
Introduction

However, because the pixel scale of the on-board sky cameras of the TESS mission is 22 arcseconds per
pixel, light from background stars inevitably contaminates the pixels that are also recording light from the
star under investigation.2 This may lead to false positives from a variety of eclipsing binary scenarios that
are not transiting exoplanets. This necessitates photometric follow-up monitoring of TESS candidates at
finer angular resolutions in order to further characterize these dips in brightness. This has prompted us to
pursue full automation of the process with the 0.8-meter Ritchey-Chrétien telescope at George Mason
University (GMU), using an asynchronous object-oriented approach in Python. The facility had previously
been manually operated by a combination of webcams, TheSkyX, ASCOM Dome, MaxIm DL, RoboFocus,
and a weather station. There are many existing software tools for the automation of telescope and
observatory controls, including MaxIm DL, Robo-AO4, the MINERVA control software,5 DEMONEX6, and
other professional and commercial software packages. However, we chose to develop our own custom
Python software optimized for both the George Mason Observatory hardware setup and science
observation goals. The development of our automation software has been ongoing since 2018 and is
available on GitHub at https://github.com/Kakon24/OmegaLambda.

Software Structure & Design
We have structured the automation software for our campus telescope on the principles of object-
oriented programming and multithreading, to run in Python on a Windows 10 operating system. Each
hardware device, including the charge-coupled device (CCD) camera, telescope mount, dome, flat-field
lamp, and focuser, was given its own Python class, each with their own attributes and methods, as
well as their own CPU thread to allow for actions to be performed simultaneously and asynchronously
across hardware devices. These hardware modules, along with the data input/output (I/O) module,
form the foundation upon which our core systems and higher-level structures are built.

These higher-level structures rely on the interplay of multiple hardware components, and they include
automated focusing on the target, taking dark and flat-field images for data calibration and reduction,
active guiding (i.e. keeping the stars in a stable position in the image frame by making corrections to
the small errors between our telescope’s passive tracking and the Earth’s rotation), monitoring the
local weather conditions, and even monitoring the status of each thread of the code itself. A flowchart
of how all the modules of the code interact is shown in figure 2. In this poster, we assess two of these
modules: the automated focusing and guiding, as well as the general quality of data collected.
Focusing
The goal of our focusing module is to efficiently achieve and maintain an optimal focus. Variable
atmospheric conditions sometimes rapidly affect focus quality, and our software and hardware impose
additional constraints on our measurements. The quantity of measure that we use to assess focus
quality is the full-width at half-maximum (FWHM) of the starlight’s point-spread function (PSF).
However, because we want to avoid unintentionally driving the focus mechanism too far in one
direction, and to save time on focusing, we have chosen to codify the assumption that the initial focus
position is already close to the optimal position, which is true in most cases, and perform a simple grid
search for the initial focus. Then, we adopt a linear temperature-dependent model to adjust the focus
over the course of the night as the dome cools to atmospheric temperatures, where we parametrize
the focal drift as 2 steps/℉ inwards (1 step ≅ 12.7 μm). This is purely an empirical estimate, and we
defer detailed characterization of its effectiveness and other parameters (i.e. the telescope’s gravity
vector) to future work.
Guiding
The guiding module tracks the movement of stars between images and adjusts the telescope’s
position to make corrections. This is done by reading the brightness values of the pixels in the images
we collect, finding the peaks, and comparing them to the peak positions in previous images. The
difference in position is calculated, converted into arcseconds, and a damping coefficient is applied
before sending the telescope jog instructions to prevent overcorrection.

A Flexible Python Observatory Automation Framework for the George Mason University Campus Telescope

Abstract

We present a unique implementation of python coding in an asynchronous object-oriented framework to
fully automate the process of collecting data with the George Mason University Observatory’s 0.8-meter
telescope. The goal of this project is to streamline the process of collecting research data and monitoring
weather, most often for follow-up observations for the TESS mission. We have automated slews and dome
movements, CCD exposures, saving FITS images, focusing and guiding on the target, and taking calibration
images (darks and flats). We also have automated periodically checking weather conditions to automate the
decision-making involved in whether a shutdown is necessary. We are now able to input the specifications
of the desired target in a user-friendly GUI that generates an input configuration file and launches the
command-line code at the beginning of the night. The code, in its current state, has been tested and used
for observations without error on at least 110 nights.

Michael Reefe1, Owen Alfaro1, Shawn Foster2, Peter Plavchan1,2, Nick Pepin1, Monica Vidaurri3, Kevin Collins1, Justin Wittrock1, Patrick Newman1, Mary Jimenez1, Michael Bowen1,
Kevin Eastridge1, Taylor Ellingsen1, Deven Combs1, John Berberian1,4, Natasha Latouf1, Catilin Stibbards1, David Vermilion1,3, Kingsley Kim1,5, Sudhish Chimaladinne1,5,
Shreyas Banaji1,6

1. Department of Physics and Astronomy, George Mason University, 4400 University Dr, MS 3F3, Fairfax VA, USA, 22030
2. Department of Physics and Astronomy, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester NY, USA, 14623
3. NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt MD, USA, 20771
4. Woodson High School, 9525 Main St, Fairfax VA, USA, 22031
5. Thomas Jefferson High School, for Science and Technology, 656- Braddock Rd., Alexandria, VA, USA, 22312
6. Flint Hill School, 3320 Jermantown Rd., Oakton, VA, USA, 22124

Results & Discussion
TOI 2081.01

Focusing
As shown in figure 4a, on a clear night with relatively stable weather conditions, the code is able to step
through 11 unique focus positions, fit a positive-concavity parabola, and move to a minimum focus (the
minimum point of the parabola). In this case, the minimum was relatively close to the initial position,
which contributed to the success of the parabolic fit. During nights where the initial focus position is not
close to the minimum position, however, our focus algorithm is unable to find a minimum because it
obtains an incomplete picture of the parabola. An example of this is shown in figure 4b, where the data
points form an almost linear fit shape.

Guiding
Figure 5 shows a comparison between a night when the automated guider was utilized (5a) against a
night when it was not (5b). The large jump in 5b is likely due to a manual telescope jog to re-center the
star. It is visible from 5a that we have been able to keep star positions steady and actively guide with an
RMS as low as 3.23 pixels, or 1.2’’. This is a vast improvement to the non-guiding RMS as high as 64.4'', a
reduction of over 98% in both directions. This is also beneficial to our photometry and modeling efforts
post-observation, as having a more stable pixel position will eliminate noise from differences in pixel
sensitivities, bad pixels, and the gradual motion of the telescope. In general, the guider works this well
in all but the most cloudy conditions. However, since we guide on the science images, we must rely on
the cadence of the target's exposure times for guiding.

Conclusions
We have implemented an asynchronous and object-oriented framework where each piece of
hardware and higher-level function is associated with a Python class. By building upon these base
hardware classes and creating higher-level modules for important observing tasks, our software can
monitor weather, acquire targets, focus, guide, and collect data and calibrations before shutting
down. The reduction and analysis results from TOI 2081.01 have demonstrated the base
functionality of our automation software, and its ability to collect data with a quality on par with, or
even marginally above, our manual observations due to the increase in pixel stability provided by
our active guiding module that has reduced red noise from pixel sensitivity variations. The focusing
module, while it performs well in ideal weather conditions, has room for improvements in its
interpretations of torus-shaped defocused PSFs.

We have observed TESS candidate exoplanets with
our automation software without error for at least
110 clear nights and counting (not including
testing nights). We first present an overview of an
example transit event attributed to TOI 2081.01,
an exoplanet orbiting the star TOI 2081 (or UCAC
716-056861), on the night of UT 2021 May 13.
The data was obtained using our automation
software. Observations were performed in the R
band, as is typical of our observatory, and
observations began about 2 hours prior to the
transit to achieve a sufficient photometric
baseline. Midway through the transit, the code
automatically determined that it was too cloudy
to continue observations based upon satellite data
and closed the dome. In about 1 hour, conditions
cleared again, and the code was able to
automatically resume observing the egress of the
transit, allowing us to recover a robust detection
of the transit.

Figure 3: TOI 2081.01 transit light curve

The data was reduced, and aperture photometry was performed using an AstroImageJ7
software pipeline. The deep transit can be seen in figure 3.

Figure 4:
Left – 4a, the focus
FWHM positions on a
night with ideal initial
conditions

Right – 4b, the same as
4a, on a night with less
ideal initial conditions.

Figure 5:
Left – 5a, the guider x
(green) and y (red)
pixel positions over
the course of a night,
while the active
guiding was being
used.

Right – 5b, the same
as 5a, on a night
where the active
guiding was not being
used.

Figure 2: Automation code structure flowchart

Figure 1:
Picture of our 0.8-meter Ritchey-Chrétien telescope

References
1. W. J. Borucki, D. Koch, G. Basri, et al., “Kepler planet-detection mission: Introduction and first results,”

Science 327(5968), 977–980 (2010).
2. G. R. Ricker, J. N. Winn, R. Vanderspek, et al., “Transiting Exoplanet Survey Satellite,” Journal of

Astronomical Telescopes, Instruments, and Systems 1(1), 1 – 10 (2014).
3. D. Nesvorny and A. Morbidelli, “Mass and orbit determination from transit timing variations of

exoplanets,” The Astrophysical Journal 688, 636–646 (2008).
4. C. Baranec, R. Riddle, A. N. Ramaprakash, et al., “Robo-ao: autonomous and replicable laser-adaptive-

optics and science system,” Adaptive Optics Systems III (2012).
5. J. J. Swift, M. Bottom, J. A. Johnson, et al., “Miniature exoplanet radial velocity array i: design,

commissioning, and early photometric results,” Journal of Astronomical Telescopes, Instruments, and
Systems 1, 027002 (2015).

6. J. Eastman, B. S. Gaudi, R. Siverd, et al., “DEMONEX: the DEdicated MONitor of EXo-transits,” in Ground-
based and Airborne Telescopes III, L. M. Stepp, R. Gilmozzi, and H. J. Hall, Eds., 7733, 1243 – 1250,
International Society for Optics and Photonics, SPIE (2010).

7. K. Collins and J. Kielkopf, “Astroimagej: Imagej for astronomy,” (2013). Astrophysics source code
library.

The transit method became the most
successful method for discovering new
exoplanets with the launch of Kepler1 in
2009, and more recently, the Transiting
Exoplanet Survey Satellite (TESS) mission in
2018.2 By observing the dips in star
brightness as an exoplanet passes, or
‘transits,’ in front of its host star, we can
acquire knowledge about exoplanet
properties such as the radius, period, orbital
eccentricity, atmospheric transmission
properties, and in some cases additional
planets in the same system3. TESS has found
over 4000 exoplanet candidates during its
first three years of scientific operation,
monitoring ~500,000 relatively nearby and
bright stars.

https://github.com/Kakon24/OmegaLambda

