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Motivation and objective

 Evidence that climate is changing, levels of greenhouse
gases in the atmosphere are increasing.

 Evidence that the ocean is heating, presumed to be a result of
Increasing levels of greenhouse gases.

« How can the increased levels of infrared radiation at the
ocean surface increase the ocean heat content given the e-m
skin depth in the infrared is so small, and embedded in a
viscous skin layer?

* Need to study response of the thermal skin layer to infrared
radiative forcing.
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The Keeling Curve

Mauna Loa Observatory, Hawaii

Monthly Average Carbon Dioxide Concentration
Data from Scripps 002 Program  Last updated May 2017
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Ocean heat content
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Absorption of IR radiation at the
sea surface

Penetration Depth vs Wavenumber (interpolated to every 20em™)
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Bertie, J.E., & Lan, Z.D. (1996). Infrared intensities of liquids XX: the intensity of the
OH stretching band revisited, and the best current values of the optical constants of
H,O (1) at 25°C between 15,000 and 1 cm-*. App. Spectroscopy 50, 1047-1057.
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Mean surface skin layers
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Figure 7.17. Physical factors influencing the thermal skin layer in the ocean.

After: lan S. Robinson, Measuring the Oceans from
Space: The principles and methods of satellite
oceanography. p 274.
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Electromagnetic (e-m) skin
layer and thermal skin layer
are embedded in viscous
skin layer.

Absorption of infrared

radiation from sun and

atmosphere in e-m skin
layer.

Infrared emission from sea
Is from e-m skin layer.

Turbulence is damped in
the viscous skin layer,
leading to reduction of
vertical eddy transport of
heat near the surface.

Temperature gradient in
thermal skin layer leads to
conduction of heat to the
interface to supply the heat
losses.



Hypothesis

1.

D.
6.

Increased levels of infrared radiation from greenhouse gas emission
absorbed in e-m skin layer, increasing temperature in the thermal skin

layer...

But, the radiant energy is not absorbed uniformly with depth, leading to
a change of curvature of the temperature profile in the skin layer...

Leads to less heat entering skin layer from below, for constant surface

heat loss....

Means more heat generated from absorption of solar radiation in upper

ocean can stay there...
Leading to increasing upper ocean heat content...

Leading to indirect warming of the ocean by greenhouse gases.
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Testing the hypothesis

Increase in infrared radiation from increasing levels of greenhouse
gases 1s too small a signal....

So, use much larger increases in surface incident infrared radiation
from cloud cover.

Need:
* Measurements of incident infrared radiation.

« Measurements of components of surface heat fluxes (turbulent and
radiative).

« Measurements of temperature gradient in the thermal skin layer.

Approach:

» Assess response of surface heat losses to changing infrared radiation
from clouds.

« Assess changes in thermal skin layer to changing infrared radiation from
UNIVERSITY OF MIAMI C I OUdS .

J



Cruise detalls

 Two cruises, in Equatorial Pacific and
Tropical Atlantic:

50°N ! |
25N I I
| NAURU 1999
0° AMMA 2006 Y I
25%s I |
50°S I I
120°w 60°W 0° 60°E 120°E 180°W

* Nauru 1999 on R/V Mirai.
* AMMA 2006 on NOAAS Ronald H. Brown.

o T -
— f ‘.. £
e iy e

UNIVERSITY OF MIAMI
ROSENSTIEL
SCHOOL of MARINE &

lj Ocean University of China, June 2017




Derivation of TSL profile

T(z) is the vertical temperature profile of interest, and d(e*?)/dz is the weighting function
given by Beer’s law. The radiation emitted at wavenumber » from the sea surface is the
integral of each attenuated radiance: P v s
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where | (v) is the measured radiance at wavenumber o, B(v, T(z)) represents Planck’s function
with T (z) being the vertical temperature profile.

This is similar to a nonlinear Fredholm equation of the first kind and is known to be ill-
conditioned which means that the errors in the measurements can be amplified resulting in a
possibly meaningless solution even if the least-squares-fit solution agrees with the
measurements.

Derive B(v, T(z)), given d(e~*)/dz from measurements of Im(v). Once B(v, T(z)) is found, T
(z) follows by inverting Planck’s function.
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Derivation of TSL profile

* Approximate Integral equation by summation over 100
irregularly spaced discrete layers in 0.1mm depth below the
surface.

* Use synthetic data from a radiative transfer model to
simulate surface emission spectra for a set of realistic
temperature profiles in the thermal skin layer.

* Include noise levels in spectra as in M-AERI measurements.

« Experiment using different approaches to retrieving the
Initial profiles.

* Use truncated singular value decomposition TSVD to
regularize the equation, truncated at p=6 singular values.

But realistic first guess 1s important....
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Derivation of TSL profile

A good first guess profile Is a complementary error
function:

T — T,  054:3 2z
T —T, = 726z erfc 37053,

where 6:3erfc(z) = ((1+z2)e ") //T)— (L.5+z2)z erfe(x),
erfc(z) is a complementary error function defined as 1—erf(z).

Liu, W.T., & Businger, J.A. (1975). Temperature profile in molecular sublayer
near the interface of a fluid in turbulent motion. Geophys. Res. Lett. 2, 403-404.
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Derivation of TSL profile

Rs‘k)

"\ M-AERI
_) on ship
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R\\'ater()\’ 6) = 8()\9 Q)B(/\’ Tskin)
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Need to correct for surface
emissivity not being unity.
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Sample brightness temperatures spectrum obtained from
the M-AERI during nighttime and cloud-free conditions.
Red - measured upwelling radiance spectrum.

Blue - the corrected upwelling radiance spectrum
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Results

Ten sample profiles derived from
spectra taken during the AMMA
2006 cruise.

Blue X’s represent the mean BT
of the wavenumber intervals
with error bars plotted as +1
standard error. Red solid line
denotes first-guess profile; black
solid line represents the retrieved
profile with respect to the mean
BT, gray dotted lines represent
the retrieved profile with respect
to +1 standard error. A majority
of the gray dotted lines are
overlaid on the black solid lines,
thereby indicating the similarity
between the retrievals to the
mean and +1 standard error in
BT.
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Story so far

* We can derive information about the temperature profile in the
thermal skin layer....

 But, because we need measurements at 2500-2700 cm-2, we will only use night-
time data.

* \WWe have cruise data to test our hypothesis....

* So, first step Is to test the basis of hypothesis that turbulent heat
fluxes do not increase to immediately remove added energy
provided by increased LW, from clouds.

 Next step Is to check additional heat is not immediately re-
radiated by LW, . (eoT*).

out
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Clouds and turbulent surface fluxes
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Conclude — surface
turbulent fluxes do not
respond to increasing
Incident infrared radiation.
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LW, ?

ou

» What about LW, increasing?
o At T=300K, ecT4= 450 Wm=.

* For cloudy skies additional ~ 50 Wm-2arrive at the
sea surface.

* For this additional energy to be re-radiated, requires
T = 308K.

* Not observed....

« S0 what Is happening?
* What do we know about the skin layers?

UNIVERSITY OF MIAMI

J



Wind speed dependence

Wind speed dependence of °l
temperature difference between 2.,
skin SST and T, -
p .
0 2 4 6 8 10
U,  (m/s) o AT . o
Wind speed dependence of 10 T aarentu a9
temperature difference in M-AER pu
P rofile. Minneti2011: -0.13-0.724%xp(-U, 2.86)
Or o # 4 "
At low winds, thermal skin layer os PR
Is thicker, so temperature - N e e
gradients extend below depth of
M-AER' temperature prOfiIe, Donlon, C.J., Minnett, P.J., Gentemann, C., Nightingale, T.J., Barton, 1.J., Ward, B., & Murray,
beyond e-m skin layer. Tor almte rescrch, Journal o Cimate 15, 363:360, e
Minnett, P.J., Smith, M., & Ward, B. (2011). Measurements of the oceanic thermal skin effect.
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Conceptualization

Ratio M-AERI skin SST

AT o 1mm *‘mre > Depth range of M-AERI
ﬁ } temperature

AT sy 0.1mm \ Profile, i.e. in e-m skin layer
is the fraction of the v
total temperature AT o1mm

change across the
thermal skin layer

that is sampled b){ 5m Wj‘ Ship thermosalinograph
the M-AERI profile \/ temperature

retrievals. Depth AT s,
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AT Wind speed
f(Ui;;TmRed dots dependence
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e Consider AT

LW. dependence

O.lmm/A T5m as
f(LW;,); for U, <2 msto
reduce U,, dependence.

As LW increases, more of

temperature change dCross b

thermal skin layer occurs
near the surface, in the e-m
skin layer.

Thus the vertical

AT 0.1mm/ AT 5m

temperature gradient inthe ~ °?|

deeper thermal skin layer 0
IS reduced — less upward

heat conduction from

below.
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Clear Sky

LW, LW,, SH+LH

n
(410 W/m2) (470 W/m2) (7 W/m?)

Interface,z=0

Thermal skin -
layer depth Heat supplied
from beneath the
TSL
(67 WIm?)
Flux values are averages from both cruises for U,; <2 ms.
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Other 1ssues

« What is happening on time and
spatial scales in the skin layers not
resolved by current instruments?

 Surface renewal events?

« But mean quantities still have
meaning.

 Are magnitudes of effects sufficient
to explain observations?

* Isincrease in LW;, from clouds a

good surrogate for greenhouse gas Infrared camera images from a
emission? wind-wave tank experiment.

« What is happening in the daytime?

UNIVERSITY OF MIAMI
ROSENSTIEL
SCHOOL of MARINE &

lj Ocean University of China, June 2017




Summary and conclusion

A hypothesis to explain how infrared radiation from the
atmosphere can heat the ocean has been posed and tested.

 The hypothesis is for indirect heating of the ocean, with the
heat below the skin layers being provided by solar heating;
more heat remains beneath the thermal skin layer as a result
of the modification of the vertical temperature gradient in the
mean thermal skin layer by the absorption of infrared
radiation from the atmosphere.

* The hypothesis is upheld by analysis of at-sea
measurements.

* Perhaps this is the mechanism for greenhouse gases to heat
the ocean...
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 Thank you for your attention.
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