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Introduction

The nature of data can mean: What kind of nature takes shape 
in captured data? It can also mean: What is the nature of 
data, what characterizes them? And finally, under the nature 
of data one can also imagine an environment, a biotope, in 
which data flourish and endure. The title of this book incor-
porates all three of these meanings—and thus also expresses 
that nature and data are interrelated in multifarious ways. No 
particular occasion is needed to reflect upon scientific data 
in this manner. In the modern sciences, data, even though 
the pertinent meaning of the word did not become estab-
lished until the twentieth century,1 constitute the undisputed 
point of reference of all knowledge. Nevertheless, since the 
1990s the situation has changed once more—in some areas 
of the sciences much earlier, later in others. From this point 
on, data increasingly make their appearance digitally, packed 
in files. From this point on, calculations and graphic render-
ings become more and more a matter for programs. From 
this point on, one device dominates scientific institutions: 
the computer. Everywhere, writes philosopher Michel Serres, 
one encounters “the same picture: people sitting at computer 
screens, pounding on their keyboards. They can no longer be 
distinguished in this dance of bodies. Be they scholars, a spe-
cies that is slowly disappearing, be they biologists or astro-
physicists, chemists or topologists, they all struggle at the 
same machine.”2 Although this observation is somewhat exag-

1	 See Daniel Rosenberg, “Data before the Fact,” in “Raw data” is an Oxymoron, ed. Lisa 
Gitelman (Cambridge, MA: MIT Press, 2013): pp. 15–40.

2	 Michel Serres, preface to Le Trésor: dictionnaire des sciences, ed. Michel Serres and 
Nayla Farouki (Paris: Flammarion, 1997): pp. VII–XXXIX, XI.
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gerated, Serres was right about the general tendency. And a 
second thing about his description provides food for thought: 
Not only do the differences between the scientific professions 
disappear on the computer, it seems as if what they do there 
can no longer be traced. Yet, this is not the case: the actions 
through which science is performed on the computer are by 
no means beyond control and observation. But new kinds of 
awareness must be developed in order to do so.

The vanishing traceability and the increasing dematerial-
ization of research through its relocation to the digital realm 
were the premise of the Computer Signals project, from which 
this publication emerged. This premise, as suggested, was not 
corroborated. The longer and more deeply we concerned our-
selves with the circumstances of these research worlds orga-
nized around computers, programs and data, the more clearly 
three aspects came to the fore: The diversity of the work to 
be performed; the playful, experimental element of han-
dling data and programs; and the powerful infrastructures in 
which scientists pursuing their research are embedded. Each 
of these aspects leads us in a different direction. Taking an 
interest in data work means being aware of how laborious 
this work is, which uncertainties accompany it, and what new 
kinds of expertise it requires. Taking an interest in the “dance 
with the data” (as a participant in the following conversation 
called it), leads away from the idea of somehow automating 
the research process; on the contrary, in the digital realm re-
search is no less bricolage, testing and scrabbling than it used 
to be, it just takes place in a different environment. With the 
infrastructures, finally, once again, what comes forth is not 
exactly new. Research has always been dependent on a mate-
rial framework that makes it possible: even a kitchen table 
is an infrastructure. What is new is how far reaching these 
infrastructures are—and how delicate.

Even though the interaction among data, computers and 
programs is quite mundane and goes on in full sight of the 
world, its circumstances and consequences are not yet fully 
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understood. In all of its meanings outlined above, the nature 
of data could have been structured in a new way—or not. 
This is precisely what this book is about. Rather than pro-
viding answers, it undertakes test drillings. While digitiza-
tion marks all sciences, we limit our discussion to biology, for 
which the processes in question certainly do play a central 
role. And we undertake these probes not in the form of com-
pleted essays, but in a form appropriate to the project and its 
history: as a conversation. Calling Computer Signals a project 
is formally correct; it includes everything a project needs. But 
in fact, Computer Signals is an ongoing meeting between bi-
ology, art, philosophy of science and history of science. We 
have been talking with each other regularly for over five years 
now (some of us even longer), discussing biological and ar-
tistic projects, observing, learning, and occupying ourselves 
with these new forms of scientific work. Generally one would 
speak of an interdisciplinary context, yet the different ori-
gins of the participants matter only insofar as they force us to 
come to an understanding with each other, and that means, 
not least, to express our own premises and requirements. 

The discussion group was formed in Hannes Rickli’s first 
project, Surplus: Videograms of Experimentation (2007-2009), 
which reflected artistically and theoretically on a bundle of 
analog video recordings that were unsystematically compiled 
from laboratory contexts starting in the 1990s, presenting 
them as visual and simultaneously physical traces of the pro-
duction of scientific facts.3 His interest was focused on the use 
of technical visual media in the process of research. If ana-
log, unedited image remnants allowed the interplay of me-
dia, spatial, human and animal actors as a resistant network 
of relationships to be read retrospectively, in the transition 
to digital techniques it became apparent that the processes 

3	 “Überschuss: Videogramme des Experimentierens,” https://www.zhdk.ch/forschungs- 
projekt/426832. See also Hannes Rickli, ed., Videograms: The Pictorial Worlds of Bio-
logical Experimentation (Zurich: Scheidegger & Spiess, 2011).
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of research were withdrawing ever more from the human 
senses, thus making direct observation difficult and some-
times impossible. The decisions about the scientific relevance 
of recorded signals and their evaluation are left to algorithms. 
Anything that is not automatically deleted from digital data 
is consistent with the program and thus tends to be uninter-
esting from the artistic perspective.

The work of biology consists in isolating phenomena in 
confusing environments, applying complex methods of ab-
straction with digital programs in black boxes in order to 
cleanse them of the effects of particular and singular ele-
ments, and allowing them to be transported as distinct num-
bers or formulas. The work of art runs in the other direction: 
It is interested in the material conditions of this abstraction, 
reconstructing the concrete circumstances in which biologi-
cal data are collected, distributed and calculated. As such, 
it shifts the focus to the time spent, the concrete spaces and 
lighting conditions, the scientists’ gestures, and, last but not 
least, the animals at the focus of the biological knowledge 
interest.

In the projects Computer Signals I and Computer Signals II 
(2012-2015; 2017–2020), the artist Valentina Vuksic developed 
a special experimental system that records the processes in 
the infrastructures of the electronic data work by Hans Hof-
mann at The University of Texas at Austin and that of Philipp 
Fischer on the islands of Heligoland and Spitsbergen, who 
records time-based audio files. Electromagnetic pickups and 
contact microphones placed parasitically in the measuring 
instruments and computers realize a “technical participant 
observation” of the devices’ operation in their environment, 
which “listens” to how they function, fluctuate, falter and in-
terrupt.4 They register the variations in energy consumption, 
the electromagnetic oscillations at rest and when a camera 

4	 See Shintaro Miyazaki, Algorhythmisiert: Eine Medienarchäologie digitaler Signale 
und (un)erhörter Zeiteffekte (Berlin: Kulturverlag Kadmos, 2013).
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shutter is released, or the normally inaudible rhythmic clicks 
of a computer processor working through algorithms. The 
synchronously recorded mechanical vibrations of the devices 
establish connections to the ocean currents in the Kongsfjord 
off the coast of Spitsbergen, or to the high-revving pumps of a 
cooling system keeping the Stampede supercomputer running 
in the hot Texas climate. The art project first had to learn 
how to deal with the amounts of data accrued daily in the 
project’s own server at the Zurich University of the Arts. The 
difficulties that arise point out the social and communicative, 
electrical and technical imponderables that characterize data 
work, in art as well as in biology. The art project discusses the 
material obtained and the experiences of dealing with them 
in exhibitions (among others, Schering Stiftung, Berlin, 2013; 
Kunstraum Walcheturm, Zurich, 2020), at international con-
ferences, and in this publication.

For the subsequent conversation we met high above Lake 
Lucerne on Rigi Kulm in early September 2016. Our intention 
was to bring together the observations, considerations and im-
pulses of the previous years into a loosely arranged form. For 
this we set up four blocks of conversations: First came Data, 
followed by Software and Infrastructures; we finished by fol-
lowing a case study into the world of in silico research. The 
transcripts have been reworked and abridged, but we preserved 
as much of the original conversational character as possible. 
We wander through the topics tentatively, keeping just a few 
keywords in mind, sometimes digressing, sometimes coming 
back to what someone said earlier. We now briefly sketch our 
approach to the four sections: Data (Christoph Hoffmann), 
Software (Gabriele Gramelsberger), Infrastructures (Hannes 
Rickli) and in silico (Hans Hofmann). The book closes with an 
epilog by Hans-Jörg Rheinberger, who recalls the origins and 
developments of our discussions since the mid-1990s.
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Data

A good ten years ago it looked as if the sciences, and the life 
sciences most of all, were at the threshold to a new age. The 
corresponding keywords were: Big data, data-driven research, 
Fourth Paradigm. Henceforth, statistical analyses of great 
amounts of data would bring new insights almost by them-
selves; without any previously formulated hypotheses and 
without support through observations and experiments. This 
vision has since lost much of its glamor. Philosophers of sci-
ence objected that scientists do not make advances without 
relying on background knowledge, indeed, hypotheses in the 
congealed form of theories and concepts come into play in the 
very definition of datasets, what is paid attention to, and in 
the preceding generation of the data used.5 A look at the his-
tory of sciences also makes clear that not much terminologi-
cal contortion is necessary to speak of the natural historical 
collections since the 18th century as data-driven research.6 
Such reservations were reinforced by another element: A mul-
titude of studies pointed out that it is by no means a trivial 
activity to assemble data from different sources. 

Data have a history that consists of the circumstances of 
their generation—the technologies deployed and the particu-
lar research questions, which must be borne in mind when 
they are used in a new context.7 This circumstance hinders 

5	 Sabina Leonelli, “Introduction: Making Sense of Data-Driven Research in the Biologi-
cal and Biomedical Sciences,” in Studies in History and Philosophy of Biological and 
Biomedical Sciences 43 (2012): pp. 1–3; Werner Callebaut, “Scientific Perspectivism: 
A Philosopher of Science’s Response to the Challenge of Big Data Biology,” in Studies 
in History and Philosophy of Biological and Biomedical Sciences 43 (2012): pp. 69–80.

6	 David Sepkoski, “Towards ‘A Natural History of Data’: Evolving Practices and Epis-
temologies of Data in Paleontology, 1800–2000,” in Journal of the History of Biology 
46 (2013): pp. 401–444; Staffan Müller-Wille, “Names and Numbers: ‘Data’ in Classical 
Natural History, 1758–1859,” in Osiris 32 (2017): pp. 109–128; Bruno J. Strasser, Collect-
ing Experiments: Making Big Data Biology (Chicago: University of Chicago Press, 2019).

7	 Geoffrey Bowker, Memory Practices in the Sciences (Cambridge, MA: MIT Press, 
2005): chap. 4. 
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the circulation of data; leads to questions about standardiza-
tion; raises awareness of the metadata included in datasets as 
a critical point for their storage, dissemination and renewed 
utilization; and directs interest toward ontologies and data-
bases as tools that not only ease circulation, but also channel 
access and questions.8 “Data travel,” in other words, is com-
plex and time consuming, and inevitably accompanied by 
conflict—“data friction.”9 Yet formal hurdles are not the only 
thing hindering the circulation of data. Researchers who rely 
on third-party data are faced with the problem of having to 
understand the properties of these datasets and to assess their 
quality for the intended use. Personal experience, knowledge 
of traps, tests, and informal inquiries can help.10 What is clear, 
however, is that data cannot simply be used without account-
ing for the context of their generation; instead, a number of 
elaborate operations are needed, combined with a healthy 
portion of trust. And yet another point must be mentioned 
in this connection: Data have a value; their generation makes 
work. Sharing data is therefore not a matter of course. While 
state regulations and guidelines from funding institutions 
increasingly stipulate that data sharing is mandatory, stor-

8	 Bowker, Memory Practices in the Sciences: chap.  3; Christine Hine, “Databases as 
Scientific Instruments and Their Role in the Ordering of Scientific Work,” in Social 
Studies of Science 36 (2006): pp. 269–298; Sabina Leonelli, “Packaging Small Facts 
for Re-use: Databases in Model Organism Biology,” in How Well Do Facts Travel: The 
Dissemination of Reliable Knowledge, ed. Peter Howlett and Mary S. Morgan (Cam-
bridge: Cambridge University Press, 2011): pp. 325–348.

9	O n the circumstances of “data travel,” see Sabina Leonelli, Data-Centric Biology: 
A Philosophical Study (Chicago: University of Chicago Press, 2016): chap. 1; on “data 
friction,” see Paul N. Edwards, A Vast Machine: Computer Models, Climate Data, and 
the Politics of Global Warming (Cambridge, MA: MIT Press, 2010): chap. 5. 

10	 Ann S. Zimmerman, “New Knowledge from Old Data: The Role of Standards in the 
Sharing and Reuse of Ecological Data,” in Science, Technology & Human Values 33 
(2008): pp.  631–652; Paul N. Edwards, Matthew S. Mayernik, Archer L. Batcheller, 
Geoffrey C. Bowker, and Christine L. Borgman, “Science Friction: Data, Metadata, and 
Collaboration,” in Social Studies of Science 41 (2011): pp.  667–690; Goetz Hoeppe, 
“Working Data Together: The Accountability and Reflexivity of Digital Astronomical 
Practices,” in Social Studies of Science 44 (2014): pp. 243–270. 
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ing data in publicly accessible repositories (in this case pub-
lic generally means accessible to members of a community) 
does not necessarily mean that they will be used. Which data 
come into circulation depends not only on whether they ful-
fill the standards of a certain database. What matters most is 
whether they meet the special demands of the users.

It is no coincidence that these aspects are frequently dis-
cussed with in regard to in the life sciences. Since the sequenc-
ing projects of the 1990s, and even more so in the -omics world 
of today, the generation and management of large amounts 
of data, supercomputers, programmed analysis tools, and the 
close link to information technology are part and parcel of 
everyday science.11 This development has also long arrived in 
more traditional areas as well: ecology, behavioral science, 
systematics—algorithms, databases and computational meth-
ods are being integrated in the research process everywhere. 
The life sciences are particularly interesting, however, also 
because of the specificity of their data. They are often local, 
bound to certain locations, sometimes demand long time se-
ries, and can be extremely heterogenous in one single proj-
ect. Moreover, variability is an essential characteristic of bio-
logical objects. These data are marked by peculiarities on the 
level of the individual, species and population, an aspect that 
must be taken into consideration when they are compared or 
transferred into other contexts. After all, the life sciences com-
prise a multitude of disciplinary cultures, each of which has 
its own research approach and concepts, which flow into the 
generation, processing and description of data. This is why 
data work is such a frequent focus in the life sciences. Its cir-
cumstances make it much richer than in most other sciences. 

11	 Hallam Stevens, Life Out of Sequence: A Data-Driven History of Bioinformatics (Chi-
cago: University of Chicago Press, 2013); Leonelli, Data-Centric Biology; Strasser, 
Collecting Experiments, chap.  4–6. However, development began much earlier in 
the early 1960s, see Joseph November, Biomedical Computing: Digitizing Life in the 
United States (Baltimore: Johns Hopkins University Press, 2012).
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Undoubtedly, biological research has changed in recent de-
cades. Besides the wet lab there is now a dry lab, often in the 
same room. Sensors stream measurement data that had to be 
recorded by hand in the old days. Audio and video recordings 
are controlled by algorithms, and to some degree, are already 
analyzed using machine learning approaches. This results 
in new divisions of labor, the organization of research pro-
cesses changes, required new skills and expertise have to be 
integrated, training programs expanded, and the distribution 
of credits and merits adjusted. A closer look reveals a second 
meaning of the term data-driven research. Taking care of the 
data, data maintenance, archiving, which were once second-
ary activities, are becoming ever more elaborate. Data are not 
only valuable; increasingly, they are conceived as an expen-
sively generated resource that must be used well. What is most 
striking, however, is how data, traditionally understood as 
products of observations and experiments, have themselves 
become the object of observations and experiments, and how 
research is thus shifting into the data space.

Software

In his article “The Teaching of Concrete Mathematics” from 
the year 1958, the statistician John W. Tukey first defined 
the term “software.” Against the backdrop of the early devel-
opment of computers and the strengthening of applied 
mathematics, he advocated that “today the ‘software’ com-
prising the carefully planned interpretive routines, compil-
ers, and other aspects of automative programming are at 
least as important to the modern electronic calculator as its 
‘hardware’ of tubes, transistors, wires, tapes and the like.”12 
This was hardly a matter of course in the 1950s. Back then 

12	 John W. Tukey, “The Teaching of Concrete Mathematics,” The American Mathematical 
Monthly 65 (1958): pp. 1–9, 2.
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computers still had names, like DERA (Darmstädter Elek-
tronischer Rechenautomat), ERMETH (Elektronische Rechen-
maschine der ETH Zurich), Electrologica X1 (Mathematisch 
Centrum Amsterdam), and the 123 systems of the IBM 704 
series, which were the products of heroic engineering skills. 
What is particularly interesting about this last computer is 
that, in October 1956, it was delivered with the first automatic 
coding system.13 This automatic coding system was Fortran 
(Formula Translation), which today is considered to be the 
first high-level programming language. Fortran automated 
the configuration of computers through machine commands. 
Instead of machine commands, programmers were to use “a 
concise, fairly natural mathematical language” to program 
software for “mechanical coding.”14 Mathematics was chosen 
to function as the natural language because most users of the 
IBM 704 series were engineers and natural scientists, who 
delegated the calculations of their mathematical models to 
automatic computing machines.15 Tukey’s 1958 definition of 
software referred back to this tradition.

Today scientific research takes place ever more frequently 
in software—algorithms, programs and the corresponding 
data. The calculation of models has been augmented by a 
plethora of other software applications and software has be-
come the preeminent research instrument. It can be used to 

13	 John W. Backus et al., The FORTRAN Automatic Coding System for the IBM 704 
EDPM: Programmer’s Reference Manual (New York: Applied Science Division and Pro-
gramming Research Department: International Business Machines Corporation, 1956).

14	 “At that time [1954], most programmers wrote symbolic machine instructions exclu-
sively … they firmly believed that any mechanical coding method would fail to apply the 
versatile ingenuity which each programmer felt he possessed and constantly needed 
in his work.” John W. Backus and William P. Heising, “FORTRAN,” IEEE Transactions in 
Electronic Computing 13 (1964): pp. 382–385, 382; see also Gabriele Gramelsberger, 
“Story Telling with Code,” in Code: Zwischen Operation und Narration, ed. Andrea 
Gleininger and Georg Vrachliotis (Basel: Birkhäuser, 2010): pp. 29–40.

15	 John W. Backus and Harlan Herrick, “IBM 701 Speedcoding and other automatic 
programming systems,” Proceedings of the Symposium on Automatic Programming 
for Digital Computer (Washington, DC: Office of Naval Research, Department of the 
Navy, 1954): pp. 106–113, 112. 
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digitize and control experimental systems and measurement 
instruments, to generate and process tremendous amounts of 
data, and to simulate even elaborate models and extrapolate 
them into the future. It almost seems as if natural scientists 
today research their software products more than nature it-
self.16 The example of biological behavioral science shows 
how, thanks to software, the various bodies of knowledge and 
knowledge practices migrate into computers. In the case of 
digitized fish observation this entailed many changes for re-
search; above all, the automation of the observer. While re-
searchers used to perform the time-consuming work of view-
ing the video material of fish observations, now software 
analyzes the digital recordings of the fish and their behavior 
in a matter of seconds—for instance, the production of noises 
to research fish sounds. In this case, analyzing means auto-
matically registering their behavior in the video and audio 
recordings. Thus the software decides, according to coded in-
structions by the programmer, whether anything interesting 
for behavioral biology happens, which it then saves as events 
and renders in analysis curves. The image and audio record-
ings themselves are deleted. While researchers previously 
observed the animals via videos, now the software observes 
the digital recordings of the animals. The researcher, in turn, 
observes the software, or at least its analysis curves, and, if 
need be, the remainder of observational materials which the 
software was not able to categorize. While observation of the 
video recordings previously led to quite arbitrary speculation 
about the fish that produced a sound (assumption: the fish 
that moved), today the source of the sound can be located 
quite accurately using three hydrophones and suitable trian-
gulation software. Thanks to the software, an assumption 
becomes a fact. Moreover, the localization also allows con-
siderably more precise analysis of fish behavior. In order to 

16	 See Gabriele Gramelsberger, Computerexperimente: Zum Wandel der Wissenschaft 
im Zeitalter des Computers (Bielefeld: Transcript, 2010).
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investigate this in greater detail, even more digitalization and 
analysis algorithms are needed, and so on. An endless chain 
of processing ever new data on fish;17 but also constant trans-
formations of research practice, which keep an accelerating 
digitalization cycle going.

It is not possible to even estimate how much software is 
produced in science each year. But what can be quantified are 
the increasingly comprehensive cyberinfrastructures for the 
development and publication of scientific software. Scientific 
software is supposed to be freely available, and these days it 
is usually developed collaboratively using GitLab or Jupyter. 
The result of such collaboration can be cited by a digital ob-
ject identifier (DOI) as a “text product.”18 Databases like run-
mycode.org and execandshare.org publish software products 
that belong to scientific articles. Projects like CodeMeta pro-
vide meta descriptions of scientific software in JSON (JavaS-
cript Object Notation) or XML (Extensible Markup Language). 
All of this is required in order to make software-based re-
search reproducible. While the methodological and the epis-
temic value of research has been guaranteed by transparency, 
and transparency through reproducibility since the early 
modern age, the multitude of methods and software products 
today, not to mention the vast amounts of data, makes it ever 
more difficult to reproduce results. On the one hand, there 
is the development that, “Within science, reproducibility is 
threatened, among other things, by new tools, technologies, 
and big data.”19 On the other hand, thanks to software and the 

17	 Philipp Fischer, “Datenströme in der marinen Verhaltensökologie: Eine Herausforde-
rung an die moderne Wissenschaft,” paper presented at the conference Fragile Daten, 
Berlin-Brandenburgische Akademie der Wissenschaften, Berlin, March 1–2, 2013,  
https://epic.awi.de/id/eprint/32555/.

18	 Nick Barnes, “Publish Your Computer Code: It is Good Enough,” Nature 467 (2010): 
p. 753.

19	 Harald Atmanspacher and Sabine Maasen, “Introduction,” in Reproducibility: Prin-
ciples, Problems, Practices, and Prospects, ed. Harald Atmanspacher and Sabine 
Maasen (Hoboken, NJ: John Wiley & Sons, 2016): pp. 1–8, 1.
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internet, it has never been easier to disclose scientific meth-
ods, software products and results and thus make them repro-
ducible.20

Infrastructures

Data must always be related to the technical apparatuses that 
collect, calculate and distribute them. These are dependent 
on technological services like electricity, computer networks, 
satellites and submarine cables, pipelines, ready-made algo-
rithms, and under certain circumstances, also bioactivity: for 
example worms, algae, icebergs and storms. Apparatus and 
infrastructures make research possible, while at the same 
time setting its limits. They usually operate below the user’s 
perception and are “considered to be a hidden substrate—
the binding medium or current between objects of positive 
consequence, shape, and law,” in the words of city planner 
Keller Easterling.21 They become visible only when they fail 
or break down, and then, by deviating from their intended 
functionality, manifest chaotic dynamics.22 In such cases, 
the “technical objects,” as Hans-Jörg Rheinberger calls them, 
can be observed in their unintended autonomous activities.23 

20	 “Now scientists routinely share preprints, published papers, and other forms of tradi-
tional scientific knowledge transmission mechanisms, but they also share entirely new 
forms such as datasets, code, high resolution images, software designed to entail the 
manipulation of results by others, links and lists of related works. This facility can make 
the black boxes significantly easier to open.” Victoria Stodden, “The Scientific Method 
in Practice: Reproducibility in the Computational Sciences,” MIT Sloan Research 
Paper No. 4773–10 (Cambridge, MA: MIT Sloan School of Management, 2010): p. 28.

21	 Keller Easterling, Extrastatecraft: The Power of Infrastructure Space (London: Verso, 
2014): p. 11.

22	 See Jane Bennet, “The Blackout,” in Vibrant Matter: A Political Ecology of Things 
(Durham: Duke University Press, 2010): pp. 24–28.

23	 “It is through them (the technical objects; HR) that the objects of investigation become 
entrenched and articulate themselves in a wider field of epistemic practices and 
material cultures, including instruments, inscription devices, model organisms, and 
the floating theorems or boundary concepts attached to them. ... The experimental 
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In order to control them in a given research project, the 
unique characteristics of their behavior during failure must 
be studied. Rheinberger describes this shift in cognitive inter-
est as the shift from the “epistemic thing” to the “technical 
objects,” in which infrastructure and its surroundings them-
selves become the object of study. In this process the interests 
swing back and forth like a pendulum between the one thing 
and the other, with the infrastructures binding the bulk of 
the resources for undertaking research.

What is interesting about infrastructures from the artistic 
perspective is their multifold play between inconspicuous-
ness, autonomous activity and massive materiality. Do they 
really play only a serving role? Or do they instead determine 
what we can know, by organizing the mesh of relationships 
between human and nonhuman actors in the cognitive pro-
cess? Michel Serres might perhaps designate infrastructures as 
“quasi objects,” as something that “approaches zero,” which 
remain invisible in use, even though they structure the re-
lations between objects and people in their environments, 
although one never really knows whether they are actually 
objects or subjects.24

Terms like assemblage, collective, and network are used to 
describe the confluences in which technical, “natural” and 
social elements cooperate and conflict with each other.25 In 
connection with the life sciences, the following interesting 
constellation emerges: nature is the object of research and 
simultaneously the medium of its exploration. Nature provides 

conditions ‘contain’ the scientific objects in the double sense of this expression: they 
embed them, and through that very embracement, they restrict and constrain them.” 
Hans-Jörg Rheinberger, Towards a History of Epistemic Things: Synthesizing Proteins 
in the Test Tube (Stanford, CA: Stanford University Press, 1997): p. 29.

24	 See Michel Serres, “Theory of the Quasi-Object,” in The Parasite, trans. Lawrence R. 
Schehr (Baltimore: Johns Hopkins University Press, 1982): pp. 224–234.

25	 See Bennet, Vibrant Matter: pp. 20–38; Serres, “Theory of the Quasi-Object”; Bruno 
Latour, Reassembling the Social: An Introduction to Actor-Network-Theory (Oxford: 
Oxford University Press, 2005).
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the raw materials for energy production and is the carrier of 
the terrestrial, submarine and orbiting distribution channels 
for electricity and information. These massive structures, in 
turn, are dependent on a lower layer, generally on fossil fu-
els, which deliver the energy to manufacture computers, cool 
server farms, and transport material and maintenance staff to 
remote regions. In this sense, nature itself becomes the “ulti-
mate infrastructure.”26

While technical infrastructures and energy supply are de-
veloped in a process of societal negotiation, and are in a state 
of constant adaptation, the energetic activities of nature are 
not negotiable. In the form of algae and worm growth, storms 
and icebergs, they contribute continuously or abruptly to the 
research process at the submarine station RemOs1 in the fjord 
near Ny-Ålesund in Spitsbergen, causing turbidity in the opti-
cal system, and electrical short circuits through corrosion or 
collision. Here nature reveals itself to be a fellow player with 
agency so strong that it can hardly be brought under control, 
which keeps the research enterprise in a precarious state. The 
infrastructures at the University of Texas at Austin, in con-
trast, have a much more stable basis. Yet the deployment of 
large-scale technologies like supercomputers and oil fields 
that belong to the university raises new questions. Including: 
whether the debate about the ecology, economy and politics 
of fossil energy resources in the age of climate change should 
be extended to address epistemic aspects, to illuminate how 
knowledge horizons are enabled and restricted under the con-
ditions of technology-based, data-driven research. The foun-
dation for such a debate would be for scientists, and especially 
scientific communication, to report not only on research re-
sults, but also on the processes of producing data and objects. 

26	 Nicole Starosielski, “Fixed Flow: Undersea Cables as Media Infrastructures,” in Signal 
Traffic: Critical Studies of Media Infrastructures, ed. Lisa Parks and Nicole Starosielski 
(Urbana, IL: University of Illinois, 2015): pp. 53–70, 54.
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In silico

Across the life sciences, the availability of big data has begun 
to transform how scientists ask questions and carry out their 
research. For example, many petabases of RNA and DNA 
sequence data are now available in public repositories, and the 
influx of new data is ever accelerating. In fact, it has been pro-
jected that by 2025 the demands on data storage and process-
ing created by this exponential increase in -omics data (i.e., 
data resulting from the genome-scale characterization and 
quantification of biological molecules that underlie the struc-
ture and function of cells and organisms) will eclipse other 
data-intensive areas such as astronomy and social media.27 
The computational analysis, modeling, and experimentation 
that takes advantage of large and diverse biological datasets 
is sometimes referred to as in silico biology, an allusion to the 
commonly used Latin phrases in vivo, in vitro, and in situ. In 
silico biology utilizes the vast amounts of biological informa-
tion available and applies advanced algorithms, models, and 
simulations to advance scientific understanding. The results 
of these analyses lead to predictions that can then be tested 
experimentally or serve as a benchmark for future physical 
experimentation.

This wealth of data creates tremendous opportunities for 
re-using publicly available data to gain new insights into long-
standing biological questions by integrating -omics data from 
multiple approaches and studies into innovative meta-anal-
yses that utilize sophisticated computational, bioinformatic, 
and statistical tools.28 The potential and limitations of this 
new big data biology have been discussed for some time,29 and 

27	 Zachary D. Stephens, Skylar Y. Lee, Faraz Faghri, Roy H. Campbell, Chengxiang Zhai, 
Miles J. Efron, Ravishankar Iyer, Michael C. Schatz, Saurabh Sinha, and Gene E. Robin-
son, “Big Data: Astronomical or Genomical?,” PLoS Biology 13, no. 7 (2015): pp. 1–11.

28	 Sabina Leonelli, “Philosophy of Biology: The Challenges of Big Data Biology,” eLife 8 
(April 2019), doi: 10.7554/eLife.4738.

29	 Priyanka Bhandary, Arun S. Seetharam, Zebulun W. Arendsee, Manhoi Hur, and Eve 
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data management plans have become a standard requirement 
by many funding agencies. Yet there is currently no gener-
ally agreed upon convention on where and how to store this 
data, and what kind of metadata (information about experi-
mental design, biological samples, protocols, etc.) should ac-
company raw and processed data. Similarly, the acquisition, 
storage, distribution, and analysis of these datasets relies on 
an advanced high-performance computing (HPC) infrastruc-
ture, although many technical and conceptual challenges 
have to be addressed.30 Finally, the advent of big data biology 
also raises important questions about the nature of “data” it-
self, about what constitutes a good dataset, and whether the 
knowledge gained from such data can be as reliable as tradi-
tional knowledge.

An example of one such in silico project was the focus of 
the last part of our conversation. The point of departure for 
this discussion was a phenomenon referred to by biologists 
as the developmental hourglass.31 In the nineteenth century, 
Karl Ernst von Baer noticed that embryos of a given lineage 
exhibit the most morphological similarity across species dur-
ing mid-embryogenesis (a developmental pattern resembling 
an hourglass), a phenomenon that Klaus Sander designated 
the “phylotypic period.” Even though this phenomenon was 
confirmed in the early twentieth century, testable hypotheses 
as to the biological basis of the phylotypic period were largely 
lacking until about 25 years ago, when two of the founders 
of the modern field of evolutionary development (evo-devo), 

Syrkin Wurtele, “Raising Orphans from a Metadata Morass: A Researcher’s Guide to 
Re-use of Public ’omics Data,” Plant Sci 267 (2018): pp. 32–47; Johan Rung and Al-
vis Brazma, “Reuse of Public Genome-wide Gene Expression Data,” Nature Review 
Genetics 14 (2012): pp. 89–99.

30	 Paul Muir, Shantao Li, Shaoke Lou, Daifeng Wang, Daniel J. Spakowicz, Leonidas Sali-
chos, Jing Zhang, George M. Weinstock, Farren Isaacs, Joel Rozowsky, and Mark Ger-
stein, “The Real Cost of Sequencing: Scaling Computation to Keep Pace with Data 
Generation,” Genome Biology 17, no. 1 (2016), doi: 10.1186/s13059-016-0917-0.

31	 For the literature, see here and, subsequently, the references at the beginning of Part 4 
of the conversation.
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Rudy Raff and Denis Duboule, independently provided a the-
oretical solution to the problem. Raff, in particular, suggested 
that during much of early and late embryonic development 
the gene expression networks underlying the processes that 
give rise to organismal form are relatively isolated from each 
other in terms of function. However, during the phylotypic 
stage, when embryos from different species look similar, these 
gene networks may be highly integrated due to pleiotropy—
that is, when one gene influences many different processes—
which would constrain evolution’s ability to change a gene’s 
or network’s activity in one context without also affecting an-
other context (likely negatively). It was not really possible to 
test this hypothesis until high throughput -omics technologies 
became available in the early 2000s. Since then, several stud-
ies have used transcriptomics, where gene expression profiles 
are examined on a genome-wide scale, to demonstrate that 
embryonic gene expression profiles are significantly more 
similar during the phylotypic period than in earlier or later 
embryonic stages. These results confirmed von Baer’s mor-
phological observations at the molecular level and expanded 
the concept to invertebrates and plants, although they did not 
have enough statistical power to test Raff’s hypothesis. 

We discuss here an ongoing in silico study of the devel-
opmental hourglass, which tested the hypothesis that em-
bryonic gene co-expression networks transition from more a 
modular topology before and after the phylotypic period to 
a highly interconnected one during this period. To do this 
kind of research, Hofmann and coworkers first searched pub-
lic repositories for datasets containing the transcriptomes of 
vertebrate development across multiple embryonic stages. 
They then assessed the data quality and available metadata 
(e.g., experimental design, methods used) and communi-
cated with the authors of some of the datasets directly to re-
solve inconsistencies and obtain missing information. This 
lengthy, almost year-long, process also included exploring 
various statistical procedures to standardize the datasets so 
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as to make them comparable. In the end, developmental da-
tasets for five vertebrate species, a fraction of the originally 
surveyed data, passed all quality control steps. The research-
ers then conducted a comparative analysis of the developmen-
tal trajectories of transcriptomic networks across species. To 
complement and extend this research, they used a novel in 
silico evolutionary model of a developing tissue to test dif-
ferent mechanistic hypotheses of phenotypic diversification. 
The results demonstrate how transcriptomic architecture is 
associated with the generation of phenotypic variation across 
species. With a poster of the developmental hourglass in view, 
we discuss these approaches, analytical steps, problems en-
countered, and the status of the knowledge gained. What does 
it mean to research in silico?
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Christoph Hoffmann     Work with large amounts of data, data-driven re-
search, the ever further-reaching data work—these are a few of the key-
words we have been dealing with in recent years. One starting point for 
our discussions was the impression that we are experiencing a shift in 
research from the visual to the digital. Not a complete replacement—
tables, graphs and composite diagrams continue to play an important 
role—but, increasingly, a data space is emancipating itself alongside 
these as a new experimental space. Philipp’s fish acoustics project of-
fers a clear illustration of how images are forced ever further into the 
background, first of all in data production.1 In particular, I’m thinking of 
the transition from continuous video recordings to three-second snip-
pets that was completed between 2011 and 2014.

Philipp Fischer     I briefly want to explain why we did that. We urgently need 
the video analysis, that is, the behavioral information on the fish, to be 
able to analyze the sound data at all, that is, to match a certain sound to 
the behavior of an individual animal. There are two problems with this: 
First, we worked on the acoustic recording issue for quite a long time. 
But eventually we got this running. Ultimately, however, the overall num-
ber of the video recordings became so immense that we were no longer 
capable of even coming close to coping with the resulting data volume. 
Then we thought about how we could find a way out of this dilemma. We 
succeeded by optimizing the digital, computer-based analysis in such a 

1	 The subject investigated in this project is the inter- and intra-species communication be-
tween gray and red gurnards through actively generated sounds. Small groups of fish are 
held in a research tank for several days, and their behavior recorded continuously on audio 
and video. In the latest series of experiments, continuous recording has been replaced by 
event-based recording.
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way that the fish acoustic signals were filtered during the online record-
ing stream, and the target video snippets were cut out directly in real 
time. The development of this software, which allowed us to differentiate 
the acoustic signals coming directly from the experimental setup into 
background noises and fish noises, made it possible for us to reduce the 
video data such that the data stream became manageable.

Christoph Hoffmann     You say that the visual data are indispensable for the 
evaluation of the acoustic data. Can you not imagine that the system 
might someday work entirely without images?

Philipp Fischer     No, and that’s because in this project the concrete object of 
our investigation is acoustic signaling during certain behavioral patterns. 
We want to find out what information content is coded in the acoustic in-
formation, and we can do this only if we find out which action-reaction 
the fish are showing when they make a certain acoustic signal, a growl, a 
grunt, a knock. That’s why we invested a great deal of time, more or less 
successfully, in learning how to match the acoustic signals to individual 
fish behavior. For a long time this was impossible. We received and re-
corded acoustic signals from the test aquarium and found that they were 
fish noises. But when we had two or three fish in the video image at the 
same time, we did not know which of these fish had emitted a specific 
signal. Matching each signal to a certain fish, which meant acoustic tri-
angulation in our case, was crucial in order to evaluate a fish’s behavior in 
terms of the actions and reactions of the specimens in the experiments.

Hans-Jörg Rheinberger     I don’t believe in an arrow from the analog and vi-
sual to the digital and numerical. What we are negotiating under the con-
cept of the digital has to do with media, either recording or processing 
media. But everything that is digital eventually lands back in the realm of 
the analog, simply because we are analog beings and can only receive 
analog data through our senses. Ultimately, we always fall back on our 
senses. We are dealing with what we can receive through seeing and 
hearing. Our sensory organs may receive discretely, but first of all, dis-
crete is not the same as digital; and second, our perception has always 
been synthetic.
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Hans Hofmann     In the meantime, however, a transformation and a reduc-
tion in complexity have occurred. Of course, we can take in only visual or 
auditory input—or whichever input our sensory systems allow. But what 
we have then no longer has much to do with what was originally recorded.

Hans-Jörg Rheinberger     But the paper that you are publishing in Nature 
does work with images. And it works with narration; it uses all of the clas-
sical, traditional means. One always ends up back on this surface.

Hans Hofmann     That’s true, only you can no longer directly recognize those 
data that were originally collected.

Philipp Fischer     To a certain extent, you’re right. At the level we are talking 
about now, digitization is, in fact, only a medium. It simply means that I 
no longer have to take a ruler to measure an object on the image to ex-
tract the relevant information, for instance, to measure a distance of four 
centimeters between a certain fish on the image and another, and then 
to detect how this fish approaches the other when a signal is given, re-
ducing the distance to three centimeters, and so on. Now I can extract 
this information from my digital image with the mouse because I am in-
terested in the distance between the two animals. Ultimately, we extract 
numerical information from the images. For us digitization is a simplifica-
tion, another tool that makes it easier for us to access numerical data.

Hannes Rickli     What’s interesting is that the visual data are so comprehen-
sive. They have, as you say, brought the system to the brink, so that fil-
tering has become mandatory. As a consequence, fish communication 
is selectively recorded: only under a positive aspect, namely whenever 
a fish sound is detected. Another question worth investigating would 
be whether there are also similar situations in which no communication 
takes place.

Philipp Fischer     I absolutely agree with you. That is still our weak spot, 
which we cannot resolve at the moment, because our scientific ap-
proach is actually based on the acoustic approach, such that any infor-
mation we extract from the video images must, unfortunately, follow the 
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primary evaluation of the acoustic data. However, it is good practice of 
a behavioral biologist to prove that the behavior we observe and associ-
ate with acoustic patterns is not predominant even without the acoustic 
signals. If that were the case and we have 50 percent or 60 percent of 
a specific behavior even without the acoustic signals, then we may be 
wrong to associate this behavior with specific acoustic patterns.

Hannes Rickli     So how do you measure that?

Philipp Fischer     At the end, the entire video material has to be analyzed. 
But at the moment we do not have the slightest clue, nor any tool for go-
ing through the entire video, independent of the acoustics, to search for 
certain behavioral sequences of the animals.

Christoph Hoffmann     Hans once said that the behavioral data were the 
most complicated data in his work. I assume that complicated means 
that these data are the “dirtiest,” because here researchers have to 
make so many decisions on their own?

Hans Hofmann     We have to consider several aspects. These data are the 
most difficult to collect, because they are multi-layered—the animals 
are moving in three-dimensional space over time. The data are thus mul-
tidimensional, whereas sequence data are one-dimensional. Moreover, 
there is not just one fish, there are many fish. This aspect and the work it 
takes to extract from a video image not only the XY-position of the many 
fish in space, but also their orientation, makes for very great cost and ef-
fort in comparison to the sequencing data we receive from the sequenc-
ing facility. However, this does not necessarily mean that the behavioral 
data have more noise.

Christoph Hoffmann     With “dirty” I meant only that these data are based on 
human decisions.

Hans Hofmann     Yes, that’s true, if the behavioral data are collected on 
the basis of a traditional ethogram, an inventory of behaviors. This en-
tails searching for various types of defined behavioral displays, defined 
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somehow on the basis of our cognition. But nowadays we also have 
systems available in which machine-learning approaches are applied 
in order to define behaviors without any previous human input. This is 
quite interesting, as for the most part, the same behaviors are identified. 
Apparently there is no major difference between what we see and can 
agree upon objectively, and what is produced by machine-learning ap-
proaches. I can remember two papers: one on Drosophila flies and one 
on C(aenorhabditis) elegans—relatively simple organisms, although their 
flight behavior alone is quite complex.2 Machine-learning approaches al-
lowed the authors to identify a couple of additional behaviors that were 
not necessarily apparent to us. What was also interesting about these 
papers was that they presented hierarchies that defined which behav-
iors were more similar to each other than others. But I think that we are 
actually faring quite well with what we can recognize as a certain behavior 
and what I can show my students, that is, what we can agree upon. I have 
relatively few reservations regarding the building blocks of behavior.

Christoph Hoffmann     I came back to this comment because it really im-
pressed me. For someone who is not a biologist, it initially seems coun-
terintuitive that behavioral data are the most difficult to collect. I would 
think: Well, counting behaviors is not so complicated. What’s really com-
plicated are the sequencing and interpretation of these data.

Hans-Jörg Rheinberger     This indicates that we are dealing with an extreme-
ly diverse data concept. Of course, there are numerical data. But be-
havioral patterns can also be conceived of as data. Or, in ecology, even 
entire organisms can count as data. Talking about digital data conceals 
this variety and tends to reduce the data concept to what is digital. Data 
need to be defined in a totally different way. I believe we need a com-
pletely different framework.

2	O n Drosophila, see Mayank Kabra, Alice A. Robie, Marta Rivera-Alba, Steven Branson, and 
Kristin Branson, “JAABA: Interactive Machine Learning for Automatic Annotation of Ani-
mal Behavior,” Nature Methods 10 (2013): pp. 64–67; on C. elegans, see Eyal Itskovits, Amir 
Levine, Ehud Cohen, and Alon Zaslaver, “A Multi-Animal Tracker for Studying Complex Be-
haviors,” BMC Biology 15 (2017), article 29.
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Christoph Hoffmann     That’s right. Only, one aspect of using these so-called 
complex behavioral data includes that, at this juncture—as Philipp’s 
work shows as well—the work is moving toward automation. The at-
tempt is to switch off “the human interface” from the outset and to per-
form direct pattern recognition instead.

Hans Hofmann     To become more efficient. High throughput and so forth. 
Yet, in my opinion, behavioral data are also the most difficult because 
they concern the very experimental design: What is actually the scientific 
question to be pursued? Many of the things we do in my lab start from the 
level of behavior. Then you probe downward or upward, or in whatever 
direction. I find the task of posing the right questions about the animal 
considerably more difficult than evaluating any kind of sequencing data.

Gabriele Gramelsberger     I am not familiar with your experimental system, 
Hans. Do you, like Philipp, digitally record the behavior of fish on video?

Hans Hofmann     In some instances, depending on the experiment, we film 
from above, and then the XY-coordinates for each individual animal are 
digitized directly; today we no longer have to tag the animals. We record 
the direction in which the fish look and how they interact. Then various 
algorithms can be developed, which can be used to determine whether 
the fish are actually interacting with each other or not. But when more 
complex social behavior is concerned, we still have undergraduates 
score it manually. That is what digitization actually means here. The vid-
eos themselves are digital, of course. Nothing is recorded on tape any-
more. But, depending on the experiment, the behavioral data—we differ-
entiate around 18 or 19 different behavioral displays for these fish—are 
still extracted in part by humans. I would love to automate this process 
more, but it is pretty efficient as it is. The data are coded on a computer 
keyboard. People with a lot of experience can do this nearly in real time. 
You can set the recording at 80 percent, 90 percent of the actual speed.

Christoph Hoffmann     I know from Alex Jordan, who is now working in Kon-
stanz, that his research on social cues initially yielded quite surprising 
results. It turned out that the dominant fish were not the informants, 
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but the subdominant ones, and that these, accordingly, accelerated the 
group’s pace of learning. He then examined the data again, going back-
ward all the way to the beginning, to the counting process. The data were 
scored again and then reviewed to see whether there might be a funda-
mental error in the whole history. For data generated “by hand” it seems 
to me that this is quite easy to accomplish. But what if these activities are 
automated? Can the experimenter still return back to the starting point?

Hans Hofmann     Yes, in principle. The most important decision here is: 
Which of the intermediate steps do you keep when the data are trans-
formed, or compressed, or extracted, or whatever else happens to 
them? What is stored? In some cases, if all of the intermediate steps 
were discarded, you cannot go back to the start. Or you have to start 
over with the original videos. However, the videos take up a lot of stor-
age space. That’s why some may say that there is no need to keep the 
videos. My approach is different. Storage space is so cheap these days 
that I always keep the videos as original data. Much of the data on the 
intermediate steps that take place during evaluation to produce the data 
file, for instance, the XY-coordinates, is then discarded.

Hans-Jörg Rheinberger     So you keep in mind that it may be necessary to go 
back to the beginning?

Data Reproducibility

Hans Hofmann     Yes, and we do that relatively often. We recently published 
a paper for which we evaluated eight different experiments performed 
in my laboratory since 2003.3 The article is thus a kind of meta-analysis, 
although I had not actually intended to publish these results in this form. 

3	 Peter D. Dijkstra, Sean M. Maguire, Rayna M. Harris, Agosto A. Rodriguez, Ross S. DeAnge-
lis, Stephanie A. Flores, and Hans A. Hofmann, “The Melanocortin System Regulates Body 
Pigmentation and Social Behaviour in a Colour Polymorphic Cichlid Fish,” Proceedings of 
the Royal Society B: Biological Sciences 284, no. 1851 (2016), doi: 10.1098/rspb.2016.2838.
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In these experiments we had always recorded a certain datum for a fish, 
which had been practically irrelevant until this time. At some point the 
question came up as to whether this aspect—it concerned the body col-
or of the fish—could be explained in another context. I then suggested 
that we look at all of these different experiments to see whether we could 
identify any kinds of trends or patterns. For each individual experiment 
the data are pretty noisy, without any (statistical) significance. But when 
you take a look at this over all eight experiments, it is quite clear what hap-
pens. This is another way to go back to the data. For me this is very impor-
tant. I know that it would not be possible in many laboratories, because 
the recordkeeping is simply not good enough to allow this kind of data 
archeology, even in one’s own laboratory. This is a tremendous problem.

Christoph Hoffmann     It seems there is a trade-off here between digitization 
and data handling. Philipp decided to replace continuous video record-
ing with the storage of three-second snippets from the running stream 
because the amount of data had become too large and the material could 
no longer be evaluated. Hans, for his part, mentioned at our Fragile Daten 
conference in Berlin that the storage of sequencing datasets is a problem 
because they require a great deal of space. For him, the reaction would 
be to no longer save the data, but only the information about how the data 
can be acquired again—that is, the metadata. Here one sees how, as an 
effect of digitization, data gaps are produced that are quasi inherent to 
the system. Afterward Philipp is no longer able to access all of the images 
in a stream. The stream flows, it is gone. He must run this risk because the 
digitization of the experimental system forces him to do so. Would you 
agree that—put in slightly exaggerated terms—such experiments are 
intentionally moving toward information loss, because otherwise, the ex-
pense, one could also say: the concern for these data, is too high?

Philipp Fischer     I find this point quite valuable. We had precisely this dis-
cussion in the In situ ecology and technology working group at the AWI 
(Alfred Wegener Institute). I would like to turn it around a bit, however. 
We decided, with a heavy heart, to record only these short sequences. 
We were fully aware that in doing so, we would be cutting out parts of 
the information that we might be able to utilize later. At our Spitsbergen 
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monitoring station, we decided against it for our FerryBox data and all 
of the image data.4 While we do not keep all of the data produced, we do 
keep all of the raw data, so that all data can be recalculated again with 
our algorithms. That adds a little more to the mix, as we can sometimes 
consider whether the raw data are the binary data that come from the 
sensors, or whether they are the actual values (for instance, the salt con-
tent). In any case we now have to be meticulous about saving all of the 
metadata. These are imperative in order to be able to get from the origi-
nal data recorded by a sensor (i.e., the binary data) back to the ASCII 
data that we can read. If we do not have these metadata, that is, if we 
lose the encryption code, then the data can no longer be decoded into 
readable data. Safeguarding the correct codes to decipher data from 
each sensor at every point in time is at least as demanding as ponder-
ously writing down all of the processing steps. Just recently we wanted 
to re-evaluate a dataset from the year 2012, but we were no longer sure 
which calibration dataset belonged to the sensor on that day of that 
month. Actually, now we are stumbling into another problem, which—in 
contrast to a shortage of storage space—is not directly and exclusively 
a consequence of digitization. We have to establish extremely consis-
tent mechanisms to ensure that we are able to put the data back togeth-
er correctly. In the meantime we have moved on to saving not only the 
data, but also the evaluation programs in MATLAB and in R with which 
we processed these data. At the moment we are still discussing whether 
to include the associated evaluation algorithms and metadata when we 
publish data in the major repositories like Pangaea. For us this is an im-
portant matter. To answer the initial question: We will not settle for more 
gaps in our data in the future. On the contrary, we will attempt to guaran-
tee that all data can be recreated even after five years.

Hans Hofmann     We have the same problem. Reproducibility is when one 

4	 Since 2012, the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 
together with a French partner, has been operating the AWIPEV-COSYNA Svalbard Un-
derwater Observatory in Ny-Ålesund on Spitsbergen. It consists of various sensors, an un-
derwater stereo camera unit, and a webcam. Via a data cable, sensor data and photos are 
forwarded to the AWI Computing and Data Center in Bremerhaven.
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takes data from the same datasets, performs the same analyses, and 
actually arrives at the same results. This is anything but trivial. The re-
producibility of analyses is currently a huge topic for us in genomics. 
The idea is to save the programs that were used along with the data, 
or to establish permanent links to these programs, and then assign the 
programs a version number. The whole concept of version control is 
becoming crucial. If I open a paper on any kind of genomic analysis at 
the moment and take the data, download them from any kind of public 
repository, take the algorithms from there, the probability is very high 
(even if the analysis is described quite well) that my results will be differ-
ent from those in the paper. This is a problem.

Philipp Fischer     Absolutely. We are working on a data portal that collects 
the data from Spitsbergen, but also from Heligoland, and immediately 
issues an error message if we are missing any metadata or associated 
algorithms that have not been stored. At our institute we are also cur-
rently discussing preventing our own data from being fed into our on-
line repositories at all unless all of the information we need to process or 
handle these data later are stored in the repository as well. This would 
even mean that we would be cut off from our very own data if they were 
not documented comprehensively. According to our experience, this is 
the only way to build up sufficient pressure to make us active enough 
as data-providing scientists. Without comprehensive documentation, a 
screen message or a mail would be output with the indication: Collection 
of your temperature data from Spitsbergen will cease immediately; the 
repository is lacking the relevant algorithm.

Gabriele Gramelsberger     What you two are describing is a fourfold data con-
cept. There are raw data, metadata, and data about the analysis method, 
and then the data about all of these data. The layers just keep piling up. 
When you ultimately speak of the datum you have to unravel all of this, 
because otherwise you have no chance of understanding this datum.

Christoph Hoffmann     In fact, it is striking how researchers’ concern is shift-
ing ever more toward the metadata. Doesn’t this, again, pose the prob-
lem of the gap and what is lacking on a second level?
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Hans Hofmann     Metadata are a major problem. First the community must 
reach a consensus about which metadata are relevant. Even this is turn-
ing out to be not so simple. But even if a consensus is reached, it could be 
that in one, two or five years, someone would like to have all of this other 
information that was deemed not important when the compromise was 
made. This then raises the question as to what people get for actually 
making their data publicly available. In English this is called the incentive 
structure. Why should they spend hours or days putting together all of 
these metadata and submitting them to a public repository where they 
are only going to lie around, unless they receive something in return? As 
far as reproducibility is concerned, there must be agreement as to what 
is good enough. This is not about 100-percent reproducibility, but about 
when the results are considered to be robust. Different researchers with 
somewhat different approaches can analyze the data. The results will 
not be precisely identical, but they should be concordant.

Data Scientist

Philipp Fischer     Reproducibility is a multi-layered matter. The reproduc-
ibility of our data is conditioned, on the one hand, by our experimental 
approach. When I decide on an experimental approach, I will always pro-
duce gaps, because—as Hans correctly said—I consciously decide to 
collect certain data and not to collect others. This is the normal scien-
tific process, which requires scientific expertise. In this sense I will never 
get around gaps. On the other hand, a datum or a number I produce is 
my anchor. Described in that datum or number is my level of knowledge, 
with the idea of the experiment coded in the first numeric value. Start-
ing with this numerical value, we aspire to the complete reproducibility 
of the data. These are two different things. We reduce the idea to the 
nucleus number. To get from this idea, the scientific question, to this 
number, great scientific expertise is needed. But starting from this num-
ber, reproduction should succeed at a rate of 100 percent. Only then do 
I have a correct data structure. In order to ensure this, we are currently 
intensively discussing a new curriculum within our university program. 
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We need a new type of scientist that we may call a “data scientist.” The 
US is leading the way; we’re not so far in Germany yet. With the term data 
scientist we mean that this person concerns themselves exclusively with 
data in science. On the one hand we then have the scientific process of 
research, in the course of which concepts are put forward in order to 
acquire data; on the other hand, we have the data scientist who retrieves, 
produces and reproduces these data and erects multilayered data mod-
els. We want to encourage this: the data scientist and the natural scien-
tist. I am not trained to deal with large amounts of data. I pick up these 
skills only with a great deal of time and additional effort. But in principle, 
I am not trained for this.

Hans Hofmann     At our university we have a Department for Statistics and 
Data Science. They were recently awarded a training grant in data sci-
ence. One of my tasks is to establish a new graduate course: BIO 382K, 
Introduction to Biology for Data Science. By now this topic has arrived 
in graduate training, and is gradually entering undergraduate training as 
well. A few years ago, we made the decision that nobody can finish with 
a Ph.D. in most of the life science graduate programs without a strong 
foundation in data processing and data analysis, and thus big data skills 
and the like. Everyone who studies with us has to have these, even the 
molecular biologists, biochemists and ecologists. I think we are about 85 
to 90 percent of our way to this goal. A few manage to slip through every 
year, but not very many.

Hans-Jörg Rheinberger     On the one hand, the people who work in this area 
have to have sufficient connectivity. On the other hand, however, dif-
ferentiation is clearly taking place. In the historical perspective, at some 
point, people working in the natural sciences had to have recourse to 
technicians, because the technologies became so enormous that the 
scientists themselves were no longer able to fully master them. Now the 
data space is expanding, and for that specialists are needed as well. This 
is trivial in principle. I believe that the decisive point is that the data space 
is acquiring an ever stronger presence, ultimately becoming an experi-
mental space, one that is incredibly multifaceted and needs new skills to 
be mastered.
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Hans Hofmann     One should be careful with prognoses, but it would be de-
sirable for the biologists, the life scientists, ultimately to be data scien-
tists themselves, so that they are not dependent on others. In my opin-
ion it is still important that those who have learned to pose questions 
and design experiments—be they in silico experiments or experiments 
that actually take place in the laboratory—, that the same research-
ers who generate the data are also able to analyze the datasets. At 
any rate, this is the decision we made. On the other hand, the scientists 
from engineering, from physics, from computer science, are coming in 
now; everyone wants to perform research in biology. We want them too, 
for they have approaches and expertise at their disposal that we are 
lacking. These scientists move very differently in this data space. We 
have to teach them biology, and that is my task with this new course. 
So it’s moving in both directions. Seen from the historical perspective, 
this is nothing new, of course. Every now and again there is a wave of 
physicists or engineers who come to biology, with varying degrees of 
success. One such movement was cybernetics, but there are further 
examples of this. It’s quite similar now. In physics I know several grad 
students and postdocs for whom it is simply no longer interesting to be 
a physicist in the sense of working at some accelerator and having their 
name on a paper along with 10,000 other researchers. They conscious-
ly decide to go into biology, where their name is on the paper with only 
ten or fifty others.

Philipp Fischer     I would agree. In principle, the approach is correct: our bi-
ologists have to be capable of handling data. In our disciplines, too, we 
have many persons who can do that because they have already been 
working with these large datasets for many years—above all in atmo-
spheric research or in terrestrial ecology, and somewhat less in ship-
based aquatic ecology. This is not the case in our special field of behav-
ioral research, nor in coastal research, which has become relevant in 
recent years as it relates to climate impact research. It really depends on 
the discipline. For my students—that means students from everywhere, 
be it the US, Europe, or Africa—I unfortunately cannot confirm that the 
majority are able to deal with data. I am actually pleased when students 
are able to work with Excel, and there are perhaps ten to fifteen percent 
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who also know how to use MATLAB or R. Nevertheless I believe that 
we need specialization in these areas. I would not like—on this we are 
in complete agreement—for us to have scientists sitting in a comput-
ing center who do not have a clue about biology, and who then take our 
data and evaluate them further. But in the future I hope that not only the 
scientists who research in the laboratory get credit, but also those who 
make the effort of working more intensively with data. This is our main 
problem. The scientists who sit at their computers and work mainly with 
data are always quite poorly evaluated in terms of academic credit. At 
our universities and research institutes we at least attempt to convince 
scientists that working with data is also attractive.

Hans Hofmann     I think genome research has made a bit more progress, 
although this discussion is taking place in our field, too, of course. There 
is a conflict between those who produce data and those who download 
data from one public database or another and then evaluate them. The 
latter are generally referred to as “data parasites.” I believe I read in the 
New England Journal of Medicine that a few scientists who want to keep 
their data have banded together. They said that they do not want to 
share their data with others who then simply publish a slew of papers 
from their data. There has been massive pushback on this. But at my 
department—we’ve been doing this for ten, fifteen years—we hired a 
number of scientists, faculty, who pursue computational biology and 
bioinformatics. They have no wet labs; they only collaborate with other 
researchers or download large datasets. In my laboratory I also have 
scientists who do only bioinformatics. We have a large-scale project in 
which we do not produce any data of our own, but receive all of our data 
from databases. And I see that the scientists who do these things and 
gain new insights actually do receive precisely this credit for this work. 
But it is a slow process, and I believe some institutions are a little further 
ahead than others.
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Christoph Hoffmann     At this point I would like to address a further aspect. 
It has been mentioned already how complicated these data are and how 
much knowledge about a dataset is needed in order to work with it. I ask 
myself whether the strong link binding data to the location of their gen-
eration can be broken. Does it make sense to set up large repositories 
with the intention of stimulating scientists to share their data? What has 
your experience been? Do you work with data from other researchers 
whom you don’t know? This interests me because I see a jumble of un-
certainties concealed behind the demand for data sharing advanced 
by science policy. We already addressed one possible way of breaking 
down this jumble, when we talked about the question of how compre-
hensive metadata must be in order to be able to work with a dataset. An-
other possibility is designated by the word trust: a word many perhaps 
shy away from.

Hans Hofmann     Let’s start with trust. I have no problem with the word. 
Trust is the foundation of science. If I cannot trust the persons who per-
form a certain experiment, there is no basis. I have to be able to trust 
that the experiment and the results they report are correct to a certain 
degree. This does not mean that the interpretation is correct and that 
ultimately everything will be right. Scientists develop a reputation as 
a consequence of this. Some of my colleagues have a reputation that 
leads me to treat the data they produce with perhaps more skepticism 
than those from other scientists who have a better reputation. This is 
quite well known within any given community. Now, concretely to answer 
your question: In my laboratory we use many data that we did not pro-
duce ourselves. First, at some point everyone in my laboratory, be they 
grad students or postdocs, or sometimes even the undergrads, makes 
analyses of data that were produced by someone else in the laboratory. 
Even in these cases there are sometimes misunderstandings and prob-
lems: Something is not right, or not completely documented. Then it of-
ten turns out that I and my institutional memory are needed in order to fill 
such gaps. Second, of course we use data from our collaborators, from 
researchers whom we know well, whom we trust, with whom we have a 
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certain relationship. And third, we use data that are simply available in 
these public repositories, deposited there by researchers whom we do 
not know personally. In this case rather nebulous concepts apply, such 
as reputation. Or we contact colleagues, because—as happens regular-
ly—we need additional information. It then turns out that some are very 
generous about what they share with you. They answer quite promptly, 
while others do not. You don’t necessarily know why, but at least subcon-
sciously you do the math. Generally our experiences with this have been 
very positive. It is actually quite unusual for us to say: Now that looks fun-
ny. Or: We have to be skeptical here. However, it is true that we perform 
our own checks, of course, even if they take place within the laboratory. 
For instance, someone needs hormone data. Blood samples were taken 
from animal subjects, and three, four different steroid hormones are to 
be measured. However, the scientist interested in hormone data does 
not perform these measurements herself, but another, who is doing an 
assay (and thus a whole slew of such measurements) does so and adds 
these 30 or 40 samples provided by the colleague in the lab. The one 
person must then trust the other that the data are actually reasonable. I 
expect of my staff, however, that they look at all checks and references 
themselves to ensure that these data truly make sense. This is the same 
thing we do when we take data from public repositories. We first put 
these data to the test and consider whether they might, under certain 
circumstances, include a systematic error. Of course, this is not always 
entirely possible, but you get a good picture.

Christoph Hoffmann     Don’t you have the feeling that you’re building on 
quicksand with these data?

Hans Hofmann     No, if there are data of that kind, we keep our distance. We 
have the problem that the technical developments are progressing so 
rapidly that we often have a compatibility problem. In a relatively large 
project that is only computational, in which we did not produce any data 
ourselves, we are dealing with data that were generated with what are 
known as microarrays, and with data that were generated with what is 
called next-generation sequencing. Something along the lines of a Ro-
setta Stone is needed to make these compatible with each other. This 
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is anything but trivial. If you cannot manage this, you have to throw away 
a major portion of the data that are, in principle, at your disposal, which 
you don’t want to do. Or you have to analyze them separately. That is the 
real challenge: the different technical platforms that develop further so 
quickly.

Hans-Jörg Rheinberger     Does that not depend a bit on the area and the 
community? I’m thinking of the work by Sabina Leonelli, who spent 
several years with the groups that have been collaborating on a shared 
model organism, Arabidopsis thaliana.5 These communities of perhaps 
500 or 600 people spread all over the world used shared databases. 
There is a repository into which more or less everything about the model 
organism is fed, but at the same time the repository itself is constantly 
being worked on. This raises two fundamental questions: Which criteria 
must all of these data fulfill in order to be entered into the pool at all? 
And how specifically must they be indexed so that the individual work-
ing groups, each of which is addressing its own issues, can access this 
pool expediently? This is a question of generalization and specification, 
of global scope and local exploitation at the same time, and the trade-off 
between these two poles is, I believe, the decisive point.

Hans Hofmann     And the question is not resolved; this is—as they say—a 
constant work in progress.

Christoph Hoffmann     At the same time, it is apparent that the quasi-techni-
cal solutions of the circulation problem, from barriers to including datas-
ets in repositories, to the rules about the metadata to be supplied along 
with them, are never sufficient. Hans just affirmed this once again. One 
has to contact the scientists about their data, perhaps because some-
thing is missing, and even in one’s own laboratory, the staff has to make 
inquiries about the data they are using. It doesn’t work without commu-
nication. That’s why I asked about trust.

5	 Sabina Leonelli, Data-Centric Biology: A Philosophical Study (Chicago: University of Chi-
cago Press, 2016): pt. 1.
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Philipp Fischer     I agree completely with Hans, that one has to have a cer-
tain degree of trust in external data. At the same time, however, a healthy 
distrust is needed as well. The mere fact that there is no logistics enabling 
us to produce all data ourselves means that we necessarily have to rely 
on external data. If the subject is climate impact research, for instance, 
we need more or less comprehensive data from the Arctic and/or the 
Antarctic: temperature, salt content and whatever else. For this we have 
to rely on the repositories of the USA and other countries. Whether or not 
we trust these data is not a question that is posed at all. We have no other 
alternatives, because these are the only data available at all in order to 
calculate the values in certain models. We use quality management al-
gorithms, of course. Last week I even sat down with a colleague who ac-
tually plots the data he takes from external repositories by hand to see 
whether they make sense. Inversely, a healthy degree of trust is also part 
of this. Now we are once again taking recordings from the Polarstern, 
starting from Bremerhaven—North Atlantic, South Atlantic, then to-
ward Cape Town; once these are published we will work with them. In 
this case, the data provider has to enjoy a certain reputation, however. 
For the Pangaea repositories, where our data are stored, we have a very 
strict rule. We submit the data to those persons who are responsible for 
the repositories, they check these data independently for consistency, 
and only if they pass this check are they published. Another example: 
We have very important, unique data on ocean acidification off the coast 
of Spitsbergen. Now a colleague from France says: In order to use these 
data for further calculations, we require the silicate data from the target 
area for calibration of the sensors. So we asked around: Who, by chance, 
may have collected such data? From the Netherlands we then received 
the message that they determined such values in their weekly manual 
samples over the last year and a half. This is a typical co-utilization of 
datasets that are rare or very costly to collect. We know the colleagues, 
they measure very accurately, and some of their data are also analyzed 
by us at the AWI. One example from my own group: In connection with 
the data from Spitsbergen we also measure the age composition of the 
fish populations. For this we dissect the otoliths, the tiny ear bones, and 
count the growth rings, just like for trees. As a result we can say, for ex-
ample: This animal is six years old. Sometimes the rings are not easy to 
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detect. But if we classify the fish incorrectly, we have a huge problem. 
If we say, for example, that the animal is six years old, but in actuality 
it is only two years old, we postulate that the animal has been sexually 
mature and producing progeny for three years, which could potentially 
be important for the size of the fish stock and also for the fishing quota 
as well. This is why we have the analyses performed by three persons: 
I have one person analyze the otoliths. Only I see the age data for each 
individual fish that are measured by this first analysis. Then a second, 
independent person from our group is tasked with analyzing the same 
dataset. Then I decide whether or not their results match. If they do not 
fit together, I ask a third person, who, again, has no idea of the first and 
second result and this person analyses the otoliths once more. Finally I 
then decide which age is correct, or whether the data collected must be 
discarded. That’s what I mean when I talk about the balance between 
trust on the one hand and healthy mistrust on the other. We need these 
procedures when the data are highly critical.

Hans Hofmann     Here we take our inspiration from Ronald Reagan, who is 
supposed to have said: “Trust, but verify!”

Accuracy

Gabriele Gramelsberger     That fits well with the question I have. I think that 
over the course of time, a data-critical awareness is developing in the re-
search institutes. This struck me during my research on climate models 
and data. Satellite data are scrutinized especially critically. The reason 
for this is that they are loaded with theoretical presumptions (theory-
laden) and that the algorithms involved are so complex that one cannot 
always trust such data from other institutions. This kind of theory-laden 
data is checked in house first, to determine whether they can actually 
be utilized. There are researchers whose only job is to perform quality 
checks on satellite data from other sources. This data awareness is ex-
citing from a philosophy of science perspective.
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Hans Hofmann     What do you mean by theory-laden data?

Gabriele Gramelsberger     These are data which researchers initially do not 
trust at all, because the data gathering methods are so complex that one 
first has to understand what assumptions have been put into them. And 
then there are data about which the researchers know that they are still 
“empirical” enough that they can be trusted.

Philipp Fischer     It is a two-layered problem. For satellite data I know pre-
cisely that with the algorithms only a certain accuracy can be achieved 
at all. If I know the scattering around the actual value—that is, the ac-
curacy—then I can deal with the data. If one takes the temperature data, 
for instance, it makes a big difference who needs them. If an oceanog-
rapher needs these data, she would like to have an accuracy of, let’s say, 
at least 0.02 degrees Celsius. Otherwise she cannot utilize the data. If I 
take these same temperature data for my scientific questions, I demand 
an accuracy of 0.1 degrees or perhaps even just 0.5 degrees Celsius. 
Otherwise these data are completely irrelevant for me. The number of 
algorithms applied before I can use the data is one source of uncertainty 
about data quality. Yet it also depends who uses the final data product. 
At the moment we are experiencing ever more discussion about how to 
even calculate accuracy in a meaningful way, which is definitively not 
trivial. Unfortunately, in our data we still have classification through data 
flagging: For this the data are subjected to classification, for instance 
from one to five. One is for the raw data, two for the probably good data, 
three for the good data, four for the probably bad data and five for the 
bad data. These five classifications are widely published and thus rec-
ognized throughout Europe, and many of our colleagues work with these 
quality indicators. For us they are complete nonsense. Just imagine for a 
moment, I am calculating statistics, and in my statistics I don’t say: Aha, 
I have an uncertainty factor, a p-value of 0.5, but rather: The p-value is 
probably good or probably bad. This is why we are currently working 
to systematize the real scattering range of data. When I have a value I 
want to know: In what range of spread is the real value with 95-percent 
probability? I would like to have the information about accuracy, and I 
would like to have information about precision: How does the value move 
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around the actual value? Only such precisely characterized data bring 
real progress.

Hans-Jörg Rheinberger     What also seems important to me—and this may 
go back to my own experience as a scientist—is that, in the first in-
stance, the step of data collection is decisive. The data have to come 
from somewhere. During in vitro experimentation I had the experience 
that the possibilities for processing at one’s disposal are usually a mag-
nitude more precise. If you have to pipette microliters or half-microliters 
in such an experiment, when you’ve done that ten times, you have an er-
ror margin in the whole process. Afterward you insert the sample in the 
scintillator, in the machine that counts radioactivity, and this scintillator 
can measure every sample for you to any place after the decimal. But all 
of this precision is a waste of time somehow, because the upstream im-
precision is much greater. For me, the awareness for what actually hap-
pens at the point of collection seems to be a prerequisite for everything 
else.

Hans Hofmann     At least our training teaches us fairly well that measure-
ment methods have different levels of precision. Just because I achieve 
high precision with one measurement method this does not mean that I 
can actually exploit this precision. But there are always negative exam-
ples of people misinterpreting this. For me this means only that we have 
not done our job when we trained those people.

Data Visualization

Christoph Hoffmann     I remember how Hannes once said that he, too, can 
no longer cope with the flood of data—the data he himself collected 
from the research infrastructure in Austin, and the data supplied to him 
by RemOs. Initially this was a storage problem. But I think it is also a per-
sisting aesthetic problem. Is this overload, put bluntly, due to the fact that 
there is no appropriate aesthetic form for the data? Are you entering 
unchartered territory with this?
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Hannes Rickli     Various factors play a role here. The first question was in-
deed about what kind of data handling would be suitable in order to ar-
rive at formats that can be output for further processing. For Austin, for 
instance, it turned out that the conversion of the audio and video data 
into “films” that could be played back came at a huge computational 
cost. At the same time, we had institutional difficulties with the ZHdK, 
because access rights had not been sorted out, which was leading to 
server interruptions. What is more, the IT basics were lacking. Just like 
all of you, I notice that there simply aren’t any standardized solutions for 
this. First off, the ZHdK had to learn to operate a server to which so many 
data are uploaded every day. As far as the audio data from Spitsbergen 
are concerned: Here we have just reached the point at which we are try-
ing to get an overview of the various signal recordings. First we have to 
decide what scale we actually want: Do we want to proceed on the basis 
of events, or on the basis of time, that is, give an overview of three, four 
years of data? For audio this is not simple. While the signals can be vi-
sualized, one has to be able to go into detail quickly. When the signals 
are rendered in the overview, specific details are simply not visible. This 
is precisely the point of the audio panorama that we made for Hans in 
Austin. The recordings cover eight stations over 24 hours. At the mo-
ment every individual file can be viewed, but then the other situations 
are missing as benchmarks for each file. So, the question of simultaneity. 
Now I found a nice example for how this can be solved purely visually. 
For the Olympic Games there was this program called RealPlayer: nine 
channels with all simultaneous events, which were marked with an icon. 
You have a cursor, you know where you are on the time axis, and can 
jump into any channel as you wish. Perhaps this would have been a pos-
sibility to visualize simultaneity. For these acoustic things, sometimes 
the data-specific aspects are not relevant, not every individual signal 
that can be heard, but rather something more like intensity.

Christoph Hoffmann     One thing I find interesting: You respond to the ques-
tion about the aesthetic with technical answers. You speak of the diffi-
culties in managing the flow of data or establishing simultaneity. But you 
did not give any reasons, for example, for why you inserted the record-
ings from Austin in an audio panorama. Is there perhaps a kind of logic 
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that is dictated by the existing data, and from which the form of repre-
sentation results more or less mechanically?

Hannes Rickli     No, you’re looking at it the wrong way. It’s a situation that 
is new for me. I haven’t actually done such work before. Therefore it is 
like a test, to establish a coherence between the data or the object and 
its form. But this is preceded by a concept: The point is to rematerialize 
aspects of this data production. I find all of these abstraction process-
es—from fish to dataset in the computer—extremely interesting, and I 
want to keep precisely this chain reversible. For me that is an interest-
ing aspect of biology. One proceeds from a concrete organism, which 
then dematerializes into scientific work. My question as an artist is: How 
can I make this material basis that lies behind these many steps, these 
transformations—the infrastructures, energies, matter, etc.—how can I 
make it tangible? For the exhibitions Videogramme (Helmhaus, Zurich, 
2011) and Fischen lauschen (Schering Stiftung, Berlin, 2013) I had videos 
and sounds as raw material. My artistic concept was to reconstruct the 
situation that yielded the images and sounds. I built the installations such 
that the devices that were involved simply took over the inverse function, 
so where the camera had been, I placed the projector, etc. That’s not so 
simple in the Texas panorama. Therefore I am searching for possibilities 
to rematerialize the relation between sounds and images so that it can 
be experienced spatially.

Christoph Hoffmann     Would you then say, Philipp, Hans, Hannes, that you are 
facing the same problem: Transformation of digital data into a sensory, 
sensually palpable form, albeit with different objectives? Does the step 
from dataset into representation present a problem for the sciences?

Hans Hofmann     Visualization is definitely a major challenge. How can 
complex, often multivariate, multidimensional relationships be depicted 
visually in a way that makes them tangible for our brain? By now visual-
ization has become a special field in data science. We offer courses in 
data visualization as part of our training program. But I am considering 
the extent to which there is actually a difference. We generally have con-
crete questions for the data. Either these are fueled by the hypotheses, 
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or we conduct a more exploratory search for certain patterns and in-
teresting relationships. For Hannes, by contrast, it’s not clear to me how 
concrete his question is. It’s a third layer: He does not seek patterns, and 
he does not test any hypotheses: he wants to make a process visible and 
tangible.

Hannes Rickli     That’s the problem, I’m interested in the process of data 
transformation, which can hardly be captured in a result.

Hans Hofmann     For me, this process appears somewhere in the methods 
section. It is important, it must be reproducible. The relevant informa-
tion, the metadata have to be there. But when I tell my story, write my 
paper, or give my lecture, the process itself is not relevant, it shifts to the 
background. Unless my research area is to develop methods, which is 
generally not the case for me.

Hans-Jörg Rheinberger     That brings an anecdote to mind: When Bruno La-
tour was preparing Iconoclash at the ZKM in Karlsruhe, I actually wanted 
to contribute a short film to the exhibition. The intention was to visual-
ize a scientific working procedure: What all is involved in coping with the 
technology of radioactive labeling? This was the question. My colleague 
from art history, Peter Geimer, was also part of the project. We sought 
out a scientist—truly a highly intelligent guy—at the Max Planck Institute 
for Molecular Genetics, and I knew that he had years of experience in 
working with these things. We wanted to realize the film with his help. We 
spent an entire day in discussions, but it was not possible to convey the 
problem to him. He always wanted the focus to be on the visualization of 
his results, his ribosome models. It was impossible to make him under-
stand our question. It was like an experiment gone wrong. The film was 
never made.

Gabriele Gramelsberger     Let’s back up. As scientists, you are interested in 
the representationality of data. The data represent something that pro-
duces results. Hannes is interested in the materiality of data, that is a 
completely different perspective on data and their transformation.
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Hans Hofmann     But it is not as if the materiality of data does not interest 
me at all. Their materiality is a challenge for me in scientific practice with 
regard to the documentation, storage and public availability of data. For 
me this is, however, entirely separated from the formulation of any sci-
entific questions.

Hans-Jörg Rheinberger     What is also interesting, when I look back over the 
last two hours of our discussion, is that you are indicating precisely the 
critical point, but so far you have not given a single concrete example 
from the spectrum of problems you’re working on.

Hans Hofmann     That’s true. Earlier, when I was talking about the project for 
which we use only data from other laboratories, the hourglass project 
(see part 4 of the conversation), I even had at the back of my mind wheth-
er I should explain briefly what that project is about. But I told myself it 
would only take us off on a tangent.

Christoph Hoffmann     When I asked one of the collaborators of this project 
to explain the hourglass problem, she started opening windows on the 
screen. One, two, three, and at some point there were too many for her. 
She turned to the board and drew me the project—she didn’t write it, 
she drew it. Hence the question about visualization. Visualization serves 
not only to pass on information; first of all, visualization facilitates self-
understanding in the process of data analysis. One draws in order to find 
out what one wants to know. Although the intentions of Hans and Philipp 
ultimately are clearly different from those of Hannes, the process of self-
understanding could be comparable, beginning when one steps out of 
the data space—Hans-Jörg also called it the experimental space—and 
searches for a visual depiction. How long does scientific work remain in 
the pure space of the computer and the software? When does one leave 
the data space and begin with visualization?

Hans Hofmann     That never happens separately; the two are always linked. 
The data analysis pipeline, all of those algorithms, all of this is visualized 
when I communicate it, and just as well when I think the matter through 
and consider what the next steps are. The very names of these software 
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programs are often quite sensual. In transcriptome analysis, for instance, 
there is a standard toolkit, it’s not quite so popular anymore, called Trinity. 
It goes practically from the caterpillar to the pupa to the butterfly. Those 
are the three parts, and they are even designated visually with the cor-
responding logos. If you then begin with these shotgun sequencing frag-
ments and work through the three different main steps in sequence (each 
of which is divided into many individual steps), a transformation actually 
happens every time, it’s like a metamorphosis. Just like when I ask: What 
is the flow diagram or the concept map of the entire analysis? The very 
expressions say it all, everything is visualized in some way. When I sit with 
someone in my office and we think about an experiment for the first time, 
we develop it on the whiteboard. Everything is done graphically, from the 
execution of the experiment to the analysis of the data, to the end, when 
a working model is drawn, which then may be included in the paper. With 
all of the question marks and the information we learned, it is a visual pro-
cess through and through, which is completely entangled with the data 
generation and data analysis. I can’t separate it out.

Hans-Jörg Rheinberger     That means that the data handling also doesn’t 
happen on the digital level. It is just as present visually.

Hans Hofmann     Yes, in our heads.

Hans-Jörg Rheinberger     As is the object.

Hans Hofmann     What’s more, for the majority of genomics, as far as map-
ping and the like are concerned, graph theory is important, which is per 
se highly visual.

Philipp Fischer     I would like to pick up on a point Hans mentioned earlier: 
There was a time in my career, above all the time in Konstanz, during 
which I performed purely hypothesis-driven research. The acoustic ex-
periments with gurnards stand for such hypothesis-driven research; in 
fact, all of my behavioral observations of fish and crabs were hypothesis-
driven. Today my work is more explorative. I proceed this way because 
I work with my Spitsbergen data in a field about which almost nothing is 
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known, so that we cannot even propose any hypotheses. That presents 
a few problems for us. The first article we published on this consists at its 
core of the visual description of our results.6 But we were surprised our-
selves, because we never would have been able to formulate a hypothe-
sis which would have adequately described the results that we obtained 
from our actual research. The visual description of the data is extremely 
important for us, but it goes in a slightly different direction than for Hans. 
My data work takes place on the computer, and—presumably in con-
trast to the field of genomics—we have no ready-made software to 
evaluate our data. I write the programs myself, and at the end of the pro-
gram is the graphic output of the results. Since our data have become so 
extensive, I am not confronted with the results in toto until the moment 
I have the graph in front of me. In fact, sometimes I do not recognize the 
result until I see the graph. This is why I regard data evaluation more as a 
flux. Let us look at the data space as a cube. I am sitting at one end of this 
cube and looking at its surface; an image is drawn there, and this image 
shows my XY-graph with a bar graph. Now anyone sitting at the other 
end of the cube has a different presentation and also a different materi-
alization of the data. For me this is not so different from Hannes’s work; 
also, because we have been discussing at the institute, especially inten-
sively in the past month, how we can not only process our data visually 
such that we can understand them from the scientific perspective, but 
also how we can present our data from the polar stations to the public in 
a way that even the “common citizen” can understand. This discussion 
became quite confrontational. But in our department and at the institute, 
we decided that this is part of our scientific mission, which, by the way, 
brings us back to the credits. They are earned through a purely scientific 
examination of the data, and, increasingly, for data analysis as well, but 
we do everything else just for fun. When I prepare my data for the public, 
I am probably not so far away at all from Hannes’s question formulation, 
question mark, whatever it may be. Hannes looks at these data—or so I 
imagine it—from a certain artistic perspective. The baker outside who 

6	 Philipp Fischer, Max Schwanitz, Reiner Loth, Uwe Posner, Markus Brand, and Friedhelm 
Schröder, “First Year of Practical Experiences of the New AWIPEV-COSYNA Cabled Under-
water Observatory in Kongsfjorden, Spitzbergen,” Ocean Science 13 (2017): pp. 259–272.
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looks at our results views them from the perspective of a curious, or per-
haps even interested, citizen.

The Research Object Form

Christoph Hoffmann     What strikes me about Hannes is that he does not 
provide a new interpretation of your data, but rather, he lays down a sec-
ond track. He uses your data, and the data he collects himself in the con-
text of your research, in order to tell a parallel story.

Philipp Fischer     Ultimately, that’s what we do, too. Just look at the hole in 
the ozone layer, or, as far as I’m concerned, the North Atlantic Oscillation. 
In these cases, colleagues acquired data over decades with an entirely 
different objective. At that time the purpose was to research changes in 
the oceans: Temperature, salt content, simply to determine and monitor 
a dynamic trend over a period of 100 years, with the question in mind: 
What does this trend actually tell us? Then suddenly the suspicion arose 
that we have climate change, and all of those data of 100 years were 
re-analyzed; also a second track with a completely different research 
question, albeit within the same science.

Hans-Jörg Rheinberger     There are clear parallels between the problem as 
it presents itself to Hannes and the scientific approach. It is the unprec-
edented. You cannot just anticipate the endpoint of your journey; you’re 
caught within a search process. In terms of structure I would see quite 
clear parallels there. But the question is different. Hannes is not interest-
ed in contributing a small increment to oceanography or behavioral re-
search. He is working on a different level. But he is confronted with same 
problems from an epistemological and also an aesthetic perspective.

Philipp Fischer     I would like to react to this statement. I do not see Hannes 
in the stream from which we tap our data. Rather, I see Hannes with an 
experiment of his own, and we—that is: Hans and I, our work—are the 
experimental system in toto. We are the guinea pigs. That’s what I’ve 
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always said when I wanted to explain to someone what I actually do in 
the group. Hannes looks at my research and extracts from it the basis 
for his research.

Gabriele Gramelsberger     Hannes is a “data parasite” with his own sensors in 
the experimental system. That is truly unusual.

Hans Hofmann     But he also produces data of his own. To that extent, he is not 
a data parasite. I see myself less as a guinea pig. Rather, I see myself, my 
work—let’s say—as a solar system or a continent or a river system, which 
Hannes observes from a distance with various telescopes and other mea-
suring instruments. He is more of an ectoparasite, not an endoparasite.

Christoph Hoffmann     Yet the step towards visual representation appears to 
be a major problem. This step is what occupies Hannes, it is the central 
aesthetic step. I agree with Hans-Jörg: In this point there is a parallel be-
tween the scientific and the artistic situation. Hans pointed out that by 
now there is a separate branch that deals with the visualization of data. 
His and Philipp’s descriptions of data analysis show how many elements 
of surprise can be found in the visualization of data. However, it seems to 
me that in the sciences today it comes down to having a series of stan-
dardized practices at hand in order to deal with the data. For Hannes, the 
step toward depiction itself appears to be extremely critical.

Hannes Rickli     There are always established solutions in art. At the mo-
ment it is extremely popular for the processual nature of a situation to 
be depicted via investigations and then perhaps with a couple of se-
lected objects. But that is not my goal. You can depict your research as 
research better than I can. I am interested in how the research comes 
about—particularly at those critical points where technology interfaces 
with theoretical concepts and the like.

Hans Hofmann     Which generally takes place in the background these days.

Hannes Rickli     And it is not your job to address and discuss this. I would like 
to understand how these various aspects interact with each other. To do 
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this, I first have to develop a form. The form itself is an object of research. 
What concerns me is—in Hans-Jörg’s words—the shift from the epis-
temic object to the technical object, and how the technical object then 
becomes the epistemic one again. These technical objects would be the 
media, infrastructures, energy, the bioactivity that corrodes the sensors 
in Philipp’s case, storms, icebergs, etc. I have been confronted with the 
technical aspects; I did not seek them out. Your system, Philipp, showed 
me how precarious that is. How closely interconnected the possibilities 
of the internet are, but also how dependent they are on a functioning sub-
marine cable. Or on a functioning power source. Or a power outlet, a plug, 
plug connectors. For Hans that is probably much more standardized for 
the most part. There aren’t these frictions, but probably others instead.

Gabriele Gramelsberger     I find this point quite interesting. I see the differ-
ence between Hans and Philipp so, that Hans is in the laboratory while 
Philipp actually has his laboratory in nature, outside, and measures there. 
What Hannes just described is found in climate research as well. The su-
percomputers they work with are a laboratory within a laboratory. For in-
stance, supercomputers need their own “climatology,” in which they are 
enveloped, for the data flow to be generated at all. This is now becoming 
a subject of discussion itself. In the context of green IT there are proj-
ects in which the energy performance of the algorithms is measured, to 
find out which algorithms use more energy. What kind of a laboratory is 
emerging there? This is not a scientific lab, it is a data lab. A third space is 
opening up here, and this is the space that interests Hannes now.

Christoph Hoffmann     I would like to stress once more: Hannes just described 
that there are standard forms with which simultaneity or seriality are de-
picted today. That can even be recognized in television series like 24.

Hannes Rickli     The split screen, for example.

Christoph Hoffmann     These are things you have in the back of your mind, 
I presume. But now the point is to find your own form for your material? 
You know what you want to show, but you are seeking a form?
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Hannes Rickli     No, that’s the wrong way of looking at it. If my purpose was 
to depict Hans’s or Philipp’s research process, I would have artistic re-
sources at my disposal. That is quite popular at the moment, and goes by 
the name of research art. I could arrange certain documents, extracted 
from the process, in order to produce an image. I would then say that the 
image is a representation of the process. But I am actually interested in 
the process in its materiality, in its temporality, for instance, and in its 
energeticness, that is, its intensity. That is the essential element. These 
qualities are not aesthetic, they are qualities of perception. They are af-
fective qualities. These things interest me, and sometimes I really take 
them to extremes. When I put one of Hans’s aquariums in the context 
of a thermal power station or a fracking platform, these are, of course, 
completely disproportional. The platform does not drill for the cichlid in 
the lab. But it engages me. I am on the lookout for ways to restore these 
relationships. In my view there are no prefabricated forms for this. The 
split screen would be one element that I probably will use, but perhaps 
there are entirely different forms. That is why I brought the issue of re-
materialization so strongly to the fore in the new project.

Hans Hofmann     The whole thing sounds quite exploratory, like a newly dis-
covered continent being sailed around for the first time. First you follow 
the coasts, and gradually you start making excursions into the interior. 
Then perhaps you fly across it at a high altitude with a low-resolution 
camera. Then you see the mountains and river valleys, and thus you 
slowly move forward, step by step. That’s my impression.

Gabriele Gramelsberger     I find the term data panorama, which you often use 
in this context, very interesting. You generate another data panorama 
of the data space. The data space may be the same, but you gener-
ate an entirely different panorama from this data space than do Hans 
and Philipp. I think you know quite precisely what you want. The ques-
tion is: What kind of data panoramas are we actually generating now as 
philosophers and science historians? What kind of a data panorama of 
your data space is it? This is the bridge between the various projects 
and views.
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Automation of the Observer

Gabriele Gramelsberger     The most exciting aspect of the topic of software, 
I find, is that the observer is replaced by software. I call this the automa-
tion of the observer: The activities that were originally conducted by re-
searchers are delegated to software. How long have you had experience 
with this? When did you write your first software program, Philipp?

Philipp Fischer     I cannot say exactly. The software for the fish acoustics 
project (see part 1 of the conversation, footnote 1) is very specific. The 
software is designed not only to evaluate acoustic data, but initially also 
to acquire these data. These are two fundamentally different topics. We 
started with data acquisition for the acoustics project in 2008, with a 
major breakthrough in 2010. Within this time period, three bachelor’s 
and master’s theses were written, dealing only with software develop-
ment. These theses were not written by biologists, but by computer sci-
entists. For the software we use to operate the Spitsbergen monitoring 
station (see part 1 of the conversation, footnote 4) as well as the Heli-
goland monitoring stations we backed a different horse. There we used 
the sensor manufacturer’s original software and made these programs 
scriptable by fully embedding them in a specific macro-language, allow-
ing us to completely automate user–program interactions. This allows 
us to basically simulate a person who sits at a computer and presses a 
certain command at a certain time or upon a certain action, in order to 
tell the computer to do something: for instance, to start a recording or 
to load a data file from a sensor. Since the required actions are always 
the same, it is easy to simulate them with a script. When you see the pro-
grams in action, you could thus think that they were being operated by a 
person. In reality, though, it is the computer that executes the action. This 
has a major advantage for us. If we take, for example, ADCPs, devices to 
measure current, these sensors themselves supply only binary data. If 
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we were to write our own recording software, we would have to translate 
the binary data transmitted by the device into information we can read 
ourselves—for instance, current speeds in meters per second—which I 
have no clue how to do. So we take the manufacturer’s original software 
and let it create an output file with binary data every hour. Once we have 
generated these original data, my computer simulates that I read the da-
taset into the original program of the sensor manufacturer and translate 
it into ASCII data. This is a continuous process: The computer receives 
an original dataset every hour and then begins translating it into data I 
can read. Ideally, I have nothing more to do with this automated process. 
I don’t get involved again until the readable data are available. From then 
on, the focus is on the statistical evaluation of the data and on visual rep-
resentation.

Gabriele Gramelsberger     I have a somewhat different recollection of the col-
laboration with the FH in Wiesbaden (RheinMain University of Applied 
Sciences) for the acoustics project.

Philipp Fischer     This collaboration began around 2009. At this time I no-
ticed that I was stuck at the data handling because these data require 
a really different level of programming. For this project it was necessary 
to actually write generic programs of our own, since the scientific ques-
tions were highly complex and there were no standard programs avail-
able to do the required data analysis. Therefore we started to write our 
own analysis programs in C++ or Java, which I, for one, was not able to 
do, or at least not at the required level of complexity. This was also the 
first time that creating a program became a scientific task itself.

Gabriele Gramelsberger     Because the scientific questions were different, or 
what was the reason for this change?

Philipp Fischer     We simply, and very quickly, noticed that the data flood we 
were receiving from our acoustics project could no longer be handled 
with the available software. When we started the first experiments and 
received the first gigabyte of data, we recognized that we were lost. 
At this time, coincidentally, a computer science student from the FH 
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Wiesbaden had just asked whether it might be possible to write his the-
sis on this topic he found on our homepage. That was the beginning of 
the collaboration with the FH Wiesbaden and, basically, also the start of 
the underwater node project.1 The computer science student who came 
into our lab ultimately also did all of the programming for the underwa-
ter node project, which allowed us to start continuous, real-time data 
recording with our underwater monitoring sensors. The student, Jakob 
Klaus-Stöhner, therefore wrote first his bachelor’s thesis, and then his 
master’s thesis on acoustics, and later did the majority of the work to 
develop our monitoring systems, simply because he was able to thanks 
to his extraordinary skills in computational sciences and software engi-
neering, and also because he had quite a lot of fun doing this challenging 
work.

Christoph Hoffmann     It appears to me that we are encountering two pro-
cesses here. On the one hand, programming tasks develop from the in-
sights and problems that are acquired during experimentation. On the 
other, research possibilities emerge from the development of programs. 
This relationship between experts for software and experts for scientific 
questions seems central. Who is driving whom?

Philipp Fischer     I believe that there is no unequivocal answer to this ques-
tion. The acoustics project started with the simple question of how we 
could analyze these data. We had a fast Fourier transform in mind, but we 
didn’t know much more than the concepts involved. Then the computer 
scientists came and presented us with certain ideas—for instance, lo-
calizing fish through the triangulation of acoustic signals. That the proj-
ect developed in this direction at all is, once again, thanks to the soft-
ware developed by Jakob Klaus-Stöhner. Six years ago he said to me: 
My goodness! We have to separate the signals to do that. I said that this 
would be great if it were possible. He said he had an idea. Subsequently 

1	 As part of the COSYNA – Coastal Observing System for Northern and Arctic Seas, the 
Helmholtz Centre Geesthacht operates three underwater nodes with power and data lines 
that link sensors and a land-based server station. One of these nodes is part of the obser-
vatory in Ny-Ålesund.
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he managed, at least in the laboratory experiment, to achieve localization 
in ten- to fifteen-degree segments. When he showed me that result, we 
actually did set up new experiments in which the localization of the fish 
was included as a new method. I never would have had the idea without 
him. The question—who drives whom?—is entirely justified in view of 
such internal dynamics. But it is more of a sequence of ideas from differ-
ent persons. We pose a question, and the excellent computer scientists 
with whom we collaborate go beyond that question we defined initially 
and just play around to see what kinds of other things they can do with the 
data and the experimental setup. That is also true for a different ques-
tion: When Jakob analyzed fish sounds along with one of our master’s 
students using his new software back in 2013, 2014, he was always really 
annoyed that we had a maximum recognition rate of about 70 percent. 
Meaning: When a sound stream was analyzed with the software, it recog-
nized only 60 to 70 percent of the fish sounds that had been heard by a 
well-trained human ear. We kept checking this over and over, listening for 
hours and days, and evaluated the data. As a computer scientist, this re-
ally challenged Jakob. He and his professor in Wiesbaden deliberated for 
a long time about how to resolve this problem. They speculated that the 
kind of tone detection we know from studying vertebrates, mammals and 
humans, and from the terrestrial domain in general, was entirely wrong 
here, as we were presuming that we needed to detect oscillations. They 
tried out a little program based on the hypothesis that the sounds emit-
ted by the fish were not oscillations in the classic sense, like the ones we 
produce with our vocal cords. Since fish generate sounds by operating 
a muscle on the air bladder, the two computer scientists considered it 
from the biological perspective and determined that what we heard was 
not actually a sound, but a high-frequency drumming. A one-zero signal. 
The frequencies, let’s say 600 Hertz, are not 600-Hertz oscillations, but 
a 600-Hertz drumming. A Morse signal. We know that the swim bladder 
muscles of fish are the fastest-contracting muscles in the animal king-
dom, reaching over 1,000 Hertz. The contraction frequency would thus 
allow for the possibility that this signal is emitted. We cannot yet say 
whether this hypothesis is right or not. So far we are able to formulate the 
hypothesis that fish sounds are not real sounds at all, but a Morse code 
language. That would explain, for instance, why we hear those typical 
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knocking sounds, why there are sometimes three knocks and sometimes 
six, sometimes seven. Until now we simply took it as given that fish sounds 
are identical to terrestrial vertebrate or mammal sounds. But if we now 
look at our results so far under the hypothesis that it might be a Morse 
code, something entirely new emerges; a completely new perspective on 
fish communication. Perhaps we could also achieve a significantly higher 
detection rate of the sound emissions from fish in our experiment. We are 
not yet at the point to decide whether this hypothesis is right or wrong, but 
if it were to be confirmed, it would be a kind of revolution for fish acoustics 
in particular, but also for behavioral biology in general. This consideration 
comes exclusively from computer science. We would not have been able 
to reveal it in this form at all on the basis of only biological expertise.

Hans-Jörg Rheinberger     I have a simple, but it seems to me, not entirely un-
important question. Is the term software actually identical to the term 
program?

Philipp Fischer     For me, program specifies software. Typically, I work with 
the software R or MATLAB. The program I write is written in R. The pro-
gram is a unit for which I use the programming language of a certain soft-
ware package.

Hans Hofmann     I noticed in our earlier discussions, too, that we rarely use 
the term software. We talk about scripts, we talk about programs, we talk 
about coding, we talk about analysis pipelines. When software is talked 
about in my area, then it is more likely to mean a commercial software 
package that we, in fact, prefer not to use. We rarely discuss hardware, 
because most of the people in my area do not think at all about where all 
of their calculations actually take place. For them that’s quite far away.

Christoph Hoffmann     If I understand it correctly, the reservations about 
commercial software have to do with the fact that you always have to 
seek special solutions?

Hans Hofmann     In genomics, and in biostatics as well, there is generally a 
skeptical attitude toward proprietary software—that is, software that 
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belongs to a company and whose underlying code is not available to the 
general public—because one never knows what actually happens inside. 
We do everything with R or Python, and generally with Unix. A well-es-
tablished software package in computational neuroscience and systems 
neuroscience is MATLAB, which is proprietary and also relatively expen-
sive. I think that the skepticism toward proprietary software in genom-
ics stems from the fact that many of the methods and approaches are 
not standardized. Everything is in flux, everything is very new, and the 
technology changes unbelievably fast. As do the questions that can be 
addressed with the new technology. Three, four years ago, perhaps even 
one year ago, the questions that are generating a great deal of interest at 
the moment could not have been asked in this way. So we need flexibil-
ity in practice so that we can invent the appropriate methods of analysis. 
R has now developed a variety of different packages that allow a broad 
range of analyses, but are also quite flexible in terms of the size of the 
datasets and what the data look like. The same is true for Python. These 
programs, developed by software developers, are already included with 
the packages. We then apply them by setting our parameters, etc.; ev-
erything can be customized. In more complex analyses, these packages 
are sometimes stitched together into a pipeline. In such cases the data 
format has to be changed for the transitions, or we have to re-sort the 
data. For such things you can often use Python. You can even automate 
this process by writing what are called wrappers. That makes the whole 
thing even easier. Whenever a standardization starts to emerge, it may 
well already be obsolete by the following year.

Hans-Jörg Rheinberger     I used to be one of those old-fashioned scientists 
who worked without the aid of a computer. But I imagine that in the end, 
such programs are sophisticated versions of the protocols on data col-
lection that we were using in the laboratory. They consisted of a sheet of 
paper stipulating all of the things that had to happen to ensure that the 
setting was such that data could be generated. Then there was another 
sheet of paper, also half-standardized, with a protocol on data evaluation. 
Not quite rigid and fixed, but flexible enough that, as a rule, one could al-
ways fill in and process one’s data according to the particular context.
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Hans Hofmann     I would agree: It’s the same thing in principle. If we want to 
extend this analogy: Such a sheet of paper can be quite imprecise. Often 
you’ll see annotations by hand: Then I did this or that. With many of our 
computer analyses we are practically at the same point. This brings us 
back to the problem of reproducibility. Everything must be documented: 
What was actually done, the modifications or innovations, since other-
wise it may not be possible for the person who performed the analysis, 
let alone any other person, to reproduce the analysis. Different results 
are obtained. This is one of the challenges at the moment. There are 
platforms like GitHub on which people work with version control and 
similar approaches, but it’s still early days. Some researchers are work-
ing hard to take up the challenge; others are less concerned.

Hans-Jörg Rheinberger     I want to come back once more to my own labora-
tory experience. I was doing biochemical kinetics—an experiment with 
which one can follow the deployment of a biochemical reaction—and 
for this I pipetted my samples at defined intervals in order to stop the 
molecular process taking place in the test tube. Then I processed the 
samples and placed the results in a machine. This machine measured 
the radioactivity in the samples—that was the marker that allowed me 
to follow the temporal process. The individual samples were the traces 
which were generated in the experiment. What came out of the coun-
ter, a column of numbers, those were my data. For evaluation I plotted 
the data according to the Scatchard rule; that is a diagram invented by 
George Scatchard for testing enzyme activity with respect to cooper-
ativity. For each of my samples I got a point in a Cartesian coordinate 
system. Then I was able to see whether one or two or three straight lines 
could be drawn through these points. Depending on the line, one had to 
decide whether the process that took place in the test tube was a one-, 
two-, or three-stage process. Now for the computer. I am using a pro-
gram, let’s just call it the Scatchard program. Now all I have to do is enter 
my numbers in the computer, and the processing, including the graph, is 
performed by the machine. And now there’s a second computer, which 
controls a robot run by another program. This takes a sample automati-
cally at certain time intervals—now they can be much shorter than the 
ones that can be taken by hand—and channels them into a sample 
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processing system, also automated, at the end of which the radioactivity 
counter is located. But now its output is passed on directly to the first 
computer, which ultimately plots me a graph. Thus, I have delegated my 
previous activity—except for making the base mix for the reaction in this 
case—entirely to the machine. That is, I think, what Gabriele meant at 
the very beginning of our conversation, with the formulation that “the ob-
server is replaced”—only, I would say that the experimenter is replaced. 
But is that everything, so do we have a complete analogy, or where does 
it get exciting? Computer one can, of course, calculate more precise-
ly, and computer two, which controls the robot, can pipette faster and 
supply more samples and thus more data to computer one. Therefore, 
I imagine, a considerably altered graph may ultimately result, which can 
inspire me to a new idea regarding the observed molecular mechanism. 
But in the end, I have to look at the graph myself and decide whether or 
not it makes sense.

Philipp Fischer     I really like the analogy with the sheet of paper. When we 
do an experiment and the quantity of data is manageable, I do not al-
low my students, much to their dismay, to use the computer. If we have a 
single factor ANOVA (Analysis of Variance: statistical test for multifacto-
rial experiments) or a chi-square test (statistical test for frequency dis-
tributions), they have to do the calculations by hand. Then I am sure that 
they actually understand the calculations. The computer, the program, 
R, whatever, only actually has a role when the data volume becomes so 
large that it no longer makes sense to do the calculations by hand.

Hans-Jörg Rheinberger     So it is a question of quantity rather than quality?

Philipp Fischer     It is a question of quantity. To a limited extent, yes, there 
are analyses which we can hardly calculate, but ultimately one can trace 
it back to the quantity.

Hans Hofmann     The data are perhaps more complex, but I would agree, the 
principle remains the same.



                        

Software Cultures and their Agency

73

Software Cultures and their Agency

Hannes Rickli     Is that a difference from other areas? At CERN, physics, 
software and programmers play a very different role. In biology that 
would probably be restricted to the context of sequencing. Martina Merz 
investigated this software agency.2 You probably know more about this. 
What’s the situation in meteorology?

Gabriele Gramelsberger     It’s quite specific to each given discipline. In me-
teorology you would never use MATLAB. If you use MATLAB, you’re out 
of the game. You have to program everything yourself in C or in Fortran. 
In contrast, MATLAB, as far as I know, is the standard for biologists.

Hans Hofmann     Not in genomics or computational neuroscience, where 
the younger folks mostly prefer Python. That also has a lot to do with the 
fact that MATLAB is simply too expensive. Many universities are unwill-
ing, or no longer can afford, to purchase a site license; and a per seat 
license costs a lot of money, especially for a small lab. However, in other 
areas of biology MATLAB is still quite strongly represented.

Gabriele Gramelsberger     I would call it software cultures. There are different 
cultures in different disciplines, and even in the different labs.

Christoph Hoffmann     Could these differences have something to do with 
the fact that in some contexts the point is to resolve problems—so to 
speak, menial work—whereas in other contexts software development 
and writing programs are a component of the actual research process?

Philipp Fischer     That’s what I meant earlier. In the fish acoustics project 
we had some phases when our computer scientists told us what kind 

2	 Martina Merz, “Kontrolle – Widerstand – Ermächtigung: Wie Simulationssoftware Physiker 
konfiguriert,” in Können Maschinen handeln? Soziologische Beiträge zum Verhältnis von 
Mensch und Technik, ed. Werner Rammert and Ingo Schulz-Schaeffer (Frankfurt am Main: 
Campus Verlag, 2002): pp. 267–290. See as well Martina Merz, “Multiplex and Unfolding: 
Computer Simulation in Particle Physics,” Science in Context 12 (1999): pp. 293–316.
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of experiments we could do with this and that software. In this case the 
software people did not solve our problems, but instead in effect pre-
scribed the scope of action in which we were able to conduct our experi-
ments.

Gabriele Gramelsberger     That is an extremely good example, but I imagine 
it is rarely the case. Software-driven research—that would be a terrific 
thing.

Hans Hofmann     In bioinformatics, computational biology, there is certainly 
a tension between the people whose career and program of work con-
sists in developing algorithms and analysis methods, and those who pose 
biological questions and apply these methods. More and more people 
from the second group are of the opinion that the members of the first 
group deserve recognition. But this is not institutionalized everywhere 
when it comes to promotion and tenure and the like. Those in the first 
group may perhaps have a greater problem, because their publications 
tend to be collaborative. In a conventional tenure track it is then often 
not clear which authors contributed what to the paper. This is starting 
to change, and some universities are further along than others, but like 
everything in academia it is a slow process. In any case there are still col-
leagues who see the development of programs as a subordinate activity.

Christoph Hoffmann     In the interviews at the Center for Computational Bi-
ology and Bioinformatics in Austin I presumed that the advisors working 
there come into play when the datasets are collected and it’s time for the 
analysis. In conversation I learned, however, that their work starts with 
the design of an experiment. For example, the entire experimental pro-
cedure is oriented toward the generation of a certain type of data that 
can be processed well. That astonished me. Their contribution is indeed 
much greater than that of a “mere” technician.

Hans Hofmann     That is true in any case. Here a somewhat different per-
spective comes into play. The consulting team, our staff scientists, want 
people to come to them as soon as they think of an experiment for the 
first time. If they come to us only when they already have the data, we 
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often have to conclude: The questions they have about the data cannot 
be posed at all because the experiment was not conducted or planned 
in a suitable way. Then we say: “Bad data in, bad data out.” Even with the 
best bioinformatics, there’s nothing you can do.

Hans-Jörg Rheinberger     Those are all examples that concern quite con-
crete questions. It just occurred to me: Many years ago—I think it was 
fifteen years ago—I interviewed Gerhard Kremer, the former repre-
sentative of the Packard Instrument Company in Zurich. Packard was 
a pioneer in the development of scintillation counters, a technology for 
measuring radioactivity, important for counting labeled molecules. In 
the 1960s and 1970s this device was found in many molecular biology 
labs. Kremer spoke of this technology as an enabling technology.3 Thus 
a technology that can be used in many ways and makes new research 
approaches possible. The question would now be whether that can also 
be said of software. Can one view the development of software as a rela-
tively autonomous matter that has the character of an enabling technol-
ogy? People from different laboratory contexts can access it and then 
adapt it according to their needs.

Philipp Fischer     This becomes more and more the case. Today, software 
can significantly accelerate research. Procedures and evaluations are 
faster, and I can make progress in my research much faster compared 
to earlier times. But a great deal of discipline is necessary to keep from 
getting lost in the technology.

Hans Hofmann     I think so too, definitely. There are such heroic figures 
in both R and also Python. Hadley Wickham is a good example, or the 
people who are deeply involved in the R Bioconductor project, and it’s 
similar for Python. They write these packages and develop them further 
in order to offer users like me ever more possibilities. Hadley Wickham is 
renowned in the scene for his great package ggplot. It gives you an unbe-
lievable amount of flexibility to make figures of all different kinds. Other 

3	 See Hans-Jörg Rheinberger, “The Liquid Scintillation Counter: Traces of Radioactivity,” in 
An Epistemology of the Concrete (Durham: Duke University Press, 2010): pp. 170–202, 171.
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people have written other packages that are very influential and have 
won over quite a fan base. When Hadley Wickham comes to Austin—
he’s from New Zealand and has been with Bioconductor since nearly the 
very beginning, as a student; Bioconductor is the nonprofit organization 
that drives R code forward and distributes it around the whole world—all 
of our students say: “Oh, Hadley is coming, we have to go and see him!” 
No matter what he decides to talk about. It’s a relatively small group of 
people who write these packages, but they have a great influence both 
on the enabling technologies and on how we render our data and which 
possibilities we take advantage of. After all, the software was born in 
their brains. But only in recent years has anyone learned the names of 
these people. That is a generation gap. Many people of my age or older 
generations don’t know them, whereas the grad students, the postdocs, 
they all do.

Philipp Fischer     This is primarily because we have been working more 
intensively with software like R in recent years, which is open source. 
People cite and address the R package, ggplot and many other open 
source software packages like a sort of scientific publication. Manuals 
and instructions for software packages are published in the same way 
as I publish a scientific manuscript within which I summarize my knowl-
edge. I  think that the development of open-source software is a very 
significant point leading to recognition for this activity, so that it can be 
credited as well.

Gabriele Gramelsberger     I think there are many standard algorithms and 
methods which are often named for their inventors. Like the Klett algo-
rithm, for instance, which is used to collect data with LIDAR (light detec-
tion and ranging). The algorithm specifies a certain inversion ratio in the 
LIDAR equation so that measurement data can be acquired at all. In 1981 
James Klett proposed this first algorithm to resolve that problem.4

4	 James D. Klett, “Stable Analytical Inversion Solution for Processing Lidar Returns,” Applied 
Optics 20 (1981): pp. 211–220.
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Christoph Hoffmann     For me this raises the question of how this can be re-
searched. How can I follow the role of programs in the research process, 
how can I write their history? You are attempting to write this history with 
the help of version control. But my goal is not to document version after 
version, but rather to understand what happened between the versions. 
This then concerns things that are not recorded. If I have something ma-
terial in mind, perhaps a certain experimental arrangement like the fish 
acoustics project on Heligoland, I can construe how individual changes 
will affect the experiment. But for a software package or a program you 
write yourself, it is obviously not always easy to recognize exactly what it 
does with the data.

Hans-Jörg Rheinberger     This is always unbelievably context-dependent. I 
want to come back once more to my own time in the laboratory. At our 
institute, we had a subgroup that studied macromolecular complexes 
by way of neutron scattering. Ribosomes were their subject. There were 
three environments. One was biochemical: A macromolecular complex 
had to be biochemically isolated, and then individual components had to 
be obtained from it. Some components were derived from deuterated 
bacteria (bacteria grown in heavy water) and others from bacteria that 
were washed in normal water. Deuterated components in a non-deuter-
ated environment: This was a way to measure distances between the 
components. The second environment, the neutron spallation source in 
Grenoble, was located 1,000 kilometers away. You had to deep-freeze 
your biochemical probes, and then fly there when you were granted 
measurement time. The neutron scattering data were collected there. 
The third environment was, finally, the data evaluation. And that was 
software. But the software was applied in an extremely targeted man-
ner: It served to determine distances from scattering data. A relatively 
clearly defined task; only mathematicians can do it. The biochemists on 
the other end did not have to know much about it. But everyone knew 
that, in principle, the software could not be better than, first, the bio-
chemistry that supplied the original input, and second, the generation 
of the scattering data. Thus, I think you get an idea of how embedded in 
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the process of experimentation things like software really are. Indeed, 
it is important not to hypostatize the software as an entity that starts to 
lead a life of its own.

Christoph Hoffmann     It seems to me, though, that this instrument is, on 
the one hand, softer than a physical instrument, in the sense that it is 
constantly in flux. Is there such a thing as a fixed program? Or will yet 
another component be added tomorrow? On the other hand, I have the 
impression that the way this instrument works makes it much more com-
plex than something like a centrifuge.

Hans-Jörg Rheinberger     That I don’t believe.

Hans Hofmann     The centrifuge is very complicated, too, and most people 
who use it in the laboratory cannot tell you how it works or how it is con-
structed. But one would certainly wish that when people use a program, 
they understand how the data are transformed and what happens with 
the data. But they do not necessarily need to know how a program is 
written. They do not have to have that expertise.

Gabriele Gramelsberger     In computer science they call this the shift from 
programming to tooling. It is problematic. Of course, you must be an in-
formed user and know which tools you are plugging together and what 
effects this has, but that is, of course, a different situation than having 
to program yourself. I know this from other fields. At the moment there 
is a discussion about whether what is happening there is a fundamental 
shift, a generational shift.

Hans-Jörg Rheinberger     In principle that is the case with nearly every re-
search technology. Two generations ago, the only people who could 
work with ultracentrifuges were those who had the corresponding know-
how and were able to build parts of the machine themselves. But this 
was true only until they were black-boxed. There are very, very few re-
search technologies that have resisted black-boxing for any substantial 
period of time. Electron microscopy is one of them; you still have to have 
experts to work with such an instrument.
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Christoph Hoffmann     But we already established that there are different 
software cultures. Philipp tells us that he always writes his own programs 
for data evaluation. Is that the case for your students as well? Do they 
write their programs themselves, or do they, as Gabriele described it, 
plug components together? Is the process becoming ever more of a 
technical routine, or is it still a handicraft?

Philipp Fischer     On the contrary, I believe that we are currently experienc-
ing a turnaround. Five to ten years ago our students were exclusively 
users of software. Today they (at least my students) are learning to pro-
gram themselves again. What Hans also said before: When people finish 
at our institute, I expect those who have written a master’s thesis, and 
everyone who has written a doctoral thesis, to be able to program their 
own analysis routines in R or MATLAB or whatever software is appropri-
ate. I do not expect them to learn Fortran or C or Assembler, but they 
must be able to use at least those programming languages which we use 
in biology today.

Hans Hofmann     The students and scientists in general should be able to 
develop their own analysis approaches. They have to understand the 
data structure, formulate their questions clearly, and visualize their re-
sults in a convincing way.

Philipp Fischer     I want to take a moment to tell a brief story about some-
thing that just occurred to me. The story shocked me, but it also shows 
a conflict area. A while ago I was talking with a student who was about to 
submit his doctoral thesis in medicine. The following astonishing conver-
sation began to develop when he told me: “Hmm, so I’m finished with my 
data collection, now I gave the data to the statistician and I think I’ll get 
them back in three weeks.” “What, you gave your data to a statistician?” 
“Yes, he has them now and is evaluating them. When I have the results I’ll 
compile them and finish my dissertation.” This left me, honestly, quite 
stunned. That is an anecdote, which, I believe, shows the difference be-
tween users and those whom we call scientists.

Christoph Hoffmann     So is it ultimately about control?
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Hans Hofmann     Not only about control, but about being at all able to ask 
the right questions. I would call it ownership.

Eloquent Data

Philipp Fischer     I apply statistics, of course, with a certain conception of 
what I want to do with my data. But in the evaluation process I also do 
learn a lot about the data. I become much more familiar with the data 
variance, how the data “behave” in analysis and what their dynamics 
are, when I work with the data intensively. In the process of evaluation, in 
the—I’d like to exaggerate a bit here—communication between me and 
the data, I suddenly get ideas: Take a look at this or that.

Gabriele Gramelsberger     Let the data speak.

Philipp Fischer     What does it look like when the data tell me, hmm, could 
that really be? Could I think in that direction? Do the data say, do the 
data perhaps enable me, to work further in this direction? I cannot do 
that with any standard program.

Hans Hofmann     Philipp already said that as well. Of paramount importance 
are what we call sanity checks. You have to look at your original data ex-
actly from all possible angles to assess: Are they plausible, does that 
make sense? The purpose is to exclude the possibility that something or 
other went wrong, and to ensure that the quality does in fact meet your 
demands, before you do any standard analyses or other kinds of pro-
cessing. If this is not done, and you give them to some statistician—who 
knows absolutely nothing about the quality problems that can be asso-
ciated with the data—you may perhaps end up with wonderful results 
that have nothing to do with reality. Sometimes such results are even 
published, and when the quality problems come out, we think: How did 
that get in there? Was nobody paying attention? I do not want to be in 
this kind of situation, and I do not wish my students to find themselves in 
such a situation, either.
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Gabriele Gramelsberger     That speaks for an extreme contextualization of 
data. Data cannot simply be uncoupled and transported from one place 
to another. Data are not something I just hand over to a statistician, for 
whom it does not matter whence the data come, because he/she always 
does the same statistics.

Hans-Jörg Rheinberger     I think it is important, as Philipp is saying, to con-
ceive of data processing as a creative process. It is not simply a routine, 
and it never falls into a habitual routine. You learn just as much about 
an experiment during data evaluation as you do during the process of 
generating the data.

Hannes Rickli     Also important is the communicative aspect that Philipp 
mentioned. Apparently, the data speak as well. You have to set your 
sense of hearing such that they can convey something you may not have 
known before. The risk of handing data to a statistician is that he evalu-
ates them in a quasi-automated way and does not recognize particulari-
ties that have not been seen before.

Hans-Jörg Rheinberger     For what is called hypothesis-driven science, it is 
clear, and to some extent trivial, that data are collected with a certain 
intention, and that processing can then take place with this perspective 
in mind and not any other. Functional data are not structural data, for in-
stance, although structural data can, of course, help interpret functions. 
But as Philipp said before: The processing, the manipulation of the data 
can expose new clues, just as can data collection. The data-first people 
say: Let us collect data first, the questions will come up afterward, during 
processing. That would be the extreme form. Data collection then be-
longs to the infrastructure, so to speak, it is purely technical and instru-
mental, and science in the proper sense of the word is then performed 
in the data space. In this connection I would ask: Is the differentiation 
between data generation and data processing, which we have been us-
ing so often here, something fundamental? Can one be decoupled from 
the other, or in what way must generation and processing be related to 
each other?
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Hans Hofmann     With a few exceptions, practically all of the projects in my 
laboratory require experiments and then data analyses on big data, bio-
informatics and the like. For the students and postdocs who conduct 
these projects, this is a quite natural, iterative process. The first thing 
they do, for instance, is various analyses on different samples. This then 
tells them how the remaining samples must be processed. It always goes 
back and forth. For this generation it is a completely natural process. 
What’s very important—I already mentioned this before—is ownership: 
that you can actually regard the entire project, the experimental part 
and the data analysis part, as your own. Our institution is most of the way 
there by now. I don’t really see this decoupling anymore.

Philipp Fischer     I have another example in which statistical evaluation al-
ready intervenes in data collection. We discuss this with our students 
over and over again, with moderate success: that it is highly advisable 
to start an experiment—as every statistician knows—with statistics, 
before a single datum is recorded. We always try to teach our students 
the advantages of power analysis. With a certain statistical procedure I 
can thus determine beforehand how many replications I have to perform 
with how many test organisms in order to prove that a certain result is 
statistically significant. That means I can determine how much power 
this experiment has. This is a classic example for how statistical meth-
ods can serve as a framework for an experiment. When we work with 
fish, that is, when we work with vertebrates, we have to apply for a legal 
permit to do experiments with them. We always underpin these research 
applications with a power analysis so that we can provide statistical evi-
dence: If we kill 20 animals, there is a 95-percent probability that we will 
be able to discover a difference between two given treatments. Our eth-
ics commission asks for exactly this proof. Not, for instance, that we take 
only ten animals and then have to say, at the end of the experiment, that 
we should have taken 20 in order to be able to discover any existing dif-
ference between the treatments. Then the ethics commission would jus-
tifiably say: “That is all very well, Mr. Fischer, now you have killed ten ani-
mals, but according to your statement, you cannot say whether there is a 
statistically significant difference between these two treatment groups. 
The power of your findings is only 50 percent. You should have taken 20 
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animals. Then we could have said that the result you are presenting to us 
is correct. Because you took only ten animals, they died for naught.” This 
is just an example of how important the integral concept is. In my eyes, of 
course, data collection and data processing are two subsequent steps. 
But ideally, there can’t be one without the other.

Christoph Hoffmann     I would like to come back once more to the eloquent 
data. Before this conversation, Gabriele once raised the question as to 
how anything new can be discovered when the program so restrictively 
narrows what can be focused on. Is a program perhaps not open enough 
for surprises? Philipp, you said that the data speak to you, but they speak 
to you through the program you wrote. There is something in between. 
How do you see this?

Philipp Fischer     I believe that we have to redefine the activity of program-
ming. It is not as if I write a program, sit in isolation for four days and then 
apply this program to data. I start writing a program and make a test ver-
sion first. I run my data through it once and see: Hmm, the evaluation is 
perhaps not quite as clear as I’d like. So I refine and optimize this analysis 
here and there, and take a look at the results of the different analysis 
steps I just added, and say: Hmm, okay, that’s not bad at all, but, hmm, 
look here, if you maybe divide the subgroups again, or if you apply a cer-
tain analysis method there, what comes out then? Programming is an 
explorative act. In the ideal case, I already thought about exactly what 
I will do with the data before I start any data analysis. In fact, I have to. 
Once I actually have the data in front of me, my preconceived evaluation 
strategy is applied, but I nevertheless set my mind to looking at what else 
I can get out of these data. After all, this dance with the data allows for 
various perspectives. It is not a fixed, rigid program.

Hans Hofmann     That is what I meant before when I called it iterative. What 
Philipp is saying is definitely true. And then we also have these analy-
sis pipelines, which are relatively standardized. One may perhaps have 
to configure other settings, etc., and then this raises the question: Can 
that now in any way reduce the possibility of discovering something 
new? However, each experiment is new; you ask completely different 
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biological questions. They are entirely different experiments. You pro-
duce only data that have a certain format, which are similar, let’s say 
sequencing data, and due to conventions and certain necessities they 
must be processed in a certain standardized way. But what ultimately 
comes out of it cannot be foreseen and allows you to make new discov-
eries. When one has sequencing data, when one has ensured that gene 
expression, or differences in gene expression, can be measured, then 
comes the next step. That is when I say: Okay, I have all of these differ-
ent experimental conditions, I have all of these diverse data for different 
genes, etc. How do I visualize that, what kind of multivariate analyses can 
I do? That is, again, a very creative process. All of these things happen 
simultaneously and iteratively in any project.

The Incompleteness of Software

Gabriele Gramelsberger     The question “what is new” was directed to the soft-
ware in the fish acoustics project which decides: that is an event—a pos-
sible fish sound—or not. The things that are classified as neither an event 
nor a nonevent, but rather as unclear, are the ones you can make discov-
eries with, about which no automated decision is made. I conducted inter-
views with programmers in meteorology.5 The most productive thing for 
them was always the error productivity. You program something, you get 
data, it doesn’t work. Now, of course, I am talking about simulation models. 
They spent ages troubleshooting, because the simulations did not agree 
with the real data. This is where they learned the most about their program 
and about the theory behind it that had been plugged into the model. That 
was iterative: One runs the model again, calculates, data come out, one 
compares them with the measurement data again, and so on.

Hans-Jörg Rheinberger     So in this sense software is something that is never 
completed?

5	 Gabriele Gramelsberger, Computerexperimente: Zum Wandel der Wissenschaft im Zeit
alter des Computers (Bielefeld: Transcript, 2010): pp. 171–176.
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Gabriele Gramelsberger     No, never.

Christoph Hoffmann     But that is also the problem. Are commercial soft-
ware and individually adapted programs really instruments in the sense 
of something technically stable and reproductive, or are they something 
between instrument and research object?

Gabriele Gramelsberger     Software is soft.

Hans Hofmann     It is an instrument in the sense of music. That’s never com-
pleted either.

Hannes Rickli     The problem of reproducibility comes up here, too. That’s 
why we have the snapshots to document each version of the program.

Hans-Jörg Rheinberger     Software without a certain degree of stability is no 
longer software.

Hans Hofmann     In the end, the community and the convention say what 
level of stability is acceptable. When a new technology becomes avail-
able, the standards and expectations are often somewhat lower than 
later on, when it is easier to understand what can go wrong and why.

Gabriele Gramelsberger     From meteorology I know that there are version 
cycles. Many different people work to develop a software, then there are 
deadlines when the entire community meets to produce a software re-
lease (Version X.0). The next day everyone starts again to develop the 
software further, and so on.

Hans Hofmann     That is also important because the supercomputers, the 
high-performance computing systems, computing centers, whatever you 
want to call them, have to perform regular upgrades and updates. That 
generally happens only when a new version is available, because it en-
tails time and expense, and generally causes all kinds of minor problems. 
When you go from 2.2. to 2.3 and there is no major difference, they sim-
ply skip it and say they’ll do the next update when 2.5 is out. This varies 
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depending on the software. Some software packages have a good repu-
tation, they are stable, they do not cause any problems in the environment 
in which they are embedded. Others do not have such a good reputation. 
Every time they do an update, something unforeseen happens. In the end 
the people decide; it’s a matter of supply and demand. If something is 
good, robust, continues to be developed, and has good documentation, it 
is implemented and continues to be improved. If that is not the case, the 
software lands in the dustbin of history; that happens quite fast.

Christoph Hoffmann     We have not only data dumps, but also program 
dumps?

Hans Hofmann     You should have a look at what all is on my server, there are 
script dumps from the last 15 years.

Gabriele Gramelsberger     Cemeteries.

Software-Based Experimentation

Gabriele Gramelsberger     I have a question. Would you say that the “experi-
mentation with” is shifting into the software? Do you use software for 
experimenting? We had a couple of examples for which that could be 
assumed. This would expand the concept of experimentation.

Hans Hofmann     Yes. You do that, for instance, when you have a complex 
dataset. You use different statistical models, different algorithms, differ-
ent programs, to explore the data, to view them in different ways, and 
you try out different ideas. I definitely see that as close to experimenta-
tion. For younger researchers there is hardly any conceptual difference 
from experimentation in the wet lab. This is not always the case, but at 
least the more complex projects—in which large amounts of data are 
generated, in which you have many variables and need multivariate ap-
proaches, etc.—are definitely experimental. Also, statistical approach-
es have become increasingly important that allow you to determine the 
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extent to which different statistical models explain your data. How do 
you determine which one is best? Or is there no such thing as a single 
best one which you then publish? By now it has become apparent that 
this may not be the right approach at all. Instead, one takes these 20, 30 
models and develops a criterion, often called an information criterion: 
One attempts to calculate for a model how much information content 
it has relative to the data. Building on this, you can create a ranking and 
develop criteria that define the point at which there is a cutoff, and which 
model you find most credible, which you can then interpret further. Or 
several different models are selected. In certain areas of biology this 
has become routine. In this sense there is not only one truth. That is a 
very experimental approach, for you may potentially test 100 different 
hypotheses or more at the same time.

Philipp Fischer     One thing that occurs to me where software does in fact 
serve experimentation is, once more, fish acoustics. Here we have al-
ready conducted identical experiments with the same animals on sev-
eral occasions, but using different software. We wanted to find out which 
software is best for the experimental result. In this case the experiment 
was oriented completely toward the software: We had three different 
versions, and it was not entirely conclusive which method was best, so 
we performed the experiments three times.

Hans Hofmann     You can take that even further. We have often conducted 
simulation experiments in which you use simulated data and compare 
different programs to see which has the best performance.

Gabriele Gramelsberger     Almost a kind of benchmarking method.

Hans Hofmann     When you develop programs it is in your own interest to 
do benchmarking. That way you can convince people that your program 
performs best, or very well, at least under certain conditions. In prac-
tice, this has become the standard by now and is also experimental in 
the same sense.

Hannes Rickli     I am interested in what’s “better.” From the artistic media I 
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know, of course, that the settings of a filter or a program expose entirely 
different layers of signals. When I talk about what’s better, this is oriented 
on my presumption. The question is: Does this presumption change, this 
hypothesis change, through testing the software? Or is the software, in 
the end, simply the best because it is most likely to confirm my presump-
tion? It could also be that certain software reveals something that was 
not intended in the framework of the presumptions.

Hans-Jörg Rheinberger     I believe that these two go more or less hand in 
hand. Normally you operate in optimization mode. You want to manage 
things as best as possible. But if you have enough sensitivity to the dis-
turbances, they can point out a new lead. You do not just start with an 
experiment and claim that you are completely ignorant. Generally, there 
is something you want to optimize. Or at least you have an idea about 
what …

Hans Hofmann     … is supposed to happen. You just have to be open to the 
possibility that what comes out is not what you expected, that something 
else may happen.

Hannes Rickli     And this something else could definitely become interest-
ing. If one doesn’t have it on the horizon. Here again, this shift. The me-
dium as an epistemic object.

Hans Hofmann     That is quite normal. I can give you many examples of 
something surprising coming out in an analysis, which then completely 
changed the next steps. Just as they do in wet lab science. The same 
thing happens there. The general public often does not understand this. 
By definition the experiments must be going wrong, because, after all, we 
are doing something that nobody has done before, and therefore we of-
ten cannot predict what exactly will happen. Or you start with a project, 
you have certain presumptions, you have certain hypotheses or ideas, 
and at the end you are somewhere completely different. But that’s what 
makes it so exciting. If I always know beforehand what the result will be, I 
am not a scientist. Then I am …
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Gabriele Gramelsberger     … an engineer.

Hans Hofmann     No, that doesn’t make me an engineer, either. In English I 
differentiate between research and science. When I do science, I do not 
necessarily know beforehand what the results will be. I always have to be 
ready for surprises. When I do research, for instance, test toothpaste on 
some cell cultures in order to fulfill regulations, I have a relatively clear 
idea what will come out of it. I simply check off one box after the other. 
Then I am doing research, but I am not doing science, because I am not 
discovering anything new about nature.

Hans-Jörg Rheinberger     That is an interesting use of the terms. In our circles 
one would turn it the other way around: Research is accompanied by un-
certainty, while science is what is established.

Hans Hofmann     In any case, for me data analysis, or data exploration and 
the like, have become part of experimentation.

Hans-Jörg Rheinberger     But that is indeed the range of experimentation. On 
the one hand, you have an explorative pole, and on the other you have 
the pole of testing. Between these two extremes there is an unbelievably 
broad intermediate scale.

Christoph Hoffmann     Now a strong emphasis has been placed on the ex-
pansion of the experimental space into the space of data analysis. But 
viewed historically, back once again to the sheets, this is actually nothing 
new. The difference between what was once done on paper and what is 
done on the computer today is primarily the medium. Today we expe-
rience merely that the analysis space has become more complex. The 
possibilities for dealing with data are becoming more diverse, time plays 
a role.

Hans Hofmann     It is interesting that you go back to history. I can no longer 
remember the exact quote, but even 200 years ago there was the con-
cern that too many data were there and one no longer knew what one 
should do with them. A new method is invented, data can be collected, 
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and the people can barely keep up with writing everything down and 
placing them in tables. This often led to mathematics being propelled 
forward, to statistics being invented, these were ultimately data chal-
lenges.

Gabriele Gramelsberger     But there is a difference, of course: Only with the 
computer can you do multivariate statistics.

Hans Hofmann     But look at the history of astronomy, for instance: At Har-
vard Observatory, in the decades before and after 1900, they photo-
graphed the entire sky in order to see minor shifts that allowed them to 
discover new stars or phenomena. For evaluation they had a whole army, 
made up mostly of women with a bachelor’s degree in mathematics, who 
performed gigantic computations as if they were on an assembly line.6 
Each person did a certain calculation step, over and over again. At the 
end they came up with calculations that people today would say can be 
done only with a computer. They actually did it all by hand, 20 women in 
one room, who calculated all day long. That is unbelievable.

Gabriele Gramelsberger     But all the same, they computed only two vari-
ables.

Hans Hofmann     Yes, but the principle is the same.

Gabriele Gramelsberger     I’m just saying, that is the cognitive break.

Hans Hofmann     They had a data challenge, they had gigantic masses of 
data that were acquired from the telescope images, and actually per-

6	 See Jenny Woodmann, “The Womens’ Computer who Revolutionized Astronomy,” The At-
lantic, December 2, 2016, https://www.theatlantic.com/science/archive/2016/12/the-wom-
en-computers-who-measured-the-stars/509231/. For more information, see Dava Sobel, 
The Glass Universe: How the Ladies of the Harvard Observatory Took the Measure of the 
Stars (New York: Viking, 2016). In addition, see Natasha Geiling, “The Women who Mapped 
the Universe and Still Couldn’t Get any Respect,” Smithsonian.com, September 18, 2013, 
https://www.smithsonianmag.com/history/the-women-who-mapped-the-universe-and-
still-couldnt-get-any-respect-9287444/. The film Hidden Figures (2016) deals with the work 
of female mathematicians for NASA during the space race in the 1960s.



                        

Software-Based Experimentation

91

formed these calculations. In the end someone took a couple of num-
bers from the results and compared them over time: Recorded three 
weeks ago, two weeks ago, last week, and last night. They showed a phe-
nomenon that was interpreted over the year and ultimately understood. 
Without these data analysis sweatshops this would have been impos-
sible. We may have different approaches and another technology—and 
of course, the scale of the data has increased considerably—but when 
we are so fond of saying that this is a new problem that never before ex-
isted in the history of science, we are deceiving ourselves. If you go back 
80 years, or 200 years, depending on the discipline and in which con-
text, and were able to talk with the people then, you would probably hear 
something similar.

Gabriele Gramelsberger     I am not entirely d’accord. These stories are cer-
tainly familiar, and they have been told very well. Nevertheless there is 
this cognitive limit. For the multivariate calculations you need comput-
ers, and this opens up a data space for which, in turn, this comprehen-
sive analysis is needed.

Hans Hofmann     And the problems with visualization …

Gabriele Gramelsberger     … because you can still depict the relationship be-
tween two variables just fine with tables and graphs. This breach, that is 
what gets the whole brew bubbling.

Hans-Jörg Rheinberger     But in mathematics, of course, we have been able 
to think in n dimensions since the 19th century.

Gabriele Gramelsberger     To think, but not to calculate—Henri Poincaré 
made that clear back in 1890.7

Hans-Jörg Rheinberger     Over the last 200 years, the research technology 
interstice—as I will call it now—which has edged in between us and the 

7	 Henri Poincaré, “Sur le problème des trois corps et les équations de la dynamique,” Acta 
Mathematica 13 (1890): pp. 1–270.
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objects, has increased in complexity to an ever greater degree. From 
the historical perspective, one can perhaps distinguish three phases: 
The first was mechanics, the second electronics, the third is informat-
ics. One acquires knowledge about nature by implementing ever more 
techniques, in order to find out something about the objects out there. 
We ultimately did not answer the question as to whether the informatics 
interstice has a qualitatively new dimension as compared to the previ-
ous ones, or whether it simply makes everything more complex. Gabri-
ele tends toward the former view. What Philipp and Hans describe could 
be interpreted from a rather traditional perspective as an expansion of 
options. Do we have to leave the question open?

Gabriele Gramelsberger     The way Hans and Philipp even talk about library 
tools, programs and software! Everyone from the outside, or anyone who 
has had nothing to do with these things for 15 years, is truly flabbergast-
ed when they see the kinds of tools there are out there today, and the 
squadrons of them available.

Hans Hofmann     You have to stay on the ball practically continuously, oth-
erwise you lose touch in no time at all.

Hans-Jörg Rheinberger     For me, I can only say once more, when I worked 
in the lab 30 years ago, I was able to do good research and did not need 
any of it.

Hans Hofmann     But to that I must say: A good, elegant, simple experiment 
always has an important place in science.

Hans-Jörg Rheinberger     For the statistics I always had to do my double de-
terminations and then divide by two. And there was no shortage of inter-
esting results.

Hans Hofmann     Then you probably determined a coefficient of variation, 
and you were done.

Philipp Fischer     Those were great times, when I used to take the boat out 
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on Lake Constance, throw out a net at sunrise and then catch 20 fish. 
And on the other shore I caught 40 fish. I had my data in my hands when 
I came back with the boat into harbor. When the data work nowadays re-
ally overwhelms me, sometimes I look back fondly on those days.

Hannes Rickli     Fishing can, of course, also be understood symbolically, 
fishing in troubled waters, but then you had something in your hands.

Hans-Jörg Rheinberger     Does one not speak of data fishing?

Hans Hofmann     Fishing expedition, if it is exploratory. If you’re negatively 
disposed to data exploration, you call it a fishing expedition.
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Materialities and Infrastructures

Hannes Rickli     The next part of our conversation concerns materialities 
and infrastructures as a subsection of materiality. Electricity is a part of 
the problem of infrastructures. Perhaps I should briefly say why this is of 
interest to me. Our conversation took a very nice course: Via the data we 
came to the results of research work. Then we talked about the software 
and the programs with which data are collected, processed and ana-
lyzed. Now we are going back to the base, for instance, to the electricity 
that is needed, or to the environmental activity that affects the facility in 
Spitsbergen: the saltwater, temperature changes, and so on. The digital 
processes are based on electricity. Without electricity, the remote sens-
ing work done by Philipp in Spitsbergen would not be possible. And ad-
ditionally, of course, the distribution of his data over the internet would 
be impossible. When we talked about software and programs before, it 
became clear that either commercially available software is adapted, or 
a whole new software package is developed. So there is some space we 
can fill ourselves. The topics we are discussing now, however, are com-
pletely beyond our control. Provision of electricity, that is, the availabil-
ity of energy resources, or submarine cables, connection to the internet, 
are no longer in the hands of the research enterprise. The question is: Do 
these elements contribute at all to shaping research work, and how does 
this emerge in the context of experimental work? Are infrastructures and 
nature considered factors of uncertainty, or do these peculiarities get lost 
in the normality of research work? Before we go any further, I would like to 
show you the latest status of our audio panorama concerning Hans’s re-
search on cichlids in Austin.1 This is still a work in progress, and we are still 

1	 Cichlid #3, Soundscape Texas (Aug. 21, 2014), https://computersignale.zhdk.ch/en/data/
cichlid.
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developing ways for the recordings to be rematerialized as a work of art. In 
the middle of the screen you see eight stations. It starts on the small scale 
with the aquarium, followed by the minus–80-degree freezer in which the 
tissue samples are stored; this situation represents the molecular biology 
laboratory, the wet lab. The further stations then belong to the dry lab: the 
GSAF (Genomic Sequencing and Analysis Facility), where the Illumina is 
located, the gene sequencer with which the DNA/RNA dissolved in a liq-
uid is digitized. The “digital raw material” is recorded by a server, and then 
the data material is passed on to the Stampede supercomputer at the 
TACC (Texas Advanced Computing Center) along with the correspond-
ing programs. From this point on, the massive infrastructures take over, 
the chilling station for the coolant, the electricity plant and a fracking drill 
tower that supplies natural gas for the electricity plant on the UT Austin 
campus. This drill tower belongs to the UT lands, meaning, to the proper-
ties that the state of Texas gave the university to manage. With this work 
we want to show how the energetic conditions of the data processes in 
the dry lab are connected with those in the wet lab, with the freezer and 
with the aquarium.

Hans Hofmann     The whole thing takes 24 hours; everything starts in the dark.

Hannes Rickli     At the moment only one station at a time can be viewed in 
detail. The idea, however, is to show all stations simultaneously as a pan-
orama in an exhibition room.

Hans-Jörg Rheinberger     Can you give us an idea of what this panorama 
would look like?

Hannes Rickli     Well, that’s the question we’re working on. One concept 
would be a website on which the different stations are shown as lines, one 
below the other. Then one could move the cursor along the timeline to 
follow the changes at all sites at the same time. At the moment this only 
works for one station.

Christoph Hoffmann     An essential point is that the materiality should be-
come tangible through the sound?
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Hannes Rickli     The premise is that digital processes, too, are ultimately 
physically based and leave corresponding traces. As users, we do not 
perceive these physical aspects while we are focusing on the operations 
of the algorithms. They intrude on our perception only when malfunc-
tions occur, if at all. Then these physical qualities come into play, such 
as when a hard drive crashes, or the ventilation starts buzzing. From an 
artistic perspective this moment is especially interesting. The biological 
sciences take place along so many digital processes that one could get 
the impression that science is, in certain respects, immaterial. When you 
see Philipp’s graphics, the last thing you think about is the difficulties in-
volved in creating them. This is just the same for Hans in Austin: There, 
too, it is difficult to imagine the connection between electricity and the 
results of digital data technology. My interest as an artist is to turn this im-
materiality around and direct the focus to the material side of seemingly 
incorporeal data. In so doing I place the sonic at the center, because digi-
tal processes are primarily time based: They concern temporal micro-
differences. While a processor works, energy consumption, for instance, 
oscillates—depending on what is processed. If the oscillations are re-
corded by sensors as sequences of values, they can be played back as an 
acoustic signal. With this, a small excerpt of the physical phenomena can 
be heard as a sonic phenomenon.2 Yet some of the signals are located in 
the transonic range.3 Sound is the ideal medium, because what we have 

2	 The sonic is its own category between acoustics and music and concerns sound that is 
generated not by a resonator, but through technical processes. See Wolfgang Ernst, Sonic 
Time Machines: Explicit Sound, Sirenic Voices, and Implicit Sonicity (Amsterdam: Am-
sterdam University Press, 2016), p. 7 and pp. 23–24. Here an audible sound is considered 
from a psycho-physiological perspective. There may not be any semantic attribution as in 
music, but a cultural conditioning does take place through the structure and functioning of 
the technical processes. The concept was developed at the Institute of Music and Media 
Studies at Humboldt University, Berlin. See Peter Wicke, “Das Sonische in der Musik,” Pop-
Scriptum 10, Das Sonische – Sounds zwischen Akustik und Ästhetik (2008), https://www2.
hu-berlin.de/fpm/popscrip/themen/pst10/pst10_wicke.htm.

3	 “In this sense I suggest the use of the term trans-sonic, which denotes the realm of all sig-
nals, oscillations, rhythms and flickerings that are inaudible for humans, but can be made—
to a certain degree with certain losses—audible again by the use of media technologies 
such as audio amplification, radio demodulation or software sonification.” Shintaro Miyaza-
ki, “Algorhythmics: Understanding Micro-Temporality in Computational Cultures,” Compu-
tational Culture. A Journal of Software Studies 2 (2012), http://computationalculture.net/
algorhythmics-understanding-micro-temporality-in-computational-cultures/.
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here are oscillations in temporal sequence. This contrasts with images, 
for although these, too, may register light events that are ultimately based 
on oscillations, they can be fixed in the register of simultaneity.

Christoph Hoffmann     Another way to make materiality accessible would be 
the temperature.

Hannes Rickli     Right. Temperature oscillations, or even optical signals. The 
LEDs of electronic components, for instance, flash in a specific rhythm 
while a computer runs, for instance, to work through an algorithm. Such 
physical tracks are called traces or side channels in computer engineer-
ing, and their investigation side channel analysis.4 They are what no lon-
ger appears in the result—that is, in a digital datum. However, they are the 
foundation, the very condition for a computational process to take place 
at all, and thus the occurrence of a digital datum. These physical mani-
festations of electronic processes are the subject of Valentina Vuksic’s 
art project. In Philipp’s submarine station RemOs1, we crudely tapped the 
electromagnetic oscillations in virulent places—power supply, camera 
activity, onboard computer.5 And in Hans’s case, we complemented re-
cordings of the electronic devices deployed in research with the large-
scale infrastructures like the power plant or a drilling tower. In both cases 
we recorded acoustic signals. The world of acoustic per se always refers 
to time dynamics. For me this is a representation of processuality that is 
always based on time. One cannot actually pause acoustic signals; they 
can be perceived only as a stream. I can pause a video, then I have a still 
image, but when I pause the sound, there is no longer anything to hear. 
Here an example: The two microphones are located in the basement of 
the chilling station. They are used to record the signals emitted by the 
pump stations. These pump stations—as one can see now in the film—
convey water to under the roof of the cooling station, where ventilators 

4	 See François-Xavier Standaert, “Introduction to Side-Channel Attacks,” in Secure Inte-
grated Circuits and Systems, ed. Ingrid M. R. Verbauwhede (New York: Springer US, 2010): 
pp. 27–42.

5	 For audiosamples and the documentation of the setup see the RemOs1 webpage, https://
computersignale.zhdk.ch/en/data/remos1.
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rotate to extract heat from the water as it rains back down. The contact 
microphones record the sound of the pump station. In the captures by 
the acoustic microphone located directly at the water basin, the signal 
sounds exactly like strong rain.

Hans Hofmann     The sprinkler halls are cooled through evaporation; that’s 
energy efficient in the dry climate.

Hans-Jörg Rheinberger     It appears to me that, in essence, you are actu-
ally talking about two kinds of materiality: On the one hand, there are the 
massive infrastructures, including the drilling tower, the chilling station 
and the power generator. On the other, there is a micro-dimension. You 
say that we normally think of the digital world as essentially incorporeal, 
because we do not see the dimension behind it. But every transition from 
0 to 1 is ultimately based on a material signal, on some kind of material 
switch, and not on a Laplacian demon. In the end, the digital world is not 
incorporeal either. The question is: How are the two materialities related 
to each other?

Christoph Hoffmann     Isn’t it about showing the physical processes behind 
the digital processing? This includes the click from 0 to 1 just as much as 
the drilling tower. It seems to me that this is conceived less as a chain of 
translation steps, and more as zooming in ever closer. When they hear 
the keyword materiality, most people probably think of infrastructures, 
power plants and drilling towers, or of power and internet cables. They 
are less likely to think about the physics behind every data processing 
step. Hannes shows how friction, and ultimately work, take place there 
as well; computer work. All of these signals that you record make audible 
what is going on. These sounds are a downright nuisance.

Hans-Jörg Rheinberger     On the whole, however, there is only one kind of ma-
teriality involved here, namely the materiality of technology. But there is 
also the materiality of the object of investigation. It disappears here, it is 
not present at all, no fish, no nothing at all. No genome. Nothing.

Hannes Rickli     The fish is there.
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Hans-Jörg Rheinberger     Where is it? Here, in the aquarium?

Hannes Rickli     Precisely. And that is my motive. I realize that with develop-
ment toward digital science, much more infrastructure comes between 
the observer and the object of research. My thesis is that the economy of 
attention is distributed differently. The materiality of the research enter-
prise is no longer related exclusively to the investigated organism. Thus 
the focus is shifting to what materially makes up the thread between the 
animal subject and the observer.

Inside and Outside

Gabriele Gramelsberger     The fish is always inside of Hans’s laboratory. Its 
cells are in the refrigerator, the fish is in the aquarium; finally, the fish is 
in the computer as a datum. The equipment is built up around it. Karin 
Knorr Cetina wrote a great description of how the relationship between 
the phenomena changes through the very fact that you bring an object 
into the laboratory.6 For Philipp it’s precisely the other way around. There 
the fish is on the outside …

Hannes Rickli     … which surrounds the RemOs1 and encapsulates the appa-
ratus. This is why we also integrated the maps into the depiction of the 
Texas panorama, so that one can show the different places that come 
into play: There is where the energy comes from, there’s where the aquar-
ium is, there’s where the data are processed. All in different places, all of 
them connected with each other over the internet. Philipp’s work makes 
the observer very aware of the 3,000-kilometer long Heligoland-Spits-
bergen submarine fiber optic cable. The spatial distribution of the entire 
research enterprise is an interesting factor. Thus it also concerns time: 
being at the other location in real time. It is such a tremendous effort, and 
the fact that it works is anything but trivial.

6	 Karin Knorr Cetina, Epistemic Cultures: How the Sciences Make Knowledge (Cambridge, 
MA: Harvard University Press, 1999).
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Hans-Jörg Rheinberger     But what is the difference between this and our 
satellite system, via which billions of telephone calls are conducted each 
day, each of which arrives at the right place? Where do these large-scale 
technological systems, which are even global, differ from a research sys-
tem? Is there no longer any difference at all?

Hannes Rickli     What concerns me: Systems like the internet cannot be indi-
vidually controlled. Software can still be adapted for a smaller circle, but 
the internet, the availability of electric power—those are dependencies 
that have to be negotiated on the societal level.

Christoph Hoffmann     I believe we are talking about two different things now. 
Even around 1800 there were infrastructures. Of course, there were dif-
ferent means of communications and transport, other sources of energy, 
but research’s recourse to some kind of support is nothing new. For the 
fish facility, a power plant was needed in the background in 1960 as well. 
But Hannes’s interest goes beyond this to the sensualization of certain el-
ements of this infrastructure. It is one thing to show how much infrastruc-
ture is necessary for a research project, and another to make immaterial 
processes sensually tangible.

Hannes Rickli     The latter was originally my point. Yet it is an explorative un-
dertaking. I don’t just go there and say: Now I’m studying infrastructure. 
The infrastructures emerged only with Philipp’s precarious electricity cir-
cumstances. So the infrastructure per se—that is, the submarine cable 
or the drilling tower—emerged empirically as a topic: as something that 
had to be dealt with.

The Sensual Presence of Data

Hans-Jörg Rheinberger     Or from playing with sensors. I would not under-
estimate how fun it can be to apply devices for detecting noise, to tap 
one’s potential to interfere by implanting little bugs everywhere. That’s 
what you’ve done. It lends a kind of manifestness to data generation. One 
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hears this apparatus just crackling and creaking and then ponders: How 
can that be performing accurate work? It acquires a different sensual 
presence. In the large structures something else is going on. For me, the 
scientific research process as such, that is, the research question, disap-
pears there, just like the fish that disappeared. That bothers me. Maybe 
this is even intentional. Then that would be the special trick of the project.

Christoph Hoffmann     You believe that infrastructure cannot be talked about 
without talking about the objects?

Hans-Jörg Rheinberger     No, it certainly can. But the special challenge here 
would be to talk about them and, at the same time, to keep the research 
object and the exploratory research environment present.

Christoph Hoffmann     According to this there are no fixed infrastructures, 
for infrastructures are also patched together. They recombine over and 
again with reference to the problem that is currently being worked on.

Hans-Jörg Rheinberger     There are, of course, dimensional shifts. When you 
make your way to the level of oil towers and large-scale power supply in 
order to apply your bugs, you are miles away from Hofmann’s lab and its 
neighbors. You can no longer tell the difference between what Hofmann 
is doing and what Mr. X is up to in the lab next door. The research prob-
lems are then no longer tangible, they disappear.

Christoph Hoffmann     But Hannes only goes all the way back to the drill-
ing tower because in the context of Hans’s research, nothing happens 
without the supercomputer, and thus without large-scale energy con-
sumption. In a different constellation this might be completely different. 
In some projects a fast data connection is a necessity; in others it may 
not matter at all. So if infrastructure is thought of as a function of the re-
search object, this object becomes very strong. Then the object deter-
mines what forms its infrastructure.

Hans-Jörg Rheinberger     But the one supercomputer can work on, let’s say, 
100 or even 1,000 extremely different research problems. So when you 
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focus on the supercomputer, you cannot tell all of these apart. This is 
entirely different for the underwater camera.

Infrastructure and Research

Philipp Fischer     One point that seems extremely interesting to me: Does the 
infrastructure maintain the research, or does the research maintain the 
infrastructure? Of course, right away I have to think about our research 
in the polar regions, where it is not entirely clear which supports what. Of 
course, we build up the infrastructure in order to conduct research. With-
out infrastructure, we would not be able to survive five days up there. To 
that extent, the infrastructure is essential. When we were talking about 
the various perimeters around the nucleus of research, I couldn’t help 
thinking of our cafeteria. It is an integral component of our research up 
there, it is the center of the whole research life. But the real point I would 
like to emphasize is, that there are indeed specific phases in which only 
the availability of a certain infrastructure makes it possible for us to con-
duct our research. On the other hand, when the infrastructure exists, we 
are asked to think about research projects for which this infrastructure is 
suitable in order to justify the operation of the infrastructure. This is a two-
sided process, and sometimes it is not so clear what drives what. Building 
the Neumayer Station, our base in the Antarctic, was the result of political 
decision-making. We want to belong to the consultative parties that have 
voting rights in the Antarctic Treaty. One of the conditions for belonging 
to the club of these consultative parties is that we have a research sta-
tion operating year-round, which costs us vast amounts of money. Now, 
since the infrastructure is available, we are asked to submit further proj-
ects that are linked to the research station, so that we can better justify 
it in terms of research. As funny as it sounds, we are a globally renowned 
research institute, but 25 years ago we were founded primarily as a lo-
gistical project with two large-scale infrastructures: the research vessel 
Polarstern and the Neumayer Station. There were 50 logistics specialists 
and four researchers. Today we have 1,000 people, and even today, 100 
of them are logistics specialists.
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Hannes Rickli     Perhaps you could also say something more about the dis-
appearance of the fish in the infrastructure. Is this a question for you, or 
is the fish re-embodied in the data? Am I incorrect with the thesis that 
digitization brings about an increased distance?

Hans Hofmann     From our point of view the fish does not disappear, but it 
is transformed. First it is transformed when it comes from the aquarium 
in the form of a brain sample or as RNA, or whatever goes into our freez-
er. And it is transformed anew when the transcriptome of the sample 
is sequenced, and analyzed again with the supercomputer. For us, I 
think, the fish—for that is, after all, where our scientific questions come 
from—is always still quite present. We probably think less about some 
of the other aspects that are part of Hannes’s panorama; for instance, 
how the cooling functions or where this drilling tower is actually located, 
etc. Scientists do not have to know this, and it does not necessarily in-
terest them either. To that extent you allow them to see their work in a 
larger context with which many other projects, many other scientists, 
can identify. For me the animal subject is not lost, for the simple reason 
that we pose the questions starting from the animal. I probably have a 
different relationship to this than those of you looking at it from the out-
side.

Hans-Jörg Rheinberger     Hans says that, in the framework of the analyses he 
performs, his fish ultimately are present only as RNA samples or as the 
digital representation of its sequence. This extreme transformation is 
epistemically interesting. I find this point lacking in Hannes’s installation. 
I would like to be able to grasp this transformation; it should be present 
in this connection, which the panorama attempts to make audible and 
visible. From an integral point of view, both poles must be included when 
talking about research. On the one side, there is the research technol-
ogy, the framework. On the other side, the frame, as the name says, is the 
frame for something. And this something is the research object.

Hannes Rickli     Perhaps that is why you see this relationship more intact in 
the capsule under water: because there the images created by Philipp 
are at the same time present in their raw form. In contrast, the gene 
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sequence that is the objective of Hans’s research is no longer present, 
not even as a text.

Christoph Hoffmann     Although Valentina would say that the text could be 
reconstructed from the registered computing operations.

Hannes Rickli     Yes, theoretically.

Hans-Jörg Rheinberger     That would be super. You show a video sequence 
from the TACC and out of the soundscape come nucleotides.

Stability/Instability of Infrastructures

Gabriele Gramelsberger     What I found so beautiful about Hannes’s panora-
ma is that one sees how the fish is wrapped in something else, and this 
something else, for its part, is wrapped in infrastructure, and this infra-
structure is wrapped in an even larger infrastructure. Right, the wrapping. 
A tremendous number of calculations are running on the computer, but 
when the drilling tower stands still and the energy supply collapses, the 
cooling stops working. Then the computer breaks down, and the data 
may be lost, meaning that the research is lost: it dissolves into oblivion. 
This dependency becomes just as clear through Philipp’s power outlet. 
Normally one does not think about it all here. This stupid seawater is so 
corrosive, it doesn’t do what we want, while mankind generally has every-
thing else pretty well under control.

Hannes Rickli     It does a lot more. As part of bioactivity it produces algae on 
the viewing windows. It attacks the windows, it attacks the housing.

Christoph Hoffmann     That’s a reminder of the vulnerability of infrastruc-
tures. In Philipp’s work one always has the impression that the infrastruc-
ture is constantly in danger. There is always something broken. While in 
Hans’s work the interconnections appear to be more stable?
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Hans Hofmann     Now and then there are problems, but the people in the 
computing center communicate very well, etc. Nothing that worries me.

Christoph Hoffmann     The worst would be if there were a power outage.

Hans Hofmann     Yes, but there is never a power outage on the UT campus.

Hans-Jörg Rheinberger     Because there are two backup systems?

Hans Hofmann     No, because we have our own gas power plant. We have a 
pipeline coming in from West Texas; we are completely independent from 
the rest of the world. Two years ago we did have a power outage, how-
ever, which should not have happened. Construction workers destroyed 
some main cable. Apparently, that was the first time since 1981 that there 
had been a power outage on the UT campus, and it lasted about a half 
hour. The freezers can break down, of course—that has happened. Our 
building has emergency freezers, into which everything has to be moved 
in such cases. But as long as you don’t open the freezer, it stays cold for 
hours. When you know where you are bringing the contents, you get some 
dry ice in polystyrene containers. Then everything is transferred rela-
tively efficiently, and I have to buy a new freezer for 12,000 dollars. That 
has happened to us twice already in the last five years. TACC, I would say, 
is very stable. They have 140 people, making it one of the largest civilian 
supercomputers in the world, they have a huge budget. Our sequencing 
facility is quite stable. The instability comes from the fact that the tech-
nology continues to develop ever further and you don’t want to be left be-
hind. And the instability may also come from the fact that I would like to 
have my data within one or two weeks, but under certain circumstances 
they may take three or four weeks.

Hans-Jörg Rheinberger     Getting back once more to the differentiation be-
tween data generation and data processing, what we have at the station 
off Spitsbergen is an extremely fragile situation for data generation. This 
is different in Hans’s case. There the data generation is embedded in all 
kinds of routines. Occasionally a part may fail, or if a brain sample gets 
lost, he just takes the next fish; he has enough fish. This situation, this 
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context in which the data are generated, is dramatically different com-
pared to Philipp’s situation.

Philipp Fischer     One has to see this in the correct context. In Hans’s insti-
tute, he has control of 90 percent, maybe even 100 percent of the envi-
ronmental variables that complicate his work. He can create redundan-
cies, the University of Texas has a power plant of its own providing energy 
on demand and he can make the lab operation completely independent. 
That’s why it is a stable system. Our situation is, unfortunately, quite dif-
ferent. I cannot influence the glaciers. When an iceberg comes down that 
is 80 meters long and extends 30 meters into the water, I cannot create 
any redundancies in order to prevent the destruction of my underwater 
station. If I set up 25 machines, 25 machines are destroyed. I have control 
of 50 percent of data collection, but no more. When the environmental 
constraints become really critical for our research in the field, and we 
ask ourselves, sometimes almost with tears in our eyes, whether all these 
challenges are worth it, then my favorite saying is: “Nothing ventured, 
nothing gained.” With this approach we at least relieve some of the pres-
sure we’re under.

Hans Hofmann     The most fragile thing we have are the fish. And we have 
had larger accidents that cost us many animal subjects.

Hans-Jörg Rheinberger     Because they became ill?

Hans Hofmann     Yes, either some disease sweeps through, or something 
in the life support system goes wrong, despite the built-in redundancies. 
In the last ten years, since I have been at UT Austin, we’ve probably had 
three or four such cases, not all of them so extreme. In the worst case it 
set us back six months. I would say that this first step is the most fragile. 
Here we are still closest to nature and have the least control.

Philipp Fischer     For us it’s exactly the other way around. When a fish swims 
by me, I don’t know whether it’s eaten the next day or not, and that has no 
influence on the results.
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Hans-Jörg Rheinberger     The main thing is, it came along.

Hannes Rickli     And was captured by the system.

Christoph Hoffmann     So if vulnerability does arise, then, in contact with na-
ture? In the case of Philipp’s observation station, then, in the contact with 
saltwater, with the low temperatures.

Gabriele Gramelsberger     Or for Hans, in the contact with the fish.

Christoph Hoffmann     In drastic terms, the acquisition of the research ob-
ject is accompanied by saving it from disturbance, decomposition and 
destruction. The further the object is extracted from its natural environ-
ment, the more …

Hans Hofmann     … stable it is.

Philipp Fischer     We have to be careful here. The entire system does not be-
come more stable due to the fact that the object is extracted from its en-
vironment; the danger is merely of a different kind. When I look at Hans’s 
approach and my own, my object of research as such is not threatened 
at all, since it is unlikely that the Kongsfjord in Spitsbergen will collapse in 
any form and that all organisms there will die. For me the infrastructure 
is the essence of insecurity. The more Hans extracts his research object 
from the water and brings it into his infrastructure, the more problems he 
has with the safety of his object.

Hans Hofmann     Even in an experiment that works, you are confronted with 
all of the variability you have with living organisms; with this unpredictabil-
ity. My students and postdocs always breathe a sigh of relief when the tis-
sue samples are in the box. From there on they feel that they have much 
more control over their object. They are no longer driven.

Christoph Hoffmann     While it would be no problem for Philipp, it would not 
be good for the ecosystem if an oil spill were to happen. You would just 
have a different ecosystem.
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Philipp Fischer     That would certainly be quite dramatic, but it would not 
take long for us to draw up a new research question and continue working.

Hans Hofmann     That is exactly what happened in the Gulf of Mexico after 
the BP oil spill. I know people who were working there on all kinds of proj-
ects. From one day to the next they had a different research project, al-
though they had not changed a thing. Those who were clever exploited 
this very well and learned a great deal.

Christoph Hoffmann     Earlier we were saying that the distance between the 
research object and the researchers is greater today, and the space be-
tween much more filled with technologies without which the research ob-
ject would not be available. In the beginning I was still working without a 
computer, with books, libraries, a typewriter …

Gabriele Gramelsberger     … Tipp-Ex …

Christoph Hoffmann     … pen and paper. Today my research environment, put 
bluntly, consists of the internet and a computer that is replaced every five 
years. But it seems to me that the bond to the infrastructure always re-
mains the same. Technically, it is certainly more complex today: I cannot 
unscrew the computer, I have no idea how to do that. I have a problem 
when my internet connection breaks down. But in 1985 it was a crisis for 
me when the library was closed for Christmas break.

Distancing through Infrastructures

Hans-Jörg Rheinberger     That could have something to do with the fact that 
there are anthropological constants that limit how much an individual can 
manage and pay attention to. The infrastructure may become ever more 
complex, but the more complex it becomes, the more it has to be black-
boxed. Your attention, your very possibilities for taking up and processing 
information, are limited. I am certain that our human attention potential 
is somehow reflected in these highly complex infrastructures. Otherwise 
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one would face a situation in which one is simply inundated and basically 
paralyzed. When I look back on my time in the laboratory, it was just the 
same. In order to be able to concentrate attention on the research ques-
tion, I had to presume—take for granted—that the ultracentrifuge would 
do what it was supposed to do. There may have been the occasional ac-
cident, but otherwise this piece of technology had to be taken as unprob-
lematic. I think this is basically no different today.

Hannes Rickli     Infrastructure is hidden from view. That is its characteristic.

Hans-Jörg Rheinberger     But if the infrastructure is modular, you can always 
open it at certain places. It doesn’t work without such modularity.

Hans Hofmann     In a certain way Hannes shows this modularity. The power 
plant can be replaced without replacing the computing center, or the fish 
facility, or the laboratory, etc.

Hans-Jörg Rheinberger     That goes all the way into the details. It’s the same 
thing if you focus on the computer.

Hans Hofmann     What’s called hot swapping takes place when a certain 
drive stops working: You can exchange and replace a single hard drive 
without having to turn off the supercomputer. There’s one person who 
has this single task, who moves through the Stampede computer all day 
replacing these hard drives, because they only have a limited service life.

Gabriele Gramelsberger     In Heideggerian terms, Hannes visualizes the data’s 
“readiness to hand.” Heidegger differentiates between readiness to hand 
(Zuhandenheit) and presence-at-hand (Vorhandenheit).7 That which is 
present is what you no longer perceive because it works. At the moment it 
no longer works, it becomes present; you now perceive it. Hannes makes 
this presence-at-hand accessible.

7	 Martin Heidegger, The Question Concerning Technology and other Essays, trans. William 
Lovitt (New York: Garland Publishing, 1977).
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Hans-Jörg Rheinberger     It seems to me that science, as a whole, is based on 
an estrangement of this kind, but in order to realize it, paradoxically, one 
has to forget it.

Hannes Rickli     I am interested in this from the perspective of aesthetics, 
of perception. This concerns not only processes of research, for much 
more general questions are involved. What’s interesting is that one can 
study the differentiation. Completely different dimensions and things 
count for Hans than for Philipp, for whom electricity or bioactivity, for in-
stance, become palpable very directly, quite essentially.

Hans Hofmann     And where does aesthetics come into this?

Hannes Rickli     I understand aesthetics as work on perception. I am aware 
whether something can be sensually perceived, and I work at the gaps, on 
those places where things elude perception.

Gabriele Gramelsberger     In media theory there is a great deal of discussion 
about the “technological unconscious.”8 What this means is that technol-
ogies make the unconscious visible on the one hand, but on the other, be-
come themselves unconscious through the embedded infrastructures.

Hans-Jörg Rheinberger     I think, Hannes, perception alone is still not quite 
enough. I believe that what also essentially belongs to this, and what 
constitutes aesthetic effects, is a certain degree of surprise. Without 
surprise—a kind of wonder—there is, I believe, no aesthetics at all. But 
without a certain degree of surprise there is also no epistemology, that is, 
knowledge. This is where the production of epistemic effects meets the 
production of artistic effects.

Hans Hofmann     Perhaps most accessible intuitively is Hannes’s installa-
tion with the Kramer sphere.9 Visitors to the installation went from one 

8	 Nigel Thrift, “Remembering the Technological Unconscious by Foregrounding Knowledges 
of Position,” Environment and Planning D: Society and Space 22, no. 1 (2004): pp. 175–190.

9	 Hannes Rickli, Spurenkugel: Ein Schreibspiel (Baden: Lars Müller, 1996).
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surprise to the next: The thing revolved, one attempted to understand 
what was happening. Tracks were generated, a computer evaluated and 
printed the data.

Hans-Jörg Rheinberger     The generation of uncertainties—suspense, inse-
curity—manifests itself in all of these aspects.

Hans Hofmann     At the time I enjoyed the process of discovery. I go through 
there and influence the entire process by activating the light barriers. 
That was not evident for the user from the start. Something happens, in a 
certain way the process of research is reconstructed when there is actu-
ally a cricket or some other kind of creature sitting on the sphere. Yet, at 
the same time the process is also reversed. The same thing happens in 
the panorama, only the experimental system is much more complex, has 
many more dimensions and extends much further spatially and tempo-
rally.

Hannes Rickli     When one compares these with each other (and we could 
argue about whether or not that’s productive), the Kramer sphere was 
actually an illustration of the research process. What happens in the 
Austin panorama is something different, which is not symbolic, as it aims 
directly at the presence of the phenomena—that is, the technical facili-
ties—and thus at sensual experience. I noticed that the infrastructures 
bear an aesthetic potential even without being symbolically transferred 
and validated. The actual artistic work here consists in expressing their 
own materiality and energetic power.

Hans-Jörg Rheinberger     There was much more to discover in the sphere 
than you had intended. But that will happen to you again with the pan-
orama. Works of art, like objects of research, point beyond themselves.
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The Developmental Hourglass

Hans Hofmann     We have now on several occasions touched on the impor-
tance of data available from public repositories for pursuing fundamental 
biological questions with data-driven in silico analyses. I want to illustrate 
this approach with a current project in my laboratory, in collaboration with 
Dr. Becca Young at UT Austin, where we analyze large, publicly available 
datasets with new methods, thus permitting new insights into traditional 
biological questions. The specific research, which is illustrated by the 
poster you see here (supplement 1), aims at an old biological problem that 
remains unsolved to this day. I chose this example because it has a his-
torical context that may be of interest to you. In the mid-nineteenth cen-
tury, Karl Ernst von Baer investigated embryos of many different species 
under the microscope and determined that they looked very different at 
the beginning of embryonal development and later as well. But between 
these phases there was a period during which they were quite similar.1

Hans-Jörg Rheinberger     With regard to mammals?

Hans Hofmann     Originally with regard to vertebrates, but the same obser-
vation was made later for worms and arthropods as well. So this is not re-
stricted to vertebrates. At some stage this phenomenon was dubbed the 
developmental hourglass. The question was, what led to this reduction 
of variability, and which mechanisms are at work? In the 1920s this was 
affirmed once more, and in the last decade a few studies have been pub-
lished in which expression profiles were examined genome-wide, known 

1	 Karl Ernst von Baer, Über Entwickelungsgeschichte der Thiere: Beobachtung und 
Reflexion, 2 vols. (Königsberg, 1828/1837).
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as transcriptomics.2 Here it became apparent that the similarity of the 
gene expression profiles—shown here as the correlation coefficient—is 
significantly greater during this period than in the earlier or later embry-
onic stages. This period was designated by Klaus Sander as the phylotyp-
ic stage (or phylotypic period).3 It is typical for a phylum, for instance, the 
vertebrates. Judging from these papers, this appears to be the molecular 
basis for the phenomenon. What interests us is: What happens here, and 
why does it happen this way? Rudy Raff, who comes from the evo-devo 
context—a research area focused on how the control of individual de-
velopment took shape through evolution—introduced a hypothesis on 
this in the 1990s.4 According to Raff, gene expression networks, that is, 
the functional networks, are relatively isolated from each other early and 
late in embryonic development. In the phylotypic stage, by contrast, in 
which the embryos look similar, they are highly integrated. The basic idea 
behind this hypothesis is that due to pleiotropy—that is, when one gene 

2	 Alex T. Kalinka, Karolina M. Varga, Dave T. Gerrard, Stephan Preibisch, David L. Corcoran, 
Julia Jarrells, Uwe Ohler, Casey M. Bergman, and Pavel Tomancak, “Gene Expression 
Divergence Recapitulates the Developmental Hourglass Model,” Nature 468 (2010): 
pp. 811–814; Tomislav Domazet-Lošo, and Diethard Tautz, “A Phylogenetically Based 
Transcriptome Age Index Mirrors Ontogenetic Divergence Patterns,” Nature 468 (2010): 
pp. 815–818; Naoki Irie and Shigeru Kuratani, “Comparative Transcriptome Analysis 
Reveals Vertebrate Phylotypic Period During Organogenesis,” Nature Communications 
2 (2011): article 248; Itai Yanai, Leonid Peshkin, Paul Jorgensen, and Marc W. Kirschner, 
“Mapping Gene Expression in Two Xenopus Species: Evolutionary Constraints and 
Developmental Flexibility,” Developmental Cell 20 (2011): pp. 483–496; Alex T. Kalinka and 
Pavel Tomancak, “The Evolution of Early Animal Embryos: Conservation or Divergence?,” 
Trends in Ecology & Evolution 27 (2012): pp. 385–393; Marcel Quint, Hajk-Georg Drost, 
Alexander Gabel, Kristian Karsten Ullrich, Markus Bön, and Ivo Grosse, “A Transcriptomic 
Hourglass in Plant Embryogenesis,” Nature 490 (2012): pp. 98–101; Naoki Irie and Shigeru 
Kuratani, “The Developmental Hourglass Model: A Predictor of the Basic Body Plan?,” 
Development 141 (2014): pp. 4649–4655.

3	 Klaus Sander, “The Evolution of Patterning Mechanisms: Gleanings from Insect 
Embryogenesis and Spermatogenesis,” in Brian C. Goodwin, Nigel Holder, and Christopher 
Craig Wylie, eds., Development and Evolution (Cambridge: Cambridge University Press, 
1983): pp. 137–159.

4	 Rudolf A. Raff, “Developmental Mechanisms in the Evolution of Animal Form: Origins 
and Evolvability of Body Plans,” in Stefan Bengtson, ed., Early Life on Earth (New York: 
Columbia University Press, 1994): pp. 489–500; Rudolf A. Raff, The Shape of Life: 
Genes, Development, and the Evolution of Animal Form (Chicago: University of Chicago 
Press, 1996). Duboule had a similar idea: Denis Duboule, “Temporal Colinearity and the 
Phylotypic Progression: A Basis for the Stability of a Vertebrate Bauplan and the Evolution 
of Morphologies Through Heterochrony,” Development, Supplement (1994): pp. 135–142.



                        

The Developmental Hourglass

119

influences many different mechanisms or controls many different pro-
cesses—it is not so simple to change a gene’s activity through evolution. 
This consequence of this constraint is that the embryos look relatively 
similar—as far as both gene expression and morphology are concerned.

Hans-Jörg Rheinberger     On what basis did Rudy Raff develop this hypoth-
esis at the time? He certainly did not have the technologies and the data 
that we have at our disposal today.

Hans Hofmann     In the early 1990s he simply dug up the old literature and 
said: We have a problem, we have to explain this—and here is a hypoth-
esis. He had no evidence or data basis of any kind. The matter was then 
forgotten again, until the technology was finally ready about a decade 
ago. But until now nobody has looked at these networks and tested the 
hypothesis in practice. And that’s precisely what we want to do.

Christoph Hoffmann     What do you do in order to test this hypothesis?

Hans Hofmann     Practically every individual gene and its activity over the 
period of development have to be measured. So transcriptomics, applied 
to different species. With our partners at Michigan State University we 
are also working on in silico evolution. They developed Markov network 
brains, which are, in practice, agents. Each cell represents one brain. 
Imagine this as a tissue that develops and forms certain patterns; these 
would be the phenotypes. Then evolution can be run in silico, in the com-
puter, to see whether or not the development of these artificial-life organ-
isms in the computer resembles this hourglass phenomenon: whether 
it is thus generally a characteristic of development processes. This is a 
complementary approach, quite new in developmental biology and evo-
devo. These areas of research are generally lacking in theory and have 
relatively few quantitative approaches, aside from the classical reaction-
diffusion models (for instance, the Gierer-Meinhardt model). For the tran-
scriptomes you have the problem that you have to identify the ortholo-
gous genes—that is, the corresponding genes—from all of the different 
species under study. We do this with comparative analyses, but there are 
also other possibilities. In the analysis I will show you now, we looked at the 
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data over the development period for 2,500 genes—these are actually 
orthologous gene groups, but let’s just call them genes for now—for vari-
ous species; at the moment, only for vertebrates. They make up just over 
ten percent of the genome, which isn’t bad. We have the largest dataset 
that has ever been analyzed genetically; all of them data that were down-
loaded from public databases. These are both microarray and RNAseq 
data, which we then integrated in various ways.

Christoph Hoffmann     You leave out the integration step because it would 
take too long?

Hans Hofmann     I leave out the data integration because it gets quite de-
tailed. Now you can see that there is a change in the correlation which 
measures the similarity of the gene expression pattern from the early to 
the late embryonic stages (supplement 1, center column, above). But in 
the pharyngula stage, which is generally viewed as a phylotypic stage, all 
are relatively similar to each other. The r-values indicate that they do not 
differ from each other statistically, while here the similarity decreases 
quite a bit. With the larger dataset we can thus see that the hourglass 
cannot be readily reconstructed on the level of expression. One can also 
combine and summarize the data differently into Early, Middle and Late 
stages. Here, too, one sees that Early and Middle have roughly similar cor-
relation coefficients. However, there is much more variation in the Early 
stage than in the Middle. This could be an indication, but compared with 
what others have published with smaller datasets, it does not seem to be 
a very robust signal. Then we decided to first reduce the complexity of 
the dataset—for they contain hundreds of millions of data points. We do 
that here with a Principal Component Analysis (PCA), which identifies the 
components that explain fractions of the total variance in the data (sup-
plement 1, center column, middle). The main component, which contains 
the largest share of total variance in the dataset, is PC1 (principal com-
ponent 1). Eighty-three percent of the variation in the data is attributed to 
PC1. This is different for the various species: fish and mouse, chicken, and 
here on this side the frog species Xenopus laevis and Xenopus tropicalis. 
Principal components 1 and 2 differentiate the various species, as it were, 
and thus explain the differences between the species. If you then look at 
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principal component 3, you see how the individual development stages 
from 1 to 15 line up. PC3 represents only 3.1 percent of the variation, but 
explains the variance over time. This component thus represents the 
data according to the different development stages. Principal compo-
nents 1 and 2, for their part, explain the differences between species, es-
pecially between the mammals, and between the fish and the frogs on the 
one hand, and the chicken on the other. Most interesting for our purposes, 
however, is principal component 3. It accounts for just three percent of 
the variation, but precisely these three percent explain the development 
stages from 1 to 15.

Hans-Jörg Rheinberger     And what does a component mean?

Hans Hofmann     That’s a component of the variance in a dataset. The ob-
jective of principal component analysis is to approximate the multitude of 
statistical variables in a complex dataset through a lower number of po-
tentially significant linear combinations—known as the principal compo-
nents. Each variable (for instance, the expression level of the investigated 
gene) “loads” on one of these main components.

Hans-Jörg Rheinberger     Are components gene clusters?

Hans Hofmann     Yes, in a sense they are: Every gene loads onto a certain 
principal component, and thus contributes to a certain principal compo-
nent. There are a couple of hundred genes that load primarily to PC3; that 
means they contribute to this temporal structure in the gene expression 
profile. And we think that these genes may show the hourglass behavior.

Hans-Jörg Rheinberger     Can you identify them?

Hans Hofmann     Yes, there are a couple of hundred. I’ll just show you here 
how such a gigantic dataset can be broken down in practice and ob-
served from various perspectives. There is an unbelievable amount of 
information here. A value of 3.1 percent of the variation doesn’t sound like 
much, but this could potentially be the genes we’re interested in. The im-
portant axis is the Y-axis (supplement 1, center column, middle).
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Christoph Hoffmann     And that is a time axis?

Hans Hofmann     No, although it looks like one; that is the principal compo-
nent, i.e. one component (of many) of the variation in the dataset. Unex-
pectedly for us, the Y-axis here reflects the time axis: from 1, early embryo 
development, to 15, the late embryonic phase—which indicates that the 
genes that load on this component are the ones that explain the temporal 
structure and change during embryonic development.

Christoph Hoffmann     That means that the temporal sequence emerges 
from the analysis; isn’t that what is assumed?

Hans Hofmann     Exactly. That’s why it was so surprising. We did not expect 
to see that. These multivariate analyses are good for recognizing in the 
data patterns what would otherwise not be seen at all, or would not be 
expected. In this case we then attempted to relate the various embryonic 
stages of the different species to each other. For the chicken, for exam-
ple, everything from 1 to 15 is compressed, whereas it is more stretched 
out for the other species. The question is: How can they be related to 
each other, what are actually the equivalent embryonic stages? This is a 
relatively difficult problem. First of all—this is all a work in progress, this 
is a poster from a recent conference—we looked at the classical litera-
ture to see when the various development stages described here appear 
during development in relation to this somite pair. For every embryo is di-
vided into segments called somites. This is true not only for arthropods, 
but also for vertebrates. The question is how the development stages of 
one species can be matched to the stages of other species. We now take 
this kind of information and use it to align the embryonic stages of each 
species with the corresponding stages of the other species. In practice, 
morphological information is linked with the gene expression. When you 
now break down principal component 3, which reflects the embryonic 
period in development, across the stages of development, you see a 
more or less linear relation here. There is still a minor error, but overall the 
relationship seems to be fairly strong between gene expression, which 
varies over time, and the morphologically defined embryonic stage. This 
is the current status. We have identified the genes that load on this princi-
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pal component here, and can now perform additional analyses. The trick 
with these network analyses is that we need quite large samples, at least 
20 or so, to make them statistically robust. We have achieved this for 
some of the embryonic stages. Everything we’ve used comes from public 
databases, and for this it was necessary to integrate data from different 
technology platforms.

Quality of a Dataset

Christoph Hoffmann     You take the datasets from public repositories, and 
this brings us back to the question of trust: How reliable are the down-
loaded data? Is this a question at all at the moment, or do you discuss 
such questions ex post?

Hans Hofmann     No, this is a question from the very beginning, for if you 
have bad data, you do not want to waste time with them. This starts with 
various quality-control analyses—that means we look to see which data 
comply with even the minimum requirements. None of the others are in-
cluded in the analysis at all. There are a few datasets we excluded.

Christoph Hoffmann     And the community has common standards concern-
ing the minimum requirements?

Hans Hofmann     Yes, certainly on this level. That does not mean that every-
one adheres to them; obviously, crappy data are also published.

Hans-Jörg Rheinberger     But how do you decide about the quality of a data-
set? It does not carry a quality label when it becomes publicly available. 
I could imagine that one simply uses them, and if it turns out that there is 
something odd about them, they are thrown out again.

Hans Hofmann     That is our second step. It may be that a dataset passes the 
first quality control and it then turns out to contain a systematic error, so 
that we have to exclude the dataset in question. The first quality control 
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checks only whether they are data that were produced in the normal 
way by the corresponding technology, and thus have the usual distribu-
tion. You can check this before the analysis. The quality control always 
consists of multiple steps. It could be, for instance, that the data for 
development stage 5 are somewhere down here (supplement 1, center 
column, middle). We have seen something like this. If you look at the data 
as a whole, you know that something probably went wrong. You would 
probably take another look at them first, to see whether you might have 
made some kind of systematic error yourself. If that is not the case, per-
haps the researchers who put the data into the repository made an error 
during uploading. If that is not the case, something may have gone wrong 
with the measurement, etc. Possibly the error can be found and elimi-
nated. In any case one has to be quite meticulous with such operations. 
But back again to in silico evolution. Anyone who lets the development 
of these artificial organisms run as programmed sees that they can pro-
duce very different patterns. Development can take place, that’s the 
first thing nobody has ever done. If you then apply something like natural 
selection and say that you would ultimately like to have a certain pattern 
as your phenotype, and then run that program on the computer 10,000 
times, it also becomes clear that such patterns sometimes appear rela-
tively quickly, while sometimes it takes much longer. In the development 
of animals and plants one would call this heterochrony. What’s interest-
ing is that this heterochrony also occurs in these model organisms. Thus 
this is apparently an emergent property, meaning a property of the de-
velopment of organisms that takes effect quasi automatically.

Agent-Based Models

Hans-Jörg Rheinberger     So is this work essentially based on game theory? 
Or are other theories involved?

Hans Hofmann     Yes, they tend to be agent-based models. In practice, every 
agent works as a simplified brain; every agent is a cell in the brain.
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Hans-Jörg Rheinberger     Does it, in principle, work the way Manfred Eigen 
and Ruthild Winkler described it in their book The Law of the Game?5

Hans Hofmann     Yes, but here it is not a game theory approach. Game the-
ory would not be suitable for this, because it is not agent-based; rather, it 
provides numerical solutions for an entire population.

Hans-Jörg Rheinberger     But you roll the dice …

Hans Hofmann     You generate variations, and you can do that by rolling the 
dice; here we call it mutations.

Hans-Jörg Rheinberger     And what is operational when you say agent-based?

Hans Hofmann     Every individual cell here is an agent (supplement 1, right 
column, above). There are very simple rules. For example: If the neighbor 
is so, than so am I. Only there are two, or three or four rules. They are the 
same as for a biological process. You generate mutations, the mutations 
generate different phenotypes, and these are affected by the selection 
acting in the computer. You can define it. On the computer you can play 
God, if you want to.

Gabriele Gramelsberger     But are mutations neighborhood-based? Does 
that mean you can describe mutations through neighborhood rules?

Hans Hofmann     You could, but that’s not how it works in our case. Some-
thing changes in a cell coincidentally, and that has consequences for the 
neighbors.

Christoph Hoffmann     But you use this approach exclusively in order to 
investigate the emergence of certain patterns.

Hans Hofmann     Yes, first of all we want to see whether such patterns 

5	 Manfred Eigen and Ruthild Winkler, The Law of the Game: How Principles of Nature Govern 
Chance, trans. Robert Kimber (New York: Alfred A. Knopf, 1981).
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develop, and second, how they develop and whether or not something 
like an hourglass emerges in the long term.

Christoph Hoffmann     And if the hourglass were to emerge, would that per-
haps be a condition of development?

Hans Hofmann     That would be one possible interpretation. If there is sup-
posed to be such an hourglass, we could, moreover, mathematically 
determine the correlations between all of these genes, in order to see 
whether Raff’s hypothesis of networks that are either more or less inte-
grated would be applicable here as well. But we’re not that far yet. The 
first thing we discovered was that when patterns are selected, these pat-
terns actually do form reliably through evolution. Second, we discovered 
that there is heterochrony. And third, that quite similar end products may 
develop again when these experiments are repeated. You see that here, 
when you compare right and left (supplement 1, right column, middle). 
This observation goes back to Stephen Jay Gould, “replaying the tape of 
life.”6 This also happens with the Markov network brains in the artificial life 
project. This is the current situation. We have not come far enough to see 
whether there is an hourglass and what that looks like. In summary: First 
we downloaded datasets from public repositories and massaged them, 
meaning, we changed them so that they were comparable to each other.

Data Massage

Gabriele Gramelsberger     You “massaged” the datasets?

Hans-Jörg Rheinberger     Ah, now we’re coming to data massage. Yesterday 
we were dancing with the data.

Hans Hofmann     We massaged the data so that they could be analyzed to-

6	 Stephen Jay Gould, Wonderful Life: The Burgess Shale and the Nature of History (New 
York: W.W. Norton & Company, 1989).
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gether. Then we checked whether we were able to reproduce what oth-
ers had found before us. We can do this only in part. Perhaps because 
we have a very complex dataset and only part of the dataset, a part of 
the genes, is at all relevant for the pattern we are seeking. Therefore the 
next step was to perform the PCA and identify a set of genes that actually 
reflect the embryonic development. Now we have to proceed from this 
point. We match the embryonic development on the level of gene expres-
sion to the morphological development. This is still a work in progress and 
to be optimized further. But here one sees that there is already a quite 
linear relation between the gene expression and morphological develop-
ment (supplement 1, center column, below). We completed all of this with 
the Markov network brains, and were thus able to show that they, too, can 
develop. This has never been done before. Generally these models are 
used for other purposes, not for questions in developmental biology. That 
something like heterochrony could result as an emergent property was 
not our question at all. Nor did we expect to repeatedly find evolution-
ary processes that lead to similar results. Overall it is a mixed approach: 
You have data parasitism, then the fishing expedition approach in the 
form of exploration; plus, in the same study, you have hypothesis testing 
complemented by the in silico modelling approach. This is representa-
tive of much of what is happening today, and will happen tomorrow, in my 
research and in the whole sphere of big data genome-relevant research. 
This includes a systems biology approach, developmental biology, and 
comparative evolutionary biology.

Hans-Jörg Rheinberger     A bit of everything, so a single perspective is not 
enough. You said at the beginning that around 2,500 genes are repre-
sented in the dataset?

Hans Hofmann     For which we have data from each individual dataset.

Hans-Jörg Rheinberger     How many of these are attributed to PC3?

Hans Hofmann     Slightly more than 200, I believe. Just under ten percent, 
210 or so. If one looks how many genes generally engage in develop-
ment—as transcription factors or in other functions, not as mere fellow 
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travelers, but taking on a causal role, then the estimates in other stud-
ies range from ten to fifteen percent. These may be the ones sought, or 
maybe not. But the order of magnitude is more or less right.

Hans-Jörg Rheinberger     That would fit. You say that the 2,500 are around 
ten percent of the entire set of genes. And this number reflects the set of 
genes that are relevant for development?

Hans Hofmann     We have good reason to assume that these 2,500 genes 
are representative. No bias is implicit. There are all kinds of possible 
reasons why we cannot find orthologs for the other genes. It appears 
to be random. A number of 2,500 is quite good for a comparative study 
spanning 450 million years of evolution. In another study, we look at the 
evolution of mating systems, that is, social systems; there we have about 
2,100.7 In the paper by Irie and Kuratani, in which the expression similarity 
for the pharyngula stage was shown, the data for only 300 or 400 genes 
are considered.8

Christoph Hoffmann     Do you trace your results back to the additional 
amount of data considered?

Hans Hofmann     I’m not sure how it can be explained, I don’t know.

Christoph Hoffmann     So you are not giving up on the initial hypothesis of the 
hourglass effect?

Hans Hofmann     No, I think that these 200 genes that load to PC3—this is 
my hypothesis now—reproduce this pattern here. This is where we stand 
now. If you compare the two figures here (supplement 1, center column, 

7	 Rebecca L. Young, Michael H. Ferkin, Nina F. Ockendon-Powell, Veronica N. Orr, Steven M. 
Phelps, Ákos Pogány, Corinne L. Richards-Zawacki, Kyle Summers, Tamás Székely, Brian 
C. Trainor, Araxi O. Urrutia, Gergely Zachar, Lauren A. O’Connell, and Hans A. Hofmann, 
“Conserved Transcriptomic Profiles Underpin Monogamy Across Vertebrates,” PNAS 116, 
no. 4 (2019): pp. 1331–1336.

8	 Irie and Kuratani, “Comparative Transcriptome Analysis Reveals Vertebrate Phylotypic 
Period during Organogenesis.”
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above), you see, however, that what has been published is not so easy to 
reproduce. We looked for a simple answer, and found various complex 
answers. Now we believe that our datasets are large enough for such 
network analyses. But then you first have to prove statistically that these 
analyses are robust enough that you can also believe the results.

Gabriele Gramelsberger     But your studies do not reflect this network topol-
ogy, do they?

Hans Hofmann     We are not there yet. We have only shown that agent-based 
models can actually show development phenomena and reflect some of 
the phenomena that are also seen in embryonic development. The next 
step is to see whether this hourglass appears there as well. Everything 
that has been shown so far serves as the basis for being able to test the 
hypothesis at all. And that’s why I say: It’s a work in progress.

Why in silico?

Christoph Hoffmann     One question: Why do you do this in silico?

Hans Hofmann     One reason is that we have only one hypothesis, a H1, that 
there is pleiotropy and that this network integration is either less strong or 
stronger. This is not satisfactory. I don’t like any experiments here. Gener-
ally I prefer multiple hypotheses, and then either have support with strong 
inference for these or not. If I also have organisms in silico that are being 
affected by evolution, and over which I have much more control than over 
animals and plants—especially since I can have the process repeated on 
the computer—and I then find similar conditions, that further reinforces 
my hypothesis.

Christoph Hoffmann     Or a new hypothesis emerges.

Hans Hofmann     That’s the other possibility. This approach will probably 
supply us with new hypotheses which we can then test with biological 
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data. To date we are able to reproduce part of what is in the literature, but 
not all of it. We can explore the data and reduce complexity so that we 
may perhaps be able to understand why we can reproduce the literature 
and why we cannot. Through comparison with the morphological devel-
opment we can improve the data such that they are more representative 
biologically. And we can develop an independent system in which evolu-
tion also takes place, in order to see whether similar phenomena arise. 
This is the combined, integrative approach.

Gabriele Gramelsberger     This hourglass doesn’t really make sense to me. 
Where does the variation in the embryonic development on the left edge 
come from (supplement 1, left column, above)?

Hans Hofmann     That’s a good question. There are various possible reasons 
for this. There you see early embryonic stages, the eight-cell stage, the 
sixteen-cell stage …

Gabriele Gramelsberger     But in terms of morphology, they are identical?

Hans Hofmann     No they aren’t. They look quite different from each other. 
In general, embryos are very different at the beginning. There are two 
main reasons for this: They may have been affected by natural selec-
tion, because the embryos are in different environments, and selection 
ensured that they were optimally adapted and thus look and work differ-
ently. Or it could be, precisely the opposite, that during early embryonic 
development the embryos can vary more or less without being affected 
by selection. Along both paths you obtain variability. This variability can 
be explained in part by selection, and in part by independent evolution. 
For example, the fish here and these mouse embryos had their last com-
mon ancestor 450 million years ago. Since then they have experienced 
a different evolutionary history. On the basis of the different trajectories 
alone, you would expect them to be different, even if no selection had 
influenced them. But selection did influence them, of course, which ex-
plains part of the variation in morphology. There are statistical methods 
to analyze how much of this variation can be explained by selection, how 
much by random processes, and how much by phylogenetic constraint. 
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This designates a component of the phenotype of a lineage that prevents 
or restricts any other possible (or even expected) evolutionary adapta-
tion. It is also important that there are different reasons why it varies to 
this extent here, and to that extent there. But what we want to know is 
why there is much less variation during the phylotypic stage in terms of 
morphology, and potentially also in terms of molecular biology. If we pre-
sume that the early embryonic stages are similar for all species, this is the 
fault of Ernst Haeckel. Haeckel misinterpreted von Baer’s embryological 
observations when he proposed his phylogenetic law.9 But this has not 
played a role in science for decades.

Hans-Jörg Rheinberger     The general image is very different. Haeckel’s idea 
is: Ontogenesis repeats Phylogenesis.10 This means that the embryos are 
quite similar at the beginning and then gradually develop in opposite di-
rections. So, not an hourglass, but rather a spreading from a shared start-
ing point.

Hans Hofmann     That’s why I said that Haeckel misinterpreted von Baer. 
Von Baer could no longer counter him effectively. In the late 1860s he 
was an old man. When Haeckel’s phylogenetic basic rule was discred-
ited, von Baer was thrown out along with it. Only in the 1960s did Friedrich 
Seidel confirm von Baer’s observations, which prompted Klaus Sander 
in 1983 to introduce the concept of the phylotypic stage.11 In the early 
1980s, Rudy Raff, too, said: Perhaps we should read von Baer again; he 
wrote down a problem for us that we still have yet to solve. Raff is a bril-
liant guy. Knows an unbelievable amount, about history as well. I have not 
discussed this project with him, it is all still relatively new. He published 

9	 Søren Løvtrup, “On von Baerian and Haeckelian Recapitulation,” Systematic Zoology 27 
(1978): pp. 348–352.

10	 Ernst Haeckel, Allgemeine Entwickelungsgeschichte der Organismen: Kritische Grund
züge der mechanischen Wissenschaft von den entstehenden Formen der Organismen 
begründet durch die Descendenz-Theorie, Generelle Morphologie der Organismen, vol. 2 
(Berlin, 1866): p. 300.

11	 Friedrich Seidel, “Körpergrundgestalt und Keimstruktur. Eine Erörterung über die Grund
lagen der vergleichenden und experimentellen Embryologie und deren Gültigkeit bei 
phylogenetischen Überlegungen,” Zoologischer Anzeiger 164 (1960): pp. 245–305; 
Sander, “The Evolution of Patterning Mechanisms.”
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his essay in 1994, but, again, not much happened until the study by Irie 
and Kuratani appeared in 2011.12 That was the first one, and now there are 
three or four such publications with somewhat different approaches, all 
of which were published in high-profile journals. Irie and Kuratani looked 
only at vertebrates. In the meantime, similar patterns have been found 
for plathelminthes and for arthropods. But all of this is exploratory and 
descriptive; nobody has tested any kind of hypotheses yet.

Rearranging

Christoph Hoffmann     Back to the poster again. I am interested in the step 
from the center diagram to the lower one (supplement 1, center column). 
What happens in the data analysis there? In the diagram in the middle, 
the data are read according to a certain question and then rearranged 
in a graph.

Hans Hofmann     They are rearranged, but their complexity is also reduced. 
From millions of data points, we arrive at, I don’t know, a few dozen.

Christoph Hoffmann     Would you say that the next step, from the center 
downward, is accompanied by a further rearrangement? Or is it, rather, 
adding additional information to the graph? I am trying to understand to 
what extent the data are increasingly linked with meanings from one step 
to the next.

Hans Hofmann     The reduced data are now compared with the other data-
set. Here another information increase takes place.

Christoph Hoffmann     Could one say that this step is also accompanied by a 
further theorization?

12	 Raff, “Developmental Mechanisms in the Evolution of Animal Form”; Irie and Kuratani, 
“Comparative Transcriptome Analysis Reveals Vertebrate Phylotypic Period during 
Organogenesis.”
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Hans Hofmann     Rather than theory, we would probably say assumptions. 
The assumption is that you can bring into register the stages of morpho-
logical development—which may perhaps be slightly shifted when you 
compare them across species—with the gene expression data, or per-
haps even literally synchronize these steps.

Christoph Hoffmann     A kind of layering results: With every analysis step, the 
work with the data is riddled with more assumptions. But you remove the 
layers again and say: It didn’t work here, let’s go back a step. You go off in 
one direction and perhaps give up, start off again in another direction …

Hans Hofmann     … or you go in multiple directions at the same time and then 
compare at the end to see what best explains the phenomena you observe.

Christoph Hoffmann     The left column of the poster (supplement 1) proceeds 
from an observation and, accordingly, from a hypothesis, the hourglass. 
In the center column we see how you and your group attempt to pull this 
hypothesis into the data analysis. Of course, we see only the result. Be-
hind this were probably a great number of attempts that were not signifi-
cant, or not suitable to explain the initial observation, or to further develop 
the hypothesis.

Hans Hofmann     Above all, you do not see how we arrived at these expres-
sion profiles, these datasets, such that they are actually comparable with 
each other. That’s about six months’ work. In fact, it’s a side project that 
has by now taken on a life of its own. The undergrads learn from it a great 
deal of what is essential in data handling, analysis, statistics, etc. The large 
analyses are all performed at TACC, with Stampede, the supercomputer. 
For this one needs Unix and shell scripting, etc. Many of the programs 
that analyze the transcriptomes are written in Python, and the statistical 
analyses are all done in R. All of this is open source software. The Markov 
network brains are implemented in the programming language C++. This 
is done by a postdoc in the lab we collaborate with.

Christoph Hoffmann     Can you tell us a bit more about the temporal frame-
work of the project?
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Times of Experimentation

Hans Hofmann     We started about 20 months ago. First you have to read 
the literature. Then you must identify and find all of the datasets, and 
sometimes communicate with the original authors of the datasets to 
clarify questions. For instance, it may be that they only uploaded data 
that have already been processed in a certain way, while we want to have 
the original data. People have been quite helpful; we were able to get all 
of the data. Once we had the microarray data and RNAseq data, we had 
to make them compatible. There are a couple of approaches to this in the 
literature, with which nobody is satisfied. Therefore we invented our own 
approach, which took quite a while, probably longer than anything else 
so far. In the meantime, the colleagues from Michigan State began with 
the Markov network brains. Initially, they also had some problems with the 
question of how they should implement this without a predetermined end 
result, so that evolution can actually take place. After all, you don’t know 
what’s going to happen. Another question was which metrics have to be 
read out of the data in order to make their results comparable with our re-
sults. We’re still working on that. The analyses shown on the poster were 
probably executed within two weeks—that went really fast. Now we have 
a pretty clear idea of what we still have to do at our end. Once we’ve taken 
care of that, I think we can write a first paper to lay a foundation. And then 
the next paper, in which we actually test the hypothesis.

Christoph Hoffmann     Hans-Jörg, when you think about your lab work, would 
you say that the division of time has radically changed? Hans says that 
the preparation of the raw material, as I would call it, took most of the time.

Hans-Jörg Rheinberger     When you factor in everything … For you constantly 
have to replenish your supplies; components you need for the experi-
ment have to be made available over and again; old batches have to be 
compared with new ones, and so on and so forth. I would say that 80 per-
cent of the time is for experimental infrastructure work and 20 percent 
of the time you can do clever experiments. That’s the ratio, more or less. 
This can always vary a bit from one area to the next.
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Hans Hofmann     We have lab experiments that take about the same time: 
one, two years easily.

Hans-Jörg Rheinberger     For a substantial paper, a year or two of work is not 
much.

Christoph Hoffmann     What’s important to me is to realize how much time 
goes into the preparation, and now, for Hans, into the processing of the 
data material.

Hans Hofmann     That is pretty much the lion’s share.

Hannes Rickli     So how does one differentiate between preparation of the 
infrastructure and the short experimental period? Hans, how do you do 
this: Is matching the data an infrastructure project?

Hans Hofmann     Yes, that is a prerequisite for being able to perform the 
analyses at all.

Hannes Rickli     So the experimental part begins with the data analysis?

Hans Hofmann     That’s the part where you ask the questions.

Hans-Jörg Rheinberger     Let’s say you are planning an experiment. You have 
a good idea of what you want to do and what you need. If you convert 
that to days of the week, I would say, you prepare it from Monday through 
Thursday and on Friday you get to work. A great deal of preparatory rou-
tine is involved.

Hans Hofmann     Yet, with the data we massaged or otherwise prepared, we 
can still perform all kinds of other possible studies.

Christoph Hoffmann     But what is essential is that the data from the reposi-
tories were adapted for your research. This is now part of the data. This is 
no big deal, of course, it is simply necessary for the task.
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Hans Hofmann     But it is not trivial.

Christoph Hoffmann     No, it is not trivial. It shows that data are not simply 
available, but have to be elaborately prepared in each case.

Hans Hofmann     That cannot be seen at all on the poster.

Gabriele Gramelsberger     You create a data organism, like a model organism, 
and on this basis you can then run your experiments.

Hans Hofmann     I could show you a different poster (supplement 2), which 
shows how this storage takes place. We even also considered whether 
we should publish a methods paper. We probably won’t do that, but will 
simply bring the method into a different paper. It is relevant, but not such 
a major advancement.

Christoph Hoffmann     That is a very interesting point, at which our different 
perspectives become clear. For you it is a methodological problem that 
has to be solved in order to get valid results.

Hans Hofmann     First of all, in order to do what I want to do.

Christoph Hoffmann     And for me this step itself is the focus, because it 
makes us understand that datasets are initially just a chaotic collection.

Hans Hofmann     You are interested in how these data are transformed: The 
hidden steps on the poster.

Christoph Hoffmann     They are not actually hidden, for you take them in full 
public view. They’re only missing on the poster, because they do not con-
tribute directly to the argument.

Hans Hofmann     On the poster they would detract from what is essential.

Hannes Rickli     I certainly find that interesting. In my early studies on the 
videograms we did indeed work out in detail how the media, the organ-
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isms, the behavior of the team, the camera, the environment, the light 
conditions, etc., configure each other; these 100 factors that register in 
the image; all of the preparations, the calibration—in order to then pose 
specific questions. Here all of that takes place completely in the digital 
realm. Nevertheless, even more components are probably massaged 
with each other, aren’t they?

Hans Hofmann     Science is ninety percent sweat and ten percent luck. Or 
you need intuition.

Gabriele Gramelsberger     But you do have your own hypothesis to explain the 
hourglass?

Hans Hofmann     Nothing really solid. We have a few ideas. The poster that 
we were just talking about (supplement 2), is relatively simple; an under-
graduate poster for an undergraduate research forum. It explains what 
originally motivated the search: the hourglass, the alternative hypotheses, 
random variation, Haeckel’s funnel. Then the poster shows the various da-
tasets with which we are working: some that were obtained with RNAseq 
and some with Microarray. The different technologies are even explained 
briefly. I would never do this normally, but for an undergraduate poster 
it’s ideal, because that way the student can show that she understands 
what she’s talking about. Next the problem is rendered quantitatively. The 
data that are illustrated with these lines apparently do not fit each other; 
that has to be changed somehow. Shown here is the correction we apply 
and what comes out at the end. This is the pipeline strategy, according to 
which the data are filtered and corrected; a relatively simple method. The 
math behind this does not constitute any special challenge. But you do 
have to convince your colleagues that it is actually a valid method.

Christoph Hoffmann     Does every individual dataset pass through the pipe-
line, or can I bundle, for instance, ten datasets that were generated with 
the same technology in the same laboratory?

Hans Hofmann     One could do that, but we do not. There is another ap-
proach in which something quite similar happens. Let’s say you have a 
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multidimensional space and the datasets can be anywhere in this space, 
and you have to bring them together. Then it may make sense that the 
correction and filtering you do with one dataset are informed by the other 
datasets. This is also quite a common approach. In our case, however, 
it doesn’t make any difference whether we do it individually or bundled. 
It doesn’t make any difference, but it could make a difference. Some of 
these figures will probably later appear in the paper as supplementary 
material in order to explain the method. In the end, this may be just a fig-
ure with two panels. So, relatively simple.

Hannes Rickli     What do the data you downloaded look like?

Hans Hofmann     They are just really large text files. Different lines and col-
umns that represent different genes, and every gene has different prop-
erties, that is, expression level, various quality flags, etc. Here on the com-
puter screen you see such a file for the mouse, embryonic stages 10 and 
10.5. This is how it comes from the repositories.

Hannes Rickli     And when you plug it into an evaluation program, does it turn 
into rational text?

Hans Hofmann     No, it will probably never produce text, but it processes the 
data with various analysis scripts, and ultimately you transform the result 
into figures.

Hannes Rickli     This is probably not allowed, but I would be interested in an 
excerpt from the dataset you just showed us.

Hans Hofmann     Of course it’s allowed, since the datasets are publicly avail-
able. You can download it yourself.
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Hans-Jörg Rheinberger  

Experiments, Traces, Data Streams 

A Reminiscence 

The conversations presented here have their origins, at least 
from my personal perspective, far back in the past. It all star-
ted with a “tracking sphere,” a “writing game” Hannes Rickli 
designed back in the early 1990s. It was based on the model 
of a globe whose sphere registered the tiny movements of in-
sects that came into contact with and began to crawl on it. We 
met for the first time in 1995 on the occasion of the Tracking 
Sphere exhibition at Kunst-Werke Berlin.1 I was fascinated by 
the world of light trails that this object generated, which also 
integrated visitors to the exhibition room through light bar-
riers. Rickli had read my essay Experiment, Differenz, Schrift 
and thought that these considerations on scientific experi-
mentation could inspire his own artistic work.2 Although this 
was the end of the discussion at the time, we did not lose track 
of each other entirely. One of my fond memories is a semi-
nar at the Zurich University of the Arts, to which Jörg Huber 
and Hannes Rickli invited me during my residence at Colle-
gium Helveticum in Zurich in the summer semester 2000. The 
seminar focused on Jacques Derrida’s Of Grammatology,3 and 
again, concerned the concept of the trace, which, as is well 
known, stands at the center of this treatise.

1	 Hannes Rickli, Spurenkugel – ein Schreibspiel (Baden: Lars Müller, 1996).
2	 Hans-Jörg Rheinberger, Experiment, Differenz, Schrift: Zur Geschichte epistemischer 

Dinge (Marburg/Lahn: Basiliken-Presse, 1992).
3	 Jacques Derrida, Of Grammatology, trans. Gayatri Chakravorty Spivak (Baltimore: Johns 

Hopkins University Press, 2016).
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When Hannes Rickli launched his project Surplus: Video-
grams of Experimentation in 2007, a continuous exchange be-
gan to develop, which brought together artists, art historians, 
scientists, historians of science, as well as sociologists and 
philosophers interested in the sciences. Rickli had already es-
tablished contacts with scientific laboratories starting in the 
early 1990s, among them with Hans Hofmann, who was con-
ducting behavioral genetics studies on insects and cichlids in 
Leipzig at the time, and then later in Austin, Texas; with Ste-
ven Fry, who was investigating flight control by the fruit fly 
Drosophila melanogaster in Zurich; and with Philipp Fischer, 
who initially was studying the acoustic communication beha-
vior of burbots in Konstanz, and then continued his studies 
on gurnards at the Alfred Wegener Institute on Heligoland. 
At that time, we began meeting at regular intervals, usually 
at one of the participating research facilities. Rickli tapped 
into the experimental data streams that were continuously 
generated in these laboratories, still before the filtered and 
cleaned products of these recorded traces were processed in 
scientific publications, and used them as source material for 
videograms that traced the gestures of not only the research 
objects, but also of the researchers who endeavored to unders-
tand their behavior.4

Surplus was the keyword. It stood for redundancy, as well 
as for contamination and rejects in the process of the expe-
rimental generation of traces, for the unavoidable noise still 
present in its fixed and processed form, the data stream. If 
what fascinated Rickli initially was the sheer abundance of 
data before they were thinned out scientifically, the exube-
rance before representation, this densely populated space of 
the graphematic, over the course of time his interest shifted 
more and more to the sounds and traces that result from the 
media of trace generation and processing themselves. He con-

4	 Hannes Rickli, ed., Videograms: The Pictorial Worlds of Biological Experimentation (Zurich: 
Scheidegger & Spiess, 2011).
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tinued following this thread in 2012 in a subsequent project 
that picked up on its predecessor: Computer Signals: Art and 
Biology in the Age of Their Digital Experimentation, which is 
now in its second funding phase. The materiality of the digi-
tal now shifted to the foreground, increasingly determining 
the artist’s explorations and resulting in combined video and 
sound installations like Fischen lauschen (Beginning of Data 
Transmission from the Arctic Sea) in the project space of the 
Schering Stiftung in 2013. This exhibition addressed the re-
calcitrance of the devices that Philipp Fischer deployed at the 
Alfred Wegener Institute on Heligoland in order to survey the 
marine life at the bottom of the Arctic Sea by Spitsbergen. 
The ongoing project focuses on Hans Hofmann’s laboratory at 
the University of Texas at Austin. A sound panorama leading 
all the way into the oilfield of the university makes percep-
tible to the senses the infrastructure that is needed to cool 
the supercomputers on the campus and keep them running. 
Without these energy-guzzling digital machines, such activi-
ties as the genome-based behavioral research pursued there 
by Hans Hofmann would be inconceivable.

In discussions among the participants that accompanied 
the project, the concept of data with all its facets, its embed-
ding in computer software and infrastructure, shifted ever 
more to the foreground. The actual enthusiasm for the digital 
is counterbalanced by the massive materiality of this basis. 
My contributions to this conversation testify to the fact that 
I myself am rather skeptical about the contemporary digi-
tal data optimism. I grew up in a scientific environment in 
which the generation of data for the sake of data themselves 
had no value. That was an image linked with the scientific 
positivism of the 19th century. My everyday experimenta-
tion around 1980 consisted of processing experimental traces 
into data, which were directly or at least indirectly connected 
with a scientific question. The quality of these data had to 
be checked ad hoc every time in order to decide whether the 
question could be pursued further, or whether it had to be 
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changed. This called for intelligent experiments, particularly 
ones that broke new ground. Data were gathered accordingly. 
The new positivism of data generation in recent decades, by 
contrast, aims primarily at overabundance, and is unthinka-
ble without the availability of electronic data processing.

Yet, it cannot be overlooked that the development of suit-
able data repositories not only represents a technical chal-
lenge, but goes along with the emergence of new epistemolog-
ical provocations.5 In addition, it is obvious that the massive 
expansion of the electronic data space is leading to the estab-
lishment of more and more virtual environments, and thus 
to knowledge spaces in which kinds of second-order experi-
ments are designed and performed. One example was referred 
to extensively in our discussion. If epistemology has a task 
today, it is, first and foremost, to understand the conditions of 
such digital experimentation at all, and to relate it to analog 
hard and soft, dry and wet experimentation, which no doubt 
will persist. Today, however, the epistemological engagement 
with the contemporary sciences is still a very long way from 
achieving this.

The two-day conversation between Philipp Fischer, Gab-
riele Gramelsberger, Christoph Hoffmann, Hans Hofmann, 
myself and Hannes Rickli in September 2016, which took 
place in the seclusion of Rigi Kulm in central Switzerland, was 
the peak of our attempts at understanding the contemporary 
data concept and its contexts so far; ultimately, much of our 
talk revolved around the above questions, both affirmatively 
and critically.

5	 Sabina Leonelli, Data-Centric Biology: A Philosophical Study (Chicago: University of Chica-
go Press, 2016).
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approach), 129–130 (in silico 

approach), 134–135 (time 

scale), 143–144 (around 1980); 

see as well experiment.

Sander, Klaus 25, 118, 131.

Scatchard, George 71.

Seidel, Friedrich 131.

Serres, Michel 9, 22.

Software 17–21, 39 (saving 

programs), 55–56 (and 

visualization), 65–66 (writing 

programs), 66–67 (external 

expertise), 69 (vs. program), 

69–70 (proprietary), 70–71 

(and protocols), 74 (software 

driven research), 75 (enabling 

technologies), 76 (open 

source), 78 (complexity), 

83–84 (restriction and pro-

ductivity), 85–86 (stability), 

86–88 (and experimentation), 

133; see as well bioinformat-

ics, disciplinary cultures, and 

expertise. 

Tukey, John W. 17.

Visualization (visual representa-

tion) 31–32, 52, 53–56, 57, 

59, 84, 91, 98 (panorama), 

132 (rearranging); see as well 

aesthetics and observation.

Wickham, Hadley 75–76.

Winkler, Ruthild 125.
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Testing the hourglass model of development in vivo and in silico 
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Animal phyla exhibit a phylotypic phase during 
embryogenesis.
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For each species, embryological 
stages were divided into three cate-
gories using a ordinally constrained 
kmeans clustering. 
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Heterochrony emerges in silico 
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Variation among species suggests that heterochrony in embryogenesis and tech-
nical di�erences in staging among species confound interspeci�c comparisons of 
expression across embryogenesis.

Uncovering the origins of the hourglass

image from: Irie & Kuratani. (2011).  Nature Commun 2, 248. 
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Mimicking biological variation, de-
velopment varies among lineages. 
While each MNB tissue begins in a 
similar state, variation in time 
before the tissue reaches its �nal 
pattern is evident. 
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5

some events associated with the phylotypic phase
PCA identi�es expression patterns correlated with embryogenesis across spe-
cies enabling a test of the gene expression hourglass hypothesis.

Combining a character map of developmental events with statistical cluster-
ing of gene expression will provide an improved alignment of interspeci�c 
embryogenesis. 

We have developed a method of integrating both RNA-seq and microarray 
data (not shown) to increase sampling and robustness of our analysis.

Harnessing the power of in silico evolution to replicate and computationally 
assess the evolution and development of phenotypic diversi�cation is critical 
to testing the hourglass and other longstanding EvoDevo hypotheses.
 

PCA including all species, embrological stages, and OGGs.

Repeated diversi�cation replays the ‘tape of evolution’

Speci�c stages were selected to repli-
cate previous discovery of gene ex-
pression hourglass at the pharyngula 
stage.  

PC1 (82.8%) PC1 (82.8%)

PC2 (4.6%)
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A Bioinformatic Pipeline to Test the Hourglass Model of Vertebrate Development
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In the early 1800s, Karl von Baer observed that, despite their variation, 
vertebrates look similar at a “phylotypic”  period of embryonic devel-
opment. The reasons behind this “hourglass” pattern  of variation are 
not well understood, but studies suggest that gene expression also 
follows this pattern in vertebrates.

Di�erences between RNA-seq and Microarray data

Our simple approach to synthesizing RNA-seq and microarray data is 
based on resolving the major discrepancies between them. 

To shrink the distance between low and  high expression, any RNA-seq 
values below a �oor value (2-4 RPKM) were assigned that value.
Then, a scalar (constant) correction factor was added to RNA-seq 
values to overlap them at the third quartile (Q3, or 75th percentile).
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The Developmental Hourglass  Model

Finally, all values below a threshold (Log2(Expression) = 10) in either 
platform were �ltered out because they do not represent active gene 
expression in the growing embryo. This cuto� corresponds to a 
well-established cuto� used for RNA-seq studies (2 RPKM).

Q3 Correction Makes RNA-seq and Microarray 
Comparable Through Xenopus tropicalis Development

Species 
Total # 
Stages 

# Stages with 
RNA-seq 

# Stages with 
Microarray 

# Stages with 
Both 

D. rerio 22 11 15 3 

G. gallus 15 0 15 0 

M. musculus 22 1 22 1 

X. laevis 25 0 25 0 

X. tropicalis 25 19 14 12 

Transcriptome Data Available 
for Vertebrate Development

Expression Pro�ling Technologies
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We applied this strategy to a pair of data sets tracking the expression 
pro�les of Xenopus tropicalis frog embryos from early to late embryo-
genesis. Our results show that, after correction and �ltering, data from 
RNA-seq and microarrays can be analyzed together.

Future Uses for this Pipeline

Summary of Pipeline Strategy

This pipeline will be essential to our studies  will help elucidate the ori-
gins of one of biology’s most enduring puzzles, the developmental 
hourglass model of development. More generallly, the ability to syn-
thesize older microarray data and newer RNA-seq data will greatly 
broaden the capabilities and increase the statistical power of future 
gene expression studies across the life sciences.

Filter out 
low expression

RNA-seq

Microarray

Floor to 
2-4 RPKM Q3 Correction

Future
Analyses
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