Analyze SST within the NCEP GFS

<u>Xu Li⁽¹⁾, John Derber⁽²⁾, Shrinivas Moorthi²⁾</u>

(1) IMSG at EMC/NCEP/NOAA, USA(2) EMC/NCEP/NOAA, USA

Acknowledgements:

Andrew Collard (DA), Jun Wang (Model, NEMSIO)

Diane Strokes, SST Group (SST)

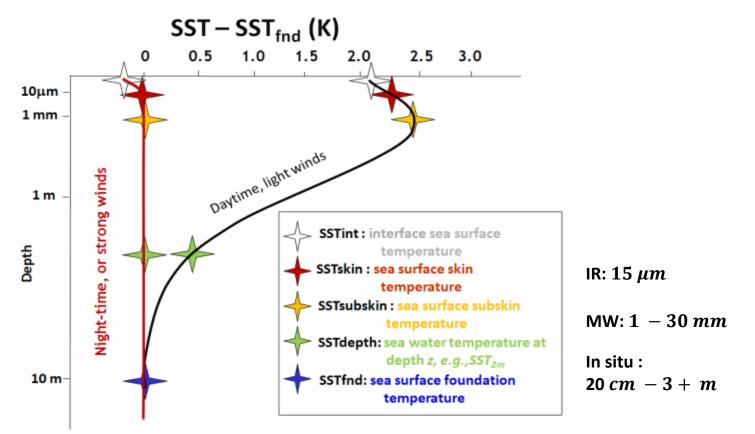
Ilya Rivin & Carlos Lozano (NSST model initial stage)

Fanglin Yang, Russ Treadon, George Gayno (Parallel run, validation, chgres)

Xingren Wu, David Buheringer (Sea ice, Coupled),

Dennis Keyser & Jeff Whiting (Data)

18th GHRSST Science Team Meeting, Qingdao, China, June 05, 2017


Outline

- Introduction
- SST analysis within the NCEP GFS
 - A new analysis variable definition and selection
 - Observations are indirect
 - Direct assimilation of the indirect observations
 - **The new capability** to analyze an oceanic variable within the NCEP GFS
- Verification
- Conclusion and discussion

Introduction

- So far, SST is analyzed independently and then provided to NWP system as an input
- Here, SST is analyzed together with the atmospheric analysis variables within the **NCEP GFS** (Global Forecasting System)

Foundation temperature and NSST definition

Hypothetical vertical profiles of temperature for the upper 10m of the ocean surface in high wind speed conditions or during the **night** (red) and for low wind speed during the **day** (black).

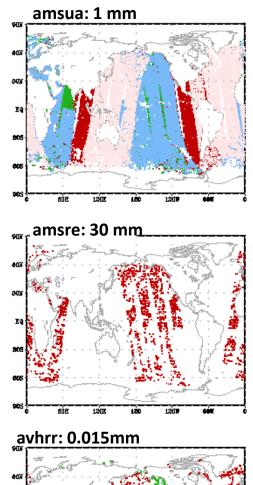
Comments:

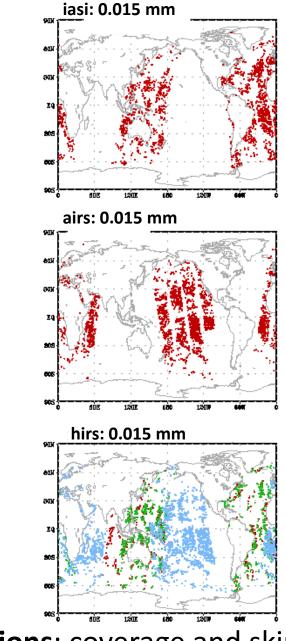
- 1. The 5 defined SSTs are just characteristic temperatures of the Near-Surface Sea Temperature (NSST) T-Profile : T(z)
- **2. SST** = T(z = 0): *SST*_{int}
- 3. SST is never observed directly

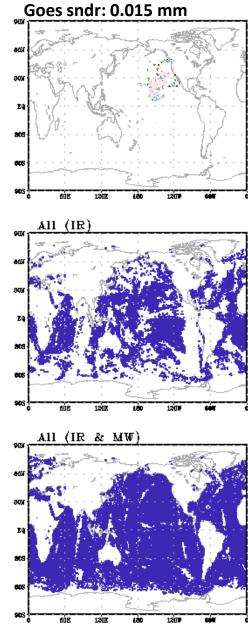
NSST & SST can split into three components

- Nera-Surface Sea Temperature (NSST) T-Profile: $T(x, y, z, t) = T_f(x, y, z_w, t) + T'_w(x, y, z, t) - T'_c(x, y, z, t)$ T_f : foundation temperature $z_w = z_w(x, y, t)$: diurnal warming layer thickness T'_w : diurnal warming profile T'_c : sub-layer cooling profile
- **SST** is the foundation temperature plus surface diurnal warming amount minus surface sub-layer cooling amount at z = 0:

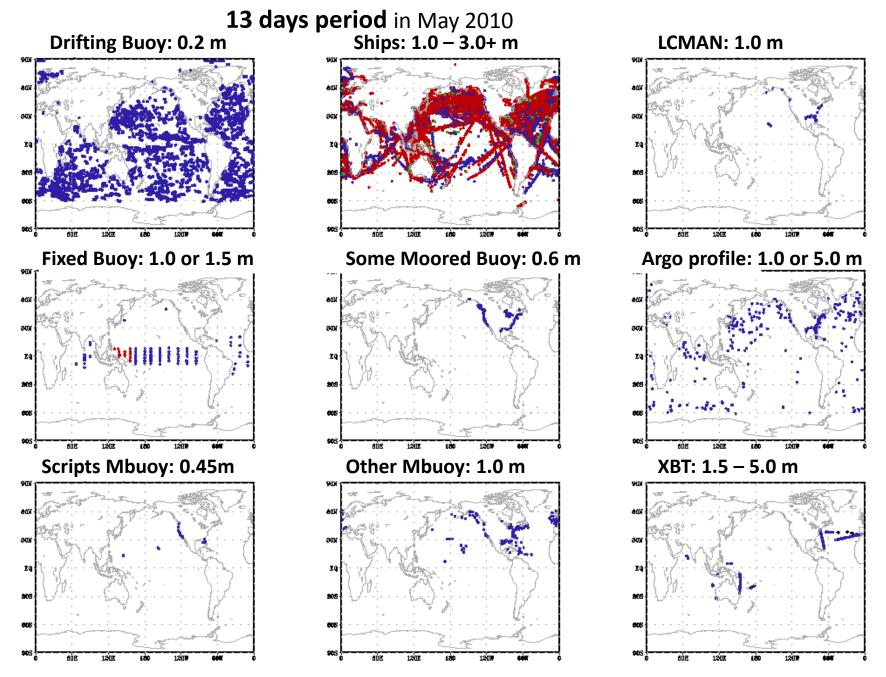
 $SST(x, y, t) = T_f(x, y, z_w, t) + T'_w(x, y, 0, t) - T'_c(x, y, 0, t)$


T_f is selected as the analysis variable


- Which analysis variable is more appropriate?
 - Foundation temperature (T_f)
 - Skin temperature (T_s)
 - Others
- The reasons to analyze T_f
 - Slower varying \rightarrow smaller analysis increment
 - More convenient background covariance determination
 - Consistent with GHRSST
- The other two components, diurnal warming and sublayer cooling T-Profile are **simulated** by NSST Model in the cycling of GFS


Depth dependent Observations

- The observation depth determination
 - A preliminary way for the radiance
 - No good way for some in situ sea temperature
 - A table generated based on inventory
- The observation coverage to do 6-hourly analysis


6-hour time window centered at 00Z, 05/22/2010

Satellite observations: coverage and skin-depth

In Situ sea temperature observations: coverage and depth

How to use the indirect observations to analyze T_f ?

- Convert the observations to be T_f
 - Retrieval
 - Conversion from T_z to T_f
- Toss the observations with diurnal warming signal (like in OSTIA and other univariate analysis scheme)

Direct assimilation

- Assimilate the indirect observations directly to analyze T_f
 - Development of observation operator and its Jacobian to relate T_f to the observations

Direct assimilation

- Successful experiences in atmospheric radiance assimilation (no retrieval needed)
 - Extract the oceanic thermal information from the radiances more effectively
 - Not yet in oceanic data assimilation
- GSI is capable of assimilating satellite radiance directly
 - NSST T-Profile simulation, which will relate T_f , the new analysis variable, to sea temperature at a specific depth, ie required

Why analyze T_f , an oceanic variable, within an integrated atmospheric prediction system?

- More consistent NWP initial conditions
 - A single cost function for two media
- More effective use of the observations
 - Direct assimilation: extract the signal from the satellite radiance more optimally
- More advanced data assimilation algorithm
 - The atmospheric data assimilation system, such as GSI, is advanced and updated frequently
- A direction towards the coupled data assimilation
 - Surface sensitive channel radiances depend on both atmosphere and ocean → both media need to be adjust to fit the observation in their analysis

NSST Model (NSSTM)

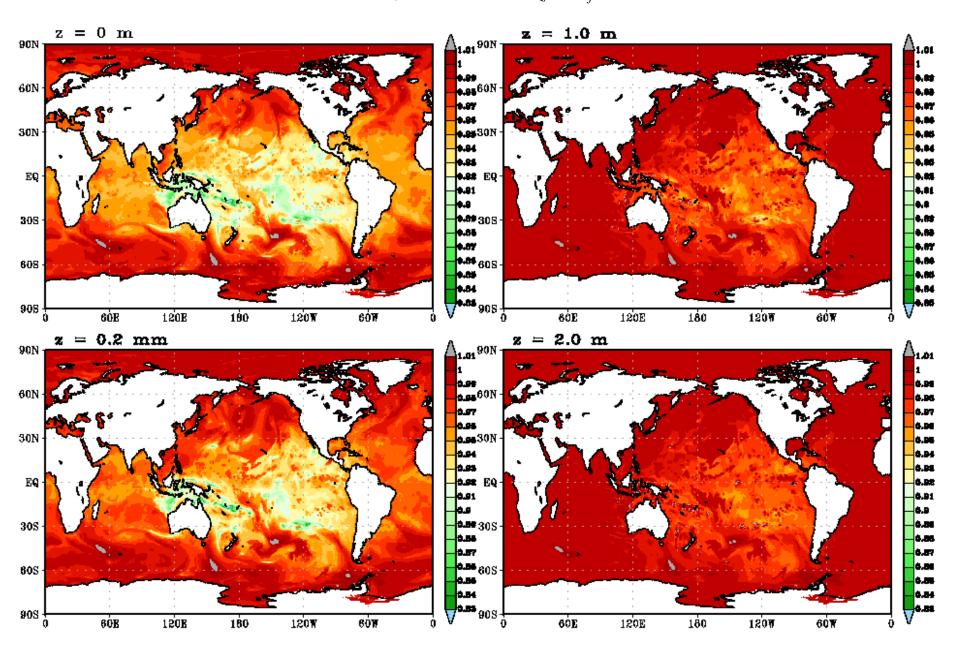
- Thermal Skin Model/Parameterization (adopted)
 - $T'_c(x, y, z, t), z \in \delta_c \sim O(1mm)$
 - Formation mechanism
 - $I(0) I(\delta_c) Q_r Q_l Q_s < 0$ in the skin layer
 - Weak mixing in the skin layer
 - COARE V3.0 (Fairall, 1996)
- NCEP Diurnal Warming Model (developed)
 - $T'_w(x, y, z, t), z \in z_w \sim O(5m)$
 - Formation mechanism
 - The competing result of solar radiation (stratification) and mixing (mixed layer)

Brief review on diurnal warming models

- Fairall et al diurnal warming model
 - Based on a simplified scale version of PWP 1-D model
 - Applied in TOGA COARE
 - For an average over 70 days sampled during COARE, the cool skin increase the average atmospheric heat input to the ocean by about 11 w/m², the warm layer decrease it by about 4 w/m² (but the effect can be 50 w/m² at midday).
- X. Zeng et al diurnal warming model
 - Derived from T equation only, fixed 2 m layer thickness
- NCEP diurnal warming model (Xu Li)

NCEP diurnal warming model

- Based on PWP 1-D model instead of its scale version.
- The evolution of the diurnal warming is controlled by a system with 5 ordinary differential equations for *T*, *S*, *u*, *v* and z_w
- Observation operator (NSSTM): relate T_f to T(z) $T(x, y, z, t) = T_f(x, y, z_w, t) + T'_w(x, y, z, t) - T'_c(x, y, z, t)$
- Jacobian of observation operator


 $\frac{\partial T_z}{\partial T_f}$, required in the minimization of a variational assimilation

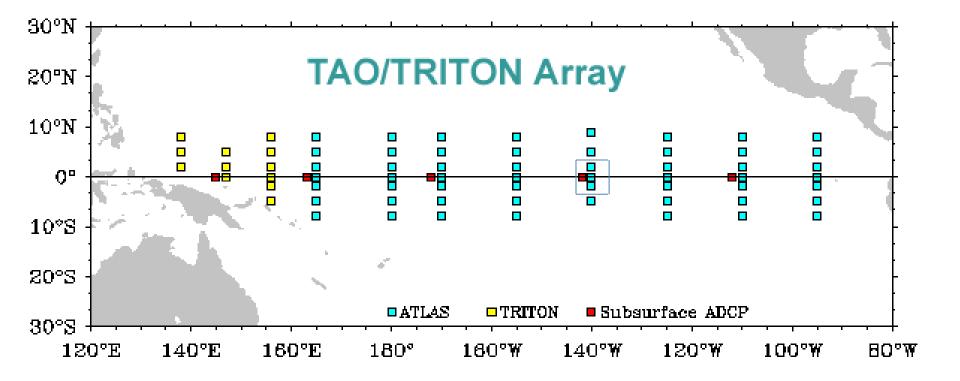
scheme to assimilate observations directly

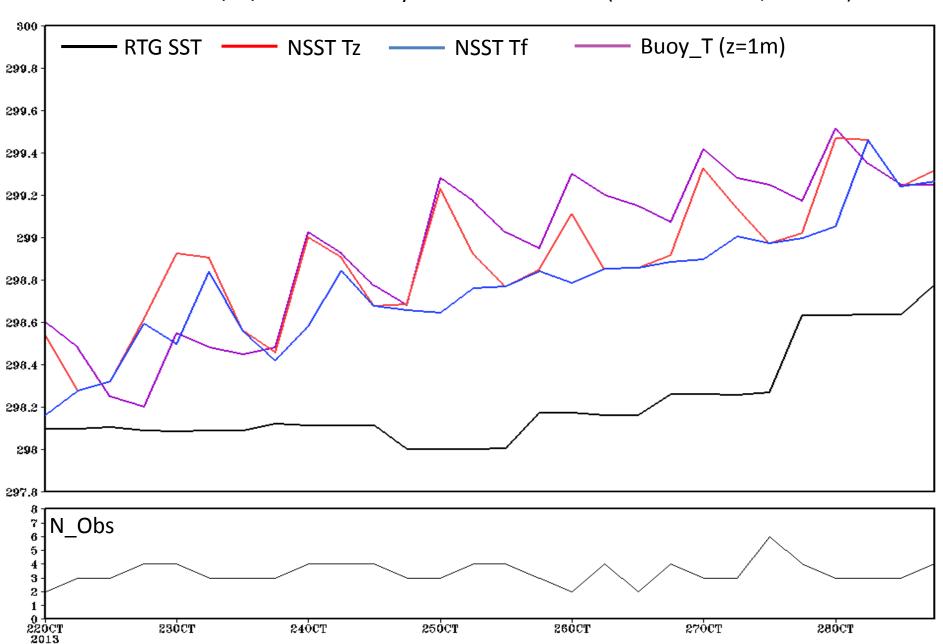
Note, the sensitivity of radiance (T_b) to T_f :

$$\frac{\partial T_b}{\partial T_f} = \frac{\partial T_b}{\partial T_z} \frac{\partial T_z}{\partial T_f}, \quad (\frac{\partial T_b}{\partial T_z} \text{ provided by CRTM})$$

Jacobian of observation operator: $\partial T_z / \partial T_f$. 06Z, 02/06/2006

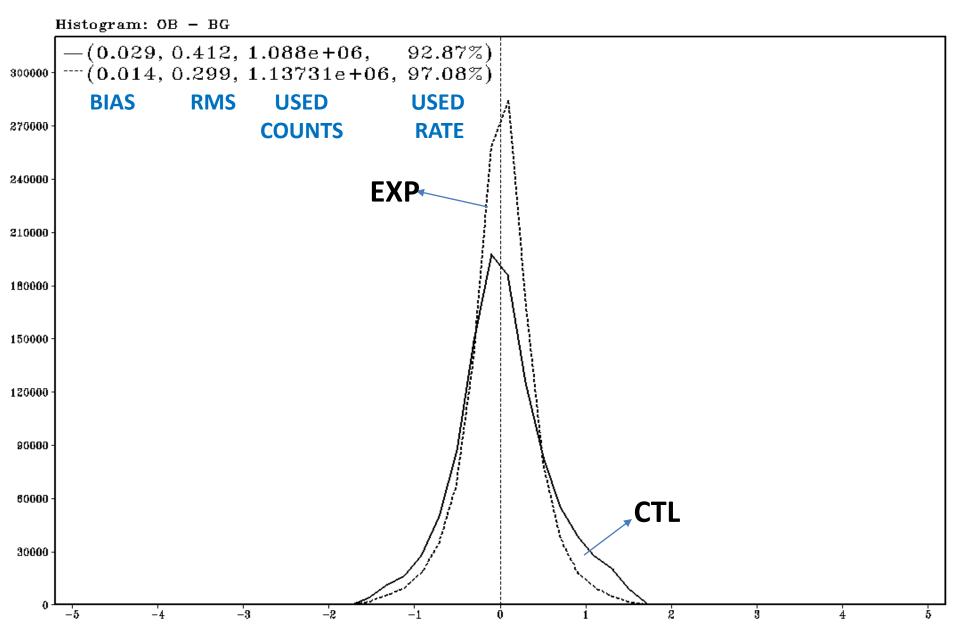
Analyze T_f within the NCEP GFS


- Develop the NSST Model, including the Jacobian of the observation operator
 - NSSTM is built in the GFS atmospheric prediction model with the same time step as the atmosphere
- Add a new analysis variable(T_f) to GSI
- The background error variance and correlation scale are from RTG
- Add new observations
 - AVHRR GAC
 - In Situ sea temperature
- Other necessary components follow GSI
 - Quality Control
 - Satellite data bias correction
 - Satellite data thinning
 - Other details


NSST in Hybrid EnKF GSI

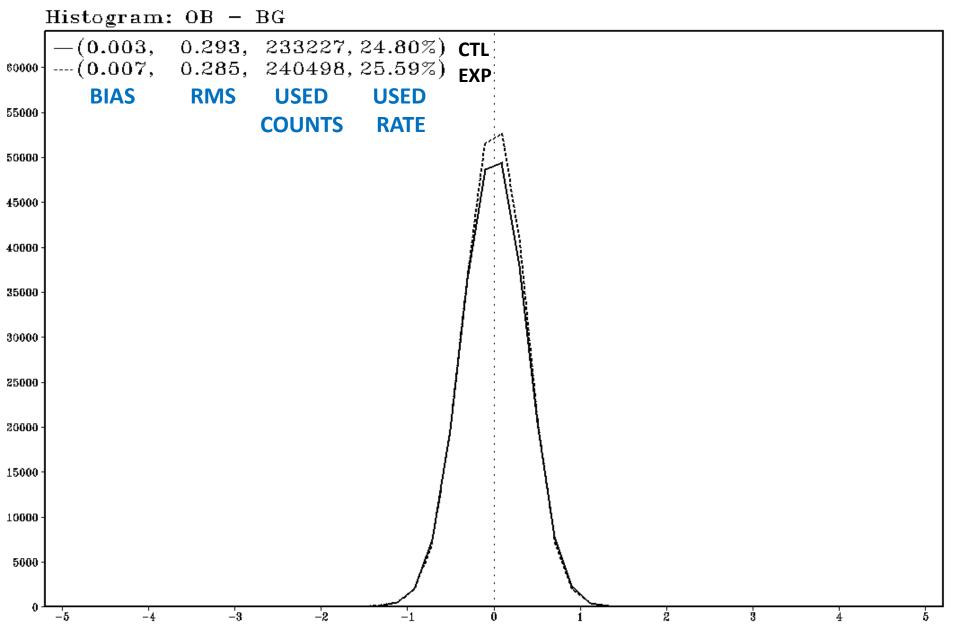
- GSI consist of a static (full resolution) step and a EnKF step
- T_f analysis is done at the static step only and not included in EnKF yet
- T_f analysis increment by the static GSI is applied to ensemble members
 - No T_f spread in the ensemble
 - But there is SST spread in the ensemble due to $T'_w(x, y, 0, t)$ and $T'_c(x, y, 0, t)$
- The covariance between the ocean (T_f) and atmosphere is not addressed yet

Verifications


- Oceanic analysis and prediction
 - Positive
- The use of satellite data (O-B)
 - Positive
- Weather Prediction
 - Neutral for NH and SH, positive for tropics, when verified against to the own analysis
 - Slightly positive when verified against the conventional observations

Time series of SST/Tz/Tf BG and buoy observation. Area: (141 W – 139 W, 4S – 4N)

Verification of operational SST $(x^o - x^b)$ and NSST SST $[x^o - N(x^b)]$ Against drifting buoy, Global. 20100701 - 20100731


Verification of operational SST $(x^o - x^b)$ and NSST SST $[x^o - N(x^b)]$ Against drifting buoy. 20100701 - 20100731

area	е	13u	e13w	
Global	(0.029, 0.412,	1.088e+,92.87%)	(0.014, 0.299	, 1.13731, 4.531%
N.Pole	(0.288, 0.583)	89783, 81.51%	(0.026, 0.365)	, 106354, 18.45%
N.Mid	(0.148, 0.476,	= 331300, 89.23%	(0.018, 0.323)	, 357059, 7.775%
Tropics	(-0.04, 0.295,	309696, 98.17%) (0.016, -0.223	, 311457, 0.568%)
S.Mid	(-0.09, 0.416,	=289228,94.91%) (-0.00, 0.324	, 293797, 1.579%)
S.Pole	(-0.00, 0.387,	68049, 97.37%) (0.048, 0.318	, 68693, 0.946%)
${\tt GreatLake}$	(-999, -999,	0, -999%)	(-999, -999,	0, -999%)
Mediterr	(0.438, 0.703,	1452, 78.99%) (-0.12, 0.357	, 1506, 3.719%)
TAO	(-0.10, 0.306,	78735, 98.43%) (0.001, 0.230	, 79000, 0.336%)
Triton	(0.111, 0.402,	3276, 82.70%)) (0.152, -0.358	, 3666, 11.90%)
Pirata	(-0.00, 0.322,	74225, 98.85%) (0.061, -0.250	, 74554 , 0.443%)
IndiaFbuoy	(-0.09, 0.338,	18454, 93.35%) (-0.01, 0.195	, 18648 , 1.051%)
N.Mid.Atl	(0.042, 0.434,	=22260, -97.61%) (0.001, 0.243	, 22720, 2.066%)
N.Mid.Pac	(0.223, 0.575,	18014, 84.46%) (0.007, -0.375	, 20897, 16.00%)
S.Mid.Ind	(-0.22, 0.435,	6559, 98.72%	(-0.04, 0.331)	, 6644, 1.295%)
S.Mid.Pac	(-0.02, 0.283,	4845, 99.97%) (0.052, 0.168	, 4845, 0%)
\mathbf{SmlTAO}	(-0.34, 0.504)	176, 97.23%) (-0.21, 0.372	, 181 , 2.840%)
$\mathbf{SmlTriton}$	(-0.10, 0.222,	428, 100%)	(0.103, 0.224)	, 428, 0%)
${ m Sml.N.Mid.Atl}$	(-999, -999,	0, -999%)	(-999, -999)	0, -999%)
${ m Sml.N.Mid.Pac}$	(-0.24, 0.312,	315, 100%)	(-0.03, 0.127)	, 315, 0%)
	BIAS RMS	USED USED	BIAS RMS	USED USED
		COUNTS RATE		COUNTS RATE

CTL

O-B histogram for an IASI window channel, Global. 20100701 - 20100731

Conclusions

- The SST has been improved and is generated 6-hourly with the NCEP GFS
 - Well-defined analysis variable
 - Direction assimilation
- Satellite data assimilation (for surface sensitive channels) in GSI has been improved
- Weather prediction impact
 - Positive in tropics, neutral to positive for NH and SH

Discussions

- Extend the EnKF analysis variable to include T_f
 - Will start without a T_f forward model
- Fully coupled data assimilation and prediction
 - Schedule of the coupled system?
 - Gradually (weak to strong couple)
- Other applications
 - Reanalysis, Lake, Hurricane
- Better observation depth determination
 - Skin-depth
 - In situ
- Disadvantages to analysis SST in an integrated NWP system
 - Every element has to work well
 - Atmospheric analysis in priority
 - Resolution, thinning
 - The use Micro-wave instruments with good signal-noise ratio for SST analysis
- Comparison with more SST analysis products
 - Feedback and further improvement