

ESA Climate Change Initiative Phase-II

Sea Surface Temperature (SST)

www.esa-sst-cci.org

SST Retrieval Methods in the ESA Climate Change Initiative

Owen Embury

Norwegian Meteorological Institute

Climate Change Initiative

- ESA Climate Change Initiative (CCI)
 - Programme to produce satellite-based Climate Data Records (CDR)
 - Targeting 13 Essential Climate Variables (ECVs) including SST
 - Running since 2009
- Climate Data Record is:
 - A time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change
- Aims for SST-CCI CDR:
 - **INDEPENDENT** of in situ SST measurements
 - Of useful, quantified ACCURACY and SENSITIVITY
 - With context-sensitive UNCERTAINTY estimates (at all spatio-temporal scales)
 - Harmonised to provide useful STABILITY
 - Able to be linked to the longer HISTORICAL RECORD
 - Generated by a ROBUST, SUSTAINABLE processing system in short delay mode

Skin-to-depth adjustment

- Primary retrieval is skin-SST expect differences to in situ depth-SST
- Examine difference from in situ drifter as a function of satellite-in situ time difference and wind speed
- Can clearly see diurnal cycle and skin effect

Skin-to-depth adjustment

- Use Fairall Kantha-Clayson model (UKMO code)
- Correct for time/depth differences in in situ comparisons
- To correct for satellite overpass time in CDR

ATSR SST Retrieval

- Update from ATSR Reprocessing for Climate (ARC) project
- Linear regression based on Radiative Transfer (RT) simulation
 - $\widehat{SST} = a_0 + \sum a_i BT_i$
 - Coefficients a_0 , a_i
 - Banded by: TCWV, nadir path, forward path, year
 - Interpolate between bands as required
- Accurate RT simulations
 - Line-by-line model: LBLRTM
 - Atmospheric data: 2100 profiles extracted from ERA-40 (Chevallier 2002)
 - Variable trace gases: CO₂, HNO₃, N₂O, CH₄, CFC-11, CFC-12
 - Aerosol scattering calculate using RTTOV and DISORT
- Retrieval coefficients
 - Independent of in situ SST
 - Aerosol-robust (Merchant et al. 1999) formulation used for ATSR1
 - No requirement for aerosol-robustness for ATSR2/AATSR

AATSR 12 micron anomaly

- After launch AATSR 12 µm BTs were ~0.2 K colder than expected
- During ARC and SST-CCI Phase-I projects
 - Could not use 12 µm channel in reference SST retrieval
 - Used dual-view 3.7 µm and 11 µm combination as reference
 - Adjusted other channel combinations to match
- Issue investigated by AATSR 12 micron Anomaly Review Board
 - Biases consistent with:
 - Small error in non-linearity adjustment
 - 40 nm shift in Spectral Response Function (SRF)
- SST-CCI Phase-II
 - Includes ARB recommendations in RT simulations and processing
 - Uses D3: dual-view 3.7, 11, and 12 µm retrieval as reference

AATSR before inter-algorithm adjustment

D3 biases are small; D2 biases ~0.1 K

SST CCI Phase-II

esa

 D3 expected to be best retrieval due to higher information content from more channels (including 3.7 µm) _{AATSR}

ATURAL ENVIRONMENT RESEARCH COUNCI

Page 8

pace

BROCKMANN

CONSULT

Institute

 \sim

Met Office

AATSR after inter-algorithm adjustment

Use D3 as reference and correct D2 to match D3

SST CCI Phase-II

esa

- Offset coefficient is corrected for each TCWV bin
- Note biases shown relative to in situ drifters. But no in situ used for adjustment

TURAL ENVIRONMENT RESEARCH COUNCI

Page 9

pac

CONSULT

Comparison vs drifters Validation of skin SST + depth adjustment

	Matches	N2	N3	D2	D3
AATSR					
Day	166218	0.015 (0.280)		0.026 (0.178)	
Night	135129	0.005 (0.291)	0.004 (0.164)	-0.002 (0.182)	0.001 (0.156)
ATSR2					
Day	33996	-0.042 (0.313)		-0.001 (0.246)	
Night	30898	-0.001 (0.308)	0.006 (0.203)	0.006 (0.235)	0.006 (0.197)
ATSR1					
Day	13229	-0.052 (0.401)		0.042 (0.406)	
Night	9160	-0.104 (0.414)		0.002 (0.421)	
3.7 µm	721		-0.503 (0.374)		0.003 (0.256)

- Median (Robust Standard Deviation) of satellite drifter difference
- N = Nadir-only retrieval. D = Dual-view retrieval

Comparison vs GTMBA

Validation of skin SST + depth adjustment, in tropics

	Matches	N2	N3	D2	D3
AATSR					
Day	10312	-0.006 (0.362)		0.007 (0.180)	
Night	12590	-0.009 (0.379)	0.004 (0.139)	-0.011 (0.181)	-0.001 (0.129)
ATSR2					
Day	5342	-0.040 (0.324)		-0.009 (0.194)	
Night	4835	-0.024 (0.336)	-0.004 (0.113)	-0.024 (0.183)	-0.013 (0.110)
ATSR1					
Day	2950	-0.068 (0.437)		0.046 (0.411)	
Night	2122	-0.144 (0.410)		-0.051 (0.394)	
3.7 µm	109		-0.884 (0.333)		0.001 (0.114)

- Median (Robust Standard Deviation) of satellite drifter difference
- N = Nadir-only retrieval. D = Dual-view retrieval

Comparison vs Radiometers Validation of skin SST against skin SST

	Matches	N2	N3	D2	D3
AATSR					
Day	273	0.054 (0.290)		-0.000 (0.200)	
Night	302	0.056 (0.289)	0.031 (0.212)	0.013 (0.217)	0.003 (0.187)
ATSR2					
Day	62	0.008 (0.419)		0.040 (0.274)	
Night	101	0.009 (0.298)	-0.065 (0.185)	-0.044 (0.203)	-0.039 (0.156)
ATSR1					
Day					
Night					
3.7 µm					

- Median (Robust Standard Deviation) of satellite drifter difference
- N = Nadir-only retrieval. D = Dual-view retrieval

ATSR SST Uncertainties

- Uncertainty due to correlated effects
- Can study in RT simulations:
 - Take NWP SST + atmosphere
 - Simulate ToA BTs
 - Retrieve SST
 - Compare retrieved with "true" SST
- For uncertainty estimate
 - Use same simulations as regression
 - Standard error of regression
 - i.e. fitting error

Simulated retrieval errors (2-channel singleview). Plots in upper panels show pressure contours (hPa), and lower panels show TCWV contours (kg m⁻²)

6 June 2017

GHRSST XVIII - Qingdao

BROCKMANN

CONSULT

ATSR SST Uncertainties

- Uncertainty due to correlated effects
 - Estimate with standard error of regression
- Uncertainty due to random BT noise

esa

Calculate per-pixel from the instrument noise $u_{random} =$ $\sum a_i^2 \text{NeD}T_i^2$

Atmospheric Correction Smoothing

ATSR SST retrieval based on RT simulations

esa

- Regression will minimise fit error i.e. local correlated uncertainty
- u_{random} tends to be larger for dual-view retrievals
- u_{random} generally not important for gridded L3 / L4 as it reduces via averaging

Atmospheric Correction Smoothing

- ATSR SST retrieval based on (noise-free) RT simulations
 - Regression will minimise fit error i.e. local correlated uncertainty
 - u_{random} tends to be larger for dual-view retrievals

esa

- u_{random} generally not important for gridded L3 / L4 as it reduces via averaging
- Significant for L2P especially for ATSR1 where NeDT can reach 0.1 K

ATSR1 scene affected by high NeDT

Atmospheric Correction Smoothing

- Smoothing the SST field would reduce feature resolution
 - Need to reduce noise without reducing feature resolution
- Consider atmospheric correction parameter δ
 - $\delta = x y_{11}$
 - Where x is the SST, y_{11} is the 11 μ m BT
- δ is a function of atmospheric state, correlated from pixel to pixel
- We can replace δ with the NxN average $\langle \delta \rangle = \langle x \rangle \langle y_{11} \rangle$
- This gives noise-reduced SST:
 - $\tilde{x} = \langle x \rangle + y_{11\mu m} \langle y_{11\mu m} \rangle$
- With general form we can choose:
 - Single channel, simple mean, noise weighted, sensitivity weighted etc.
- Note this does introduce correlated uncertainties, so L3 SSTs are calculated from unsmoothed SSTs

ATSR1 scene – no smoothing

ATSR1 scene – atmospheric correction

AVHRR SST Retrieval

- Optimal Estimation (OE)
- $\hat{x} = x_a + G(y F(x_a))$
 - \hat{x} is the retrieved state; x_a is the prior state
 - y is the observation vector
 - F is the forward model (RTTOV)
 - $G = S_a K^T (K S_a K^T + S_{\varepsilon})^{-1}$ is the gain matrix
 - S_a , S_{ε} are the error covariance matrices
 - K is the tangent linear matrix
- Uncertainties:
 - $u_{random} = \sqrt{GS_{NeDT}G^T}$
 - $u_{correlated} = \sqrt{GS_{ffm}G^T}$
 - SST sensitivity ($d\widehat{ST}/dSST$) from averaging kernel A = GK

AVHRR BT level improvements

- For full details see Chris Merchant's talk
- Quick summary:
- Improved AVHRR L1b reader
- Consistent AVHRR BT calibration based on Walton et al. 1998 with new calibration coefficients
- New solar contamination algorithm
- Per-pixel NeDT calculated from space view counts

SST CCI Phase-II

esa

GHRSST XVIII - Qingdao

Norwegian Meteorological Institute

6 June 2017

Page 22

AVHRR Stratospheric Aerosol

- Stratospheric aerosol from El Chichón and Mount Pinatubo causes significant cold biases in SST retrieval
- AVHRR is not capable of ATSR-style aerosol robust retrieval
- Can include aerosol in forward model and a priori
- For details see poster:
 - "Stratospheric Aerosol and Impacts on Infrared SST Retrievals"

Including aerosol prior reduces retrieval biases

Retrieval without aerosol prior is biased cold. Approx 1 K for 3 channel retrieval, and over 2 K for 2 channel retrieval

6 June 2017

Page 23

AVHRR Smoothed Optimal Estimation

- Extend smoothed OE implementation from Merchant et al. 2013
- Simple overview:
 - Include average (of surrounding pixel) BTs in observation vector
 - Include surrounding average SST in state vector
 - Atmospheric state is the same for centre pixel and surrounding pixels
 - Retrieve centre-pixel SST

- central pixel for retrieval
- surrounding clear-sky pixels for average
- non-clear pixels are not used

AVHRR Smoothed Optimal Estimation

• $x^T = (SST \ \overline{SST} \ TCWV)$

• $y^T = (y_{3.7} \quad y_{11} \quad y_{12} \quad \overline{y}_{3.7} \quad \overline{y}_{11} \quad \overline{y}_{12})$

•
$$\mathbf{K}^{\mathrm{T}} = \begin{pmatrix} \frac{\partial y_{3.7}}{\partial \mathrm{SST}} & \frac{\partial y_{11}}{\partial \mathrm{SST}} & \frac{\partial y_{12}}{\partial \mathrm{SST}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\partial \bar{y}_{3.7}}{\partial \mathrm{SST}} & \frac{\partial \bar{y}_{11}}{\partial \mathrm{SST}} & \frac{\partial \bar{y}_{12}}{\partial \mathrm{SST}} \\ \frac{\partial y_{3.7}}{\partial \mathrm{TCWV}} & \frac{\partial y_{11}}{\partial \mathrm{TCWV}} & \frac{\partial y_{12}}{\partial \mathrm{TCWV}} & \frac{\partial \bar{y}_{3.7}}{\partial \mathrm{TCWV}} & \frac{\partial \bar{y}_{11}}{\partial \mathrm{TCWV}} & \frac{\partial \bar{y}_{12}}{\partial \mathrm{TCWV}} \end{pmatrix}$$

- Atmospheric state is common to centre and surrounding pixels
- Surrounding pixel SST is independent of centre-pixel

SST CCI Retrievals Summary

ATSR

- Linear retrieval based on ARC heritage
- Aerosol robust for ATSR-1 (no volcanic eruptions during ATSR-2/AATSR)
- L2/L3 product generation ongoing
- AVHRR
 - Optimal Estimation retrieval
 - Includes stratospheric aerosol in prior and forward model
 - Inter-satellite harmonisation of BT and SST ongoing
- Atmospheric correction smoothing to reduce noise in pixel-level L2P
- Uncertainties

SST CCI Phase-II

esa

- Random
- Locally correlated
- Systematic
- Depth adjustment
- (L3) Sampling