

OSI SAF Sea Surface Temperature reprocessing of MSG/SEVIRI archive.

S. Saux Picart, G. Legendre, A. Marsouin, S. Péré, H. Roquet

GHRSST annual meeting / Qingdao / 5-9 June 2017

Introduction

Context: Reprocessing of Sea Surface Temperature from MSG SEVIRI archive was planned under the second phase of OSI SAF scientific development.

Objective: Provide users with a homogeneous SST time series.

Deliverable:

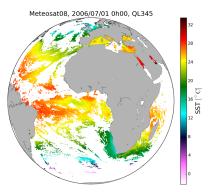
- Period of the reprocessing: 2004-2012 (for now).
- Hourly level 3 dataset.
- ▶ 60S-60N and 60W-60E on a 0.05° regular grid.
- Sub-skin temperature (algorithm calibrated using drifting buoys measurements at 20 cm depth).

Outline:

- 1. Algorithm and methods
- 2. Validation results
- 3. Ongoing work

Algorithm and methods: SST

Algorithm: SST =
$$a T_{10.8} + (b S_{\Theta} + c T_{clim})(T_{10.8} - T_{12.0}) + d + e S_{\Theta}$$


Data:

- SST climatology derived from OSTIA daily SST re-analyses
- MSG-1 and MSG-2 SEVIRI BTs reprocessed and near real-time from EUMETSAT central facility
- Cloud mask provided by CM SAF

Parameters are determine by regression using simulations of BTs.

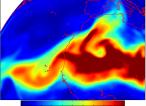
Processing:

- Full spatial and temporal resolution
- All clear sky pixels are processed

Algorithm and methods: Atmospheric Saharan dust correction

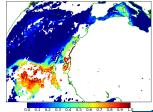
Saharan Dust Index (Merchant et al., 2006)

Night time retrieval: SDI_{night} = $S_1(T_{3.9} - T_{8.7} + \Gamma_1) + S_2(T_{10.8s} - T_{12.0s} + \Gamma_2) + S_3$


 S_i coefficients determined by regression using BT simulations.

Day time retrieval: $SDI_{day} = DS_1 T_{8.7} + DS_2 T_{10.8} + DS_3 T_{12.0} + DS_4 T_{13.4} + DS_5$

 DS_i coefficient determined by local regression of night time SDI with channels available during daytime.

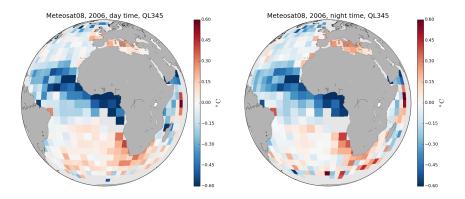

 a_i coefficients determined by regression using a dataset of

Dust AOD from MACC 00h:

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Night time SDI 00h:

O


SDI correction:

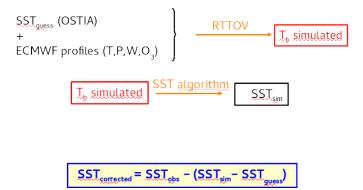
match-ups.

 $\varphi(\text{SDI}) = a_0 + a_1 \text{SDI} + a_2 \text{SDI}^2$

Algorithm and methods: Regional/seasonal biases

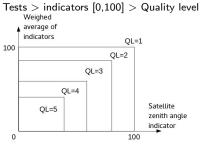
Binned map of (Satellite SST - in situ SST)

Regional and seasonal biases:


- Cool bias in the inter-tropical zone.
- Warm bias around South African coast and Mediterranean sea.

Algorithm and methods: bias correction

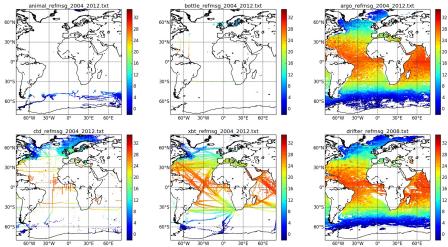
Algorithm correction from Le Borgne et al. (2011):


Method relying on simulations of brightness temperature using atmospheric profiles from NWP model.



Algorithm and methods: Quality Level

Test	Description/purpose				
SST value	Compares SST to SST climatology.				
SST spatial variability	Compares the local value of the SST gradient to a climatology				
551 spatial variability	of maximum gradient.				
SST temporal variability	Detects quickly changing SST.				
Aerosol dust	Penalises pixels with high SDI.				
Distance to cloud	Penalises pixels in the vicinity of clouds.				
Sea ice	Detects pixels containing sea ice.				
Satellite zenith angle	Penalises pixels with high satellite zenith angle.				

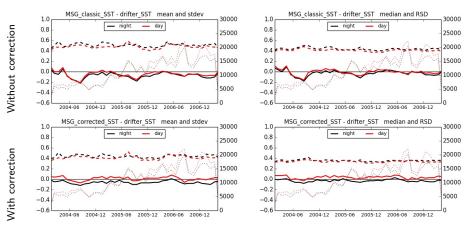


Assessment: data

ERA-clim dataset (Atkinson et al., 2014)

Assessment: Global statistics

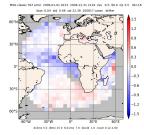
Comparison to drifting buoys: MSG1 (2004-2007)

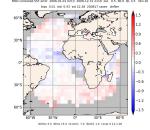

QL 3-4-5, $\Delta t \leq 15 \min$, $|SST_{insitu} - SST_{clim}| \leq 5K$

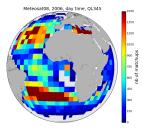
		Uncorrected				Corrected			
	Num	bias	STD	median	RSD	bias	STD	median	RSD
Night	432100	-0.07	0.51	-0.03	0.43	-0.06	0.44	-0.03	0.35
Day	470168	-0.05	0.48	-0.01	0.41	0.01	0.42	0.04	0.34

Robust standard deviation (RSD):

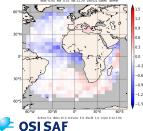
 $RSD = (75^{th} percentile(\Delta SST) - 25^{th} percentile(\Delta SST))/1.348$

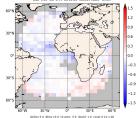


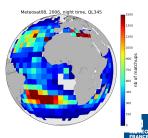

🥐 OSI SAF



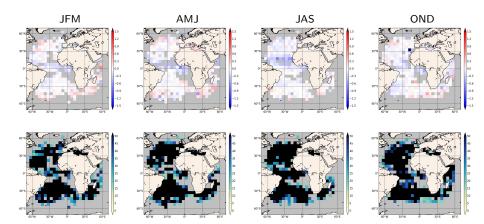
Assessment: Spatial distribution of the bias


2006 - Median of the SST difference per box of $5\times5^\circ$

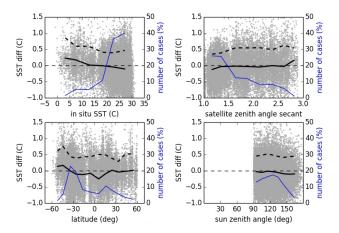




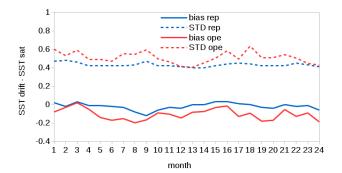
MSG classic SST error 2006-01-01 0052 2006-12-31 2357 280 90.0-179.8 QL 3-3 mb>16


MSG corrected SST error 2006-01-01 0052 2006-12-31 2357 2so 90.0-179.8 QL 3-5 nb>16

Assessment: Spatial distribution of the bias

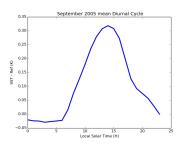

2006 - Median of the SST difference per box of $5\times5^\circ$

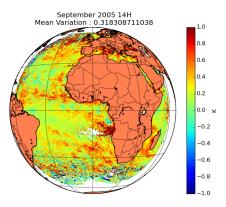
Assessment: Dependencies


2005 JFM

Assessment: Comparison with operational product

Monthly statistics for 2005-2006





Assessment: Diurnal variability

Preliminary characterisation of diurnal cycle on the reprocessed data:

- One month of data is used: 09/2005
- Avererage maximum amplitude of diurnal cycle is 0.31K

Conclusions/perspectives

- ▶ Good quality of the cloud mask (CM SAF) and L1 data (EUMETSAT).
- Comparison to drifting buoys is satisfying.
- Methods for bias correction are effective.

Future work:

- Finish the processing of MSG2.
- CDR-type validation and comparison to other datasets.
- Delivery planned for autumn 2017 after a DRR.
- Longer term:
 - Reprocessing using OE.
 - Reprocess more recent years.

