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Psychology is a broad field that endeavors to develop explanatory theories of human capacit-
ies and behaviors based on a wide variety of methodologies and dependent measures. Here
we argue that whether or not researchers choose to employ modeling (viz., choose to create
computational models of their theories over and above their data during the scientific inference
process) is one of the most important and divisive factors in our field. Modeling is under-
discussed and underemployed, yet, in our view, holds integrative promise for advancing the
goals of psychological science. The inherent demands of computational modeling offer invalu-
able momentum towards a better, and more open, psychological science. These demands force
the scientist to conceptually analyze, specify, and ideally, formalise intuitions and ideas which
would otherwise remain implicit or unexamined — something we propose should be called
“open theory”. Constraining our inference process through specification and modeling is what
will enable us as a field to meaningfully interpret data, and to build theories that explain and
predict. In this piece, we present scientific inference in psychology as a path function, where
each step shapes the next. Computational modeling can constrain the steps in the path, and has
the potential to advance scientific inference over and above the stewardship of the experimental
practice (e.g., preregistration, choosing frequentist or Bayesian statistics, power and sample
size, and other estimation variables). If as a field we continue to eschew, inadvertently avoid,
or remain ignorant of formal and computational modeling, we set ourselves up for a persistent
lack of replicability and, moreover, for failure at coherent theory-building that includes ex-
planatory force. We explain how the basic steps in the modeling process can be accomplished
and we touch on the cultural and practical issues that need to be faced therein, emphasizing
that the advantages of modeling can be achieved by anyone with benefit to all. The process of
computational modeling promotes transparent theorising; “open science” should include open
theory alongside, e.g., open data and open source code.
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Challenges for scientific inference in psychological
science

Psychology is a science that endeavors to develop theor-
ies that explain the capacities and behaviors of the human
organism. In practice, this results in a wide range of re-
search modes, from designing and running behavioural and
neuroscientific experiments (e.g., performing basic science
to investigate a capacity or behavior), to carrying out clinical
work (e.g., studying and treating patients in a clinical set-
ting), to qualitative work (e.g., interpretative phenomenolo-
gical analysis). Psychology intersects with many other fields,
creating sub-fields that are highly interdisciplinary across
the spectrum of science, technology, engineering, mathem-

atics, and the humanities. In this article, we do not intend to
provide an exhaustive definition of “psychology”, but rather,
we focus on a distinction within psychological science that
is less often discussed: the difference in explanatory force
between research programmes that use formal, mathemat-
ical, and computational modeling and those that do not.

We start by explaining in a basic way what a computa-
tional model is, and we illustrate how specifying a model
naturally results in better-specified theories, and therefore in
better science. We give an example of a specified, formal-
ized, and implemented computational model and use it to
model a cartoon example where intuition is insufficient in
determining a quantity (viz., an area). Next, we present a
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verbal and pictorial model of a characterization of how psy-
chological science should be done in order to maximize the
relationship between theory, specification, and data. Our
claim here is that the scientific inference process is a func-
tion from theory to data — but this function must be more
than a state function to have explanatory force — it is a path
function which must step through theory, specification, and
implementation before a interpretation can have explanatory
force in relation to a theory. Finally, we outline the steps
we believe the field needs to take to use modeling to address
the structural problems in theory building that underlie the
so-called replication “crisis” in, e.g., social psychology. We
propose a core yet overlooked component of open science
that computational modeling forces scientists to carry out:
open theory.

A fork in the path of psychological science

Regardless of the level(s) of analysis — from neuron to
behaviour — that a psychological scientist’s work can be
placed, there are certain core meta-theoretical ideas or as-
sumptions that all or the vast majority of modern psychology
agrees on. For example, a) that the brain gives rise to beha-
viour, or that b) networks of neurons can perform computa-
tions. In turn, agreement with these default positions means
researchers can then believe, e.g., for a) that by looking at
behaviour we can understand something about how brains
work and vice versa, and for b) that by looking at the inputs
of outputs of the neural system we can understand important
properties and principles of the system. Thus, psychological
scientists endeavor to discover how and why things work the
way they do — typically by ascribing to (implicitly or expli-
citly) a school of thought and by specifying (implicitly or ex-
plicitly) theoretical accounts, or at the least some basic hypo-
theses, to test using inferential statistics. From there, clinical
practitioners, for example, use the outputs of this research,
implicitly (or not) subscribing to the theoretical positions of
the researchers and agreeing with the value of the hypotheses
generated and tested at the end of this scientific pipeline.

On the one hand, a typical psychology experiment will
gather data to test an explicit hypothesis and will analyse that
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data using (overwhelmingly frequentist) inferential statistics.
And this is and has been true for all branches of psychology
that deal with data for a long time (Meehl, 1967; Newell,
1973). While there are important differences between sub-
fields of psychology, similarities are also highly apparent in
terms of methodology. Almost every paper we publish can be
boiled down to introduction, methods, analysis, results, and
discussion. Save for differences in jargon and specific meth-
ods, the way we approach science is near identical: we ask
nature questions by collecting data and then report p-values,
more rarely Bayes-factors or Bayesian inference, or some
qualitative measure. Computational models do not feature
explicitly in the majority of psychology’s scientific endeav-
ours. Most papers do not include computational modeling,
and most psychological researchers are not trained in mod-
eling beyond constructing statistical models of their data. In
fact, many, while respectful of formal modeling techniques,
still assume GUIs or preset models are useful outside the
simplest cases or outside pedagogical contexts (Cooper &
Guest, 2014). This is something that causes friction and is
the source of further misunderstandings and miscommunic-
ations — perhaps it is due to generalising from data mod-
els, i.e., inferential statistics, which are typically applicable
off-the-shelf. On the other hand, a subset of researchers —
formal, mathematical, or computational modelers — take a
different route in the idea-to-publication pipeline. They con-
struct models of something other than the data directly.

In our view, the true task of the modeler is to create semi-
formalised or formalised versions of scientific theories, often
creating (or least amending) their accounts along the way.
A computational modeler is somebody who has the tools to
be acutely aware of the assumptions and implications of the
theory they are using to carry out their science. This aware-
ness comes, ideally, from specification and formalization, but
minimally, it also comes from the necessity of writing code
during implementation. Thus, involving modelers in a re-
search programme has the effect of necessarily changing the
way the research process is structured. It changes the fo-
cus from testing hypotheses generated from an opaque idea
or intuition (e.g., a theory that has likely never been writ-
ten down in anything other than natural language, if that), to
testing a formal model of the theory as well as continuing
to also be able to generate and test hypotheses using empir-
ical data. Computational modeling does this by forcing the
scientists involved to explicitly write down (e.g., in program-
ming code) an instance of what their theory assumes, if not
what their theory is. In our view, the most crucial part of
the process is creating a specification, but even just creating
an implementation (programming code) leverages more ex-
plicitness than going from framework to hypothesis to data
collection directly. In addition to formalisation, introducing
computational modeling makes the process of science more
transparent. Computational modeling is a canonical open
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science methodology due to the light it shines on the usually
opaque practice of theory building and testing (Nosek et al.,
2015). The process of building a computational model, we
propose, should be dubbed: open theory. We will unpack fur-
ther what computational modeling has to offer psychological
science more in the next few sections.

What is a computational model? And why build one?

Let us calculate, without further ado, and see
who is right (Leibniz, 1685; translated by:
Wiener, 1951)

Gottfried Wilhelm Leibniz (1646–1716) predicted computa-
tional modeling when he envisaged a characteristica univer-
salis that allows scientists to formally express theories and
data (e.g., formal languages, logic, programming languages)
and a calculus ratiocinator that computes the logical con-
sequences of theories and data (e.g., digital computers; also
see: Cohen, 1954; Wiener, 1951). Modeling can thus be seen
as a universal (formal) language by which scientists commu-
nicate. More specifically, computational modeling is the pro-
cess by which a verbal (or pictorial, etc.) description is form-
alised (e.g., using logic or mathematics, or another formal
language, pseudocode, or even a programming language) in
ways that ground it. Computational modeling removes ambi-
guity, as Leibniz correctly predicted, while also constraining
the space or dimensions in which a theory can span.

In the best of possible worlds, modeling makes us think
deeply about what we are going to model, (e.g., which phe-
nomenon or capacity), in addition to any data, both before
and during the creation of the model, and both before and
during data collection. It can be as simple as the scientist
asking themselves, "what is it we are proposing? How do
we understand the brain and behaviour in this context, and
why?" By thinking through how to represent the data, model
the experiment, etc., scientists gain insight into their ideas
and intuitions, and the computational repercussions of their
ideas, in a much deeper and explicit way than by just collect-
ing data in relation to framework or implicit idea. Without
such care we may end up wasting resources and time pursu-
ing scientific goals that are based on an incomplete picture of
the literature or are otherwise impaired.

Modeling allows us to automate, to an extent, hypothesis
generation and even in some cases code generation. It guides
us away from testing hypotheses that are implausible or ir-
relevant given existing knowledge, and from building a non-
sensical or bogus implementation given what we already
know about the system we are trying to approximate. Such
grounding rules out vast swathes of research, saving re-
searchers time and money. Furthermore, a model allows us
to make clear cut and falsifiable predictions. By providing
a transparent genealogy for where predictions, explanations,
and ideas for experiments come from, the process of model-
ing stops us from atheoretically testing hypotheses — a core

value of open science. Open theorising is done by default
by many modelers as a function of the (computational and/or
formal) modeling process.

Through modeling, even in, or especially in, failures we
hone our ideas: can our theory be formally specified, and
if not, why not? Making explicit what might have been
completely implicit is extremely useful in scientific inquiry.
Thus, we may check if what we have described formally still
makes sense in light of our theoretical commitments. It aids
both us as researchers communicating with each other, and it
aids those who may wish to apply these ideas to their work
outside science in e.g., industrial or clinical settings.

Modeling also allows us to perform model comparison —
to compare different parameter values’ effects within a model
and compare models based on one theory to those based on
another. When two (or more) theories can make sense of
the present data, this is one of the only ways to dissociate
between them in a formal setting (although also see: Navarro,
2019).

In the rest of this section we will walk the reader through
building a computational model from scratch in order to il-
lustrate our argument, and then present a path function of
research in psychology. We emphasize that, often, ’merely’
building a formal model of a problem is not enough – ac-
tually writing code to implement a computational model is
required to understand the model itself. We call this gap in
understanding the “pizza problem” for reasons that will be-
come clear.

The pizza problem

All models are wrong but some are more wrong
than others. (pastiche based on: Box, 1976; Or-
well, 1945)

Imagine it is Friday night, you are hungry, and so decide to
order pizza with a friend. You call up your favourite pizzeria
and they tell you they have an offer: two 12” pizzas for the
price of one 18”. Your definition of a good deal is one in
which you purchase the most food. Is this a good deal?

A Twitter user by the name of Fermat’s Library (@fer-
matslibrary) posted as “a useful counterintuitive fact [that]
one 18 inch pizza has more ‘pizza’ than two 12 inch piz-
zas”1 — along with an image similar to Figure 1. The reac-
tion to this tweet was largely surprise or disbelief, with user
@MarkSykes15 replying: “But two pizzas are more than
one”.2 What is happening here and why are people taken
aback?

When it comes to comparing ceteris paribus the two op-
tions depicted in Figure 1, even if everybody agrees what
the area of a circle is defined as (e.g., a mathematical model
based on: Area = πR2) there are some people unwilling to

1Archived tweet: archive.ph/Fb66R
2Archived tweet: archive.ph/BoyRs

http://archive.ph/Fb66R
http://archive.ph/BoyRs
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a

Two 12” pizzas

Area = 2 × π62 = 226 in2

b

One 18” pizza

Area = π92 = 254 in2

Figure 1. The pizza problem: something like comparing the two options above can appear “counterintuitive” even though we
all learn the formula for the area of a circle in primary school. Compare a) two 12” pizzas with b) one 18” pizza (all three
pizzas to-scale). Which order would you prefer ceteris paribus?

compute this model (e.g., in their head or on paper) and in-
stead they run a model based on comparing the number of
pizzas only. And thus the results of the “true” model, that
one 18” pizza has more surface, and therefore is more food
in Figure 1, are counterintuitive.

Modeling is able to demonstrate how one cannot always
trust one’s gut even when it comes to something as simple
as choosing how much pizza to order to maximize value.
Moreover, computational modeling — actually implement-
ing and running the model — can further highlight serious
misunderstandings. To carry out computational modeling of
a given problem or phenomenon one must have or create:
a) a verbal description, a conceptual analysis, and/or a the-
ory; b) a formal(isable) description, i.e., a specification using
mathematics, pseudocode, flowcharts, etc.; and c) an execut-
able implementation written using a programming language.
This process is the cornerstone of computational modeling
and by extension of modern scientific thought, enabling us to
refine our gut instincts through experience. This experience
is seeing our ideas being executed by a computer, giving us
the chance to debug scientific thinking in a very direct way.
This highlights an important difference between models’ spe-
cifications (here in mathematics) and their implementations,
something that if ignored can introduce “bugs” in our sci-

entific thinking. If we do not make explicit our thinking
through formal modeling, and if we do not bother to execute,
i.e., implement and run our formal(isable) specification, we
can have massive inconsistencies in our understanding of our
own model(s). We call this issue the “pizza problem.” Such
misunderstandings - where a lot of the concepts are agreed
upon and yet the models being run in people’s heads are dra-
matically different - are not at all rare. Another infamous on-
line case is that of a person asking a body-building forum if it
is “safe to do a full body workout every other day”3. Almost
all 128 replies are dedicated to discussing what “every other
day” means (3.5 or 4 days per week) even though everybody
knows how many days a week has.

Let us go back to ordering the most pizza for our buck.
And let us create a computational model of ordering pizza
— overkill for scientific purposes, but certainly not for ped-
agogical ones. The verbal description of the problem (recall
Figure 1) is that we need to pick an order option out of: one
18” pizza or two 12” pizzas. The formalised specification
of our model is the next step and we choose to do this us-
ing mathematics. For any model, simplifications need to be
made, so we choose to represent each individual pizza as a

3Archived webpage: archive.ph/9qQyT
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circle. Therefore we define the amount of food φ per order
option i as:

φi = NiπR2
j (1)

where i is the pizza order option, N is the number of pizzas
in the order, and the rest is derived from the definition of the
area of a circle. We also add in a decision rule that tells us
what to order as a function of the food per order:

ω(φi, φ j) =

i, if φi > φ j

j, otherwise
(2)

where the output of the ω function is the order index with the
most food. Ta-da! We have just built a very basic mathemat-
ical model for deciding between the two order options — but
we are not in the clear yet!

So far this is the model (or something very similar) that
when explicitly asked everybody would have claimed to be
running in their heads, but they still were surprised — an
expectation violation occurred — when faced with the actual
results: one 18” pizza is more food than two 12” pizzas. So
how do we ensure we are all running the same model? We
execute it on a computer that is not the human mind!

To make this model computational all we need is to pro-
gram it using, e.g., Python. To be clear, we can run this
model on paper. We can plug in the numbers as seen at
the bottom of Figure 1, however for pedagogical purposes
and because of course it is not always feasible to run mod-
els on paper, we will proceed to the final step computational
modelers take: coding it up. So, using our favourite code
editor, we start to create an implementation for the equations
above. We notice that even though Equation 1 (a part of the
specification) is not wrong per se, φ could be defined as:

φi =
∑
j∈Ni

πR2
j (3)

with N meaning exactly the same as before, the number of
pizzas in the order. This change to the definition of food per
order allows generalisation of the model (both in the specific-
ation and the implementation below) to account for different
radii per order (i.e., in future we can compare an 11” pizza
plus a 13” pizza with one 18” pizza). One possible imple-
mentation4 of our pizza model could look like this:

import numpy as np
import math

def food(ds):
’’’
Amount of food in an order as a function
of the diameters per pizza (eq. 3).
’’’
return (math.pi * (ds/2)**2).sum()

# Order option a in fig. 1, two 12’’ pizzas:
two_pizzas = np.array([12, 12])

# Option b, one 18’’ pizza:
one_pizza = np.array([18])

# Decision rule (eq. 2):
print(food(two_pizzas) > food(one_pizza))

However, it is extremely important to point out that this im-
plementation change, which we choose to percolate upwards
and thus edit our specification, does not affect the verbal de-
scription of the model. By the same token, a change in the
code to use a for-loop in the definition of the food() function
would neither affect the specification nor the theory in this
specific case. This is a core concept to grasp when model-
ing: the properties of the relationships between theory/verbal
description, specification, and implementation.

Is this whole exercise overkill for ordering pizza? Abso-
lutely. But it serves as a valuable tool for showing somebody
who might never have modeled, or never have thought deeply
about the differences between verbal description, specifica-
tion, and implementation, that they can be and should be dis-
sociated. Despite the simplicity of our pizza model, it will
likely fail to capture what each person actually wants: what
if you value crust more, or consider two pizzas easier to share
with your friend, or believe bigger pizzas are more likely to
be damaged during transport, etc.? Every single modeling
decision so far could have been made slightly (or dramatic-
ally) differently. This is one of the great things about model-
ing: it allows for full transparency. If one disagrees with any
of the formalisms, they can easily plug in a different decision
rule or a different definition of the amount of food or even a
different aspect of the order being evaluated — perhaps they
prefer more crust than overall pizza surface.

Formal modeling the way we have described above, and
moreover, especially computational modeling, is quintessen-
tially open science: verbal descriptions of science, specifica-
tions and implementations of models are totally transparent,
open to be replicated, and open to be modified, i.e., open
theory. Computational modeling is a step towards full open
theorising to go along with open data, open source, etc. In
contrast to merely stating “two 12” pizzas are more food than
one 18”pizza”, a computational model can be generalised
and can show our work clearly. Through writing code, we
can debug our scientific thinking.

In this section, we presented the, pedagogically valuable,
process of creating a computational model. In the rest of the
manuscript, we will present a bird’s eye view of how research
in our field is carried out in order to demonstrate where and
how modeling fits in.

4Link to repo so others can use it easily.
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Model of psychological science

[T]heory takes us beyond measurement in a way
which cannot be foretold a priori, and it does
so by means of the so-called intellectual exper-
iments which render us largely independent of
the defects of the actual instruments. (p. 27
Planck, 1936)

In this section, we describe an analytical view of psycho-
logical research, shown in Figure 2. Although other such
models exist that aim to capture some aspect of the process of
psychology (e.g., Haig, 2018; Haslbeck, Ryan, Robinaugh,
Waldorp, & Borsboom, 2019; Kellen, 2019), ours proposes a
unified account that demonstrates how computational mod-
eling can play a radical and central role in all of psycholo-
gical research. We propose that every scientific output in
psychology can be analysed using the levels shown in the left
column of Figure 2. The core of our claim is that scientific
inquiry can be understood as a function from theory to data,
and back to itself again, and this function must pass through
several states in order to have explanatory force. The func-
tion can express a meaningful mapping, transformation, or
update between a theory at time t and that theory at time t +1
as it passes through specification and implementation, which
ideally enforce a degree of formalisation. We note that each
level (in blue) can, but does not have to, involve the construc-
tion of a (computational) model for that level, with examples
of models shown in the left column (in green) connected by
a dotted line to the level with which they are associated. If
a given level is not well understood, making a model of that
level can help elucidate the implicit assumptions therein and
uncover so-called pizza problems.

A process function or path function is a function where
the output or returned value of the function is dependent on
the path, or the nature of transformations the input undergoes
to become output. Path functions are used in thermodynam-
ics to describe heat and work transfer; an intuitive example
is distance to a destination being dependent on the road you
take. Say you live in a country with decent and reliable pub-
lic transport, and you can choose whether to take the train or
drive a car from city A to city B. The distance on the freeway
between A and B is 100 km, but the distance between A and
B via the train system is 150 km. The time it takes to reach
you destination is dependent on the path you take on your
journey.

The path function moves from top to bottom in terms of
dependencies, but the connections between each level and
those below or above are bidirectional (represented by the
large blue and small black arrows) capture the potential for
adding or removing, loosening or tightening, of constraints
that one level can impose on those above or below it. The
nature of the connections from one layer to another takes on
many scientifically pertinent forms which will be described

in the following subsections. Our model, constrains the dir-
ectionality of transitions in the following way: a) at any point
transitions moving upwards are permissable and b) moving
downwards is only possible if an expectation violation is re-
solved by first moving upwards. Transitions, when moving
downwards, from one layer to the next can be thought of as
functions where the input is the current layer and the output
is the next layer. Transitions going upwards, are more com-
plex and involve adjusting, e.g., a theory given some data,
and can involve adjustments of many levels along the way to
obtain the required theory-level update. Downwards motion
is not allowed if a violation occurs, e.g., our model at the
current step is not inline with our expectations. Once this
violation is resolved by moving to any step above, we may
move downwards respecting the serial ordering of the levels.
For example, when the data does not confirm the hypothesis,
we must move upwards and understand why and what needs
to be amended in the levels above the hypothesis. Attempting
to “fix” things at the hypothesis level is hypothesising after
results known (HARKing, Kerr, 1998): scientific dishonesty.

We do not believe that every psychological study must
contain models explicitly, but we propose that at least impli-
citly every research output is model- and theory-laden (i.e.,
carries with it theoretical and modeling commitments). And
in addition, we believe that by making these implicit mod-
els explicit via computational modeling (writing code-based
implementations) that the quality, usefulness, and truthiness
of research programmes can be secured and ascertained. The
three levels with a red background, theory, specification, and
implementation, are those which we believe are left implicit
to a greater or lesser extent in most of psychological research,
especially parts of our field that have been most seriously af-
fected by the so-called replication “crisis”. This tendency
to ignore the levels in red is a result of the same process by
which theory and hypothesis are also conflated (Fried, 2020;
Meehl, 1967; Morey, Homer, & Proulx, 2018), and by which
models of the data are taken to be models of the theory: “the-
oretical amnesia” (Borsboom, 2013). In the rest of this sec-
tion, we will first discuss what each level encompasses, de-
fining how we intend these words to be used in the context of
Figure 2, and then discuss the properties of the path function
in general.

Framework

A framework is a conceptual system of building blocks
for creating facsimiles of complex psychological systems,
see topmost level of Figure 2. A framework is typically
described using natural language and figures, but can also
be implemented in code like ACT-R (Anderson & Lebiere,
1998) and Soar (Newell, 1992). Some frameworks appear
superficially simple or narrow, like the concept of work-
ing memory (Baddeley, 2010) or dual-systems approaches
(Dayan & Berridge, 2014; Kahneman, 2011), while others
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can be all-encompassing such as unified theories of cognition
(Newell, 1990) or connectionism (McClelland, Rumelhart, &
the PDP Research Group, 1986).

In the simplest case a framework is the context, the inter-
pretation of the terms of a theory (Lakatos, 1976). Many
framework-level ideas usually require descending further
down the path before they can be computationally modeled
(Hunt & Luce, 1992; Vere, 1992). While it is possible to
avoid frameworks, it is “awkward and unduly laborious”
(Suppes, 1967, p. 58) to work without one and thus depend
on the next level down in the path to do all the heavy lifting.

It is not the case that all psychological models are or can
be evaluated against data directly. For example, ACT-R is
certainly not evaluatable using data directly, we have to move
down the path first, thus creating a specific theory, then a
specification, then an implementation, and then generate hy-
potheses, before any data can be collected. Even then per-
haps ACT-R (due to its distance in the path from data) is in
some sense unfalsifiable, but the path provides a clear path-
way to evaluating modeling accounts within this framework
(e.g., see: Cooper, 2007).

Theory

A theory is a scientific proposition — described by a col-
lection of natural language sentences, mathematics, logic,
and figures — that (implicitly or explicitly) introduces causal
relations with the aim of describing, explaining, and/or pre-
dicting a set of phenomena (Lakatos, 1976), see second level
of Figure 2. Examples of psychological theories are prospect
theory (Kahneman & Tversky, 1979), classical conditioning
(Pavlov, 2010), and SUSTAIN, an account of categorisation
(Love, Medin, & Gureckis, 2004).

To move to the next level and produce a specification for
a psychological theory, we must be able to posit a plausible
mechanism for the specification model to define based on
the theory. As can be seen from our path direct comparisons
to data can only happen once a model is at the right level.
However, it is not the case that all psychological models must
be evaluated against data directly. Theoretical computational
models allow us to check if our ideas when taken to their lo-
gical conclusions hold up and also help us generate more the-
oretical knowledge (e.g., Guest & Love, 2017; Martin, 2016,
2020; Van Rooij, 2008). If a theory is scientifically stunted
and thus cannot lead to coherent specifications or implement-
ations, it is our responsibility as scientists to amend or in rare
cases abandon it in favour of one that does.

Specification

A specification is a formal(isable) description of a system
to be implemented based on a theory, see third level of Fig-
ure 2. It provides a means of discriminating between theory-
relevant, closer to the core claims of the theory, and theory-
irrelevant, auxiliary assumptions (Cooper & Guest, 2014;

FrameworkFramework
ACT-R, Soar, connection-

ism, working memory.

Path Examples

TheoryTheory
classical conditioning,

prospect theory, SUSTAIN.

SpecificationSpecification
mathematics, natural lan-

guage, TLA+, Z.

ImplementationImplementation
models written in code,

e.g., C, Python, R.

HypothesisHypothesis
Group A will be faster

than group B.

DataData
ANOVA, linear regression,

MVPA, SEM, t-test.

Figure 2. One of many possible paths (in blue) that can be
used to understand and model how psychological research
is carried out with examples at each step shown on the left
(in green). Each research output within psychology can be
described with respect to the levels in this path. The three
levels with a red background (theory, specification, imple-
mentation) are those that are most often ignored or left out
from research descriptions.

Lakatos, 1976). Specifications provide both a way to check if
a computational model encapsulates the theory and a way to
create a model if the theory is not clear enough by constrain-
ing the space of possible computational models. Specifica-
tions can be expressed in natural language sentences, math-
ematics, logic, flowcharts and other diagrams, and formal
specification languages, such as Z notation (Spivey & Abrial,
1992) and TLA+ (Lamport, 2015) used in computer science.

The transition to code from specification has been auto-
mated in some cases in computer science (Monperrus,
Jézéquel, Champeau, & Hoeltzener, 2008). In psychology,
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creating an implementation typically involves taking the spe-
cification implicitly embedded in a journal article and writ-
ing code that is faithful to it. Specifications are invaluable
because when the time comes to debug our implementation,
it will be impossible to do so without a specification —
and thus by extension impossible to properly test our theory
(Cooper & Guest, 2014; Miłkowski, Hensel, & Hohol, 2018).

Implementation

An implementation is an instantiation of a model created
using anything from physical materials, e.g., a scale model
of an airplane (Morgan & Morrison, 1999), to software, e.g.,
a git repository, see fourth level of Figure 2. A computational
implementation is a codebase, a collection of programming
code written in one or more languages that constitutes a soft-
ware unit and embodies a computational model. While the
concept of an implementation is simple to grasp — perhaps
what most psychologists think of when they hear “model”
— it might appear to be the hardest step in a research pro-
gramme. This is arguably not the case. Provided one follows
the steps in Figure 2, a large proportion of the heavy lifting is
being done by all the previous steps and enables the part that
requires coding to be equally if not less difficult than, e.g.,
theory creation or data collection.

In some senses, implementations are the most disposable
and the most time-dependant parts of the scientific process
of Figure 2. Very few programming languages stay in vogue
for more than a decade and thus even though the raw text files
of the code itself might survive bit-rot (digital entropy) and
other problems set in, rendering code older than even a few
months in extreme cases un-runnable without amendments
(Cooper & Guest, 2014; Rougier et al., 2017). This is not
entirely damaging to our enterprise since the core compon-
ents of the science we want to evaluate are the theory and
specification. If the computational model is not truly rep-
licable, i.e., re-implementable given the specification, then
it poses serious questions for the theory and specification
it is based on (Cooper & Guest, 2014). This constitutes an
expectation violation and must be addressed by moving up-
wards to whichever previous level we believe can amend the
issue. However, we would be premature to generalise from
the success or failure of one implementation if it cannot be
recreated based the specification, since we have no reason to
assume it is embodying the theory. This latter point of code
appropriately embodying a theory can only be answered by
iterating through theory, specification, implementation.

When we run our computational model’s code, we can
start to generate hypotheses. For example, if our model be-
haves in a certain way in a given task, e.g., it has trouble
categorising some types of visual stimuli more than oth-
ers, we can formulate a hypothesis to test if this holds in
the empirical world. Alternatively, if we already know this
phenomenon happens, it is a useful way to check that our

high-level understanding does indeed so far match our ob-
servations. If our implementation displays behaviour outside
what is permitted by the specification and theory, then we
need to adjust something as this constitutes a violation. It
might be that the theory is under-specified and this behaviour
should not be permissible ever. In which case we might need
to change both the specification and the implementation to
match the theory (Cooper & Guest, 2014).

On the other hand, if our implementation displays beha-
viour outside what is known about the world, then we also
need to adjust something. It could be that the theory instan-
tiated by the implementation is again too loose and allows,
e.g., behaviours that are not found in empirical experiments.
Alternatively, it could be that we need to go and collect data
to see if such behaviours are seen in the “real world” — thus
this is not an expectation violation (yet) but a prediction we
wish to test. Such a cycle of adjustments until the theory is
captured by the code and the code is a strict subset of the the-
ory are necessary parts of the scientific process. This cycle
of loosening and tightening theory, specification, and imple-
mentation never ends — it is the sine qua non of scientific
computational modeling and mutatis mutandis theory devel-
opment in science.

Hypothesis

A hypothesis is a narrow testable statement, see fifth level
of Figure 2. Hypotheses in psychology focus on a set of prop-
erties of the world that can be measured and evaluated by col-
lecting data and running inferential statistics. A hypothesis
is scientifically valuable when embedded in the theoretical
context from which it was derived. Any sentence that can be
directly translated into a statistical test can be called a hypo-
thesis, e.g., “the gender similarities hypothesis which states
that most psychological gender differences are in the close to
zero (d ≤ 0.10) or small (0.11 < d < 0.35) range” (p. 581
Hyde, 2005). Hypothesis in psychology are directly amen-
able to data collection usually through highly-controlled lab-
or web-based experiments, in part because they are formu-
lated by scientists who are aware of the next step descending
the path.

Hypothesis testing is unbounded without iterating through
theory, specification, implementation and creating a compu-
tational model. The supervening levels constrain the space
of possible hypotheses to-be-tested. Testing hypotheses in
an ad hoc way — what we could dub hypo-hacking within
out model — is to the hypothesis layer what p-hacking is to
the data layer (Head, Holman, Lanfear, Kahn, & Jennions,
2015). Researchers can come up with any hypothesis and
given big enough data a significant result is likely to be found
when comparing, e.g., two theoretically-baseless groupings.
Another way to hypo-hack is to atheoretically run pilot stud-
ies until something “works”. When research is carried out
this way “losing” the significant p-value, e.g., due to a fail-
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ure to replicate, could be enough to destroy the research pro-
gramme. Any theories built upon such hypo-hacked results
will crumble if no bidirectional transitions in the path were
carried out, especially within the redzone. Having built a
computational account researchers can avoid the confirma-
tion bias of hypo-hacking. Hypo-hacking, cheats the path
and skips levels. While building a theory using a computa-
tional modeling approach, even if on data that includes some
hypo-hacking and p-hacking means once a phenomenon is
seen we ascend the path and spend time formalising a model
(e.g., see: Fried, 2020; Head et al., 2015).

Data

Data are observations generated by and collected from
the “real world” or from a computational model, see sixth
level of Figure 2. Data can take on many forms in psycho-
logy, the most common being numerical values that represent
variables as defined by our experimental design, e.g., reac-
tion times, questionnaire responses, neuroimaging, etc. Be-
cause of how theory-laden data is it can never be completely
free from the theoretical assumptions implicit in its collec-
tion (Lakatos, 1976). For example, functional magnetic res-
onance imaging (fMRI) data rests on belief in the theory of
electromagnetism, and in the theory of the BOLD signal’s as-
sociation with neural activation, etc. If any of these scientific
theories that support the current interpretation of fMRI data
change then the properties of the data collected will also
change. In addition, data only has meaning as understood
through the lens of the experiment (which is a product of
theory) during which it was collected (Feyerabend, 1957).

Statistical models are the kinds of models most psycholo-
gical scientists have been exposed to — every student who
has been through a research methods class in a psychology
undergraduate degree knows some basic statistical modeling
techniques. Tests such as analysis of variance (ANOVA),
mixed-effects modeling (e.g., Davidson & Martin, 2013), lin-
ear regression, multivariate pattern analysis (MVPA), struc-
tural equation modeling (SEM), and the t-test are all possible
inferential statistical models of datasets.

If the data model does not support the hypothesis (an ex-
pectation violation), this allows us with a certain confidence
to reject the hypothesis for our data. This does not however
given us licence to reject a theory with as much confidence.
The same caution is advised in the inverse situation when
our statistical testing supports our experimental hypothesis:
“there is subtle tendency to “carry over” a very small prob-
ability of a Type I error into a sizeable resulting confidence
in the truth of the substantive theory” (Meehl, 1967, p. 107).
For example, there have been a large number of studies that
collected data on cognitive training over the past century and
yet it is still not accepted as a scientific fact that it works
(Katz, Shah, & Meyer, 2018). To escape these problems and
understand how data and hypothesis relate to the theory we

need to ascend the path and contextualise our data and hy-
potheses given our theory using our computational model.
These violations cannot be addressed by plucking a new hy-
pothesis out of thin air that conveniently fits our data, i.e.,
HARKing, but by moving back to theory and asking what
needs to change in our theoretical understanding in order to
explain the current results.

What our path function model offers

We have clearly denoted the boundaries, which are often
in reality not so clear-cut, between the levels of understand-
ing in psychological research. Many of us do not explicitly
think or work in way that facilitates separating our research
into these chunks, thus it is often difficult to tease these layers
of description apart. Notwithstanding, modelers often do this
by definition — many should be familiar with similar layers
of abstraction from computer science and levels of analysis
from Marr and Poggio (1976). Simpler more abstract de-
scriptions appear higher up, while more complex descrip-
tions of psychological science are lower down the path —
e.g., data is a much less “compressed” as a description of an
experiment than a hypothesis. As such, each level is a renor-
malisation, coarser description, of the level below (DeDeo,
2018; Flack, 2012; Martin, 2020). The higher levels contain
fewer exemplars than the lower levels. In this sense, mov-
ing through the path of scientific inference can be seen as a
form of dimensionality reduction, or of coordinate transform.
Not only are there fewer theories than datasets in practice
(arguably causing chaos, Forscher, 1963), but also the prin-
ciple of multiple realisability (Putnam, 1967) means that for
every theory there are infinitely many possible implement-
ations consistent with it and datasets that can be collected
to test it (Blokpoel, 2018). This helps contextualise studies
that show the divergence in data modeling decisions given
the same hypotheses (e.g., Botvinik-Nezer et al., 2019; Sil-
berzahn et al., 2018).

Figure 2 allows us to discuss and decide where in the path
claims about psychological science are being made, thus con-
textualising descriptions of research and of science in gen-
eral. For example, the claim that “[s]cience is posthoc, with
results, especially unexpected results, driving theory and new
applications” (Shiffrin, 2018) is not incompatible, if under-
stood in context, with guarding against hypothesising after
results known (HARKing, Kerr, 1998). The reason “science
is post hoc with respect to the data” (to paraphrase Shiffrin,
2018) is because arguably one cannot have a theoretical ac-
count of a phenomenon without having access to some data,
anecdotal, observational, and/or experimental, that guides
one to notice said phenomenon in the first instance. Abra-
ham Wald, for example, explained post hoc why the bullet
holes found in fighter planes that returned home were correl-
ated to their survival — this is not HARKing. Wald moved
upwards from the data (distribution of bullet holes) to a the-
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ory (survivor bias) and created a model at the theory level
that could explain and predict the patterns of the bullets in
the planes that made it back safely (Mangel & Samaniego,
1984). In other words, in many cases theory development
involves some analysis (formal or informal) at the data level,
as an inspiration or impetus, and then a lot of scientific activ-
ity within the levels we highlight in red in Figure 2: theory,
specification, and implementation.

On the other hand, our path function model allows us
to pinpoint on which level questionable research practises
(QRPs, e.g., see: John, Loewenstein, & Prelec, 2012) or sci-
entific misconduct are taking place in a specific instance and
contextualise why and how to avoid them. Different QPRs
occur at different levels, e.g., p-hacking at the data level,
HARKing at the hypothesis level, and so on. HARKing
is flawed because it does not resolve violations that occur
when the data meets the hypothesis — it is not, e.g., TARK-
ing (theorising after results known) which is part of the sci-
entific practice of creating modeling accounts, as mentioned
by Shiffrin (2018). To retrofit a hypothesis onto a dataset
does not constitute resolving a violation because this de novo
hypothesis not generated directly or indirectly by a theory. If
we start out with a hypothesis (generated by going through
the levels of theory, specification, implementation) and col-
lect data that rejects our hypothesis, the violation has not only
occurred at the hypothesis level since the hypothesis has been
generated (via the intervening levels) by the theory. If this
occurs, we need to move back up the levels to understand
where the violation needs to be addressed. This is essen-
tially the opposite to conjuring a new hypothesis (HARK-
ing) that only exists in the scientific literature because it has
been confirmed by data — data that was collected to test a
completely different hypothesis. Importantly, it is at the data
and hypothesis levels that preregistration and similar meth-
ods (Nosek et al., 2015) attempt to constrain science to avoid,
e.g., HARKing. In our model, to ensure scientific quality re-
searchers must ascend the path, instead of or in addition to,
preregistration and other constraints on data modeling.

In terms of understanding the role of modeling explicitly:
if we can move from a theory to a computational model, we
are on the right track. Thus models can be seen as acting
as mediators between theory and data (e.g., see: Morgan &
Morrison, 1999; Oberauer & Lewandowsky, 2019). Asking
if we can build a model of our theory allows us to under-
stand where our theoretical understanding is lacking. Import-
antly, claims are typically not falsifiable — not usually dir-
ectly testable at the framework or theory level — but become
more so as we move downwards. This is why we need mod-
els, to shine a light on how to move downwards and what to
test. By going through these motions we can understand the
difference between auxiliary assumptions and core assump-
tions both in general but specifically for a given research pro-
gramme as well (Lakatos, 1976). We thus iterate through

theory, specification, and implementation as required until
we have achieved a modeling account that satisfies all the
various constraints using empirical data as well as collecting
empirical data based on hypotheses generated from the com-
putational model. Is an implementation detail in fact pivotal
to a model working? Then it must be upgraded to a specific-
ation detail (Cooper & Guest, 2014). Mutatis mutandis for
details at the specification level, etc. Importantly, this pro-
cess is even useful in the case of “false” models, i.e., com-
putational accounts that we do not agree with but can still
improve our conceptual understanding of phenomena (e.g.,
Wimsatt, 2002; Winsberg, 2006).

On the other hand, research programmes which are light
on modeling do not have a clear grasp on what is going in
the area highlighted in red of Figure 2. These areas of psy-
chology might have many, often informal, theories, but this
is not enough (Watts, 2017). More data alone, however open,
will never solve the issue of a lack of formal theorising. Data
cannot tell a scientific story, that role falls to theory and the-
ory needs formalisation to be evaluated, which can only be
accomplished through computational modeling. Thus, while
modelers are using the full scale of the path (often explicitly),
reaping the benefits of formally testing and continuously im-
proving their theories, those who eschew modeling miss out
on these fundamental scientific insights. By formalising a
research programme, we can search and evaluate the space
of the account proposed in a meticulous way, i.e., “theory-
guided scientific exploration” (Navarro, 2019, p. 31). We
may locate missing parts of the research programme, its
strengths, weaknesses, etc., and address them. To hearken
back to the pizza example, non-modelers will be ignorant
of pizza problems in their understanding and will potentially
order two pizzas without realising they might be implicitly
running a different model (in their head) to what they specify
they will run. Scientific enterprises are vulnerable when they
have not engaged in transparent formal open theory that is
afforded by computational modeling, thus scrutinising their
research questions and their understanding thereof.

Discussion

We hope to spark dialogue on the radical role of computa-
tional modeling can play within open psychological science
in forcing open theorising. We also presented a case study
in building a basic computational model, providing a useful
guide to those who may not have undergone such a process
previously. Models, especially when formalised and run on
a digital computer, can shine a light on when our scientific
expectations are violated. To wit, we presented a high-level
model of how science is carried out as a path function and
radically centering computational modeling at the core of
psychology. Computational models cannot replace, e.g., data
or verbal theories, but that the process of creating a compu-
tational account is invaluable and informative.
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There are three routes that psychology can take as a field,
mirroring what Allen Newell said half a century ago in 1973:
a) the field might bifurcate along the lines we have proposed
herein between research programmes that use modeling and
those that do not; b) the field might unite in so much as
research programmes will contain some modeling to force
the creation, refinement, and rejection of theories; and c) we
carry on by asking questions that are not secured to a sound
theoretical mooring via computational modeling. These are
not completely mutually exclusive possibilities and some
components from each of them can be seen in the present.

For a) bifurcation of the field, theoreticians, scientists who
mostly inhabit the red area of Figure 2, will be free to prac-
tice modeling, e.g., without having to run frequentist statist-
ics on their models if it is not appropriate. Much as is done
in physics, no constraints will be put on individual scientists
to pick a side, e.g., Einstein was both a theoretical and an ex-
perimental physicist. The importance is that the distinction
will be highlighted and the scientific methods used will be
slightly different. Unlike in the present in psychology, it will
be easy to publish a paper with, e.g., only modeling at the
theory level with no direct reference to data (something rare
currently, although possible, e.g., Guest & Love, 2017).

In the case of b), mass cooperation to work on “larger ex-
perimental wholes” (Newell, 1973, p. 24), this is something
perhaps realistic given projects that involve many labs have
become commonplace (e.g., Botvinik-Nezer et al., 2019; Sil-
berzahn et al., 2018). Although, we advise cautious op-
timism since these collaborations are only operating at the
data and hypothesis levels at the moment, which are not
enough to force theory building. Notwithstanding, such ef-
forts might constitute the first step in understanding the lo-
gistics of multi-lab projects that aim to answer theoretical
questions using computational modeling. On the other hand,
as Richard Shiffrin mentioned in his talk (2018), computa-
tional and mathematical modelers often work on a series of
related experiments, construct modeling accounts of the phe-
nomena being studied, and publish this as one “larger exper-
imental whole”.

The third possibility — more of the same — is the most
dire: “Maybe we should all simply continue playing our col-
lective game of 20 questions. Maybe all is well [...] and when
we arrive in 1992 [...] we will have homed in to the essential
structure of the mind.” (Newell, 1973, p. 24) The future, in
such a case, holds more time-wasting and crises if we do not
change. Some scientists will spend time (re)testing atheor-
etical hypotheses by e.g., replicating experiments. In real-
ity such atheoretical work, regardless of replicability, could
never have entered the literature had due process as out-
lined in Figure 2 been followed. Asking nature 20 questions
without a computational model leads to serious theoretical is-
sues even if results superficially are deemed replicable (e.g.,
see: Devezer, Nardin, Baumgaertner, & Buzbas, 2019; Katz

et al., 2018).

A way forward

We can only change if we all accept Figure 2 is how other
sciences work, albeit in some cases implicitly, and radically
update how we view the place of modeling in psychology.
The first step is introspective: realising that we all already
do some modeling even if we are not aware of it. We all use
modeling, perhaps not formal, to some extent since we all
ascribe to frameworks and theories even implicitly. Without
formalising our assumptions, in the same way we explicitly
state the variables in traditional hypothesis testing, we can
never actually communicate efficiently. Thankfully, some
have started to demand for this kind of shift in our thinking
(e.g., Morey et al., 2018; Oberauer & Lewandowsky, 2019;
Szollosi et al., 2019; Wills, O’Connell, Edmunds, & Inkster,
2017).

The second step is pedagogical: to teach mentees using
open materials that this is neither extremely complex nor
requires any extra skills over those we already ask them
to master: programming, experimental design, literature re-
view, statistical analyses techniques (e.g., Wills et al., 2017;
Wilson & Collins, 2019). Modeling is a combination of the
above mixed with a conscious understanding of what the sci-
entist is subscribing to: the theory. Implementing assump-
tions about which psychological theory one agrees with and
is currently working within is a natural conclusion of years
of research and dedication to one’s field.

The third step is cooperative: we need to work together as
a field to insert modeling into more of our scientific endeav-
ours. For those who believe the replication crisis is a measure
of the scientific quality of a field and given that it has mostly
affected areas of psychology with less formal modeling, it
might be time to ask these areas explicitly to do modeling.
And by extension for modelers to publish more in these areas
— something which lately has been slowly happening, due in
part to the rise of data science as a field (e.g., consumer beha-
viour: Hornsby, Evans, Riefer, Prior, & Love, 2019; Riefer,
Prior, Blair, Pavey, & Love, 2017).

In order to ensure experiments result in data that can be
recollected with similar effects we must force theory build-
ing, because replicability in part depends causally on things
higher up the path (also see: Oberauer & Lewandowsky,
2019). Data that cannot be recollected and experiments that
cannot be replicated are important issues. However, the same
is true for theoretical accounts that cannot be instantiated as
code. In the same way that questions such as “should res-
ults of preregistered studies count as stronger evidence than
results of not preregistered studies?” questions like “should
results of computationally modeled studies count as stronger
evidence than those of studies with only a statistical model?”
should also be actively discussed by the whole field (e.g., see:
Szollosi et al., 2019).
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Thus, while it may superficially appear that we are at odds
with the great emphasis placed on the bottom few steps in
the path by those who are investigating replicability, we are
comfortable with this emphasis. We believe the proposals set
out by some to automate or streamline the last few steps (hy-
pothesis testing and data analysis) are part of the same solu-
tion (e.g., Lakens & DeBruine, 2020; Poldrack et al., 2019).
We imagine a "best of all possible" massively collaborative
future where scientists allow machines to carry out the least
creative steps, and thus, set themselves free to focus wholly
on computational modeling and theory generation.
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