipeline of operators: Declar-
ative operators in a pipeline execute in sequence. Therefore,
resource demand for an operator in the pipeline is affected
by the data incoming rate to the operator out of executing
all preceding operators. This further complicates resource
usage characteristics of pipeline execution while processing
the query on the input stream. For example, F operator leads
to the first data volume reduction from the input stream (see
filtering predicate in Listing 1). Since erroneous, insignificant
records are not dominant, the operator happens to drop only a
small fraction of records. A majority of records are then to be
processed by G+R operator, increasing compute cost for the
query. However, if we were to toggle the filtering predicates
to perform a zoom-in analysis on a small subset of erroneous
data, there will be a high degree of data reduction in F operator,
so G+R operator considerably lowers its resource usage.
Data distribution: Large-scale server monitoring may see
the data with distribution shifting time-to-time. For example,

1Due to limitations of data source-side execution discussed in Section VI,
we do not consider other complex join operators in Jarvis.

2Reduction commonly follows grouping to apply aggregation functions
incrementally per group, so both are often combined.

when servers are being over-loaded, latency profiles become
more variable [28], [29]. If a monitoring system runs a query
to diagnose such network condition, it should quickly adapt
the query to process a larger amount of network probes of
high latency.

IV. MODELS AND PROBLEM DEFINITION

This paper investigates techniques to partition/distribute
query operators between data source and stream processor
nodes, to address the challenges with building large-scale
server monitoring pipelines. In this section, we discuss model-
s/assumptions and then define the query partitioning problem.
Table II provides a summary of the variables used in the rest
of the paper.

Data and query models: Monitoring data is an unbounded
stream of records. In the stream, a single record is a mea-
surement or text log generated by the underlying host or
application on the server node. Each record has an associated
timestamp which defines an event time when the record was
generated. The data stream also includes watermark records
with strictly increasing timestamps. A watermark with times-
tamp wts guarantees no subsequent records will have a record
time earlier than wts. As a result, on observing watermarks,
a single stream could be delimited into ordered consecutive
epochs of records while promising time progresses. An epoch
may have records with timestamps greater than the epoch’s end
watermark due to out-of-order arrival.Each monitoring query
is represented as a directed acyclic graph (DAG) G = (V,E).
The vertices V in the DAG represent stream operations such
as filter, grouping, reduction, etc, which transform their input
records and emit output records to downstream operations, as
shown in Figure 2. The edges E denote dataflow dependencies
between operations. An instance of the query G deployed on
a data source i is denoted by Gi = (Vi, Ei).

Resource model: Physical resources involved in the query
execution can be seen as a tree structure as shown in Fig-
ure 6(b), where leaf nodes represent the data sources that
primarily run customer applications. In each leaf node, fixed
amount of compute resources are allocated to facilitate moni-
toring queries. Such allocation can be done by provisioning a
container to isolate the resources (e.g. 1 core and 1 GB RAM)
for monitoring from foreground services. Each data source can
send data to its parent stream processor node (i.e., intermediate
node) and leverage its compute resources for query processing.
The intermediate nodes eventually send data to root stream
processor node which completes the query before outputting
final result.

Operator partitioning: Monitoring queries typically consist
of operations which filter out uninteresting records, aggregate
statistics, etc. [1]–[3], [30].iven a query instance with M
operations, a partitioning plan identifies operations that can
execute locally on each data source and those that require
remote execution on it’s parent node. To illustrate, consider
a topologically sorted list of M operators from the query
graph G following dataflow dependencies of the query. Due to
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underlying resource topology, we can partition the operators
into two groups and split the query execution across the data
source and other remote nodes. To this end, we can define
a boundary operator bi for the ith data source to indicate
operators prior to bi in the topological order are executed
on data source and those after bi are executed remotely. For
instance, for a data source i with M = 4 operators, bi = 3
means first 3 operators execute on data source and the last
operator executes remotely.

Refinement model: When resource conditions change on a
data source node, the query needs to be refined i.e. a new
partitioning plan needs to be identified so that its compute
needs meet available resource budget. To initiate refinement,
data sources periodically inject refinement watermarks into the
stream (similar to [27]) and they delimit ordered consecutive
refinement epochs of records. Refinement watermarks are
different from the traditional watermark described in data
model. Epoch and watermark refer to refinement epoch and
refinement watermark respectively, in the rest of the paper.

Problem definition: We define the operator partitioning
problem as follows (Table II describes the variables used):

min
B

Nd∑
i=1

M∑
j=1

drijxij

subject to,

Tlocal(i, bi) <= Tremote(i, bi) ∀bi > 0, iε[1, Nd]

Network transfer and compute costs are incurred on stream
processor, when data is sent from data source for remote pro-
cessing. Our optimization goal is to minimize the processing
load sent to stream processor subject to the processing time not
being delayed i.e. local computation not introducing additional
delay compared to remote execution, in the processing of
each data stream from being reflected in query output. We
prove that the operator partitioning problem is NP-hard in
Section A. This is because of finite resources available on
stream processor which requires joint partitioning decision to
be made across data sources.

V. MOTIVATION FOR JARVIS

Data sources have limited compute, while query resource
demands are highly dynamic as explained in Section III-B.
Given this, we highlight the drawbacks of existing approaches
in addressing the operator partitioning problem and insights
that Jarvis provides.

(Drawback 1) Coarse-grained partitioning can significantly
undersubscribe data source node resources: Existing
works [8], [16], [22] have explored partitioning strategies
which are coarse-grained, i.e., either all records are processed
by an operator or none. To examine its limitation, we execute
the query in Figure 2 using 80% of single core (2.4 GHz),
to reflect compute constraints on data source. Figure 5 shows
that F operator drops only a small portion of input records,
so we are not able to execute the expensive G+R operator on

Data source (CPU budget: 80%)

Coarse-grained

operator-level partitioning

Fine-grained 

data-level partitioning

Op

(W)

Op

(F)
26.2 Mbps

26.2 Mbps

3.8 Mbps

Op

(G+R)

18.7 Mbps
5.6 Mbps

CPU need: 67%CPU need: 13%

Op

(W)

Op

(F)
26.2 Mbps

26.2 Mbps

22.5 Mbps

0 Mbps
0 Mbps

CPU need: 0%CPU need: 13%

Fig. 5: Coarse-grained operator vs. fine-grained data partition-
ing on data source with CPU budget of 80%. G+R requires
80% CPU to process all the output data from F operator.

data source. This leads to under-subscription of the compute
and generates network traffic as much as 22.5 Mbps.

Data partitioning is fine-grained i.e. it enables an operator to
process a fraction of its input records on data source and drain
the rest for remote processing. In this case, G+R can process
83% of its input 22.5 Mbps and greatly reduce it to result
in a total of 9.4 Mbps (5.6+3.8 Mbps) leaving data source
node. This is a significant decrease over 22.5 Mbps in operator
partitioning.
Insight 1: Extending the operator partitioning model to sup-
port data partitioning can significantly improve the utilization
of limited compute available on data source nodes.
(Drawback 2) Slow adaptation cannot keep up with
highly dynamic resource conditions on data sources: The
requirement for frequent and dynamic query refinement (as
illustrated in Section III-B) is more prevalent in practice since
data sources are shared by multiple in-flight queries which are
initiated or terminated by engineers at runtime [7], changing
the available compute per-query. Given these dynamics, query
planners need to compute and realize (i.e. execute) a new
refinement in a timely manner, even in seconds once requested.

In previous works, centralized planners leveraged global
information about available resources to solve an expensive
optimization function [8] and relied on accurate query perfor-
mance models [31], [32] to make optimal partitioning deci-
sions. Doing so is computationally expensive (see Section IV).
Other centralized and decentralized query planners have been
explored but they do not consider the dynamics resulting from
co-located monitoring queries on data sources with high vari-
ability in available compute and query resource needs [33]–
[38], [38]–[43] (details in Section IX). Jarvis investigates a
greedy approach which is embarrassingly parallel and relies
on a hybrid combination of query performance model-based
and model-agnostic techniques to partition queries on each
data source. It is fully transparent to the user with low cost
of migrating to a new refinement.Insight 2: A greedy and
embarrassingly parallel approach can enable fast and fully
decentralized query refinement on each data source, which is
accurate, scalable and automatic.

VI. JARVIS SYSTEM

Jarvis design extends conventional query computation
graphs, so it is compatible with most of the existing query
engines that express a query execution as a computation graph
of stream operators. Since the extension is done after a query
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Common variables
M Number of operators in the query
N Total number of records injected into the query in an epoch

Operator partitioning problem
Nd Number of data sources
bi biε[0,M ] to denote the index of boundary operator where the partitioning occurs for ith data source
B partition profile for the query with bi denoting boundary operator for ith data source
xij indicates whether bi = j
drij rate of data sent from data source to stream processor when bi = j
Tlocal(i, bi) computes local computation time for executing operators until bi on the ith data source
Tremote(i, bi) computes network transmission time cost of intermediate output from bthi operator to its parent node along with computation time

cost of executing operators after bi on parent node
Data partitioning problem

Opi ith operator in the query
rj relay ratio of Opj i.e. fraction of input records relayed to the next operator Opj+1 after they are consumed by Opj
ci compute cost of Opi for a single record
di number of records drained in an epoch, at the ith control proxy
C compute budget available to the query
pi ith control proxy’s load factor i.e. fraction of input records added to downstream queue and consumed by downstream operator
ei effective load factor for ith control proxy i.e. product of load factors of sequence of upstream query operators until Opi, in the

transformed optimization problem

TABLE I: Summary of variables used in the paper

compiler constructs the query graph, Jarvis is fully transparent
to users. In this section, we discuss Jarvis architecture, its
overall design and an algorithm to achieve fast and accurate
query refinement.

A. High-level Architecture
Figure 6(a) shows a user-defined a query that is submitted

to Jarvis Query Manager. Query Manager consists of a Query
Optimizer which performs query optimizations similar to
those done by state-of-the-art streaming engines [24]. Query
Manager consists of a Resource Manager, which maintains the
current list of data source and stream processor nodes, along
with their network topology in a Resource Directory. Topology
information is updated whenever nodes are added, modified, or
removed. Query Optimizer uses the node topology to generate
an optimized physical plan for each node. Query Deployer
generates the executable code corresponding to the physical
plan and deploys it on the stream processing engine running
on each node. Figure 6(b) shows how Query Manager interacts
with data source and stream processor nodes. Our work in
Jarvis focuses on changes to the query plan generation pipeline
in Query Optimizer and runtime optimizations after queries are
deployed on data source and stream processor nodes.

To realize data-level partitioning and fast query refine-
ment, Jarvis adds two new primitives to the query processing
pipeline: (i) Control proxy, a unified abstraction for stream
operator and (ii) Jarvis runtime, a system runtime that coor-
dinates executions of all control proxies. Control proxy is a
light-weight operator bridging two adjacent stream operators
and decides “how many” records shall be forwarded to the
next downstream operator in the pipeline. Therefore, control
proxy implements data-level partitioning at operator level.
Jarvis runtime interacts with all control proxies within the data
source node to coordinate their data-level partitioning actions,
enabling a refinement plan at query level.

Jarvis modifies the query optimization pipeline to enable
adding control proxy between adjacent stream operators. The

Query = Stream
.Window(10_SECONDS)
.Filter(e => e.errorCode == 0)
.GroupApply(e.srcIp, e.dstIp))
.Aggregate(c => c.avg(rtt) && 

c.max(rtt) && c.min(rtt))

Query Manager

Query Optimizer

Query Deployer

Resource

Directory

Resource 

Manager

Declarative 

query User

(a)

: Root SP : Intermediate SP

: Data source node

… …

…

…

…
…

Building block

Query 

Manager

(b)

Fig. 6: (a) Architecture for Jarvis query manager, (b) Archi-
tecture for the full monitoring pipeline. SP refers to stream
processor and L0 to LH refer to the hierarchy levels in a tree
topology of height H .

optimized query is deployed onto data source and stream
processor nodes. Figure 7 illustrates the query plan deployed
on data source and stream processor for the running example
query presented in Figure 2. Jarvis runtime deployed at each
data source configures control proxies to execute a data-level
partitioning plan which minimizes network transfer cost within
compute budget on data source. Jarvis runtime continually
probes the state of control proxies to observe their query
state. If it detects changes to query resource conditions, a new
data-level partitioning plan is computed for the query. Note
that all partitioning decisions are made locally on each data
source without relying on an external planner nor requiring
coordination between data source and stream processor.

B. Query Plan Generation

Monitoring queries may consist of sequence of opera-
tors; complex queries may join results of two different sub-
queries [8]. Given the difference in compute capabilities and
limitations in type of operations that can run on data source
and stream processor, Query Optimizer generates custom
query plans to deploy on the nodes.
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We reuse the query plan generation mechanism for existing
streaming engines [44]. The input query is parsed to do
syntactic checks and then logical optimizations (e.g., constant
folding, predicate pushdown) are introduced to produce a logi-
cal plan. The optimized logical plan is used to generate a phys-
ical plan for deployment and execution. Jarvis additionally
inserts a control proxy between each of the adjacent stream
operators in the logical plan, for deployment to data source
and intermediate stream processor nodes. Jarvis runtime is
also deployed on data sources. Certain operations such as non-
incremental updates cannot be supported in the data source and
intermediate stream processors. Resource constraints further
limit the operations that can be supported on data sources.
Jarvis performs rule-based physical optimizations to account
for such constraints. We describe below the rules to identify
operations which cannot execute on data sources:
• [Rule 1] Aggregation operations that are not incrementally
updatable, such as exact quantiles. However, their approximate
versions, such as approximate quantiles [30], [45], can benefit
from Jarvis.

• [Rule 2] Downstream operators succeeding stateful opera-
tions that require aggregation across multiple data sources.

• [Rule 3] Stateful joins across streams. Prior work [8] has
also excluded such operations because they are expensive and
may not reduce data that needs to be sent out of data source.

• [Rule 4] Multiple physical operators for the same logical
operator, which parallelize operator execution (e.g. [31]). Data
sources have constrained compute budget; hence, benefits of
exploiting operator parallelism are limited.

All rules except the fourth rule apply also to intermediate
stream processors. As the latter are dedicated to run moni-
toring queries, hardware-level parallelism can be exploited to
accelerate query operators. It may appear that the first rule
limits queries that can leverage Jarvis. However, a significant
number of real-world queries use operators that support incre-
mental updates. For example, Drizzle [46] has reported 95%
of aggregation queries on a popular cloud-based data analytics
platform consist of aggregates supporting incremental updates,
such as sum and count.

We note that after applying above rules, queries deployed
on data sources typically consist of sequences of operators.
Hereafter, while discussing query refinement on data sources,
we restrict our discussion to operator sequence graphs. Never-
theless, our approach is extendable to handle graphs with split
patterns that may execute on data sources—i.e., one operator
output is an input to multiple downstream operators, and we
leave this for future work.

C. Dynamic Query Refinement

After queries are deployed, a data-level partitioning plan is
implemented by Jarvis runtime by guiding each control proxy
to select a portion p (i.e., 0 ≤ p ≤ 1) of incoming data to be
inserted to the downstream queue and subsequently consumed
by the downstream operator. Remaining data is drained over
the network to be processed by the stream processor is routed
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Fig. 7: Jarvis rewrites a query to incorporate control proxies
and Jarvis runtime. Data path: routing path for incoming data;
Control path: interaction between control proxies and Jarvis
runtime.
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Fig. 8: Jarvis runtime state machine.

to the control proxy associated with the same downstream
operator. Hereafter, we refer to the p value configured for each
control proxy as its load factor.

Unlike prior work that physically splits a query, our query
partitioning scheme “replicates” query operators across the
nodes. This approach simplifies scenarios that require switch-
ing to a new partitioning plan by locally updating load factors
of each control proxy. Jarvis runtime orchestrates load factors
through query refinement at an epoch granularity. During
epoch processing, each control proxy monitors its downstream
operator, and at the end of each epoch, it updates the state of
the operator to one of three states: (i) Congested: operator
contains more than a predefined number of pending records,
experiencing backpressure; (ii) Idle: operator stays empty
for longer than a predefined time duration; and (iii) Stable:
operator is neither congested nor idle. Jarvis runtime collects
state information from all control proxies per epoch and clas-
sifies current data-level partitioning plan as non-stable if all
operators are idle or at least one operator is congested. Upon
identifying the query as non-stable, Jarvis runtime triggers
adaptation to bring the query back to the stable state.

Figure 8 shows the interplay between Jarvis runtime and
control proxies and the overall workflow with different oper-
ational phases:
• Startup: initialization. All load factor values are initialized
to 0 (the smallest value), so all stream records are processed
by stream processor.

• Probe: normal operation. At the end of every epoch, Jarvis
runtime executes ProbeCP() function to query all control
proxies and determine their congestion states. It continues to
do so until it identifies the computation pipeline as congested
or idle. After that, the runtime enters Profile phase.

• Profile: query plan diagnosis. When the query is congest-
ed/idle, Jarvis obtains new estimates for the following during
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Fig. 9: Computation graph of M operators and parameters used
by Jarvis for updating load factors in control proxies.

profiling phase: (1) compute cost of each operator by executing
an operator at a time on the incoming epoch, (2) reduction
in size of input stream by executing each operator, and (3)
available compute budget for the query. These estimates are
used to adapt load factors in the next Adapt phase.3.

• Adapt: load factor adaptation. After profiling, Jarvis
runtime executes an adaptation algorithm for computing a
new data-level partitioning plan. Initial load factors are first
calculated using the profiling estimates and set for each control
proxy. Jarvis runtime executes ProbeCP() to probe the
query state and perform iterative fine-tuning if necessary, until
the computation pipeline is back to stable state. At this point,
it returns to Probe phase.

Small workload variation when in congested state or idle
state can trigger a series of profile-adapt phases that put the
control system in an oscillating behavior with small impli-
cations on the optimal load factors. To avoid this undesired
behavior, each control proxy is configured with a threshold
fraction of epoch records (DrainedThres) that can be
drained by control proxies and tolerated by ProbeCP()
without signaling congested state. Similarly, each control
proxy is configured with a threshold fraction of epoch duration
(IdleThres) that allows control proxies to stay idle and can
be tolerated by ProbeCP() without signaling idle state.

Supporting multiple queries in data sources reqiores that
a single Jarvis runtime instance is dedicated to a single
individual query; each instance refines its query independently.
When allocating the compute budget of data source node
to the competing monitoring queries, Jarvis uses a popular
fair resource allocation policy, such as non-weighted max-min
fairness [47] without any loss in generality. Available budget
per query is obtained by considering the number of queries and
total compute available for the queries on data source node.

D. Computing Data-level Partitioning Plan

Jarvis runtime in its Adapt phase needs to compute a new
data-level partitioning plan to bring the query back to stable
state. This is done by solving an optimization problem to
compute initial load factors and then iteratively fine-tuning
load factors if needed, to stabilize the query.

1) Problem Definition: Consider a computation pipeline
as shown in Figure 9 which contains M operators. Table II
summarizes the variables used. For each control proxy, guided
by its load factor, a record will be either pushed to the
downstream operator or drained. We want to minimize the total

3Profiling estimates can still improve convergence time even if they do
not exactly match the compute cost during normal operation (Section VI-D.)

Summary of variables used in the paper
M Number of operators in the query
N Total number of records injected into the query in an epoch
Opi ith operator in the query
rj Relay ratio of Opj i.e. fraction of input records relayed to the

next operator Opj+1 after they are consumed by Opj
ci Compute cost of Opi for a single record
di Number of records drained in an epoch, at the ith control proxy
C Compute budget available to the query
pi ith control proxy’s load factor i.e. fraction of input records added

to downstream queue and consumed by downstream operator
ei Effective load factor for ith control proxy i.e. product of load

factors of sequence of upstream query operators until Opi, in the
transformed optimization problem

TABLE II

number of drained records (i.e.
∑M
i=1 di) from data source

given the compute budget C available to the query. This yields
the following optimization formulation:

min
p1,p2,...pM

M∑
i=1

[

i−1∏
j=0

pjrj ](1− pi) (1)

subject to
M∑
i=1

[

i−1∏
j=0

pjrj ]pici ≤ C/N, (2)

0 ≤ pi ≤ 1, 0 ≤ ri ≤ 1, ci ≥ 0 ∀ i ε [1,M ], p0 = 1, r0 = 1

N , M , and C are fixed for an instance of the problem.
Unfortunately, there are two challenges in solving this

optimization problem. First, it can be proved that Hessian
matrix is not positive semi-definite even for the two-variable
cases, resulting in a computationally hard non-convex for-
mulation [48]. While it is possible to enumerate all possible
combinations of load factor values, doing so is expensive for
online optimization. Second, the formulation assumes certain
conditions, which may not always be satisfied in practice. For
instance, to estimate ci accurately, each operator needs to be
evaluated on a sufficient number of input records. As seen
in Section ??, for grouping operation, ci is affected by the
number of groups in input data which can change at runtime.
Furthermore, relay ratio ri can vary non-linearly for grouping,
as it is affected by grouping key distribution in the input.

2) StepWise-Adapt Algorithm: We now describe how Jarvis
deals with the data-level partitioning problem. Jarvis employs
our StepWise-Adapt, a novel hybrid algorithm that combines
two techniques: (i) a model-based technique which searches
for near-optimal load factors based on the modeling assump-
tions of data-level partitioning problem defined in Equation 1.
and (ii) a model-agnostic technique that monitors query ex-
ecution using load factors obtained from step (i) and fine-
tunes them if the query behavior deviates considerably from
stable state—i.e., the available resources are either over/under-
subscribed by the query. For fast fine-tuning, step (ii) uses a
heuristic inspired by first fit decreasing heuristic for bin pack-
ing problem [49], to prioritize load factor updates of operators
that contribute significantly to network data reduction.

We observe that the cost of solving data-level partitioning
is very sensitive to the nature of transformation applied to
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the problem. For example, we transformed the problem to a
geometric program (GP) [50] for a small scale instance of
the problem with just 2 optimization variables. When varying
different parameters in the optimization, GP solver takes up to
7 seconds for solving the problem using CVXOPT solver [51]
on a machine with four 2-GHz i7 CPUs. This is expensive
for the fast convergence requirement of query refinement.
To enable online optimization, we thus identified another
simple transformation of the original problem that converts
it into a linear program (LP). The transformation is done by
introducing a new optimization variable ei for the ith control
proxy where ei =

∏i
j=0 pj . Then the optimization problem in

Equation 1 can be rewritten as:

min
e1,e2,...eM

M∑
i=1

[(

i−1∏
j=0

rj).(ei−1 − ei)] (3)

subject to

M∑
i=1

[(
i−1∏
j=0

rj).ei.ci] ≤ C/N,

0 ≤ ei ≤ ei−1 ∀ i ε [1,M ], e0 = 1

Rest of the conditions on N,M,C, ci, ri remain the same as
in the original formulation. When resource change occurs on
data source, load factors need to change to stabilize the query.

A feasible solution provided by LP solver assumes that op-
erator relay ratios/costs of operators are fixed and independent
of load factors. However, if these parameters are unsteady or
vary non-linearly, the solver provides load factors which would
either over-subscribe or under-subscribe the compute budget,
making the query execution unstable. To address the issue,
StepWise-Adapt takes a post-LP solver step to further tune
the load factors. In this step, StepWise-Adapt observes the
congestion state of the query after it executes an epoch with
current load factors of control proxies and updates them based
on priorities of their downstream operators. An operator that
has the lowest data relay ratio is assigned the highest priority,
and StepWise-Adapt aims to increase its load factor first when
a query is in idle state. For a query in congested state, load
factor for the operator in the lowest priority will be decreased
first. In this way, we can give more resources to operators that
potentially bring about larger data reduction. All the informa-
tion necessary for StepWise-Adapt is unknown beforehand,
but can be readily obtained with profiling. Note that a high
priority operator may have a high compute cost, but since our
objective is to minimize the network transfer cost within the
compute budget, we choose to find the smallest number of
load factor updates to fully utilize available compute.

Fine-tuning strategy. We update load factors obtained in
the previous step (per LP solver) based on operator priorities,
which are determined based on relay ratio of each operator.
If a query is idle, we increase the load factor for the highest
priority operator that is not fully executing yet—i.e., p < 1.
In contrast, if a query is congested, we reduce the load factor
for the lowest priority operator that is still executing—i.e.,

p > 0. When updating load factors for an operator, we
execute a binary search over discretized load factor values
of the operator to improve convergence time—i.e., from the
current load factor to the maximum value in idle state or to
the minimum value in congested state.

Jarvis limitations. Our greedy approach may incur pro-
cessing latency overhead. This overhead can be limited by
configuring the epoch size for making partitioning decisions.

VII. IMPLEMENTATION

Jarvis is implemented using lightweight query execution
runtime Apache MiNiFi [52] for data source side and Apache
NiFi [53] for stream processor side runtime. RxJava is used
to implement query computation pipelines within NiFi/MiNiFi
custom processors. Kryo serialization framework [54] is used
for transferring data over the network between data source and
stream processor nodes. We highlight implementation issues
that Jarvis addresses.

Maintaining streaming semantics. Input records may be
processed by all query operators on data source or drained
via one of the intermediate control proxies based on their
load factors. For accuracy, a watermark must be present in the
regular execution path after processing all operators, as well
as the drained path at each control proxy. So if records are
drained by control proxy, it replicates the watermark in both
regular and drained paths. On stream processor, each control
proxy receives records from upstream operator on the node
and corresponding control proxy on data sources. Records in
both the paths are demarcated by watermarks. To consume
records from multiple streams, we use the methodology used
by Flink [55]. Each operator advances its time based on the
minimum of all it’s incoming input streams’ event times.

Merging results at stream processor. When control proxy
on data source drains records in an epoch, it attaches an ID
with records for receiver control proxy on stream processor to
continue execution. If preceding operator is stateless, control
proxy sends drained records to corresponding control proxy
on stream processor. However, if preceding operator is stateful
and requires aggregation across multiple data sources, control
proxy sends records to a downstream merge operator on stream
processor to perform global aggregation.

Externalizing operator results on time: Congestion control
method in Jarvis is designed for continuous stream compu-
tation model [56]. Therefore, to estimate congestion state for
each operator precisely, all query operators must externalize
computed results continuously to the next operator. With the
implementation of G+R operator in RxJava, this was not the
case as it collects all epoch records during grouping into a hash
table and externalizes it with grouped records when an epoch
ends. This does not reflect processing and idle time of next
operator R as records never arrive during the current epoch,
reporting an inaccurate congestion state and breaking our
query refinement algorithm. We address this issue by dividing
an epoch into sub-epochs and externalizing grouping results on
a sub-epoch basis. This does not require changes on stream
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operators; instead, it requires each control proxy to initiate
query refinement only when the control proxy encounters end
of the epoch, not sub-epoch. Jarvis currently divides an epoch
into 100 sub-epochs.

Probing downstream queues. Some streaming engines may
hide the operator’s internal queue state by abstracting data
transfer between two operators with well-defined APIs [57].
Our RxJava based implementation also shared this concern
originally. We address it by forcing synchronous queueing on
the incoming data stream. This allows us to manage our own
custom queues external to query operators, and the queueing
time of records in the queue can correctly reflect the processing
time for the operator.

VIII. EVALUATION

We evaluate the effectiveness of Jarvis in improving the
system throughput and in quickly adapting query partitioning
plans to dynamic resource conditions at the data source.

A. Methodology

Testbed setup. For experiments in Section VIII-B, VIII-C
and VIII-D, we deploy our data source on Amazon EC2
t2.micro nodes, each with one Intel Xeon E5-2676 core operat-
ing at 2.4GHz and 1 GB RAM running Ubuntu 16.04. For the
experiment of multiple queries in Section VIII-E, we exercise
2 data source cores by deploying Amazon EC2 t2.medium
node with two Intel Xeon E5-2686 cores operating at 2.4 GHz
and 4 GB RAM, running Ubuntu 16.04. A stream processor
instance is deployed on an Amazon EC2 m5a.16xlarge node
with 64 AMD EPYC 7000 cores operating at 2.5GHz, with
hyper-threading disabled, and 256 GB of memory running
Ubuntu 16.04. Data source nodes are connected to stream
processor with 12 Gbps Ethernet link. We use cpulimit [58]
to control the available compute budget for a query running
on a data source node and wondershaper [59] to shape the
effective uplink bandwidth of a single data source node.

We conduct our experiments on two types of setups: (i) a
single data source node connected to a single stream processor
node to evaluate performance of partitioning and adaptation
strategies in Jarvis, and (ii) multiple data sources (up to
250 nodes) connected to a single stream processor node to
evaluate Jarvis as we scale number of data sources. For
each experiment, the first three minutes are used to warm
up the system and the next five minutes are used to obtain
performance results.

Performance metrics. We measure query processing through-
put in Mbps (megabit per second) with a latency bound of 5
seconds, epoch processing latency in seconds, and convergence
duration in number of epochs after resource conditions change.

Workloads. We use two datasets: (i) Pingmesh dataset as
described in Section ?? and (ii) text-based logs LogAnalytics
which includes tenant name, job running time in milliseconds
along with CPU and memory utilization for handling tenant-
wise performance issues for jobs running in an analytics
cluster. We run the following queries:

• S2SProbe (Listing 1) that runs on Pingmesh dataset, with
the filter predicate delivering 14% filter-out rate.

• T2TProbe (Listing 2) that runs on Pingmesh dataset. It uses
join operator to measure network latency aggregates for ToR-
to-ToR pairs by joining the input stream with a table that maps
server IP address to its ToR switch ID.

• LogAnalytics (Listing 3) that runs on LogAnalytics dataset.
It parses unstructured logs to extract per-tenant latency and
resource utilization. It then bucketizes the data to output his-
tograms for tenant-wise job latencies and resource utilization.

Stream
.Window(10_SECONDS).Filter(e => e.errorCode

== 0)
.Join(m, e => e.srcIp, m => m.ipAddr, (e,m)

=> (e, srcTor=m.torId))
.Join(m, e => e.dstIp, m => m.ipAddr, (e,m)

=> (e, dstTor=m.torId))
.GroupApply((e.srcToR, e.dstToR))
.Aggregate(c => c.avg(rtt) && c.max(rtt) && c

.min(rtt))

Listing 2: A temporal query for ToR-to-ToR latency probing.
m is a table to map server IP address to its ToR switch ID.

patterns={"*tenant name*", "*job running time
*","*cpu util*","*memory util*"}

Stream
.Window(10_SECONDS)
.map(l -> l.trim().toLowerCase())
.filter(l -> patterns.stream().anyMatch(s->l.

contains(s)))
.map(j -> new JobStats(j.split(’=’)))
.map(j -> j.stat = width_bucket(j.stat, 0,

100, 10))
.groupapply(j.tenant_name,j.stat_name, j.stat

)
.aggregate(c -> c.count())

Listing 3: A text query for computing histogram data for per-
tenant analytics job latency and resource utilization. JobStats
is an object to store job related information.

• S2SProbe, described in Listing 1, running on Pingmesh
dataset, with the filter predicate delivering 14% filter-out rate.

• T2TProbe, described in Listing 2, running on Pingmesh
dataset. It uses join operator to measure network latency
aggregates for ToR-to-ToR pairs by joining the input stream
with a table that maps server IP address to its ToR switch ID.

• LogAnalytics, described in Listing 3, running on LogAna-
lytics dataset. It parses unstructured logs to extract per-tenant
latency and resource utilization information. It then bucketizes
the data to generate histograms for tenant-wise job latencies
and resource utilization.

For Pingmesh, we assume latency probing in a large-scale
datacenter where more frequent probing occurs to include
enough data for statistical significance. Specifically, guided
by [2], we set each server to probe 20K other servers at a time
interval of 5 seconds. As a probe record is 86B, each server
generates data approximately at 2.62 Mbps. For LogAnalytics,
guided by [11] which reports text log data generated at 10s
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Fig. 10: S2SProbe throughput plot.
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Fig. 11: T2TProbe throughput plot.
Stream joined with table of size 500.
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Fig. 12: LogAnalytics throughput plot.
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Fig. 13: S2SProbe convergence.
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Fig. 14: T2TProbe convergence.
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Fig. 15: LogAnalytics convergence.

PB per day across 200K data source nodes in a production
system, we set each server to generate 0.62 MBps (or 4.96
Mbps) of log data. For experimentation purpose, we scale up
the data generation rate by 10x, i.e., 26.2 Mbps for Pingmesh
and 49.6 Mbps for LogAnalytics per data source node.

Network configuration. The number of data sources sup-
ported by a single stream processor node depends on the
compute and network resources available on stream proces-
sor. Based on conversations with engineers at a large scale
datacenter operator, we find that monitoring pipelines can
typically have up to 250 data source nodes sending log data
to a single stream processor node. And backed by estimates
in [8], we assume we have around 20 monitoring queries that
concurrently run on each data source. We also assume that
a stream processor node would have a network link of 10
Gbps [16]. For ease of experiment, we assume this bandwidth
is fairly utilized across 250 nodes and 20 queries per node,
allowing 2.048 Mbps effective bandwidth per query per data
source node. We again scale up the obtained bandwidth by
10x to match with data rate scaling.

Baseline systems. We compare Jarvis with various baseline
systems, including (i) All-SP that runs a query entirely on
stream processor node, (ii) All-Src that runs a query entirely
on data source (i.e., Gigascope [17]), (iii) Filter-Src that
applies static operator-level partitioning and runs only filter
operations on the data source node (i.e., Everflow [16]), and
(iv) Best-OP that applies dynamic operator-level partitioning
and runs the best part of query obtained from a query planner
on the data source node (i.e., Sonata [8]).

B. Query Throughput Analysis

We use the single data source setup to evaluate query
throughput for different partitioning strategies. As compute
may be shared with other queries, we perform a sensitivity
analysis by varying the available compute between 0-100%
of a single core. We note that Jarvis incurs little overhead,
consuming less than 1% of a core while profiling operator
states and making adaptation decisions.

S2SProbe query. Figure 10 shows the results of query
throughput on S2SProbe. Jarvis outperforms other techniques
in the 40-80% CPU budget range, with throughput gains of
2.6x over All-Src at the 60% budget and 1.25x over Best-OP
at the 80% budget. The query requires nearly 85% CPU to
execute entirely on data source. Thus, All-Src cannot meet
the processing rate requirements at budgets lower than 80%
CPU. At 80% CPU, Best-OP hits compute bottleneck and runs
G+R operator on stream processor, thus making it bounded by
the network. Best-OP executes F and G+R operators on data
source only at 100%.

Jarvis partially processes the input of the G+R operator
within available compute to reduce network traffic. In com-
parison, All-SP is restricted by available network bandwidth,
and thus its throughput does not change with available CPU.
Filter-Src always processes F at the source as its compute cost
is only around 13%. However, it is still limited by network
bandwidth as F is not effective in filtering out data.

T2TProbe query. Figure 11 shows the results of query
throughput on T2TProbe. This query requires more than a
core to execute due to expensive J operator. Thus, All-Src
cannot handle the input rate even at 100% CPU, and its
throughput declines drastically as CPU budget lowers further.
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Jarvis does data-level partitioning on the query to process the
input partially on J operator, thereby reducing network traffic,
outperforming other techniques in the 40-100% CPU range.
Jarvis performs 4.4x better than All-Src at 40% CPU and
1.2x better than Best-OP between 60-100% CPU range. Note
that J operator is followed by a project on the fields srcToR,
destToR and rtt, so output size of project is less than input size
of J operator, leading to data reduction. Both Filter-Src and
Best-OP execute only F at the source while Best-OP cannot
accommodate J operator even at 100% CPU.

LogAnalytics query. LogAnalytics is relatively cheaper and
uses 31% CPU to process the input at 49.6 Mbps. Nonetheless,
Jarvis does data-level partitioning to reduce compute cost
at 20% CPU budget, outperforming Best-OP by 1.5x. All-
Src shows lower throughput than Jarvis at 20% CPU as it
is resource constrained. Filter-Src executes filtering on data
source, but is bound by network cost due to low filter-out
rate. On the contrary, Best-OP can perform the filter and map
operators at the source, thus outperforming Filter-Src. All-SP
is always bound by the network, and hence Jarvis outperforms
it by 2.3x in the 40-100% CPU range.

Summary. Our results show Jarvis provides higher throughput
(1.2-4.4x) in scenarios where compute resources are con-
strained on data source. The throughput gains are higher when
query is compute- or network-bound.

C. Convergence Analysis

We evaluate how fast Jarvis adapts to changes in resource
conditions on data source by measuring the convergence
time in number of epochs. We compare convergence time
of StepWise-Adapt in two different configurations: (i) with
LP init which initializes load factors using the LP solver and
(ii) without LP init which initializes load factors to zero. We
show that Jarvis converges in a few one-second epochs after
resource change occurs. On the contrary, Sonata [8] may take
several minutes to compute a new query plan.

S2SProbe query. As shown in Figure 13, We vary the
available compute on the data source by starting with 10%
CPU, then switching to 90% CPU in the 3rd epoch, and finally
reducing CPU down to 60% of the CPU to cause congestion
in the 18th epoch. Note that three epochs are required to
detect that compute budget has changed to avoid triggering
adaptation due to scheduling noise in the system.

When the budget is increased from 10% to 90% CPU, Jarvis
reduces the convergence time from six epochs down to one
epoch when employing initialization using LP (With LP-init).
When CPU drops from 90% to 60%, the query reaches a
stable state within two and four epochs with and without LP
initialization, respectively. The additional epoch for the LP-
Init is required because profiling within a one-second epoch
is not sufficient for G+R to process all records, resulting in
less accurate estimates for the cost of G+R.

T2TProbe query. Performance of a join-bound query is
affected by the size of the static table. As shown in Figure 14,
we vary the available compute and the size of the static table

by starting with 10% CPU and a static table of size 50,
then switching to 100% CPU in the 3rd epoch, and finally
increasing the static table size by 10x to cause congestion.

Jarvis reduces convergence duration from 11 epochs (with-
out LP init) to 7 epochs (with LP init) when the budget is
increased to 100%. The high convergence of the LP initial-
ization is attributed to the fact that the expensive J operator
cannot be executed on all records to get accurate profiling
estimates. As a result, the downstream G+R operator is not
profiled accurately. Thereafter, fine-tuning plays a critical role
in stabilizing their load factors. When join table size increases,
the compute cost of J operator increases leaving no resources
for G+R to execute. It takes five and three epochs to converge
without LP init and with LP init.

LogAnalytics query. We evaluate Jarvis while varying input
rates and fixing compute budget to 25% CPU. We start with
an input rate of 49.6 Mbps causing congestion as the query
requires 31% CPU. We then reduce the rate by almost half, to
25 Mbps causing the query to idle. We finally increase the rate
up to 80 Mbps. Figure 15 shows that when input rate drops to
25% in the 3rd epoch, StepWise-Adapt converges immediately
with LP init while it requires three epochs to converge without
LP init. When the input rate is increased to 80 Mbps in the
14th epoch, the query takes five epochs to converge without LP
init, and with LP init, it takes only three epochs to converge.

Simulator-based analysis. We further analyze the potential
benefit of LP solver in terms of convergence cost as we
increase the number of query operators. We simulate the query
execution guided by the execution behavior captured by query
refinement problem in Section VI-D1. By varying different
parameters in the query refinement problem formulation, we
obtain a range of possible convergence costs for each value
of M i.e. number of query operators. Figure 17 shows that
the convergence time can go up to 21 epochs in the worst
case for 4 or more operators. The curve levels off at about
21 epochs because we fixed the input rate. Taking 21 epochs
to converge is not fully satisfactory if the goal is to adapt to
resource changes in the order of a few seconds. This analysis
shows that using only fine-tuning in StepWise-Adapt with
fixed load factor initialization can incur a high convergence
cost with larger M , indicating that LP solver is indispensable
in StepWise-Adapt especially when a given query includes a
number of operators.

Summary. On one hand, a model-based approach relying
on LP solver to determine load factor is quite effective in
reducing convergence time if an accurate profiling of the
operators can be obtained. On the other hand, fine-tuning is
critical to stabilize the query if the profiling is not accurate.
Previous model-based approaches [8] cannot fully rely on
online profiling as they do not have a fine-tuning mechanism to
stabilize the query. Our hybrid approach achieves convergence
within a few epochs for various resource conditions.
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Fig. 16: Throughput for multiple data source nodes at different input rates
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Fig. 17: Convergence time in number of epochs as we increase
number of query operators. 150K records per epoch.

D. Multiple Data Source Nodes

We discuss the efficacy of Jarvis when multiple data sources
are sending data to a single stream processor node. We com-
pare Jarvis and Best-OP, i.e., the state-of-the-art in dynamic
operator-level partitioning, on S2SProbe query while varying
the following dimensions: (i) number of data source nodes and
(ii) input data rate per data source node.

We start with the input rate of 26.2 Mbps for Pingmesh,
which is scaled by 10x over the calculated rate for this dataset.
On each data source, we set CPU to 55% to ensure that Best-
OP executes only the F operator while not fully utilizing
the given CPU budget. Figure 16(a) shows the results as
we increase number of data sources. In Best-OP, F operator
does not reduce data significantly so the policy suffers from
network bottleneck as soon as we increase the number of
data sources. However, Jarvis scales up to 32 nodes without
throughput degradation. Further scaling stops due to network
bottleneck while peak compute usage on stream processor
was at 24 cores. Beyond 32 nodes, we observe backpressure
which causes epoch processing latency to grow, and number
of data sources for which no data is being received on stream
processor increases.

We now decrease input rate to 13.1 Mbps (5x scaling) on
each data source and set available CPU to 30%, to reflect
the change in query compute demand from decreasing input
rate. Figure 16(b) shows that Best-OP scales to 40 nodes after
which it becomes network bottlenecked. Jarvis scales up to
nearly 70 nodes, 75% improvement in number of data sources
supported over Best-OP. When we further reduce input rate
to 2.62 Mbps in Figure 16(c) and allocate 5% CPU to the
query, Best-OP starts to degrade in throughput at 180 nodes
while Jarvis is seen to scale even for 250 data sources, an 39%
improvement.

Epoch processing latency. Jarvis also improves epoch

processing latency as a result of network traffic reduction.
Based on the observed epoch latency distributions, we note
for example, that Jarvis improves median latency of Best-OP
by around 3.4x in the configuration with 5x scaling and 40 data
sources, when both policies are able to handle the input data
rate. Moreover, Best-OP exhibits 1.8 and 5.2 seconds for the
median and max latency, respectively, which are much larger
than 500 ms and 2 seconds for the two measures in Jarvis. For
configurations where Best-OP could not keep up with input
data after it hits network bottleneck, such as 5x scaling with
60 nodes, we see max latency of Jarvis to be within 5 seconds
while Best-OP latency grows beyond 60 seconds.

E. Multiple Queries on Data Source Node

The goal of this experiment is to investigate potential
interference when we execute multiple queries on a data source
node with Jarvis. For this experiment, we measure aggregate
query throughput as we increase the number of S2SProbe
queries on a single data source. Similar to Section VIII-D, we
restrict the total memory capacity to 1 GB, while fixing load
factors so the query utilizes 55% CPU for input rate of 26.2
Mbps (i.e., 10x scaled). We vary the following dimensions:
(1) input data rate per query and (2) number of cores on data
source. Figure 18 shows the results.

Under system stress at 10x input scaling, single-core
throughput saturates at 2 queries given per-query CPU cost.
Two-core throughput does not increase beyond 3 queries,
indicating saturation at 70 Mbps. At 5x scaling, per-query
CPU cost drops to 30% and Jarvis supports up to four and
six queries on a single- and two-core setup, respectively. At
no input scaling, Jarvis supports 15 queries and 25 queries
with one and two cores, respectively. We observe that there
is no significant interference from resources such as memory
bandwidth until the system is bottlenecked by either compute
or network. Furthermore, with query partitioning, as we add
more queries, Jarvis can adapt to support more queries for a
given compute budget.

IX. RELATED WORK

Streaming query optimizations. Several runtime query op-
timizations, such as operator scaling [31], [60], [61], operator
reordering [62]–[65] and resource allocation [66], [67] have
been investigated for streaming systems which are comple-
mentary to our work. For operator placement, Turbo [33]
and Sparrow [34] have looked at decentralized scheduling
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Fig. 18: Throughput for multiple queries on data source, at different input rates

for batch processing. Several decentralized placement tech-
niques for streaming [35]–[37], [41], [43], [68] focus on
reducing network usage. Similarly, cost model-based query
planners have been explored for placement [33]–[38], [38]–
[43]. Cardellini, et.al. [42] proposed a decentralized scheme
that combines query cost model and reinforcement learning to
meet application throughput requirements for operator scaling.
These works do not consider partitioning under highly variable
data source resources.
Near-data stream computations. State-of-the-art approaches
on alleviating network and stream processor resources target
analyzing network packets and are mostly based on operator-
level partitioning. EverFlow [16] and dShark [22] apply light-
weight operations on commodity network switches and com-
puting nodes near data source, respectively. Gigascope [17]
classifies operators based on domain-specific knowledge and
pushes low-cost operators close to data source. Sonata [8]
utilizes an ILP solver to optimize operator-level partitioning,
but at the cost of latency as high as 20 minutes. These
approaches neglect data-level partitioning and/or are based on
expensive centralized query refinement.
Stream computations on the edge. EdgeWise [69] is a
streaming engine that incorporates a scheduler for congestion
control to improve throughput and latency by prioritizing
operators whose queues experience backpressure.
Wide-area streaming analytics. Novel streaming systems
have been designed to operate efficiently on low-bandwidth
networks, such as wide-area network (WAN). Sol [70] in-
troduces an early-binding of analytics tasks to workers and
dedicated communication tasks to improve resource utilization
over WAN. AWStream [71] trades off accuracy for WAN
bandwidth by controlling the sampling of data. MQO [72]
provides a technique to share input/output data and operators
across stream queries, saving WAN bandwidth.

X. DISCUSSION

Scaling to more data sources. Jarvis optimizes a core build-
ing block, composed of a single stream processor node and a
number of data sources as high as 250. As the number of data
sources increases, Jarvis replicates the core building block,
resulting in a set of intermediate stream processor nodes; each
node aggregates results obtained from its data source nodes.
A root node computes the final query result by aggregating
results obtained from intermediate stream processor nodes.

As there is no communication between building blocks, the
system can scale better with improved scaling of the core
building block and availability of upstream network bandwidth
between intermediate nodes and the root node.
Fault tolerance. We are currently extending Jarvis to support
recovery in case of node failures. When data source fails, no
further data is generated from that node. Intermediate state
accumulated by the data source for the current processing
window can be periodically checkpointed by re-using the path
used for draining data from control proxies. The stream pro-
cessor node identifies data source failures (using heartbeats)
and reads the latest checkpoint for the node and processes
the remaining data for the current window. When the stream
processor node fails, its processing state can be checkpointed
using existing fault recovery techniques [73] so that a new
node can restart processing from the last checkpoint. However,
an external data store may need to be updated by stream
processor so that data sources can read its last successful
checkpoint. Data sources can then replay records as they
contain the upstream query operators.
Internet-of-things (IoT) analytics. The techniques investi-
gated in Jarvis can be applied to IoT scenarios where billions
of devices can sense, communicate, compute and potentially
actuate. IoT scenarios exhibit similar constraints as the ones
assumed in our work, mainly network bandwidth (e..g, WAN)
and limited compute and power resources.

XI. CONCLUSION

We presented Jarvis, a fully decentralized data-level query
partitioning engine for server monitoring systems. Our analysis
using real-world monitoring query workloads showcased that
Jarvis substantially improves the system’s throughput while
adapting to changes in resource conditions within seconds.

APPENDIX A
COMPUTE COST OF OPTIMAL QUERY PARTITIONING

Consider the hierarchical architecture of resource nodes in
Figure 6 where each node in the tree topology can commu-
nicate with its parent node. A query with M operators are to
be executed on monitoring stream being generated on data
sources. Each data source has a query instance which can
be represented as a computational pipeline of operators as
vertices and edges denoting dataflow dependencies. On the
stream processor side, a fixed number of compute nodes are
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provisioned for processing the query on data from all data
sources. Each data source needs to identify operators which
need to be executed locally vs. those that require remote
execution on parent node. Due to dataflow dependencies, we
can partition the query graph at M +1 possible locations in
the graph i.e. a partition splits the operators into two sets.
Operators before the partition point are executed on data
source and those after the partition are executed remotely.
As an example, for a data source i with M = 4 operators,
piε[0,M ] represents the operator where partition occurs. So
pi = 3 means first 3 operators execute on data source and the
last operator executes remotely.

Compute resources on stream processor are used to process
operators sent for remote execution after partitioning. Data
transport also incurs a network overhead cost. Our goal is to
parallelize query processing between compute resources on
data source and stream processor nodes, while minimizing
the utilization of finite compute and network resources on
stream processor. As we increase the number of data sources,
processing load increases on the system. And the processing
load from different data sources can result in network/compute
bottleneck on stream processor, hurting query processing time.
Thus, we cannot independently partition operators for each
data source, instead joint partitioning decision needs to be
made across data sources. When the remote resources are
saturated, it is more beneficial for the data source to execute
operators locally to avoid long processing time.

Let p denote the partitioning profile for a query, where pi
denotes query partition point for ith data source. We now
define the following query partitioning problem as follows:

min
p

Nd∑
i=1

M∑
j=1

cjxij

subject to,

Tlocal(i, pi) <= Tremote(i, pi) ∀pi > 0, iε[1, Nd]

Here xij indicates if partition point of ith data source is j,
cj is the processing cost on stream processor due to parti-
tioning the query on data source at jth operator, Tlocal(i, pi)
computes the local computation time cost for operators 1 to
pi on the ith data source node and Tremote(i, pi) denotes the
network transmission time cost of intermediate data from pthi
operator to its parent node along with computation time cost
of executing operators pi + 1 till M on the parent node. We
want to incentivize executing operators on data source so the
partitioning costs are ordered as c1 > c2 >, ... > cM .

Unfortunately, solving the partitioning problem is extremely
challenging.

Theorem 1. Query partitioning problem to distribute query
operators across data source and stream processor nodes, with
the objective of maximizing the resource utilization of data
source nodes without degrading query processing time, is NP-
hard.

Proof. We introduce the generalized assignment problem
(GAP) [74] which finds a minimum cost assignment of n items

to m bins such that each item is assigned to precisely one bin
subject to capacity restrictions on the bin. Following is the
definition:

min

m∑
i=1

n∑
j=1

cijxij

subject to,
m∑
i=1

xij = 1, jε{1, ..., n},

n∑
j=1

wijxij ≤ bi, iε{1, ...,m},

xijε0, 1, iε{1, ...,m}, jε{1, ..., n}

where cij is the cost associated with assigning item j to bin
i, wij the claim on the capacity of bin i by item j if it is
assigned to bin i, bi the capacity of bin i and xij a 0-1 variable
indicating whether item j is assigned to bin i (xij = 1) or not
(xij = 0). This problem is known to be NP-hard [74].

A data source n can execute operators remotely with
partitioning pn while improving query processing time, if
and only if resource usage on stream processor due to re-
maining data sources is below a threshold data rate Dn i.e.∑
iε[1,N ]\{n}:pi=pn

di(pi) < Dn. Here, di(pi) is a function

that provides rate of data leaving data source i given the
partitioning pi and Dn is the threshold data rate for all the
remaining nodes with partitioning pn so that data source n
with pn has enough resources to execute operators remotely.
We use the data rate as a measure for the network and
compute overhead on the stream processor. Based on this,
we transform generalized assignment problem to a special
case of our problem of configuring minimum number of
data sources to execute operators remotely. We can regard
the items and bins in GAP as the data source nodes and
possible partitioning values i.e. possible values in p in our
problem, respectively. Then the weight of an item n assigned
to bin m is wmn = dn(pn) where m = pn, capacity
constraint of each bin bm = Dn + dn(pn) and cost of
each assignment cmn = cpn . Here, cn1 > ... > cnM .
By this, we can ensure that as long as data source n on
its assigned partition pn is able to improve processing time
compared to executing the query locally, total size of items
assigned to bin pn will not violate capacity constraint bpn .
This is because

∑
iε[1,N ]\{n}:pi=pn

di(pi) < Dn which implies∑n
j=1 wnjxnj =

∑
iε[1,N ]\{n}:pi=pn

di(pi) + dn(pn) < bpn .

Therefore, if we have an algorithm that can minimize the
number of operators sent to the stream processor without
sacrificing processing time, then we can also obtain optimal
solution to GAP. Since GAP is NP-hard, our problem is also
NP-hard.
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The key idea of the proof is that GAP can be reduced to a
special case of our query partitioning problem. We note that
previous works have also established the hardness of optimal
query partitioning in other related domains [75], [76]. In this
paper, we investigate a greedy heuristic approach which is
embarrassingly parallel, for making partitioning decisions. We
enable the potential latency overhead resulting from our greedy
solution to be bound by an upper limit, by configuring the pro-
cessing duration or epoch for making partitioning decisions.
Our approach is implemented in a fully decentralized manner
to ensure high scalability of our partitioning system.
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[49] G. Dósa, R. Li, X. Han, and Z. Tuza, “Tight absolute bound for
first fit decreasing bin-packing: Ffd(l)¡=11/9 opt(l)+6/9,” Theoretical
Computer Science, vol. 510, pp. 13–61, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0304397513006774

[50] A. M. Peterson E. L., Geometric Programming. Boston, MA: Springer
US, 1980, pp. 31–94. [Online]. Available: https://doi.org/10.1007/
978-1-4615-8285-4 3

[51] L. V. Martin Andersen, Joachim Dahl, “Cvxopt: Python software for
convex optimization,” May 2015, http://cvxopt.org/.

[52] A. S. Foundation, “A subproject of Apache NiFi to collect data where
it originates,” 2018, https://nifi.apache.org/minifi/.

[53] ——, “An easy to use, powerful, and reliable system to process and
distribute data,” 2018, https://nifi.apache.org/.

[54] Esoteric, “Java binary serialization and cloning: fast, efficient, auto-
matic,” 2020, https://github.com/EsotericSoftware/kryo/.

[55] A. Flink, “Apache Flink - Timely Stream Processing,” 2020, https://ci.
apache.org/projects/flink/flink-docs-release-1.13/docs/concepts/time/.

[56] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou,
Y. Yu, and Z. Zhang, “TimeStream: Reliable Stream Computation in
the Cloud,” in Proceedings of the 8th ACM European Conference
on Computer Systems, ser. EuroSys ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 1–14. [Online].
Available: https://doi.org/10.1145/2465351.2465353

[57] W. Lin, H. Fan, Z. Qian, J. Xu, S. Yang, J. Zhou, and L. Zhou,
“STREAMSCOPE: Continuous Reliable Distributed Processing of Big
Data Streams,” in Proceedings of the 13th Usenix Conference on
Networked Systems Design and Implementation, ser. NSDI’16. USA:
USENIX Association, 2016, p. 439–453.

[58] G. Herrmann, “CPU Usage Limiter for Linux,” 2020, http://cpulimit.
sourceforge.net/.

[59] S. S. Bert Hubert, Jacco Geul, “Command-line utility for lim-
iting an adapter’s bandwidth,” 2020, https://github.com/magnific0/
wondershaper/.

[60] L. Xu, B. Peng, and I. Gupta, “Stela: Enabling stream processing systems
to scale-in and scale-out on-demand,” in 2016 IEEE International
Conference on Cloud Engineering (IC2E), 2016, pp. 22–31.

[61] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy,
“Dhalion: Self-regulating stream processing in heron,” Proc. VLDB
Endow., vol. 10, no. 12, p. 1825–1836, Aug. 2017. [Online]. Available:
https://doi.org/10.14778/3137765.3137786

[62] R. Avnur and J. Hellerstein, “Eddies: Continuously adaptive query
processing,” vol. 29, 06 2000.

[63] K. T. Claypool and M. Claypool, “Teddies: Trained eddies for
reactive stream processing,” in Database Systems for Advanced
Applications, 13th International Conference, DASFAA 2008, New
Delhi, India, March 19-21, 2008. Proceedings, ser. Lecture Notes in
Computer Science, J. R. Haritsa, K. Ramamohanarao, and V. Pudi,
Eds., vol. 4947. Springer, 2008, pp. 220–234. [Online]. Available:
https://doi.org/10.1007/978-3-540-78568-2 18

[64] V. Raman, B. Raman, and J. Hellerstein, “Online dynamic reordering
for interactive data processing,” in VLDB, 1999.

17

https://doi.org/10.1145/3297858.3304031
https://doi.org/10.14778/2735496.2735503
https://doi.org/10.1145/2830772.2830797
https://doi.org/10.1145/2933267.2933312
https://doi.org/10.1145/2517349.2522716
https://www.sciencedirect.com/science/article/pii/S0167739X17326821
https://www.sciencedirect.com/science/article/pii/S0167739X17326821
https://doi.org/10.1145/3183713.3190662
https://prometheus.io/docs/practices/histograms/
https://doi.org/10.1145/3132747.3132750
https://doi.org/10.1109/TNET.2007.896231
https://www.sciencedirect.com/science/article/pii/S0304397513006774
https://doi.org/10.1007/978-1-4615-8285-4_3
https://doi.org/10.1007/978-1-4615-8285-4_3
http://cvxopt.org/
https://nifi.apache.org/minifi/
https://nifi.apache.org/
https://github.com/EsotericSoftware/kryo/
https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/concepts/time/
https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/concepts/time/
https://doi.org/10.1145/2465351.2465353
http://cpulimit.sourceforge.net/
http://cpulimit.sourceforge.net/
https://github.com/magnific0/wondershaper/
https://github.com/magnific0/wondershaper/
https://doi.org/10.14778/3137765.3137786
https://doi.org/10.1007/978-3-540-78568-2_18


[65] S. Ch, O. Cooper, A. Deshp, M. J. Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah,
“Telegraphcq: Continuous dataflow processing for an uncertain world,”
in In First Biennial Conference on Innovative Data Systems Research
(CIDR, 2003.

[66] L. Xu, S. Venkataraman, I. Gupta, L. Mai, and R. Potharaju, “Move
fast and meet deadlines: Fine-grained real-time stream processing with
cameo,” in 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21). USENIX Association, Apr. 2021,
pp. 389–405. [Online]. Available: https://www.usenix.org/conference/
nsdi21/presentation/xu

[67] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure, “Adaptive
control of extreme-scale stream processing systems,” in 26th IEEE In-
ternational Conference on Distributed Computing Systems (ICDCS’06),
2006, pp. 71–71.

[68] V. Kumar, B. Cooper, and K. Schwan, “Distributed stream management
using utility-driven self-adaptive middleware,” in Second International
Conference on Autonomic Computing (ICAC’05), 2005, pp. 3–14.

[69] X. Fu, T. Ghaffar, J. C. Davis, and D. Lee, “Edgewise: A Better Stream
Processing Engine for the Edge,” in Proceedings of the 2019 USENIX
Conference on Usenix Annual Technical Conference, ser. USENIX ATC
’19. USA: USENIX Association, 2019, p. 929–945.

[70] F. Lai, J. You, X. Zhu, H. V. Madhyastha, and M. Chowdhury,
“Sol: Fast Distributed Computation Over Slow Networks,” in 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). Santa Clara, CA: USENIX Association, Feb. 2020,
pp. 273–288. [Online]. Available: https://www.usenix.org/conference/
nsdi20/presentation/lai

[71] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“AWStream: Adaptive Wide-Area Streaming Analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 236–252. [Online].
Available: https://doi.org/10.1145/3230543.3230554

[72] A. Jonathan, A. Chandra, and J. Weissman, “Multi-Query Optimization
in Wide-Area Streaming Analytics,” in Proceedings of the ACM
Symposium on Cloud Computing, ser. SoCC ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 412–425.
[Online]. Available: https://doi.org/10.1145/3267809.3267842

[73] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating scale out and fault tolerance in stream processing using
operator state management,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
725–736. [Online]. Available: https://doi.org/10.1145/2463676.2465282

[74] M. Savelsbergh, “A branch-and-price algorithm for the generalized
assignment problem,” Operations Research, vol. 45, pp. 831–841, 12
1997.

[75] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[76] B. Liu, X. Xu, L. Qi, Q. Ni, and W. Dou, “Task scheduling
with precedence and placement constraints for resource utilization
improvement in multi-user mec environment,” Journal of Systems
Architecture, vol. 114, p. 101970, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1383762120302174

18

https://www.usenix.org/conference/nsdi21/presentation/xu
https://www.usenix.org/conference/nsdi21/presentation/xu
https://www.usenix.org/conference/nsdi20/presentation/lai
https://www.usenix.org/conference/nsdi20/presentation/lai
https://doi.org/10.1145/3230543.3230554
https://doi.org/10.1145/3267809.3267842
https://doi.org/10.1145/2463676.2465282
https://www.sciencedirect.com/science/article/pii/S1383762120302174
https://www.sciencedirect.com/science/article/pii/S1383762120302174

	Introduction
	Background and Challenges for Large-scale Server Monitoring
	Monitoring Workload Characteristics
	Network Latency Monitoring Example
	Variabilities in the Wild

	Models and Problem Definition
	Motivation for Jarvis
	Jarvis system
	High-level Architecture
	Query Plan Generation
	Dynamic Query Refinement
	Computing Data-level Partitioning Plan
	Problem Definition
	StepWise-Adapt Algorithm


	Implementation
	Evaluation
	Methodology
	Query Throughput Analysis
	Convergence Analysis
	Multiple Data Source Nodes
	Multiple Queries on Data Source Node

	Related Work
	Discussion
	Conclusion
	Appendix A: Compute cost of optimal query partitioning
	References

