The High Resolution Global Ocean Forecasting System in the NMEFC and its Intercomparison with the GODAE OceanView IV-TT Class 4 Metrics

Liying Wan (Group Leader) Yu Zhang, Huier Mo, Ziqing Zu, Yinghao Qin, Sisi Qin National Marine Environmental Forecasting Center, State Oceanic Administration, China

System design & Model testing & Numerical products application

System assessment

Data assimilation

Background

Development of NMEFC-NEMO

Assessment of NMEFC-NEMO

Conclusion

>Any suggestions

First Generation of Global Ocean Forecasting System based on MOM4

ATITUDE

600

- <u>Grid</u>: Global 1/4° × 1/4°; 50 levels
- > Bathymetry: OCCAM 0.2
- > <u>Initialization</u>: OMIP_NCAR
- Data Assimilation: 3DVar

30

- <u>Parameterizations</u>: non-Boussinesq approximation (Greatbatch et al.,
 2001); Smagorinsky viscosity scheme (Griffies and Hallberg, 2000); KPP
 scheme (Large et al., 1994)
- <u>Atmospheric forcing</u>: GFS (Global Forecast System) 6-hour data
 - With the higher requirement for the ocean forecasting products, we further developed a high resolution global ocean forecasting system to provide the higher standard, more sophisticated and qualified products.

NMEFC High Resolution Forecasting System based on NEMO

Model configuration

Levels depth and thickness

Grid-- ORCA tripolar grid (Madec and Imbard [1996])

Horizontal resolution

– 4322 x 3059 horizontal grid points
 – Grid spacing from 10 km at equator down to 3 km at high latitudes

Vertical grid

- 75 levels, with a resolution of 1m near the surface and 200m in the deep ocean , 0-6000m

The Forecasting System Design

Data Assimilation System

Improved Forecasting Products

Example for SLA

Forecast products release system

Products part one:

GODAE-IVTT standard products Class 1 : gridded model output Class 2 : time series of specified locations and sections Class 3 : transport through sections and

Class 3 : transport through sections and other quantities

Class 4 : metrics of forecast capability

Products pat two : Conventional static visualization products

Products part three : Animation products

Eddies activities and variation

Temperature, salt, current, and SSH

Regional comparison of operational system

SST of South China Sea : RMSE 0.4°C , Bias \pm 0.3 °C, against PSY Reanalysis Data

-2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2

-2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2

-2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2

-2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2

-2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2

Regional comparison of operational system

SST of Indian Ocean : RMSE 0.5°C, against PSY Reanalysis Data

Regional comparison of operational system

SST of Indian Ocean : RMSE -0.6-0.1°C, against PSY Reanalysis Data

Introduction of IV-TT

Background:

The GODAE Oceanview Intercomparison and Validation Task Team (IV-TT) aims to coordinate and promote the development of scientific validation and intercomparison of operational oceanographic systems. A particular focus is a real-time intercomparison of GOV systems using the Class 4 framework.

> Workshop objectives:

- Review the **current status** of the Class4 intercomparison and discuss 0 outstanding issues
- Discuss the **future directions** of this intercomparison ତ
- Discuss ongoing initiatives and other additional possible assessments 0
- Discuss recent advances in evaluation and verification efforts, and the 0 development of new metrics 14

Joint systems

country	System name	model
Environment Canada	GIOPS-CONCEPTS	NEMO 1/4
Mercator Ocean	PSY3 & PSY4	NEMO 1/4 &1/12
Australian Bureau of Meteorology	BLUEllink-OceanMAPS	MOM4 10km around Australia but low resolution further out
NOAA/NCEP/NWS	RTOFS Global	HYCOM 1/12
UK Met Office	FOAM	NEMO 1/4

IVTT Class4 assessment method

•
$$Bias = \frac{1}{N} \sum_{i=1}^{N} (F_i - O_i)$$

•
$$RMSE_{FCT} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(F_i - O_i)^2}$$

•
$$RMSE_{per} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(B_i - O_i)^2}$$

- $PSS = 1 \frac{RMSE_{FCT}}{RMSE_{per}}$
- $CSS = 1 \frac{RMSE_{FCT}}{RMSE_{clim}}$

•
$$AC = \frac{\sum (F-C)(O-C)}{\sqrt{\sum (F-C)^2}\sqrt{\sum (F-O)^2}}$$

Persistence skill score: numerical forecast VS analysis data extrapolation (>0 is good)

(smaller is good)

Model deviate from observation

Climatology skill score: numerical forecast VS Climatological data (>0 is good)

Anomaly correlation: weather variations capture ability

F—forecast **O**—observation **C**—climatology **B**—Best estimate

A.G. Ryan, C. Regnier, P. Divakaran, T. Spindler, A. Mehra, G.C. Smith, F. Davidson, F. Hernandez, J. Maksymczuk & Y. Liu (2015) GODAE OceanView Class 4 forecast verification framework: global ocean inter-comparison, Journal of Operational Oceanography, 8:sup1, s98-s111, DOI: 10.1080/1755876X.2015.1022330

RMSE of Temperature Profile

- >NMEFC NEMO global operational forecasting system:
- @runs stably and provides 5-day forecasting
- @working on the assimilation system and a 3-DVar assimilation schemes
- >Evaluation of the products
- @temperature and salinity is comparable to other systems
- @improve the forecasting of thermocline by a better 3-DVar assimilation
 system

>Forecasting skills:

Short term forecasting: data assimilation system is more important
 Ionger forecasting: forecasting system with an higher frequency output
 plays an important role

Thanks for your attention

http://www.nmefc.gov.cn

