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1 Introduction

This is a replication package created based on the data used in COVID-19’s
Impact on Agile Software Development.

1.1 Loading Data

The data used is available at Zenodo1. In this guide, we we use the excel data
called RawData excel.xlsx, but there is also a csv version available.

The statistical models were built and fitted using the brms (Bayesian regression
models using ‘Stan’) package [1] in R. Besides the brms package, there are a
couple of other libraries that need to be imported as well before loading the
data.

library(brms)

library(rstan)

library(openxlsx)

library(bayesplot)

library(ggplot2)

library(here)

The data is loaded into variable d, and the NA fields are coded as N/A.

d <- read.xlsx(here("data/RawData\_excel.xlsx" ), na.strings = "N/A" )

The command - dim(d) - is run to see how many rows and columns we have
in the data table d. If everything went well we should have 96 rows and 112
columns.

dim(d)

1https://doi.org/10.5281/zenodo.4916225
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There might be a need to deal with missing data, therefore, we performed
a complete case analysis to see how many rows that have complete answers.
Out of these 96 rows, only six entries have complete answers, which means
that some respondents skipped some questions or dropped out in the middle of
the questionnaire. This means that we have to deal with missing data in the
upcoming steps.

nrow( d[complete.cases(d), ] )

To check the data types, we run the command str(d).

str(d)

If everything went well, all rows should be of a numeric type, labelled as num.
An extract of the generated output is illustrated below.

'data.frame' : 96 obs. of 112 variables:

$ Number : num 1 2 3 4 5 6 7 8 9 10 ...

$ P_Q1_3C : num 1 2 2 1 2 2 2 2 2 3 ...

$ P_Q2 : num 26 7 3 8 7 8 5 6 5 8 ...

$ P_Q3_5C : num 3 4 2 4 2 2 2 3 2 4 ...

$ P_Q4_3C : num 3 3 3 3 1 1 3 3 3 1 ...

$ P_Q5_3C : num 1 1 1 1 2 1 1 1 1 1 ...

$ P_Q6_3C : num 3 1 3 3 2 1 1 1 1 2 ...

$ P_Q7 : num 5 3 3 7 20 4 2 1 2 1 ...

$ P_Q9_1_5L : num 2 1 1 2 1 1 1 1 1 1 ...

$ P_Q10_1_5L : num 5 4 5 5 5 5 1 5 1 5 ...

$ P_Q11_7C : num 3 3 3 3 4 3 NA 4 NA 3 ...

$ P_Q12_1_7L : num 2 2 2 6 2 4 NA 7 NA 5 ...

1.2 Data Cleaning

Out of a total of 111 questions (excluding open questions) from the question-
naire, 11 of the demographic questions were set as predictors (Q1-Q7, Q9-Q12),
and the rest as outcomes. Question Q8 (Which development methodology do
you mainly follow in your team/work now?) were removed from the data anal-
ysis, as mentioned in the thesis.

The predictors Q2 and Q7 were continuous variables, and were therefore stan-
dardized using scale() and recoded into two new variable names as shown below.

d\$P_Q2_s <- scale(d\$P_Q2)

d\$P_Q7_s <- scale(d\$P_Q7)
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1.3 Descriptive Statistics

Out of the 96 rows in the cleaned data set, there are 96 answers to the demo-
graphic questions Q1, Q3, Q4, Q5, Q6, Q9, and Q10. For Q2 and Q11, there
are 92 answers; for Q7 there are 93 answers; and for Q12, there are 91 answers.

Figure 1: Predictor: Gender
Figure 2: Predictor: Team Size

Figure 3: Predictor: Team Constella-
tion

Figure 4: Predictor: Domain
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Figure 5: Predictor: Continent Figure 6: Predictor: Role

Figure 7: Predictor: Years of Experi-
ence with Agile Software Development

Figure 8: Predictor: How the practi-
tioner worked before the pandemic

Figure 9: Predictor: How the respon-
dent work ”now” (at time of filling out
the questionnaire)

Figure 10: Predictor: Reason for work-
ing remotely
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Figure 11: Predictor: If the respondent feels forced to work remotely or not
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2 Model Design

Models were created for all 100 outcomes, Q13-Q26, including their sub ques-
tions. Throughout this guide, we will describe the procedure of the Bayesian
analysis with the example of one model. The model we use is Q16 as an outcome
variable, and eleven demographic questions as predictors. The same process is
done for all outcome models.

We begin by filtering out the outcomes we do not need for the creation of the
models, and store the data in a new data table called d16. This command leaves
us with 13 columns in the data table, namely Q1, Q3, Q4, Q5, Q6, Q7, Q9, Q10,
Q11, Q12, Q16 and the scaled variables Q2 s and Q7 s.

d16 <- d[-c(3,8,13:31,33:112)]

We then perform a complete case analysis of the data to avoid having to deal
with missing data. This means that we only keep the rows with values in each
one of the 13 columns for the analysis.

d16 <- d16[ complete.cases(d16), ]

Thereafter, we check the number of rows and columns, which is 76 and 13
respectively. This means that we have reduced the data set from 96 rows to 76
rows.

dim(d16)

2.1 Prior Predictive Checks

The command - get prior() - is run to see what kind of predictors the model
needs, and the list of the priors needed are stored in the variable p16.

p16 <- get_prior(

O_Q16_1_7L ~ 1 + P_Q1_3C + P_Q2_s +

P_Q3_5C + P_Q4_3C + P_Q5_3C + P_Q6_3C +

P_Q7_s + mo(P_Q9_1_5L) +

mo(P_Q10_1_5L) + P_Q11_7C + mo(P_Q12_1_7L),

data = d16,

family = cumulative)

p16

The predictors Q9, Q10 and Q12 were ordered categorical predictors, and were
therefore modeled with monoticity (which is done by enclosing the predictor
within mo()). We perform a sensitivity analysis of our priors, and choose weakly
informative priors to affect the model as little as possible. For most of the pre-
dictors, the priors were set to ’normal(0, 0.25)’ 2, and for the ordered categorical
(monotonic) predictors, the priors were set to ’dirichlet(2)’.

2normal(0, 0.25) corresponds to a normal distribution with a mean of 0 and a standard
deviation of 0.25
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p16$prior[1] <- "normal(0, 0.25)"

p16$prior[13] <- "normal(0, 2)"

p16$prior[c(20:22)] <- "dirichlet(2)"

Then we create the actual model, and start by only sampling from priors.

m_full16 <- brm(

O_Q16_1_7L ~ 1 + P_Q1_3C + P_Q2_s + P_Q3_5C + P_Q4_3C +

P_Q5_3C + P_Q6_3C + P_Q7_s + mo(P_Q9_1_5L) + mo(P_Q10_1_5L) +

P_Q11_7C + mo(P_Q12_1_7L),

family = cumulative(),

prior = p16,

sample_prior = "only" ,

control = list(adapt_delta = 0.95),

data = d16,

backend = "cmdstanr"

)

The output will look similar to the text below.

Compiling Stan program...

Start sampling

Running MCMC with 4 parallel chains...

[...]

Chain 1 finished in 1.1 seconds.

Chain 2 finished in 1.1 seconds.

Chain 3 finished in 1.1 seconds.

Chain 4 finished in 1.1 seconds.

[...]

All 4 chains finished successfully.

Mean chain execution time: 1.1 seconds.

Total execution time: 1.3 seconds.

When we have samples from only the priors, we do a prior predictive (pp) check
to make sure that our priors affect the empirical data as little as possible. The
result can be seen in Figure 12 and shows that means are approximately uniform
and that the intervals are of approximately the same size.

pp_check(m_full16, type = "bars" , nsamples = 500)
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Figure 12: Plot from pp check() (prior predictive check).

2.2 Sample With Data

After setting the priors we can create the final model and sample with real data.

m_full16 <- brm(

O_Q16_1_7L ~ 1 + P_Q1_3C + P_Q2_s + P_Q3_5C +

P_Q4_3C + P_Q5_3C + P_Q6_3C + P_Q7_s + mo(P_Q9_1_5L) +

mo(P_Q10_1_5L) + P_Q11_7C + mo(P_Q12_1_7L),

family = cumulative(),

prior = p16,

data = d16,

backend = "cmdstanr"

)

The output from the sampling will look similar to the text below, and as seen,
this step takes longer time then the previous sampling.

Compiling Stan program...

Start sampling

Running MCMC with 4 parallel chains...

[...]

Chain 4 finished in 16.9 seconds.

Chain 2 finished in 17.4 seconds.

Chain 3 finished in 17.4 seconds.

Chain 1 finished in 17.7 seconds.

[...]

All 4 chains finished successfully.

Mean chain execution time: 17.3 seconds.

Total execution time: 17.9 seconds.
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2.3 Diagnostics

After having fitted the model and sampled from the observed data, we check for
some of the model’s diagnostics: divergence, energy, tree depth, effective sample
size (ESS), and Rhat.

First, we check the Hamiltonian Monte Carlo (HMC) diagnostics.

check_hmc_diagnostics(m_full16\$fit)

The output is shown below, and illustrates a desired result, that is, no diver-
gences, no saturation of the maximum tree depth, and no pathological behavior.

Divergences:

0 of 4000 iterations ended with a divergence.

Tree depth:

0 of 4000 iterations saturated the maximum tree depth of 10.

Energy:

E-BFMI indicated no pathological behavior.

Thereafter, we check the ESS, which should not be below 0.1. In this case ESS
is approximately 0.41, which is fine.

min(neff_ratio(m_full16), na.rm=TRUE)

Rhat should go towards 1.00, and if it exceeds 1.01, it is an indication of bias.
In this case, Rhat = 1.001462, which is fine.

max(rhat(m_full16), na.rm=TRUE)

One additional way to check the diagnostics is to plot a trace plot using mcmc trace().

mcmc_trace(

m_full16,

pars = c("b_P_Q1_3C" , "b_P_Q2_s" , "b_P_Q3_5C" , "b_P_Q4_3C" , "b_P_Q5_3C" , "b_P_Q6_3C" , "b_P_Q7_s" , "b_P_Q11_7C" , "bsp_moP_Q9_1_5L" , "bsp_moP_Q10_1_5L" , "bsp_moP_Q12_1_7L" )

)

The plots should look like fat hairy caterpillars as seen in Figure 13, which
means that the chains are well-mixed.
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Figure 13: A trace plot for some of the estimated parameters, where fat hairy
caterpillar plots indicate a good result.

2.4 Posterior Predictive Checks

Similar to how we performed prior predictive checks, we also performed posterior
predictive checks in order to check how well the model estimated the different
levels of the outcome.

pp_check(m_full16, type = "bars" , nsamples = 500)

In this case we have seven levels, and as seen in Figure 14, the model estimated
perfectly on four levels, and slightly above or below on the other levels.

Figure 14: A posterior predictive check of how well the model estimated the
different levels of outcome Q16.
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3 Model Comparison

As all of the outcome variables were of an ordinal categorical type, there were at
least three different types of models to choose among: cumulative, sequential,
or adjacent-category [1]. To decide which likelihood to use for the model, we
built one model of each of the three aforementioned types, and then performed
a model comparison. The following example illustrates three different models
with only one predictor.

m_c <- brm(

O_Q16_1_7L ~ 1 + P_Q2_s,

family = cumulative(),

data = d,

backend = "cmdstanr"

)

m_ac <- brm(

O_Q16_1_7L ~ 1 + P_Q2_s,

family = acat(),

data = d,

backend = "cmdstanr"

)

m_sr <- brm(

O_Q16_1_7L ~ 1 + P_Q2_s,

family = sratio(),

data = d,

backend = "cmdstanr"

)

The model comparison was performed using loo(), as seen below.

loo(m_c, m_ac, m_sr)

As seen in Table 1, the model comparison did not show any significant differ-
ence between the different types of models, and we therefore settled on using
the cumulative family (model m c in the example below) since it is rooted in
mathematical theory [2] and usually suitable for Likert-item data [1].

Table 1: Model comparison using loo(), which shows that there is no significant
difference between the different types of models.

model elpd diff se diff elpd loo estimate elpd loo SE
m c 0.0 0.0 -153.7 4.6
m ac -0.1 0.5 -153.9 4.6
m sr -0.6 0.7 -154.3 4.5
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4 Estimates and Effects

Significant effects are identified by either comparing the values of the lower and
upper credible interval (CI)3 values of the population level effects for the given
outcome and predictors, as seen in Table 2, or by plotting probability densities,
as seen in Figure 15. An effect is significant if the CI values do not include zero,
that is, both the lower and upper CI are negative or positive [3].

4.1 Parameter estimates

To determine what effects that are significant, we run the command summary()
to get the population level effects.

summary(m_full16)

An extract of the population level effects are listed in Table 2. As described,
an effect is significant if both the lower and upper CI values are located on the
same side of zero, and as seen in Table 2, only one of the predictors is significant,
namely moP Q12 1 7L, which affects the outcome negatively.

Table 2: Population level effects on Logit-scale. Significant effects are marked
in bold.

Variable Estimate Est. Error l-95% CI u-95% CI
P Q1 3C 0.05 0.21 -0.35 0.46
P Q2 s 0.19 0.17 -0.15 0.53
P Q3 5C -0.19 0.14 -0.48 0.09
P Q4 3C 0.05 0.18 -0.30 0.40
P Q5 3C -0.15 0.23 -0.60 0.29
P Q6 3C -0.15 0.19 -0.52 0.22
P Q7 s 0.20 0.16 -0.11 0.52
P Q11 7C -0.01 0.11 -0.22 0.20
moP Q9 1 5L -0.01 0.17 -0.35 0.32
moP Q10 1 5L 0.28 0.20 -0.11 0.68
moP Q12 1 7L -0.31 0.10 -0.51 -0.12

3The CI reflects the uncertainty interval and is referred to as confidence intervals in fre-
quentist statistics [3]
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As an illustration on how to visually determine what effects that are significant,
we plot the posterior probability effects using the command mcmc areas(). The
result is illustrated in Figure 15).

mcmc_areas_ridges(

m_full16,

regex_pars = c("^b_P" , "^bsp_mo" ),

prob = 0.5,

prob_outer = 0.95

)

Figure 15 illustrates probability densities for each predictor of outcome Q16
(self-reported productivity). Similarly to the CI values, the density plots that
do not cross zero represent a significant effect. By examining the figure, only
one of the density plots do not cross zero, namely the density plot for Q12 in the
bottom of Figure 15. In other words, Q12 is the only significant predictor for
this model, and this significance means that on the 95%-level, Q12 significantly
negatively affects the outcome.

-0.4 0.0 0.4

b_P_Q1_3C
b_P_Q2_s

b_P_Q3_5C
b_P_Q4_3C
b_P_Q5_3C
b_P_Q6_3C
b_P_Q7_s

b_P_Q11_7C
bsp_moP_Q9_1_5L
bsp_moP_Q10_1_5L
bsp_moP_Q12_1_7L

Figure 15: Posterior probability densities plotted on a logit scale for outcome
Q16. The curves correspond to 95% probability and the shaded area corresponds
to 50% of the probability. The only significant predictor was Q12, which is
located at the bottom of the figure. Predictor Q2, Q7, and Q10 showed some
tendencies toward positive significance, whereas Q3 and Q6 showed tendencies
toward negative significance. Predictor Q1, Q4, Q11 and Q9 were clearly not
significant.

By examining Figure 15, it is also possible to identify potential tendencies of
significance. In this case, we interpret an effect as having a tendency of sig-
nificance if 50% of the density is located on one side of zero. This means that
predictor Q2, Q7, and Q10 show some tendencies toward positive significance,
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whereas Q3 and Q6 show tendencies toward negative significance. Predictor
Q1, Q4, Q11 and Q9 are clearly not significant.

4.2 Conditional Effects

A significant effect can be further investigated by plotting the conditional effects
for a given estimate. Since we know that Q12 is a significant predictor for Q16,
we use Q12 in this example. When plotting conditional effects, the default is
set to treat predictions as continuous variables, but by setting categorical to
TRUE, it is possible to plot conditional effects per category. Below, the first
block of code generates the graph in Figure 16, and the second block of code
generates the graph in Figure 17.

conditional_effects(

m_full16,

effects = "P_Q12_1_7L"

)

conditional_effects(

m_full16,

effects = "P_Q12_1_7L" ,

categorical = TRUE

)

Figure 16: Conditional effect for out-
come Q16 (on y-axis) and predictor
Q12 (on x-axis). Outcome Q16 has
seven levels, ranging from much less
productive (1) to much more produc-
tive (7), and with same as before in-
between (4). Feeling forced to work
remotely ranges from strongly disagree
(1) to strongly agree (7), with neither
disagree nor agree (4) in the middle.

Figure 17: Categorical conditional ef-
fects for outcome Q16 (on y-axis) and
predictor Q12 (on x-axis). Each color
represents a specific level of the ordered
categories of Q16, and the shaded areas
represents uncertainty.

In Figure 17, each color represents a specific level of the ordered categories of
Q16. The shaded areas represents uncertainty. Outcome Q16 has seven levels,
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ranging from much less productive (1) to much more productive (7), where 1 is
red and 7 is pink. The purple slope corresponds to category 6 (more produc-
tive) and shows how the probability mass for category 6 is negatively affected by
higher values of predictor Q12. Similarly, but in the opposite direction, for cate-
gory 2 (less productive), the probability mass increases the higher value of Q12.
This means that the more forced a practitioner feels to work remotely, the less
probability mass is set for feeling more productive and more probability mass
is set for feeling less productive. In other words, the more forced a practitioner
feels to work remotely, the less productive he/she feels. The same conclusion
is also found by examining Figure 16, in which the negative slope shows that
not feeling forced to work remotely (low value on the x-axis) is associated with
higher productivity, whereas feeling forced to work remotely (high value on the
x-axis) is associated with lower productivity.

To plot all of the effects from the model at once, we leave out the argument
’effects’ in the command.

conditional_effects(m_full16)

This way, the command will generate a graph for each effect, and ask you to hit
’Return’ to plot the next one, as shown below.

Hit <Return> to see next plot:

As the model contains eleven predictors, eleven graphs will be generated. Since
the graph for Q12 is already shown in Figure 16, we only show the other ten
effects below.

Figure 18: Predictor: Gender Figure 19: Predictor: Team size
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Figure 20: Predictor: Team constella-
tion

Figure 21: Predictor: Domain

Figure 22: Predictor: Continent Figure 23: Predictor: Role

Figure 24: Predictor: Years of experi-
ence

Figure 25: Predictor: Work setting be-
fore the pandemic

Figure 26: Predictor: Work setting
during pandemic

Figure 27: Predictor: Reason to work
remotely
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