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Preface

The Sound and Music Computing Conference reaches its 18th edition!
This 18th Sound and Music Computing Conference (SMC 2021) is organized under the aus-

pices of the Sound and Music Computing Steering Committee.
SMC 2021 is an interdisciplinary forum to share music, thoughts, needs and discoveries in

this remarkable research topic that brings together art, technology, and human perception. SMC
2021 Topics of Interest include a wide selection of topics related to acoustics, psychoacoustics,
technologies for audio and music, audio analysis and synthesis, spatial sound, sonic interaction
design, music analysis, performance modelling, and many more.

In the original call for papers and works, SMC 2021 welcomed two types of contributions:

• Scientific contributions examining all the core topics of the Sound andMusic Computing field;
these contributions, which have been fully peer-reviewed, are presented as oral talks.

• Music contributions thatmake use of the possibilities that technology offers nowadays to create
music in a broad sense.

SMC 2021 received 123 full submissions: 79 scientific contributions, and 44 musical contribu-
tions.

Out of them, SMC 2021 features 50 oral presentations and 18 musical pieces.
SMC 2021 had the help of 92 scientific reviewers that performed 342 reviews to examine all

the submissions in order to compile the final Scientific Program. Based on recommendations from
the Scientific Committee, the Scientific Chairs have made the final decisions and organized the
presentation of the different contributions in twelve different Sessions.

In addition, since for two years in a rowwemissed the opportunity to visit the locations where
our community is working, we later welcomed a new type of contribution: Lab Presentations.
Nine institutions let us – virtually – in, allowing us to visit their spaces and learn more about their
activities and research.

SMC2021 features four keynote speakers (ChrisChafe, ScotGresham-Lancaster, EmiliaGómez,
Michele Ducceschi), all relevant members of the community in terms of scientific and artistic re-
search. Their contributions show the diversity of the community itself.

Finally, the music program is rich. It features a special event dedicated to David Cope, and
two open calls: a networked concert, and the screening of silent film sonorizations. The latter is
a project in collaboration with the National Museum of Cinema that we had started last year and
that we complete this year.

The conference takes place in a virtual format between June the 29th and July the 1st 2021.
We really thought we could leave COVID-19 behind us in 2020 but the persisting situation has

forced us to rethink our 2021 edition. We strongly supported the decision of keeping the yearly
schedule of the conference.

“Did we learn anything from COVID-19?”. This question is still very much on the table.
Surely, we have become acquainted -even obsessed- with online resources. But we have also

gained awareness of the inescapable need to meet personally, physically. So, the theme of SMC
2021 is “Reconnecting spaces”. Even if forced again, hopefully for the last time, to meet online, our
effort and hope is to keep our community (aworldwide one) tightly integrated, and also to expand
it. Having organized the conference online since the first call, we have received contributions from
researchers that probably would never have come to the physical edition.
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For the second time this year, we are making a choice which is rooted in science and in pol-
itics. Is it useful to keep access to an online conference reserved to a closed group of registered
participants? We do not think so. Again, this 2021 edition is open to anyone with an internet
connection.

Huntington/Delft/Torino, June 2021
Davide Andrea Mauro, Simone Spagnol and Andrea Valle

SMC 2021 General Chairs
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Keynote 1

Chris Chafe
Unlocking Musical Performances During the Lockdowns

The presentation will feature performances from the year of COVID-19 quarantines largely
focused on how traditional ensembles could be reconstituted online from home. New technical
work and new discoveries about the capabilities of today’s network and computing infrastructure
have happenedwith contributions fromvolunteer code contributors companies, a new foundation,
and several computer music research centers. Above all improvements have been driven by the
musicians who have taken part. The pandemic has ushered in a new phase of development driven
by musicians seeking solutions, particularly ease of use and the ability to scale across worldwide
cloud infrastructure. With orchestral-sized ensembles urgently in need of ways to rehearse on
the network and most participants running their systems over commodity connections, this “new
reality” runs counter to what’s required for ultra-low-latency rhythmic synchronization. JackTrip
which has generally been run as a native software application is now complemented by dedicated
solutions including numerous Raspberry Pi-based systems, standalone physical web devices, and
browser-based WebRTC and Pure Data versions. I conclude with some thoughts about how in
our physical realms we’re creatures who listen and function with inherent delays and Internet
Acoustics is a new realm into which we’re expanding. Pre-COVID, that was more on the level of
a thought experiment and now we’re accelerating towards it.

About the speaker
ChrisChafe is a composer, improvisor, and cellist, developingmuchof hismusic alongside computer-
based research. He is Director of Stanford University’s Center for Computer Research in Music
and Acoustics (CCRMA). In 2019, he was International Visiting Research Scholar at the PeterWall
Institute for Advanced Studies The University of British Columbia, Visiting Professor at the Po-
litecnico di Torino, and Edgard-Varèse Guest Professor at the Technical University of Berlin. At IR-
CAM (Paris) and The Banff Centre (Alberta), he has pursuedmethods for digital synthesis, music
performance and real-time internet collaboration. During the pandemic he’s released an album,
“Time Crystal” on Ravello Records, performed over 60 concerts online and been a contributor to a
large volunteer effort for improvements to networkmusic performance. At CCRMA he is involved
in research into wavefield synthesis for physical models and learning from his co-workers about
deep machine learning networks for music prediction and how quantum computing technologies
can be introduced into music making.

http://chrischafe.net/
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Keynote 2

Scot Gresham-Lancaster
Computer Network Music - An Examination of the Roots of a New Genre of
Computer Music

A new genre of music practice where interactions of networks of personal computers generate
note and sound choices is described. It is the speakers feeling that this approach grew directly out
of cultural sense of a collective technological utopia. This approachwas realized by the availability
of personal computer technology and networking. Initially practiced by a community of electroa-
coustic composer/performers from the San Francisco Bay Area circa 1978, it spread to become
encompassed in practices of many laptop composers in a variety of ways. There is an important
distinction to between work made between heterogeneous collectives starting with the League of
Automatic Music Composers and homogeneous “Laptop Orchestras”.

About the speaker
Scot Gresham-Lancaster is a composer, performer, instrument builder, and educator. He is a Re-
search Scientistwith the startup StrangeData LLC andVisitingResearcher at CNMATUCBerkeley.
The focus of his research is in the sonification of data sets in tight relationships with visualizations,
(multimodal representations). As amember of the HUB, he is an early pioneer of networked com-
puter music and has developed many “cellphone operas”. He has created a series of co-located
international Internet performances and worked developing audio for several games and interac-
tive products. He is an expert in educational technology.

http://scot.greshamlancaster.com/
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Keynote 3

Emilia Gómez
TROMPA: Towards Richer Online Music Public-domain Archives

In this talk, I will present the main approach and outcomes of the TROMPA Horizon 2020 Eu-
ropean project, which I have coordinated in the last years with researchers on the use of machine
and human intelligence for the enrichment of classical music archives. Classical music, although
a historical genre, it is continually (re)interpreted and revitalised through musical performance.
TROMPA intends to enrich and democratise publicly available classical music archives through a
user-centred co-creation setup. For analy-sing and linkingmusic data at scale, the project employs
and improves state-of-the-art technology. Music-loving citizens then cooperate with the technol-
ogy, giving feedback on algorithmic results, and annotating the data according to their personal
expertise. Following an open innovation philosophy, all knowledge derived is released to the com-
munity in reusable ways. This enables many uses in applications which directly benefit crowd
contributors and further audiences. TROMPA demonstrates this for music scholars, orchestras,
piano players, choir singers, and music enthusiasts.

About the speaker
Emilia Gómez is Lead Scientist of the HUMAINT project that studies the impact of Artificial In-
telligence on human behaviour, carried out at the Joint Research Centre, European Commission.
She is also a Guest Professor at the Department of Information and Communication Technologies,
Universitat Pompeu Fabra in Barcelona, where she leads the MIR (Music Information Research)
lab of the Music Technology Group and coordinates the TROMPA (Towards Richer Online Music
Public-domain Archives) H2020 project.
Emilia Gómez’s work has been involved in the Sound and Music Computing Network for many
years, contributing in several roles such as author, reviewer and board member. She has also
been serving the ISMIR community, being the first woman president of the International Society
for Music Information Retrieval. She is particularly interested in improving gender and cultural
diversity of our research field.

http://www.emiliagomez.com/
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Keynote 4

Michele Ducceschi
Real-time, Large Scale Physical Modelling Sound Synthesis

Physical modelling sound synthesis has long roots. In fact, the first ever example of a par-
tial differential equation dealt with the musical problem of the vibrating string, which puzzled
the minds of the most renowned scientists of the mid-1800s. The ideas that came into existence
during this “vibrating string controversy” established the foundation of early physical modelling
synthesis techniques, from digital waveguides to modal methods. Today, mainstream numerical
methods can be employed to solve complex mathematical equations using just a fraction of the
available CPU. But things are not straightforward, and considerable effort is spent in the design
of suitable integration algorithms. In this talk, a coarse review of the leading ideas in physical
modelling sound synthesis will be given. In the second part, illustrative examples of typical ob-
jects (oscillators, strings and plates) will be shown. Finally, demos of advanced physical models
(a plate reverb, and a spring-bar network called Derailer) will be played. The demos are freely
available for download at www.physicalaudio.co.uk.

About the speaker
Michele Ducceschi currently serves as Principal Investigator for the European Research Coun-
cil (ERC) Starting Grant NEMUS. This is a 5-year project aiming at synthesising the sound of
historical musical instruments, that are currently out of playing condition. Previously, he was a
Leverhulme Early Career Fellow (2017) at the Acoustics and Audio Group at the University of Ed-
inburgh, Scotland. Hewas also a Royal SocietyNewton International Fellow (2015) and part of the
NESS project. Ducceschi’s research deals primarily with the sound synthesis of acoustic instru-
ments by physical modelling. He is particularly interested in the efficient simulation of nonlinear
systems, either lumped or distributed, and he is also interested mechanical reverberation.

http://mdphys.org
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University of Iceland - Acoustic and Tactile Engineering (ACUTE) Lab

We will present a research and development project which two research groups at the
University of Iceland that are working together on. The project is on developing an
acousto-vibrotactile solution that with the purpose of increasing music enjoyment of
cochlear implant recipients. The two research groups are Acoustic and tactile engineer-
ing (ACUTE) located in the faculty of Industrial Engineering, mechanical Engineering
and Computer Science and the Vision lab located in the faculty of Psychology.
We will also present other ongoing projects which ACUTE lab is working on, e.g. Virtual
acoustics and relating 3D scans of pinnas to measured HRFTs.
Acoustic related research at the University of Iceland is relatively new and for this reason
we would really appreciate the opportunity to present our work to SMC2021 attendees.
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Aalto University - Acoustics Lab

Tapio Lokki, Nils Meyer-Kahlen, Sebastian Schlecht, and Vesa Välimäki
Aalto University, Acoustics Lab, Department of Signal Processing and Acoustics, Espoo,
Finland

The professor’s and researchers working at the Aalto Acoustics Lab have prepared video
presentations and demos in the special facilities of the laboratory.
The laboratories were renovated in two years ago, so they are now in great shape. Most of
the video material is recorded binaurally so that it can be enjoyed well with headphones.
The spaces include the Large Anechoic Chamber named after its designer Lampio, the
Variable Acoustics Room Arni (named after Paavo Arni, a Finnish pioneer of variable
acoustic design), the Listening Room Otala (named after Prof. Matti Otala, who dis-
covered the transient intermodulation distortion), sound-proof listening booths, and a
Multichannel Anechoic Room called Wilska (named after the Finnish developer of an
early dummy head in the 1930s).
The Large Anechoic Room is the most silent place in Finland, with a background noise
level of -2 dB.Our anechoic demonstrations show the directivity of the humanmouth, dis-
tance decay, and a balloon pop completely free of reverberation. In the Variable Acoustic
Room Arni, the listeners can appreciate the dramatic changes in the room reverberation
caused by opening and closing all or some of the panels in all walls of the room.
The Listening Room demo will reveal what can be achieved with a multichannel audio
system containing a dozen large hi-fi loudspeakers. The Multichannel Anechoic Room
Wilska has over 40 small loudspeakers installed on a spherical grid.
In the demo, the audience can hear how the same excerpt of orchestral music can be
played in different concert halls, such as the Berlin Philharmonie and the Berlin Konz-
erthaus, using a virtual acoustic system developed at Aalto.
Furthermore, the video presentation will give information about the BSc, MSc, and doc-
toral education provided in the field of acoustics and audio technology at Aalto Univer-
sity.
All our teaching in MSc and doctoral levels is given in English.

https://www.aalto.fi/en/aalto-acoustics-lab
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University of Milano - Laboratorio di Informatica Musicale (LIM)

LIM - standing for Laboratorio di Informatica Musicale (Music Informatics Laboratory)
- is one of the main labs of the Department of Computer Science, Università degli Studi
di Milano. It includes 4 rooms equipped with music, multimedia and computer devices.
Established in 1985, under the direction of its founder Goffredo Haus LIM hosted com-
posers and renowned experts such as Angelo Paccagnini, Antonio Josè Rodriguez Selles,
Franco Donatoni and Dante Tanzi.
Research Topics:
• Sound & Music Computing
• Multilayer navigation of music contents
• Music Information Retrieval
• Sound synthesis and rendering in interactive contexts
• Technologies for music teaching and learning
• Cultural heritage preservation and exploitation

Standards for Music Representation
The LIM is actively involved in the creation of international standards for the represen-
tation of music information. In 2008 it played a key role in the standardization of the
IEEE 1599 format, and currently it is leading the revision of the standard. Additionally,
the LIM contributes to the revisions of the MIDI standard and to the W3C group on new
formats for music notation.

Projects and Collaborations
Along more than 30 years of activities, the LIM has taken part in national and interna-
tional scientific projects and has established collaboration with several institutions, in-
cluding: Teatro alla Scala, Bolshoi Theater, RAI Radiotelevisione Italiana, RSI Radiotelevi-
sione Svizzera, Microsoft, Verdi Orchestra of Milan, IEEE Computer Society, Ricordi His-
torical Archive, Italian Ministry of Cultural Heritage. Among the most notable projects,
relevant examples include the digitization and exploitation of the Teatro alla Scala archives,
the realization of the sound section of the National Science & TechnologyMuseum inMi-
lan, the release of multimedia products for Pearson, the project Bach Digital with the
Leipzig Bach Archiv, the realization of the music collection of the European Library of
Information and Culture (BEIC), the research on 3D audio for the NASA Charles Ames
Research Center.

Teaching
Within the degrees offered by the Computer Science Department, the LIM is the reference
research structure for education in topics related to sound and music computing. The
study path is structured as follows:
• Bachelor degree in Music Informatics;
• Master degree in Computer Science, with a major in Music Informatics;
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• PhD in Computer Science, with research topics in Sound and Music Computing.
Within the bachelor degree, the LIM staff is in charge of courses in Acoustics, Databases,
Economy of Musical Heritage, Informatics for Music, Informatics for Sound, Legal As-
pects of Music Information, Methods and Technologies for Music Publishing, Models of
Music Perception, Music Semiotics, Digital Technologies for Music Information Restora-
tion. Within the master degree, the LIM staff is in charge of courses in Audio Pattern
Recognition, MIDI Programming, Music Programming, Organization and Digitization
of Multimedia Archives, Sound in Interaction, Timbre Programming.

Equipment
LIM assets include a research lab (approx. 100 m²), a silent booth and a large acoustically
insulated room with reconfigurable internal acoustics. The lab is equipped with dedi-
cated instrumentation, including devices for the digitization and restoration of analog
audio materials, MIDI chains, and electronic musical instruments.

https://www.lim.di.unimi.it/
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University of Trento - Creative, Intelligent and Multisensory Interactions Laboratory
(CIMIL)

The Creative, Intelligent and Multisensory Interactions Laboratory (CIMIL) is one of the
research teamswithin theDepartment of Information Engineering andComputer Science
of University of Trento.
CIMIL is an interdisciplinary research lab committed to research on new forms of inter-
action and experience, based on emerging technologies. The aim is to be at the forefront
of innovation on various sectors, including the industrial, artistic and cultural ones. Our
vision is to design and create innovative technologies to solve real-world problems. We
believe that it is of crucial importance to understand the needs of people in order to design
technologies effectively capable of delivering optimal user experiences and addressing
community-driven problems.
To this end, CIMIL promotes an interdisciplinary research culture that brings together
diverse areas of interest and inquiry, including technology (engineering, computer sci-
ence), humanities (social sciences, ethics, experimental psychology), and art (music, in-
teractive installations).
Our work falls into four broad categories:
• Education: We teach students to design, develop and evaluate proof of concepts pro-

totypes of interactive systems that have intelligent and multisensory features.
• Basic research: We aim to devise novel hardware and softwaremultisensory technology

and improve existing ones, aswell as understand perceptions, behaviors and emotions
of their users.

• Applied research: We aim to support and empower specific user groups (both able-
bodied and disabled, such as the visually-impaired) by means of creative, intelligent,
and multisensory technology.

• Art and culture: We aim to explore new forms of artistic expression and production
(including performance, pedagogy, composition), as well as promote and preserve
cultural heritage.

https://www.cimil.disi.unitn.it/
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Aalborg University Copenhagen - Multisensory Experience Lab (ME-Lab)

TheMultisensory Experience Lab (ME-Lab) is based at Aalborg University Copenhagen,
Denmark. Ourwork is centered on the use of multisensory technologies (e.g., virtual and
augmented reality) and falls into three broad categories:
• Basic research: We aim to improve multisensory technology and understand its users

(e.g. perception, cognition, and affect).
• Applied research: We aim to assist and empower specific user groups by means of mul-

tisensory technology.
• Art and culture: We aim to explore new forms of artistic expression and preserve cul-

tural heritage using multisensory technology.
We are particularly interested in researching topics related to sonic interaction design for
multimodal environments, simulatingwalking experiences, sound rendering and spatial-
ization, haptic interfaces, cinematic VR and evaluation of user experience in multimodal
environments.
This video previews a selection of our previous work related to (1) novel music instru-
ments; (2) physical and virtual recreation of historical music instruments; (3) sound and
music computing applied to therapy, education, and training; and (4) simulated spaces
and real exhibits.

https://melcph.create.aau.dk.
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University of Padova - Centro di Sonologia Computazionale (CSC)

Sergio Canazza, Giovanni De Poli, Niccolò Pretto, Antonio Rodà, Alvise Vidolin
Centro di Sonologia Computazionale, University of Padova

Research in computer music at the University of Padua, Italy, began in the early 1970s and
was formalized in 1979 by establishing the Centro di Sonologia Computazionale (CSC).
During the years, CSC research moved in several directions, pushed by the advancement
of technology and knowledge and by researchers’ curiosity. In the virtual tour the re-
cent research topics will be shown in the area of musical cultural heritage, multimodal
interaction and music research-production.
An important theme is the preservation of musical cultural heritage, in particular for art
forms inwhich technology had played an important role, such as electronic and computer
music (in which composers worked directly with magnetic tape) or interactive multime-
dia installations. It is motivated by the awareness of technological obsolescence and the
historical importance of the music works realized at CSC. The main results on preserva-
tion and enhancement of musical cultural heritage will be presented, such as philologi-
cally informed conservation of audio documents, access tools which recreate the experi-
ence of the original analogue devices, installations to virtually play historical andmodern
musical instruments, preservationmethodologies of interactivemultimedia installations.
Themultimodal interaction research opened up important new societal fields of research,
such as inclusive systems dedicated to learning for peoplewith special needs, usingmod-
eling for tracking of human motion and nonverbal 3-D sounds as a preferred communi-
cation channel. In our opinion, inclusive learning for participants with disabilities is one
of the most important and urgent aims in the new millennium.
Since the 2010s, CSC has been developing interactive applications based on large-scale
responsive environments and user-friendly involvement with expressive behaviour (for
teaching music or for tuition of the visually impaired), emphasizing the added peda-
gogical value of fun and competition. Regarding music research at CSC, scientists, re-
searchers, and technicians continue to collaborate with artists using the new art-science-
interaction laboratory and CSC know-how as a support for the innovation of expressive
forms in music, music theater, and interactive multimedia arts. In addition, CSC aims
to promote and encourage the production of works that use computer systems to control
and to createmusic, especially projects that use technologies developed in its laboratories.
It has also developed new interfaces to play instruments, necessary to control musical
timbre and the virtual space, stimulating the interest of many composers who believe
that the traditional keyboard is not suited to simultaneously control multiple parameters,
synthesis algorithms, and sound spatialization.
CSC is striving to be a leader in the ``Society 5.0’’ revolution, taking advantage of the fact
that music is a trans-cultural language. Currently, the CSC visions are to facilitate (1) the
inclusion of peoplewith special needs (e.g., multimodal interaction for learning andwell-
being, acoustic analysis for safety and security in theworkplace) and (2) dialogue among
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different cultures and populations (production of new cultural events, computing and
cultural heritage, preservation and enhancement of audio documents, and computational
creativity).

http://csc.dei.unipd.it/
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KTH Royal Institute of Technology - Sound and Music Computing (SMC) Group

Roberto Bresin, Kjetil Falkenberg, André Holzapfel, Sandra Pauletto
KTH Royal Institute of Technology, Stockholm, Sweden

The SMC Sound and Music Computing group1 at KTH Royal Institute of Technology in
Stockholm is a research group of about 20 people within the Division of Media Technol-
ogy and InteractionDesign, EECS School of Electrical Engineering andComputer Science.
The long-term vision of the team is ``to understand human communication and interac-
tion by sound and music so as to make them a natural part of everyday technology’’. We
work towards our vision through engagement in both educational and research activities.
Wegive a number of SMC-related courses at all three levels of education: Bachelor,Master
and PhD.
We actively involve students in ongoing research both as part of and beyond course ac-
tivities2. Among these activities are pilot experiments, prototype development, public
exhibitions, performing, composing, data collection, analysis tasks, and not least bache-
lor and master thesis projects that lead to academic publications. The major benefit for
research as we see it is the increased diversity of the research outcomes.
Our research covers a diversity of areas including music expression modelling, affective
computing, sensor-based movement analysis, sonification and data representation, sonic
interaction design, non-verbal communication in human robot interaction, methods for
media production, sound-based methods for rehabilitation/training, music information
retrieval, and computational ethnomusicology.
Our research has been funded through grants froma large set of funding bodies including
the European Commission, VR Swedish Research Council, Vinnova, NordForsk, MMW,
WASP-HS, Formas, The Swedish Retail and Wholesale Council, Hakon Swenson Stif-
telsen, PTS Swedish Post and TelecomAuthority, JSPS/Kakenhi, Swedish Energy Agency.
Our research group is part of the Nordic SMCHub network3 funded by NordForsk. Dur-
ing the years we have been organizing international conferences (such as the SMC con-
ference) and creating new ones, both national and international. We have a tradition of
active participation to several conferences (SMC,NIME, ICAD, ISMIR, ISon, TENOR,Au-
dio Mostly, WAC, INTED, CHI, HRI, TEI, ACII) to which not only senior researchers and
PhD candidates present their works but also undergraduate students. We continuously

1 Sound andMusicComputing group atKTH: https://www.kth.se/hct/mid/research/smc
2 Hansen, Bresin, Holzapfel, Pauletto, Gulz, Lindetorp, Misgeld & Sköld. (2019). Stu-

dent involvement in sound andmusic computing research: Current practices at KTH and
KMH. Combined Proceedings of the Nordic Sound and Music Computing Conference
2019 and the Interactive SonificationWorkshop 2019, 36–42. https://doi.org/10.5281/zen-
odo.3755825

3 NordicSMC hub https://nordicsmc.create.aau.dk/
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publish in both peer-reviewed international journals and conferences: since January 2019
we have published about 14 journal papers, 59 conference papers, and 5 book chapters.
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University of Oslo - RITMOCentre for Interdisciplinary Studies in Rhythm, Time and
Motion

Alexander Refsum Jensenius and Stefano Fasciani
University of Oslo

We propose a virtual tour of some music technology labs at the University of Oslo, Nor-
way, including:
• The Portal: This is a room set up for researching network music with several low-

latency audiovisual streaming systems and exploring the integration with other tech-
nologies such as spatial audio, motion capture, and virtual reality. The lab is central
to the activities of the Music, Communication and Technology master’s programme.

• The fourMs Lab: a lab used for studies of music-related body motion. It contains sev-
eral high-end motion capture and physiological sensing systems. It also has a mul-
tichannel audio setup. The lab is used by many researchers at RITMO Centre for
Interdisciplinary Studies in Rhythm, Time, and Motion.

• Musical Robotics Lab: a lab used for developing new musical robots, including proto-
typing.

• Additional labs and studios include electronics labs, video and sound studios.
In the video, we will also give an overview of ongoing sound and music computing re-
search activities. These include network music, music information retrieval, new inter-
faces for musical expression, musical robotics, and embodied music cognition.

https://www.uio.no/ritmo/english/
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Universitat Pompeu Fabra - Music Technology Group (MTG)

TheMusic Technology Group (MTG) of the Universitat Pompeu Fabra in Barcelona, part
of its Department of Information and Communication Technologies, carries out research
on topics such as audio signal processing, music information retrieval, musical interfaces,
and computational musicology.
The MTG wants to contribute to the improvement of the information and communica-
tion technologies related to sound and music, carrying out competitive research at the
international level and at the same time transferring its results to society.
To that goal, and guided by our values, the MTG aims at finding a balance between ba-
sic and applied research while promoting interdisciplinary approaches that incorporate
knowledge andmethodologies fromboth scientific/technological and humanistic/artistic
disciplines.
In our presentation we highlight the main research challenges we are currently work-
ing on and we emphasize how we promote social and industrial impact. The senior re-
searchers and staff of the MTG present the various topics and we also show the different
spaces of the university that we use.

https://www.upf.edu/web/mtg
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EQUALIZATION OF WOOD-PANEL LOUDSPEAKERS

Juho LISKI(juho.liski@aalto.fi)1, Jussi RÄMÖ1, Vesa VÄLIMÄKI1, and Otso LÄHDEOJA2

1Acoustics Lab, Dept. of Signal Processing and Acoustics, Aalto University, Espoo, Finland
2Sibelius Academy, University of the Arts Helsinki, Helsinki, Finland

ABSTRACT

This paper studies the acoustic properties of a tree or-
chestra consisting of four wood-panel loudspeakers and
proposes an equalizer (EQ) design for each loudspeaker.
Two design strategies for graphic equalization on Bark
bands are considered: a single- and a multi-point approach.
Asymmetries in the wood-panel speakers cause their mag-
nitude responses to vary so much in different directions
that the multi-point averaged EQ gets smoothed and does
not have much effect. A single-point EQ, designed based
on the frontal response, changes the magnitude response
more and improves the overall shape of the response sub-
stantially in front of the panels. The magnitude responses
at other measurement points are also improved. The EQ
does not attenuate the ringing of the wood-panel modes
much, thus retaining their resonant quality. The orches-
tra of equalized wood-panel speakers is used in a science
center to showcase acoustic properties of wood.

1. INTRODUCTION

Contrary to the neutral sound of moving-coil cone loud-
speakers, a more natural sound has been pursued with un-
usual types of sound reproduction methods. An example
is the panel loudspeaker comprising a wooden board and
actuators, which is studied in this work. This can basi-
cally be seen as the elemental form of a distributed-mode
loudspeaker [1]. Equalization of such speakers is studied
in [2]. Other constructions involving wood-induced sound
radiation are, for example, wooden boxes used as loud-
speakers, and actuators attached to existing wooden sur-
faces. All these follow the recent trend of hidden or invis-
ible sound [3–5]. Other materials such as glass have also
been tested in speakers [6–9].

The sound generation method studied in this paper is
called structure-borne sound, which is typically character-
ized by resonances, an unusual spatial image caused by a
large radiating surface, and sound localization behind the
radiating surface [10]. Furthermore, when multiple actu-
ators are attached to a panel, a complex superposition of
excited modes is obtained [11]. The resulting frequency
response thus contains heavy spectral coloration, and de-
pending on the application, equalization may be beneficial.

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

Sowden and Ampel [6] reported on the development of
professional/commercial planar loudspeakers, where they
experimented with various types of radiating surfaces.
They found that large surfaces typically attenuated the
high-frequency response, whereas a light, radiating panel
led to better efficiency. The radiating surface acts as a
dome radiator, with a frequency-dependent size, i.e., the
lower the frequency, the larger the size of the radiating sur-
face. Furthermore, the directivity varied less than with a
conventional loudspeaker, but less predictably.

Berndtsson presented measurements on “acoustic walls”
[12] and performed a perceptual study with such systems
[13]. The acoustic walls consist of pairs of boxes, where
the soundboard is made of a specially-treated spruce [12].
A loudspeaker coil driven by a large magnet is attached to
the soundboard, and it is fed by a compressed and equal-
ized microphone signal. Since their aim was to improve
room acoustics by adding more reverberation, the reso-
nance and sound radiation properties of the acoustic walls
were analyzed. The measurements showed that the sys-
tem deviated from an ideal one, and instead colored the
spectra [12]. The acoustic walls were shown to possess
complex radiation characteristics, and the resonances can
contribute to excessive reverberation times.

Lähdeoja et al. presented the measurements of a flat panel
speaker constructed of plywood [10]. They measured the
plywood, intended as a scenographic element to be viewed
and heard from different directions, and designed a finite
impulse response (FIR) equalizer (EQ) using the inverse
Fourier transform. Due to their application, they opted
for an averaged multi-point design procedure that resulted
in an acceptable compromise regarding the magnitude re-
sponses in different directions. The measurements showed
that without the equalization the audio output was heav-
ily dependent on the acoustic properties of the radiation
surface and its modes, which led to a heavily colored spec-
trum with emphasized resonant modes [10]. Other poten-
tial problems are the lack of perceived bass, a blurry bass
response, and a reduced dynamic range.

Cecchi et al. studied the effects of equalization on sound
transducers installed on existing surfaces, such as walls,
ceilings, or swimming pool walls [5]. They measured dif-
ferent vibrating surfaces in various environments and noted
that the resulting magnitude response is not flat in general.
Thus, a multi-point equalization procedure was applied to
enhance the sound quality. Both objective and subjective
tests indicated positive effects: resonances were reduced,
the magnitude response became flatter, and the overall au-
dio quality was improved [5].
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Figure 1. Sketch of the tree orchestra installation at the
Finnish Science Center Heureka (used with permission).
The control panel in the center allows the user to adjust the
volume of each speaker and select the program material.

This paper presents measurements of a “tree orchestra”
installation. This project is a commission from Heureka, a
science centre in Vantaa, Finland. As part of their 2020 ex-
hibition on wood called Wild Wild Wood, Heureka sought
to have an installation showcasing the music-related acous-
tic properties of wood in an engaging and aesthetically
attractive manner. In response to Heureka’s request, our
team at the Aalto Acoustics Lab and at the University
of the Arts Helsinki, joined by luthier Juhana Nyrhinen,
elaborated a design idea for a tree orchestra comprising
four wooden panels equipped with structure-borne sound
drivers. In order to allow for easy comparison between the
different panels, the installation contains audience interac-
tion in the form of playback controls. The work builds on
previous research on artistic use of audio-rate vibration in
solids [10], involving several sound art installations [14].
As the wood panels have a highly colored response, the
use of an EQ is considered helpful to improve the overall
sound quality. However, the goal is to retain the character-
istic wood resonances.

This paper is organized as follows. Section 2 describes
the design principles and the construction of the four
wood-panel loudspeakers. Section 3 focuses on the acous-
tic measurements and the EQ design for the wood-panel
speakers, comparing two different equalization strategies:
multi-point and single-point. Section 4 analyzes the results
and shows how the panels’ sound quality was improved us-
ing EQs. Section 5 concludes the paper.

2. DESIGN OF THE TREE ORCHESTRA

The installation is composed of four wood panels cut in
longitudinal sections directly from the trees, exposing the
tree’s internal structure as well as its contour. The core
idea is to play original composed music through the panels,
one instrument per panel, following the metaphor of a “tree
orchestra”. A sketch of the installation is shown in Fig. 1.

One of the authors (Otso Lähdeoja) composed a set of
four musical pieces and recorded them with an instrumen-
tal quartet comporting a cello, violin, clarinet, and flute.

Figure 2. Tree orchestra installation during the mixing of
the music program. From left to right: spruce, maple, goat
willow (Salix caprea), and apple.

A central design guideline was to use local Finnish wood
traditionally used in lutherie. The overall design targeted
strong visual appeal and character combined with opti-
mized audio quality.

The wood and musical instruments were assigned as
follows, with the approximate panel size in parenthesis
(height, width, depth): Spruce (250 cm × 40 cm × 2 cm)
– cello; maple (202 cm × 30 cm × 2 cm) – clarinet; goat
willow (183 cm × 22 cm × 1 cm) – violin; apple (161 cm
× 16 cm × 1 cm) – flute. The choice of the instrumen-
tal ensemble was made on aesthetic grounds, aiming for a
light, acoustic ensemble sound. The assignment of the in-
struments to the different wood panels was decided upon
testing how the unprocessed audio recordings translated
through each panel. Figure 2 shows the tree orchestra set-
up during the final mixing of the musical pieces.

The panels are equipped with audio transducers
(structure-borne sound driver) for sound output. Each
panel has one Tectonic Audio Labs TEAX32C30-4/B
transducer 1 and one Fischer Amps Bass Pump 3 2 . The
smaller actuator, TEAX32C30-4/B, has a reported fre-
quency range from 100 Hz to 20 kHz. The bass drivers
reportedly respond between 5 and 200 Hz. Thus, the two
transducers implement a built-in crossover, and they are
treated as one loudspeaker unit in this study.

The low-frequency drivers were placed in the lower half
of the panels and the treble drivers were placed in the up-
per half. Generally, the actuators were placed slightly off
the center line to reduce symmetric modes. The distance
between the two actuators also affects the generated vibra-
tions in the panels, and in this study, the distance was max-
imized while at the same time ensuring that they are not
placed too close to the top or bottom of the panels. Finally,
the exact location of the drivers on each panel was deter-
mined by ear due to the non-standard nature of the panels.

The transducers are driven by two Audac EPA104 D-

1 https://www.tectonicaudiolabs.com/wp-content
/uploads/2019/04/T-DS-TEAX32C30-4B_Rev-1.1.pdf

2 https://www.fischer-amps.de/drum_section.html
#article-253
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(a) Front (b) Rear

Figure 3. Placement of the maple panel loudspeaker in the
anechoic chamber: (a) the front and (b) the rear of the loud-
speaker, showing the bass actuator below the middle and
the treble actuator near the top highlighted with arrows.

class power amplifiers 3 . The audio is played back with a
custom-made four-track audio-player program, incorporat-
ing an interface allowing the public to mix between tracks
and their respective instruments. The audience interaction
rationale is to provide the public with an opportunity to en-
gage in active participation by navigating within the musi-
cal composition and the instrumentation of the installation
as well as to allow for a careful listening of each wood
panel’s specific sonic qualities.

3. MEASUREMENTS AND EQUALIZER DESIGN

3.1 Measurement Set-up

All the measurements were conducted in the large ane-
choic chamber in Aalto University’s Acoustics Lab. The
wood-panel loudspeakers were hung in the middle of the
chamber one at a time, as shown in Fig. 3, attached loosely
to the net floor in order to keep them still and facing the
microphones. This is also the way the wood-panel loud-
speakers are positioned in the tree orchestra installation in
the science center, as shown in Fig. 1. Furthermore, should
the wood-panel loudspeakers be positioned directly in con-
tact with the floor or other hard surface, their frequency
response would change due to the altered radiation prop-
erties, and their vibrations could be transmitted to the sup-
porting structures. The aim was to create an audio system
in which the sound radiates directly from the wood panels
and not through any of the supporting structures.

All wood-panel speakers were positioned with the bottom
edge about 15 cm above the net floor of the anechoic cham-
ber. The height of the panels varied from 161 to 250 cm,

3 https://audac.eu/Products/d/epa104---quad-cha
nnel-class-d-amplifier-4-x-100w---crossover

Panel speaker

2.5 m

1.0 m

30∘

Figure 4. Locations of three microphones in the front sec-
tor and one on the side of the panel.

and thus, the midpoint of the speakers in this set-up varied
from 99 to 140 cm. Figure 3 shows the placement of the
maple-panel speaker during the response measurement.

The response of the wood-panel speakers were measured
using five G.R.A.S Type 46AF 1/2-inch, free-field micro-
phones. Figure 4 illustrates the placement of the micro-
phones. Four microphones were placed at a height of 1.6 m
(those shown in Fig. 4) and one at a height of 1 m, cor-
responding to an assumed ear height for an adult and a
child, respectively. School children and families with small
children form a large portion of the visitors to the science
center. The four microphones were positioned 2.5 m away
from the loudspeaker at angles −30∘, 0∘, and 30∘. These
values were selected to approximate the audience position
in the installation. The “child” microphone was placed at
the 0-degree angle below the “adult” microphone. One mi-
crophone was placed at the side of the loudspeaker, at an
angle of 90∘, in order to verify how a dipole loudspeaker
of this type without a baffle radiates sound to the side.

The acoustic measurements were conducted by using a
5-second logarithmic sine sweep [15]. The actuators—two
per wood-panel speaker, as seen in Fig. 3(b)—were mea-
sured one at a time, as well as simultaneously. The play-
back level of the sweeps, i.e., the amplifier gain, was kept
constant throughout the measurements. Thus, all level dif-
ferences in the responses are caused by the different types
and sizes of the wood panels. The equalization was de-
signed based on these measurements (see Sec. 3.2), af-
ter which the equalized wood-panel loudspeakers were re-
measured to confirm that the magnitude response of the
loudspeaker actually changed as was intended (see Sec. 4).

3.2 Single-Point and Multi-Point Equalizer Design

Based on the first set of measurements, a cascade graphic
equalizer (GEQ) was defined to flatten the overall mag-
nitude response of each wood-panel loudspeaker. Since
the response of each wood type was measured with
multiple microphones, two different procedures were
tested: one based on averaged responses of several mi-
crophones (multi-point) and another based on a single re-
sponse (single-point). First, the magnitude responses were
smoothed using a one-sixth-octave averaging window in
order to decrease the effect of sudden changes in the mag-



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

6

10 30 100 300 1k 3k 10k
Frequency (Hz)

(d)

-12
-8
-4
0
4
8

12

Spruce

10 30 100 300 1k 3k 10k
(a)

-12
-8
-4
0
4
8

12

M
ag

ni
tu

de
 (

dB
)

Apple tree

10 30 100 300 1k 3k 10k
(b)

-12
-8
-4
0
4
8

12

Goat willow

10 30 100 300 1k 3k 10k
Frequency (Hz)

(c)

-12
-8
-4
0
4
8

12

M
ag

ni
tu

de
 (

dB
)

Maple

Figure 5. Single-point Bark GEQ responses for the (a) ap-
ple tree, (b) goat willow, (c) maple, and (d) spruce panel
speakers. The red circles are the command gains, or the
estimated corrections needed at each Bark band. The low-
est center frequency is 50 Hz and the highest is 13.5 kHz.

nitude response of the EQ. Next, the responses measured
with the four microphones in front of the wood-panel loud-
speakers were averaged. This was the baseline signal for
the multi-point EQ design procedure. For the second pro-
cedure, the smoothed response of microphone 1 (distance
2.5 m, height 1.6 m) was used as the baseline.

The EQ design requires only the command gains at the
band center frequencies. A recent neural-network con-
trolled Bark-band GEQ [16] comprising 24 bands was used
in this project. It was chosen due to its accuracy and low
computational load. The command gains for all bands
were estimated as follows. The target response was set to
be constant (flat) in the passband of the wood-panel speak-
ers, and so the smoothed baseline magnitude responses
specified above were additively inverted to determine the
gain required for a flat response. That is, the mean value of
the baseline response was first subtracted from the baseline
response in order to bring it to around 0 dB. Next, the dB
values at the Bark center frequencies were picked, and their
additive inverse values were stored as command gains. In
order to avoid excessive gains, a ±12-dB limit was set for
the maximum gain values. Furthermore, the gain for the
first band (50 Hz) was always set to zero so as not to over-
load the bass transducer. This way, two sets of command
gains were obtained from the two different design proce-
dures (single-point and multi-point).

The EQ design itself was based on a neural network: the
command gains were fed to a four-layer neural network,
which selected the optimal band-filter gains by accounting
for the interaction between adjacent Bark-band filters [16].
These filter gains were used to design a second-order fil-
ter for each Bark band of the GEQ, as described in [16].
The resulting EQ responses for each wood type are shown
in Fig. 5 for the single-microphone design method and in
Fig. 6 for the multi-point method. The required EQs for the
different wood-panel loudspeakers differ from each other,
demonstrating the different acoustic behavior of each wood
type and panel size. The comparison of Figs. 5 and 6 also
reveals that the two design methods produce completely
different EQ curves.
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Figure 6. Multi-point EQ responses for the wood-panel
loudspeakers, cf. Fig. 5.
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Figure 7. Measured impulse response and the correspond-
ing magnitude response (without smoothing) of the goat
willow panel at microphone 1 in front of the speaker.

The most striking difference between Figs. 5 and 6 is in
the range of correction: almost all large peaks and dips are
missing in the latter. The gains in Fig. 6 mainly range from
approximately −6 dB to 7 dB, whereas in Fig. 5, practi-
cally the entire range of ±12 dB is used except in the case
of the spruce-panel speaker. The explanation for this is that
the responses of the wood-panel loudspeakers vary greatly
as a function of direction (see the figures in Sec. 4), and
thus, when the EQ is designed based on averaged results
from different microphones, the effect of extreme values
dissolves, and the resulting EQ has little effect.

It was quickly noticed that the EQs in Fig. 5 produce
better results especially in the front direction (this is an-
alyzed further in Sec. 4). This is the most important direc-
tion for the wood-panel loudspeakers, since they will be
exhibited in a rather small enclosure, as shown in Fig. 1,
to avoid sound from radiating all over the exhibition space.
Thus, only a few listeners can enjoy the speakers at one
time, which allows us to concentrate on improving only
the sound radiating directly in front of the speakers. This
substantiates the choice of the EQs in Fig. 5. Their effect
was tested for each wood-panel loudspeaker by listening
to the combined effect of the actuators and the EQs to en-
sure no audible artifacts emerged due to the equalization.
Finally, the effect of the EQs was measured to verify their
behavior. These results are presented next.

4. RESULTS

This section reports the results for the two sets of mea-
surements: the wood-panel loudspeakers without and with



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

7

30 100 300 1k 3k 10k
 

20

30

40

SP
L

 (
dB

)

0 deg

30 100 300 1k 3k 10k

20

30

40
30 deg

(a) Apple tree

30 100 300 1k 3k 10k
 

20

30

40
0 deg

30 100 300 1k 3k 10k

20

30

40
30 deg

(b) Goat willow

30 100 300 1k 3k 10k
Frequency (Hz)

20

30

40

SP
L

 (
dB

)

0 deg

30 100 300 1k 3k 10k
Frequency (Hz)

20

30

40
30 deg

(c) Maple

30 100 300 1k 3k 10k
Frequency (Hz)

20

30

40
0 deg

30 100 300 1k 3k 10k
Frequency (Hz)

20

30

40
30 deg

(d) Spruce

Figure 8. Unequalized responses for all wood types. For each (a)–(d), the left figure is for 0∘ at height 1.6 m (color) and
1.0 m (gray) whereas the right one is for ±30∘ (color and gray, respectively) at height 1.6 m.

the equalization, respectively. As explained in Sec. 2, the
loudspeakers are not optimized electroacoustically, i.e., the
two actuators are fed with identical signals from two dif-
ferent amplifier output channels without crossover filters
or time-alignment. Thus, we consider the combined ef-
fects of the two actuators and the wood itself by having
one EQ for both channels and by not considering the sepa-
rate responses measured from one actuator at a time. Fur-
thermore, we acknowledge the possible time differences
between the two actuators seen in the measured impulse re-
sponses (see an example in Fig. 7(a)), but we ignore them.
These time differences range from couple milliseconds to
less than ten milliseconds.

Figure 7 shows an example impulse response and a non-
smoothed magnitude response obtained with the micro-
phone in front of the speaker at height 1.6 m. Two separate
main spikes are seen in the impulse response in Fig. 7(a).
This is caused by a time difference between the two actua-
tors, the amount of time each actuator requires to excite the
wood, and the difference in distance between the two actu-
ator locations and the microphone. The impulse response
is also longer than that of a typical loudspeaker.

The corresponding magnitude response is shown in
Fig. 7(b), demonstrating the non-ideal unequalized re-
sponse. Many peaks are seen corresponding to resonances
as well as the general unevenness of the response. Due to
the roughness of the obtained responses, in the following,
the magnitude response curves are presented after a one-
sixth-octave smoothing for better clarity. The GEQ with
24 bands is unable to fully flatten the magnitude response.
Thus, important information about the overall shape of the
magnitude response is not lost by applying the smoothing.

4.1 Unequalized Responses

The unequalized magnitude responses for each wood-
panel loudspeaker are shown in Figs. 8(a)–8(d) for the two

microphones at 0∘ and two others at ±30∘ (the figures are
color-coded across the paper). All frontal responses (0∘) in
Fig. 8 contain resonances in the upper bass range (between
40 Hz and 200 Hz), which give the wood panels a boxy
sound quality [17]. These resonances occur in all curves in
Fig. 8 (both at 0∘ and ±30∘) indicating that they arise from
properties having quite wide radiation patterns.

From the 0-degree plots in Fig. 8, one sees that the wood-
panel loudspeakers, apart from the spruce, mainly radiate
middle frequencies (around 1 kHz) well, but the low and
high frequencies less effectively. The spruce-panel loud-
speaker possesses the flattest overall response aside from
and the wide dip around 2 kHz. The flatness is also visible
in the EQ curves in Fig. 5(d), where the EQ for the spruce
contains the smallest gains, i.e., its overall shape is clos-
est to a flat line. In addition, the responses from the adult
and child microphones differ from each other for all wood
types: Figs. 8(a)–8(c) show that there is more energy at the
higher microphone location, probably due to the small tre-
ble actuator being placed high on the wood-panel speakers
and being unable to excite the entire panel of wood to radi-
ate sound thus resulting in a high directivity. The spruce-
panel speaker differs from the others in this regard.

When observing the ±30-degree plots in Fig. 8, the
wood-panel loudspeakers are seen to be asymmetric radi-
ators, since the two curves differ from one another for all
wood types. The low-frequency resonances, however, are
mostly identical for ±30∘. As mentioned, these resonances
are also similar here as in the 0-degree figures for the corre-
sponding wood type, whereas the other frequency regions
differ between 0-degree and ±30-degree responses. The
maple and the spruce panels have the widest radiation pat-
terns, as seen in Fig. 8(c) and Fig. 8(d), since the ±30-
degree responses resemble most the ones at 0∘. This is
logical since these two wood panels are the largest ones.
The spruce-panel speaker radiates the flattest magnitude
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Figure 9. Directivity of a wood-panel loudspeaker (maple).

response in the ±30-degree directions.

4.2 Directivity

Figure 9 presents the measured directivity of the maple
panel loudspeaker by showing the magnitude responses in
the directions of 0∘, 30∘, and 90∘. The response measured
at 90∘ differs drastically compared to the other two direc-
tions, especially below 1 kHz. The attenuation of low fre-
quencies is caused by the cancellation of sound waves radi-
ating forward and backward from the wood-panel speaker
in opposite phase. This acoustic short-circuiting is a typ-
ical behavior of a dipole radiator. Otherwise, the mag-
nitude levels are similar, especially when observing the
curves measured at 0∘ and 30∘. Thus, one can conclude
that even though the wood-panel loudspeakers do not radi-
ate ideally due to asymmetries in the wood, the magnitude
responses are good in the frontal sector. This analysis ap-
plies to all measured wood panels, although only one of
them is shown here as an example.

4.3 Equalized Main Frontal Response

After the EQ design based on the initial acoustic measure-
ments, a second set of measurements was conducted to ver-
ify that the equalized panels performed as predicted. Here,
the results of the second measurement are compared with
the first ones for the different panels and microphone loca-
tions. Figure 10 shows the effect of the equalization by pre-
senting both the unequalized and the equalized magnitude
response for each loudspeaker for the “adult” microphone
(0∘, height 1.6 m). Note that each curve is normalized by
setting the level at 1 kHz to 0 dB.

Figure 10 demonstrates that the EQs produce the desired
result for each panel. The magnitude response of the apple-
panel speaker originally contained almost 14 dB of varia-
tion between 60 Hz and 20 kHz (the −6-dB corner frequen-
cies for the equalized response), whereas after equalization
the largest deviations from the normalized level are, natu-
rally, 6 dB for the same frequency range and only approxi-
mately 2 dB between 300 Hz and 10 kHz. The resonances
of the wooden panel are still visible in the response, but the
general level is flat.

The goat-willow-panel loudspeaker response originally
contained larger deviations at low frequencies than the ap-
ple tree one, but the response at high frequencies behaved
better, as shown in Fig. 10. After the equalization, a rel-
atively flat response is observed: before the equalization
the largest deviations were approximately 12 dB between
60 Hz and 20 kHz (again, the −6-dB corner frequencies),

30 100 300 1k 3k 10k

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

Apple tree

30 100 300 1k 3k 10k

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

Goat willow

30 100 300 1k 3k 10k

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

Maple

30 100 300 1k 3k 10k
Frequency (Hz)

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

Spruce

30 100 300 1k 3k 10k

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

Apple tree

30 100 300 1k 3k 10k

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

Goat willow

30 100 300 1k 3k 10k

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

Maple

30 100 300 1k 3k 10k
Frequency (Hz)

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

Spruce

30 100 300 1k 3k 10k

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

Apple tree

30 100 300 1k 3k 10k

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

Goat willow

30 100 300 1k 3k 10k

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

Maple

30 100 300 1k 3k 10k
Frequency (Hz)

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

Spruce

Figure 10. Main frontal magnitude responses of all wood
panels before (black line) and after (color line) equaliza-
tion, one-sixth-octave smoothed.

whereas after the equalization the value is approximately
4 dB for most of the frequency bands. A resonance around
120 Hz is seen to be boosted above the reference level. Not
much could have been changed in the EQ response due to
the selected frequency division. Furthermore, the stated
resonance peak did not affect the sound negatively when
listening to the equalized speaker.

The unequalized response of the maple-panel speaker in
Fig. 10 is similar to that of the apple-tree-panel in that it has
a wide peak around 1 kHz. The maple has, however, also
other wide peaks, and the largest deviations from the refer-
ence level equal approximately 10 dB between the −6-dB
corner frequencies of 50 Hz and 19 kHz. After the equal-
ization, the response is much flatter, with the largest devi-
ation being approximately 6 dB at low frequencies and no
more than 3 dB at high frequencies.

The unequalized magnitude response of the spruce panel
in Fig. 10 is the flattest of the four. Still, the magnitude dif-
fers from the normalized level by as much as about 10 dB
between 50 Hz and 21 kHz (i.e., the −6-dB corner frequen-
cies of the equalized response). After the equalization, the
largest deviation is approximately 9 dB below 100 Hz and
less than approximately 4 dB above that. For the equal-
ized spruce-panel loudspeaker, the lowest resonance peak
of the magnitude response deviates the most from the rest
of the response, so nothing could be done about it with the
selected EQ. Between 150 Hz and 400 Hz, three peaks are
preserved after the equalization, i.e., the EQ neither boosts
nor attenuates them due to the wide bandwidth of the EQ
filters relative to the said peaks.



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

9

0 10 20 30 40 50 60
(a)
 

100  
300  

1000 
3000 

10000
20000

Fr
eq

ue
nc

y 
(H

z)

-30

-20

-10

0

M
ag

ni
tu

de
 (

dB
)

0 10 20 30 40 50 60
Time (ms)

(b)

100  
300  

1000 
3000 

10000
20000

Fr
eq

ue
nc

y 
(H

z)

-30

-20

-10

0

M
ag

ni
tu

de
 (

dB
)

Figure 11. Spectrograms of the (a) unequalized and (b)
equalized maple-panel speaker’s response measured at the
front microphone.

4.4 Time-Frequency Analysis of Measured Responses

Finally, spectrograms of the impulse responses on a log-
arithmic frequency scale were computed to analyze the
wood-panel loudspeakers and the effects of equalization.
Figure 11(a) shows the spectrogram of the unequalized re-
sponse of the maple panel, which is computed similarly as
in [18]. We use a 10-ms long Blackman window, a hop size
of 1 sample, and 256 logarithmically-spaced frequencies to
evaluate the discrete-time Fourier transform. The most no-
table property here is the lack of low frequencies and the
temporal spreading of the response at multiple frequencies.
Additionally, the main impulse around 5 ms, which corre-
sponds to the magnitude response in Fig. 10, is not of the
same color, i.e., the magnitude response is not flat.

The equalized response in Fig. 11(b) contains similar
ringing properties to the unequalized one, i.e., the equal-
ization does not cancel the resonances of the wood panels.
Now, due to the EQ, the main impulse is closer to hav-
ing a constant color, i.e., the magnitude is flatter. At the
same time, however, the low frequencies introduced by the
EQ spread heavily in time. Thus, the log-spectrograms
show that it is important to consider both the temporal
as well as the frequency-domain properties of loudspeak-
ers. The spectrograms also exemplify the limitations of the
minimum-phase EQs in that they cannot repair the non-
minimum-phase problems in sound systems [19].

In this application, where non-ideal wood-panel loud-
speakers are used, the aim was not to achieve perfection,
but improvements to the initial situation. This goal was
achieved, as confirmed by informal listening of the pan-
els. The listening comprised the composer listening to the
equalized wood-panel speakers and carefully verifying the
best panels for each instrument. The spruce-panel speaker
produced the most pleasing sound, which is not surprising
considering spruce is used in musical instruments.

The final verification occurred when the EQs were ap-
plied to the music tracks. The composer noted an improved
sound quality and increased clarity for every speaker. In
addition, the original characteristics of the wood were not
fully lost, and the spatial sound image remained exciting.

4.5 Equalized Responses in Other Directions

The responses measured with the front microphone were
discussed above, since that microphone was used for the
EQ design. It is, however, interesting to consider the ef-
fects of the EQs at other measurement points as well. The
responses at 30∘ at height 1.6 m and 0∘ at height 1 m are
shown in Fig. 12 for every wood type. The responses
are offset to improve clarity. Only responses from the
+30-degree microphone are considered here, but the −30-
degree microphone signals show similar trends while also
containing some differences in the magnitude responses,
as suggested by Fig. 8.

Figure 12(a) shows the magnitude responses at 30∘ after
equalization for apple tree, goat willow, maple, and spruce.
Comparing these to the equalized responses in Fig. 10, we
notice the following. For the apple tree, the response has
a similar flat shape aside from a small level difference and
the wide boosted peak around 6 kHz.

The goat-willow-panel speaker, on the other hand, is flat-
ter overall, and when compared to the front-microphone-
response, the response at 30∘ in Fig. 12(a) is similar with
small level differences and slightly changed peak structure.
The deviations from a flat curve, however, do not grow
much. The response of the maple-panel speaker at 30∘ re-
sembles its frontal response. The overall response is a flat
one with the resonance peaks moving around without their
relative levels changing much. Figure 12(a) shows that the
spruce-panel loudspeaker radiates a flat response in the 30-
degree directions, resembling the 0-degree response with
some resonance dips at different frequencies and depths.

Finally, the responses from the “child” microphone, i.e.,
the microphone below the front microphone at height
1.0 m, are analyzed. Overall, each response in Fig. 12(b)
resembles the corresponding equalized magnitude re-
sponse in Fig. 10, but differs at high frequencies: apple
tree, goat willow, and maple radiate less energy in the child
listening position, whereas spruce radiates more energy. In
addition, there is a wide dip of about 5 dB at about 700 Hz
in the equalized goat-willow-panel response in Fig. 10.
Thus, although the magnitude responses are not as flat as
in the “adult” microphone, children receive an improved
sound as a result of the equalization.

Additionally, the responses from the side microphone
(90-degree direction) were also analyzed (not shown), but
the EQs had little effect on them: the responses are still bad
due to destructive interference, and they are omitted here.

5. CONCLUSIONS

This paper presented a tree orchestra installation consist-
ing of four sound-emitting wood panels. The wood panels
were measured and equalized to have overall flatter mag-
nitude responses. The aim was not to suppress the modes
and resonances of the wood panels, but to reduce the col-
oration while still retaining the original reverberant charac-
teristics of the panels. Hence, a Bark-band GEQ was uti-
lized. The single-point equalization approach was found to
be suitable for this application. The equalized wood-panel
speakers were also measured to verify that the actuators
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are capable of reproducing the enhanced sound without un-
wanted artifacts. Example anechoic recordings of the un-
equalized and equalized wood panels are available online
at http://research.spa.aalto.fi/publicat
ions/papers/smc2021-tree-orchestra/.
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ABSTRACT

In this paper we propose a technique for formalizing Finite
Difference Schemes (FDSs) physical models in the Faust
programming language. Faust libraries already allow for
the implementation of several kinds of physical modeling
techniques; however, to our knowledge, FDSs have never
been integrated into this language. In fact, their imple-
mentation in imperative programming languages is typi-
cally achieved using data structures, which are not avail-
able in Faust. First, a method for coding FDSs in a func-
tional programming way is introduced, starting from pre-
vious works on mass-interaction models. Then, we draw a
connection between FDSs and cellular automata, and ex-
ploit it for building a library that eases the implementation
of FDS synthesis in Faust.

1. INTRODUCTION

Physical modeling has quite a long history in the field
of sound synthesis. Over the years, many different tech-
niques have been proposed [1], such as digital waveg-
uides [2], mass-interaction models [3], modal synthesis [4]
or finite difference schemes [5]. Even though sometimes
more computationally demanding and difficult to control
than other synthesis methods [6], physical modeling tech-
niques offer many advantages. Indeed, creating a model
of a vibrating system provides full control on its proper-
ties and, as a consequence, the output sound. These ap-
proaches theoretically allow us to synthesize natural and
realistic sounds, tunable in every detail.

Faust [7] is a high-level, domain-specific, functional pro-
gramming language, with a strong focus on the develop-
ment of digital signal processing algorithms for sound and
music. Faust code can be compiled with the Faust com-
piler, in order to directly generate standalone audio ap-
plications or plugins in different formats, or translate it
to other languages such as C++, Java and others. The
compiler includes options for automatically applying opti-
mizations to the generated code. This feature is extremely
useful for physical modeling synthesis, which requires fast

Copyright: c○ 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

code to perform big amounts of computation in real time.

1.1 Physical Modeling in Faust

Given the features stated above, its unique syntax, and the
wide range of functions already available [8], Faust has
been extensively used for implementing physical models.
Smith [9] was among the firsts to exploit it in the con-
text of physical modeling, by implementing simulations
of a virtual electric guitar and various audio effects with
digital waveguides. The latter, along with modal synthe-
sis techniques, were also employed in the context of the
Faust-STK [10], a collection of physical models based on
some of the algorithms in the Synthesis ToolKit [11]. The
Faust Physical Modeling Library was also recently imple-
mented [12]. It contains models of various instrument parts
that can be assembled together, and it introduces a new
bi-directional algebra allowing for the implementation of
coupling between the modules, at the cost of adding a one-
sample delay. In addition, it formalizes a way to generate
custom instrument parts by using mesh2faust, 1 a tool
that performs finite element analysis on a 3D model and
automatically generates a modal physical model.

In addition to modal and waveguide synthesis, mass-
interaction physical models were also implemented in
Faust: this technique consists of modeling physical sys-
tems in the form of lumped mass-spring networks [3].
Faust for mass-interaction was first explored by Berdahl
and Smith with Synth-A-Modeler [13], a tool providing
a high-level graphical environment to generate physical
models by using a combination of mass-interaction and
digital waveguides. More recently, Leonard et al, extend-
ing Berdahl’s work, introduced mi_faust. This project con-
tains the scripter MIMS [14], a high-level, graphical or
command line tool that can be used to describe a physical
model and automatically generate Faust code. 2 Along
with the scripter, mi_faust includes mi.lib, a Faust li-
brary that can be used to assemble mass-interaction models
directly in Faust in a modular way.

As seen above, several works employed Faust for devel-
oping physical models; however, to the authors’ knowl-
edge, Finite Difference Schemes (FDS) synthesis has never
been integrated in this programming language. The im-
plementation of FDS models with imperative languages is

1 ccrma.stanford.edu/~rmichon/pmFaust
2 mi-creative.eu/tool_MIMS-Online_V2.html
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typically achieved using data structures such as vectors and
matrices; which are not available in Faust. This might be
a characteristic that has discouraged users interested in de-
veloping FDSs from trying to use this language. As a mat-
ter of fact, before this work, it was probably easier to code
a FDS model directly in a lower-level language such as
C++ rather than doing it in Faust. As such, this paper has
two purposes: the first one is to introduce a routine for
the development of FDS physical models in Faust, without
making use of arrays; the second one is to provide a tool
that allows for an easier implementation of such models.

2. FINITE DIFFERENCE SCHEMES

FDS synthesis consists in developing a full mathemat-
ical description of the system at hand, usually by em-
ploying partial differential equations, and then discretis-
ing the mathematical model using finite-difference time-
domain (FDTD) methods, thus obtaining a finite differ-
ence scheme. This technique requires more computational
power than other physical modeling methods such as the
ones described in the previous section, and is more prone
to numerical dispersion than, for example, digital waveg-
uides [15]. However, it allows for a better spatial accuracy
if frequency-dependent losses and dispersion are present
[16] and it is more flexible, as FDTD methods do not make
any assumptions on the system’s solution.

FDTD methods essentially work by performing a dis-
cretization of the partial derivative operators. To do that,
first a sampling grid for space and time has to be defined,
thus we can write: 𝑡 = 𝑛𝑘 and 𝑥 = 𝑙ℎ where 𝑛 ∈ N
and 𝑙 ∈ Z. The numbers 𝑘 and ℎ are the sampling steps
of the system for time and space respectively; they are
not independent and are bonded through a stability con-
dition, which depends on the system equations. Given a
system of PDEs in space and time with one-dimensional
solution 𝑢(𝑥, 𝑡), it is possible to define the discrete function
𝑢𝑛
𝑙 which approximates it using the sampling steps above.

Having defined a time grid, the time difference operators
can be written as:

𝛿𝑡+𝑢
𝑛
𝑙 =

𝑢𝑛+1
𝑙 − 𝑢𝑛

𝑙

𝑘
𝛿𝑡−𝑢

𝑛
𝑙 =

𝑢𝑛
𝑙 − 𝑢𝑛−1

𝑙

𝑘

𝛿𝑡·𝑢
𝑛
𝑙 =

𝑢𝑛+1
𝑙 − 𝑢𝑛−1

𝑙

2𝑘

(1)

These are the forward, backward and center difference op-
erators respectively, which approximate the partial deriva-
tive operators. By combining them it is possible to obtain
the definition for the second-order time difference opera-
tor:

𝛿𝑡𝑡𝑢
𝑛
𝑙 := 𝛿𝑡+𝛿𝑡−𝑢

𝑛
𝑙 =

𝑢𝑛+1
𝑙 − 2𝑢𝑛

𝑙 + 𝑢𝑛−1
𝑙

𝑘2
(2)

The first and second order spatial operators are obtained in
a similar way.

2.1 Example 1: 1-D Wave Equation

The discretization of the 1-D wave equation represents the
simplest possible FDS. In the continuous case we have:

�̈�(𝑥, 𝑡) = 𝑐2
𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡) (3)

A FDS is given by:

𝛿𝑡𝑡𝑢
𝑛
𝑙 = 𝑐2𝛿𝑥𝑥𝑢

𝑛
𝑙 (4)

If we expand the operators we obtain:

𝑢𝑛+1
𝑙 = 2

(︂
1− 𝑐2𝑘2

ℎ2

)︂
𝑢𝑛
𝑙 −𝑢𝑛−1

𝑙 +
𝑐2𝑘2

ℎ2

(︀
𝑢𝑛
𝑙+1 + 𝑢𝑛

𝑙−1

)︀
(5)

2.2 Example 2: 2-D Wave Equation

The equation above can be extended in multiple space di-
mensions:

�̈�(x, 𝑡) = 𝑐2∇2𝑢(x, 𝑡) (6)

if x ∈ R2 a FDS can be written as:

𝛿𝑡𝑡𝑢
𝑛
𝑙,𝑚 = 𝑐2(𝛿𝑥𝑥 + 𝛿𝑦𝑦)𝑢

𝑛
𝑙,𝑚 (7)

where 𝑙,𝑚 are the grid indexes in the two space dimen-
sions. If the medium is isotropic then the two space sam-
pling steps are equal: ℎ𝑥 = ℎ𝑦 := ℎ. The operator expan-
sion then yields:

𝑢𝑛+1
𝑙,𝑚 = 2

(︂
1− 2

𝑐2𝑘2

ℎ2

)︂
𝑢𝑛
𝑙,𝑚 − 𝑢𝑛−1

𝑙,𝑚 +

+
𝑐2𝑘2

ℎ2
(𝑢𝑛

𝑙+1,𝑚 + 𝑢𝑛
𝑙−1,𝑚 + 𝑢𝑙,𝑚+1 + 𝑢𝑙,𝑚−1)

(8)

The space-time dependencies (stencils) of equations (5)
and (8) are depicted in Fig. 1.

Both schemes are linear and explicit; in fact the only un-
known is one future point, which depends on a linear com-
bination of the states of some spatial side points, itself and
its delayed version. For more details on finite difference
schemes, refer to Bilbao [5].

3. FDS IN FAUST

In imperative programming languages, FDSs are typically
implemented using vectors and matrices: each time step is
represented by a matrix of dimension equal to the space
dimension. For instance, in the 2-D wave equation case,
three 2-D matrices would be needed, for time steps 𝑛 +
1, 𝑛, 𝑛 − 1. The time states would then be updated at
audio rate by cycling between the elements and applying
the mathematical equations. Since all this is not possible
in Faust, a different method had to be developed.

3.1 From Mass-Interaction to FDS

As before mentioned, in mi_faust, Leonard et al. intro-
duced a library that allows for the implementation of mass-
interaction physical models in Faust [14]. The mi.lib
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Figure 1. Stencils for the 1-D (top) and 2-D (bottom) wave
equations. The red (top) point in each stencil is the un-
known, the black points are the next points’ states needed
for the update equations

works this way: several mass equation blocks are stacked
in parallel, followed in series by spring-damper equation
ones; the number of these blocks is determined beforehand
by the user when the mesh size is defined. The mass equa-
tions calculate the position of each mass given a force by
discretising Newton’s law: �̈� = 𝐹/𝑚. These are then fed
into the dampened spring equations (from now on, spring
will be used as a synonym for dampened spring), which
calculates the force produced by each spring block de-
pending on the position of the side masses, using Hooke’s
law and a linear damper equation: 𝐹 = −𝑧(𝑥2 − 𝑥1) −
𝜎 𝑑

𝑑𝑡 (𝑥2 − 𝑥1), where 𝑧 is the spring stiffness and 𝜎 the
damping coefficient. The forces hereby calculated are then
fed back into the mass equations, that output the new mass
positions and so on. Each spring provides a force that only
depends on two masses (the ones at the opposite sides of
the spring) or one mass and a fixed point, which does not
move. A mass position is then updated taking into account
the forces coming from all the springs connected to it. The
connections are previously defined by the user, depending
on his mesh choices. Routing functions are used to bring
the signals to the correct blocks.

If a uniform mesh is considered (namely, a mesh where
each mass is connected with a spring to each neighbour, 2
in 1-D, 4 in 2-D, making up a string in 1-D or a regular
matrix in 2-D), each mass receives a force from a constant
number of springs, except the boundaries. In this case it
is easy, by doing some algebraic calculations, to merge the

mass and spring operations in one block. Given a time dis-
cretization as the one performed in section 2 and applying
operator (2), Newton’s law for a single mass at position 1
in the mesh becomes:

𝑥𝑛+1
1 = 2𝑥𝑛

1 − 𝑥𝑛−1
1 +

𝐹𝑛
1 𝑘

2

𝑚1
(9)

This equation provides the horizontal position of 𝑚1 at
time step 𝑛 + 1. Using the backward operator (1), it is
possible to discretize the force provided by the spring con-
necting 𝑚1 to 𝑚2, which will be applied to 𝑚2:

𝐹𝑛
1→2 = −𝑧1(𝑥

𝑛
2 − 𝑥𝑛

1 )+

− 𝜎1

𝑘
((𝑥𝑛

2 − 𝑥𝑛−1
2 )− (𝑥𝑛

1 − 𝑥𝑛−1
1 ))

(10)

And, for Newton’s third law, the force applied to 𝑚1 will
be 𝐹𝑛

2→1 = −𝐹𝑛
1→2. If we consider a 1-D mesh, the total

force applied to the single mass 𝑚1 will be the sum of the
forces provided by the two side springs: 𝐹𝑛

1 = 𝐹𝑛
0→1 +

𝐹𝑛
2→1. Therefore, it is possible to generalize equation (9)

for a generic mass 𝑚𝑙 not situated at boundaries:

𝑥𝑛+1
𝑙 = 2𝑥𝑛

𝑙 − 𝑥𝑛−1
𝑙 +

𝑘2

𝑚𝑙
{−𝑧𝑗(𝑥

𝑛
𝑙 − 𝑥𝑛

𝑙−1)+

− 𝜎𝑗

𝑘
[(𝑥𝑛

𝑙 − 𝑥𝑛−1
𝑙 )− (𝑥𝑛

𝑙−1 − 𝑥𝑛−1
𝑙−1 )]+

+ 𝑧𝑗+1(𝑥
𝑛
𝑙+1 − 𝑥𝑛

𝑙 )+

+
𝜎𝑗+1

𝑘
[(𝑥𝑛

𝑙+1 − 𝑥𝑛−1
𝑙+1 )− (𝑥𝑛

𝑙 − 𝑥𝑛−1
𝑙 )]}

(11)

where 𝑧𝑗 and 𝜎𝑗 are the stiffness and damping coefficient
for the j-th spring.

If seen from another point of view, what we obtained here
is the update equation for a linear, explicit FDS model. In
fact, in equation (11) the future state (a horizontal position
in this case) of a spatial point is given by a linear combi-
nation of the present and past states of itself and its neigh-
bours. The fact that we started by considering masses and
springs reflects here only in multiplications by the scalar
coefficients 𝑚, 𝑧, and 𝜎.

3.2 Faust Implementation

Having proved that there is a connection between mass-
interaction and FDS, it is now possible to implement a FDS
model in Faust, taking inspiration from the mi_faust ap-
proach. Using equation (11) we can merge the mass and
spring blocks into one: now, each block will output its
state, feed it back and receive in input the states signals
from its neighbours and itself. The Faust syntax allows
us to get the past versions of the states by simply using
the delay operator ’. The compiler automatically allocates
the needed memory; therefore it is not necessary to imple-
ment multiple data structures for saving previous data, as
it is in imperative languages. With this configuration we
are also not limited to implement only equations (11), but
whichever explicit update equation depending on a fixed
number of neighbours’ states. As an example, code listing
1 shows the Faust function for the 1-D wave equation (5):
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Figure 2. Block diagram for a 3-point-long 1-D wave equa-
tion scheme

1 lambda = c*k/h;
2 updateEq(fIn,u_w,u,u_e) =
3 2*(1-lambda^2)*u-u’+lambda^2(u_w+u_e)+fIn;

Listing 1. 1-D wave update equation

This block takes as inputs the left and right neighbours’
current states u_w and u_e, its own current state u and
an external force fIn, and outputs the next state of the
spatial point. Many blocks of this kind can be stacked in
parallel to form meshes of the desired size (as done in list-
ing 2): each one of these can be thought of as a single cell
of the arrays that are usually implemented in imperative
programming languages.

1 build1DScheme(nPoints)=par(i,nPoints,updateEq);

Listing 2. 1-D model builder function

As an example, Fig. 2 shows the Faust diagram for a
3-point-long 1-D wave equation scheme (the scheme was
made very small in order to improve the image readabil-
ity), coded by stacking in parallel the function in listing
1 three times. Here the signal paths described above are
clearly visible. It can be noticed that the side blocks have
an empty connection each; in fact, being at boundaries,
there is no neighbour to take the signal from, so here they
receive a zero value. It is possible to specify a block with a
different equation that takes into account boundary condi-
tions; if this is not done, as in this case, the zero signal au-
tomatically implies a clamped boundary condition. While
the neighbour states are taken from the feedback loop, the
force signals are open connections, these can be calculated
outside the model and sent to the desired block with a se-
lector function or an interpolator. This allows us to excite
the mesh in the proper position.

The routing function is an essential part of the algorithm,
and can be implemented using the Faust route primitive,
which allows to drive the correct signals into the wanted
spots in an optimised way. Code listing 3 shows the rout-
ing used for the algorithm in Fig. 2. Here nPoints=3
is the number of blocks (points) stacked in parallel and
nInputs=4 is the number of inputs for each block. The
primitive is designed so that the number of connections is
1-indexed: if a connection is numbered zero, or falls out-
side the maximum number of connections specified as an
argument, a zero value is sent. This feature allows us to im-
plement the “empty” connections for the boundaries shown

above; the functions F, W, C, E take care of doing
this.

1 routing(nPoints,nInputs) =
2 route(nPoints+nPoints, nPoints*nInputs,
3 par(x, nPoints, connections(x)))
4 with
5 {
6 connections(x) =
7 P(x)+nPoints, F(x),
8 P(x), E(x-1),
9 P(x), C(x),

10 P(x), W(x+1);
11 P(x)=x+1;
12 F(x)=(1+0+(x*nInputs))*(x>=0)*(x<nPoints);
13 W(x)=(1+1+(x*nInputs))*(x>=0)*(x<nPoints);
14 C(x)=(1+2+(x*nInputs))*(x>=0)*(x<nPoints);
15 E(x)=(1+3+(x*nInputs))*(x>=0)*(x<nPoints);
16 };

Listing 3. Routing function for 1-D wave equation.

The same algorithm structure can be employed for coding
2 or 3-D models. Listing 4 shows the Faust implementation
for the 2-D wave update equation obtained in (8).

1 lambda = c*k/h;
2 updateEq(fIn,u_n,u_s,u,u_w,u_e) =
3 2*(1-2*lambda^2)*u-u’+lambda^2*(u_e+u_w+u_n+

u_s)+fIn;

Listing 4. 2-D wave update equation.

Again, many copies of this block can be stacked in par-
allel to form a 2-D mesh. Faust does not provide multi-
dimensional structures such as matrices; therefore, this op-
eration is not as straightforward as it was before. A nested
for-loop can be simulated by nesting two par iterations, re-
sulting in a piece of code that looks similar to what is used
in imperative languages for parsing matrices:

1 build2DScheme(X,Y) = par(x,X,par(y,Y,updateEq));

Listing 5. 2-D model builder function

where X and Y are the total number of points in the 𝑥 and
𝑦 dimensions. Nevertheless, this algorithm will not form
a 2-D structure; on the contrary, it will unroll it and build
a 1-D block sequence with length X*Y, where consecutive
rows are put one after the other. Hence, the code above is
only useful to keep the double indexing convention.

Not having multi-dimensional structures is only a partial
issue; in fact, with a proper routing, it is possible to drive
the correct feedback signals into the right blocks. The rout-
ing function for the 2-D wave equation can be implemented
as in listing 6:

1 routing2D(X, Y, nInputs) =
2 route(X*Y*2, X*Y*nInputs,
3 par(x, X, par(y, Y, connections(x,y))))
4 with
5 {
6 connections(x,y) =
7 P(x,y) + X*Y, F(x,y),
8 P(x,y), S(x,y-1),
9 P(x,y), N(x,y+1),

10 P(x,y), C(x,y),
11 P(x,y), E(x-1,y),
12 P(x,y), W(x+1,y);
13 P(x,y)=x*Y+y+1;
14 F(x,y)=(1+0+(x*Y+y)*nInputs)*(x>=0)*(x<X)*(y

>=0)*(y<Y);
15 N(x,y)=(1+1+(x*Y+y)*nInputs)*(x>=0)*(x<X)*(y

>=0)*(y<Y);
16 S(x,y)=(1+2+(x*Y+y)*nInputs)*(x>=0)*(x<X)*(y

>=0)*(y<Y);
17 C(x,y)=(1+3+(x*Y+y)*nInputs)*(x>=0)*(x<X)*(y

>=0)*(y<Y);
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18 W(x,y)=(1+4+(x*Y+y)*nInputs)*(x>=0)*(x<X)*(y
>=0)*(y<Y);

19 E(x,y)=(1+5+(x*Y+y)*nInputs)*(x>=0)*(x<X)*(y
>=0)*(y<Y);

20 };

Listing 6. Routing function for 2-D wave equation.

Again, X and Y are the number of points in the two spatial
dimensions, and nInputs=6 is the number of inputs of
each block.

Comparisons between these algorithms coded in Faust
and the same versions in Matlab showed that the outcom-
ing data was exactly the same; therefore it is possible to
state that this method allows us to solve explicit finite dif-
ference schemes.

4. FDS LIBRARY

In the previous section, a method for implementing FDS
physical models in Faust has been introduced and it was
showed that what is usually achieved with array indexing
can be equivalently accomplished in Faust by specifying
signals routings. However, we can say without a doubt
that coding FDSs this way is not as straightforward as
it is in imperative languages. The main difficulty comes
from the routing function, which can become very com-
plicated for some models. In fact, the examples reported
above are the simplest ones to implement, and things can
become more intricate when a larger number of neighbours
is needed. Moreover, these functions have to be re-written
from scratch for each scheme. On the other hand, routing
functions are not needed in languages where data struc-
tures are available, as they are replaced by explicit signal
indexing. This makes Faust not competitive, at the mo-
ment, when it comes to implement FDS synthesis. For this
reason, a second goal was set, consisting in the develop-
ment of a library, fds.lib, allowing for a faster imple-
mentation of FDSs in Faust. Since this aims to be an in-
troductory work and the intention was to give a coherent
structure to the code, it was decided to only focus on linear
and explicit schemes, leaving the implementation of other
kind of simulations for future work. While it may seem a
limitation, it has to be considered that linear schemes are
sufficient for many cases of musical interest [5]; in fact, the
majority of FDS models that run in real-time nowadays are
of this kind, and Faust is specifically oriented towards the
development of real time applications.

4.1 Cellular Automata

A cellular automaton (CA) is an algorithm that operates
on a grid of cells, which can be in a finite number of states.
For each cell, a set of cells is defined and called neighbour-
hood: at each time step 𝑡, the next state of a cell is deter-
mined by its present state and the state of its neighbours.
The rule determining the new state is called transition rule
and can be linear or nonlinear. The number of neighbours
is defined by a coefficient 𝑟, called the neighbourhood ra-
dius; this indicates the number of cells at each side of the
current cell that are taken into account. For instance, if
𝑟 = 1 and the scheme is 1-D, the transition rule will de-

Figure 3. Scheme of a 1-D CA algorithm with transition
rule G

pend on the current cell, one cell on the right and one on
the left. Therefore, a neighbourhood is made of (2𝑟+ 1)𝐷

elements, where 𝐷 represents the scheme dimension.
If we consider a 2-D system, we can call the system’s

state at time 𝑡 Φ𝑡; therefore the i-th, j-th single cell’s state
can be written as 𝜑𝑡

𝑖,𝑗 . We can then define a transition rule
𝐺 that brings Φ𝑡 to Φ𝑡+1 such that 𝐺 : Φ𝑡 ↦→ Φ𝑡+1. If 𝐺
is linear we can write:

𝜑𝑡+1
𝑖,𝑗 =

𝑟∑︁
𝛼=−𝑟

𝑟∑︁
𝛽=−𝑟

𝑎𝛼,𝛽𝜑
𝑡
𝑖+𝛼,𝑗+𝛽 (12)

where 𝑎𝛼,𝛽 are the coefficients of the rule. A cellular au-
tomaton can be completely defined by its radius 𝑟 and a
transition rule; moreover, if the latter is linear, the coeffi-
cient matrix A and 𝑟 are only needed. As an example, Fig.
3 depicts the scheme of a simple 1-D cellular automaton al-
gorithm, made of 𝑁 cells, radius 𝑟 = 1 and transition rule
𝐺. For more details on cellular automata refer to [17, 18].

It is straightforward to identify a connection between
FDSs and CA; in fact, several studies have been published
on this topic [17]. Some of them have a general focus on
the simulation of PDEs [19, 20], and others more particu-
larly on the discretization of waveforms equations [21,22].
Both FDSs and CA deal with an evolution of state vari-
ables on a discrete space-time grid, with the only differ-
ence being the fact that cellular automata operate on dis-
crete states, while differential equations look for a contin-
uous domain solution. However, in computer simulations
numerical solutions are always discrete, since the proces-
sors’ resolution is limited by the number of bits. Express-
ing a FDS as a CA might seem counter intuitive. In fact,
the latter are mostly used with a small number of states
(sometimes even 2), as they allow us to obtain complex
behaviour from very simple rules [23], while in the case
of PDEs simulation we deal with an enormous number of
possible states. Nevertheless, the CA formalism allows us
to obtain a standardized way for expressing FDS in Faust,
as it will be shown in the next section.

4.2 The Library

The cellular automata formalism can help us coding stan-
dard routing functions for different space dimensions, that
properly route the needed neighbours’ signals relying only
on the information provided by a predefined radius 𝑟.
Moreover, as it was decided to focus on linear schemes,
the transition function for the CA can be simply defined by
some coefficient matrices. Contrary to cellular automata,
a FDS usually depends on delayed versions of the neigh-
bours’ states; therefore, a time coefficient 𝑡 had to be also
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taken into account, which indicates how much steps back
in time are needed (i.e., if 𝑡 = 1 it means that the maxi-
mum delay needed for a neighbour state is 1 sample). With
a little abuse of notation, we can express the operation per-
formed by each cell (point) in a 𝐷-dimensional scheme as:

𝑢𝑛+1
x =

∑︁
[A0 ⊙N𝑟(𝑢

𝑛
x)+

+A1 ⊙N𝑟(𝑢
𝑛−1
x )+

+ · · ·+A𝑡 ⊙N𝑟(𝑢
𝑛−𝑡
x ) ] + 𝐹𝑖𝑛

(13)

where x = (𝑥1, . . . , 𝑥𝐷) represents a spatial multi-index,
depending on the scheme dimension 𝐷, N𝑟(𝑢

𝑛
x) is a ma-

trix containing the states of the neighbourhood of 𝑢x at
time step 𝑛, A𝑖 are the coefficient matrices for each de-
layed version of the states, 𝐹𝑖𝑛 is an external signal used to
interact with the mesh, the operator ⊙ represents element-
wise matrix multiplication and the non-indexed sum indi-
cates a summation over all the matrix entries. Both N𝑟 and
A𝑖 contain (2𝑟 + 1)𝐷 elements. The next paragraphs will
detail how this approach can be used to build a FDS model
with fds.lib.

4.2.1 Defining the Model

In order to code a new model, the user needs to provide:
a neighbourhood radius 𝑟, a time coefficient 𝑡, the num-
ber of scheme points (size of the mesh) and the coefficient
matrices relative to each point. The latter then need to
be ordered in parallel to build a coefficients scheme, sim-
ilarly to what was done in listings 2 and 5. This opera-
tion allows us to provide different coefficients for differ-
ent scheme points, which is essential both for providing
boundary conditions other than the clamped ones, and for
building physical models with spatially-varying character-
istics. As an example, listings 7 and 8 show the definition
of the coefficient matrices for equations (5) and (8).

1 r=1; t=1; lambda=c*k/h;
2 A=2*(1-lambda^2); B=lambda^2; C=-1;
3 midPoint=B,A,B;
4 midPointDel=0,C,0;
5 leftPoint=0,A,2*B;
6 leftPointDel=0,C,0;
7 scheme(nPoints) = leftPoint,leftPointDel,
8 par(i,nPoints-1,midPoint,midPointDel);

Listing 7. 1-D wave equation coefficient matrices

In this code a different coefficient matrix has been set to
the leftmost point, in order to apply a Neumann free con-
dition. Since the order of the points goes from left to right,
the boundary condition is placed first inside the scheme
function. Notice that the matrix for the non-delayed states
is placed first; this order is very important for the correct
functioning of the scheme.

1 r=1; t=1; lambda=c*k/h;
2 B = lambda^2;
3 A = 2*(1-2*lambda^2); C = -1;
4 midPoint = 0,B,0,
5 B,A,B,
6 0,B,0;
7 midPointDel = 0,0,0,
8 0,C,0,
9 0,0,0;

10 scheme(X,Y) = par (i, X,
11 par(j,Y, midPoint,midPointDel));

Listing 8. 2-D wave equation coefficient matrices

In this case no boundary conditions have been specified;
therefore clamped conditions are implied.

Looking at the code, a visual similarity between the coef-
ficient matrices midPoint and midPointDel and the
stencils in Fig. 1 might be identified. In fact, what we de-
fined here are exactly the coefficients to be applied to the
black points in the stencils. In the 2-D case, the CA neigh-
bourhood is necessarily squared; therefore, zeros need to
be placed at the corner points in this equation case, as seen
in listing 8.

4.2.2 Model Construction

Once the coefficients are defined, the user can simply call
model1D or model2D in order to obtain a fully working
physical model. These functions take as inputs the number
of points, the radius 𝑟, the time coefficient 𝑡 and the coeffi-
cients scheme, and build a model with the same technique
detailed in section 3. The built model will have open con-
nections for the forces (or for a generic external signal),
one for each scheme point, and will output each point’s
current state. Interpolation functions can be used in order
to correctly select the zone of the mesh to excite or to read
the signal from. Fig. 4 depicts the block diagram for a 3
points long version of the scheme in listing 7, built with
model1D. This diagram will produce the same C++ code
as the one represented in Fig. 2.

4.2.3 Interpolation

The library provides linear interpolation operators in 1
and 2 dimensions: linInterp1D and linInterp2D,
which can be used to drive the force to the correct blocks.
The index can be a float number varying at run time. These
are essentially Faust implementations of the 𝐽(𝑥𝑖) oper-
ator, the linear interpolator described by Bilbao [5], not
scaled by the spatial step, and work in a similar way as
the Faust function selectoutn (included in the Faust
basics library), except that they have the same number of
input/output connections; and allow us to use float indexes.
The library provides also stairs selectors functions, which
only permit to use integer indexes: these are useful in case
interpolation is not needed and require less computational
power. All these functions are present also in an “out” ver-
sion that sums all the outcoming signals together, in order
to get a mono output signal.

4.2.4 Routing

The functions route1D and route2D are used to route
the forces, the coefficients scheme and the neighbours’ sig-
nals in the correct places. These are essentially versions of
the functions reported in listings 3 and 6, modified to be
automatically built starting from the values 𝑟 and 𝑡, and to
include also the coefficients matrices in the routing. The
routing functions take as input, in this order: the coeffi-
cients block, the feedback signals and the forces. In return
they provide for each scheme point (in order): the force
signal, the coefficient matrices, and the neighbours’ sig-
nals.
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Figure 4. Block diagram for a 3 points long 1-D wave equation scheme, built with the library functions

4.2.5 Scheme Operations

As done previously in section 3, the actual equa-
tions are calculated inside some scheme points blocks
stacked in parallel. The calculation is performed by the
schemePoint function, which is built based on 𝑟, 𝑡 and
𝐷. This function takes as inputs (in order): the force,
the coefficient matrices and the neighbours’ signals and
outputs the next point state according to equation (13).
The functions buildScheme1D and buildScheme2D
are used to stack in parallel the proper number of scheme
points.

4.2.6 Interaction Models

Even if only linear schemes were considered, nonlinear in-
teraction models can be implemented. The library provides
two force functions: a bow and a hammer. The first one is
based on the formulation of the Helmholtz motion by Bil-
bao, the second one is modeled as a dampened oscillator
interacting with the mesh in a nonlinear way [5]. Both
models need to be coupled with the scheme, in particu-
lar, the hammer model involves solving another FDS (the
oscillator) in parallel with the mesh. Coupling can be im-
plemented by placing another feedback loop outside the
model which drives back the mesh and the oscillator out-
puts; the interpolation functions can be used to pick the
desired output signal from the mesh. Then, the two sig-
nals are used to calculate the force, which is subsequently
sent as an input to the mesh and the hammer again. The
hammer oscillator is integrated inside the hammer func-
tion, so that the two force models can be implemented with
the same structure. The bow block takes as an input (in or-
der): the bow velocity, the force scaling coefficient, the
nonlinear parameter and the time step. The hammer block
takes, in order, the force scaling coefficient, the oscillator
frequency 𝜔2

0 , the oscillator damping coefficient 𝜎0, the
hammer stiffness parameter, the nonlinear parameter, the
time step and the initial distance between the hammer and
the mesh. Both blocks output a force times a scaling coef-
ficient.

5. DISCUSSION & FUTURE WORK

The fds.lib library comes with a few examples serv-
ing as use-cases (in particular for what concerns the use
of the interaction models) and ready-to-use virtual instru-
ments. The modular structure of the library makes it con-
venient for different purposes. On one hand, the user inter-
ested in implementing standard linear schemes can simply
write an equation with the desired numerical coefficients
and use the model construction functions to easily obtain
a working mesh. On the other hand, the library functions
can be employed or modified individually to obtain a dif-
ferent result. For instance, the scheme point function could
be easily adapted for calculating nonlinear equations, with
the only constraint being that the nonlinearities would still
need to depend only on the neighbors’ states.

The 1-D schemes that were tested performed reasonably
well: the CPU load, on an Intel i7-4710HQ processor, was
always less than 10% even with a high number of points
(schemes with up to 400 points compile and run even on
the Faust online IDE). Nevertheless, more systematic per-
formance tests need to be conducted in the future. The
2-D schemes, however, presented an issue. The gener-
ated C++ code is completely unrolled, resulting in very
long algorithms. As a result, if the number of points is
too high, the C++ compiler crashes, an issue similar to the
one encountered by Barkati et al. [24]. Our experiments
showed that the GCC compiler could not handle meshes
with more than 20-by-20 points, which is not enough for
many models. This is an issue inherent to the Faust com-
piler, which needs to be addressed in order to make Faust
a complete language for coding FDSs. One way to solve
this problem would be to make the compiler able to recog-
nize the parallel structures inside the code and roll them up
in the process of translation into C++. However, this topic
needs to be more thoroughly investigated. Possible future
work includes the implementation of initial conditions for
the mesh points and, in the long run, support for implicit
schemes.
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6. CONCLUSIONS

This work aimed at introducing FDS synthesis in Faust.
First, a routine for coding linear explicit physical models
in a functional programming way was presented. Then,
an overview on the connection between FDS and CA was
provided, and the fds.lib was introduced: a library that
takes advantage of this connection to ease the development
FDSs. Together, the two tools allow users interested in
implementing these models to exploit Faust potentialities
in terms of code translation, optimization and wrapping
system. The performances reported by 1-D schemes are
promising; however, more methodical tests need to be per-
formed. On the contrary, Faust presented several limita-
tions for compiling 2-D models; these may be addressed
by modifying the Faust compiler, making it able to recog-
nize parallel structures.
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ABSTRACT

The wavesets are defined as a signal portion between three
consecutive zero-crossings and were proposed by Trevor
Wishart as a form to manipulate and transform sound files.
For simple sounds, wavesets tend to coincide with the wave
cycle, but for complex and polyphonic sounds the wavesets
can represent a small portion of longer oscillations or retain
a slow oscillation superposed by faster ones. As wavesets’
shape, duration and amplitude are strongly unique for each
sound, modifying a waveform based on this granular cri-
terion can lead to unique sonorities. Firstly, we discuss
the main issues that cause highly different sound results
when applying the same waveset transformation to dif-
ferent waveforms (e.g., DC, low-frequency content, beats,
phase, and others), secondly, we selected several waveset
transformations to evaluate the range of sonorities pro-
duced as well as contextualizing them in the field of well-
known digital audio effects. In the end, we evaluate the
major pitfalls of working with this technique and report
some enhancements that are currently being studied.

1. INTRODUCTION

Wavesets were proposed by Trevor Wishart [1] as a crite-
rion to execute granular transformations on recorded au-
dio samples. A waveset is defined as the signal portion
between three consecutive zero-crossings, which corre-
sponds to a full cycle on a purely sinusoidal oscillation.
This definition can be interpreted as an attempt to select
grains whose edges tend to zero thus reducing the introduc-
tion of high-frequency content due to discontinuities and
fast transitions, in a similar fashion to the windowing pro-
cess used on more traditional granular transformations [2].

The first computational implementation of waveset trans-
formations was released on the Composers Desktop
Project (CDP) [3] – a suite of functions for transforming
audio files in a non-realtime fashion. As the method re-
quires an analysis stage to find three zero-crossings and
several of the transformations deal with the combination
of a group of consecutive wavesets, real-time implementa-
tions entail a reasonable amount of delay. Real-time imple-
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mentations available include a VST plugin implementation
[4], a Csound operator [5], and several using the SuperCol-
lider environment. The first SuperCollider implementation
was made by de Campo [6, 7] as a Quark that analyzes
a buffer in non-realtime and then applies transformations
in a real-time fashion. An updated version of this Quark
was made by de Campo, Bovermann and Rohrhuber [8].
There are also four other implementations Hochherz [9],
Nishino [10], Mayer [11] and Seidl [12], the latter work-
ing exclusively in real-time.

Waveset transformations are categorized on the CDP as
“distortion”, a term with broad meaning regarding sound
results, ranging from the loss of information (bitcrush-
ing) to the increase of harmonic content through clip-
ping. There is a brief discussion about the wavesets us-
age, source considerations, sound results, and predictabil-
ity on [2, 3], but we could not find elsewhere an extensive
discussion that aiming the musical usage. The closest re-
lated aspects to this topic, which an abundant amount of
works can be found, are the evaluation of zero-crossing
rate for time series analysis and stochastic processes [13],
pitch, noisiness, voice/unvoiced signal detection [14, 15].

2. WAVESETS CONTENT

For stationary harmonic signals, the content of a waveset
depends on the number of harmonics, their intensity, and
their phase relationship. The first two are well known for
defining the perception of timbre, pitch, and beats, how-
ever, for signals that have the same number and intensity
of harmonics, the phase relationship between them change
the wave shape drastically, but it does not interfere on the
auditory perception of pitch and timbre, see Fig. 1. As a
consequence, when executing waveset transformations on
different waveforms that sound the same, it is possible to
obtain utterly different graphical and sound results.

As stated by the Fourier transform, a general shape signal
can be decomposed as a sum of sinusoidal waves. There-
fore we might investigate how the properties of adding two
elementary oscillations affect the content of a waveset. As
a consequence of a trigonometric identity, the sum of two
oscillations is identical to the product of two other oscilla-
tions: one proportional to the sum of the frequencies and
the other proportional to the difference. Perceptually, the
addition of two sine waves can result in four different audi-
tory phenomena: beats, roughness, timbre, and polyphony.
In terms of the waveset content, each case will present its
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Figure 1. Three tones with four harmonics in the same
frequency relationship, same amplitude but different phase
relationships.
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Figure 2. Four auditory effects of sinusoidal addition:
beats, harmonically related sinusoids, polyphony and am-
plitude modulation.

own particularities.
When beats or slow amplitude modulations occur Fig.

2, the content of each waveset tends to retain the carrier
shape (i.e. the high-frequency content). However, the
slow amplitude variations will change the amplitude of
each waveset over time and overmodulation can promote
more complex patterns. In the case of harmonically re-
lated sinusoids, we will have a constant waveset content
within the fundamental period Fig. 2, but there will be
faster fluctuations inside this period. As a consequence,
the wavesets will lose the characteristic shape of sinu-
soidal cycles and a full fundamental period will be a com-
pound of more than two wavesets. The third case on this
figure shows that when the oscillations of two sinusoids
are not harmonically related (e.g. polyphonic signals) the
wavesets’ content and period will vary over time in a fash-
ion that is strongly dependant on the frequency content of
its derivated waves. The last example shows the summa-
tion of two highly spaced frequencies, which can be per-
ceived as a single pitch with a complex timbre or as two
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Figure 3. Two complex tones, a 200 cents apart, and the
summation of both.

different tones played together. Graphically, we will have
a situation of small period wavesets pushed upwards by a
slower oscillation.

The last situation described can occur quite often, due to
DC offset and non-audible low-frequency content presence
in the analyzed signal. In this case, a single waveset may
hold a considerable amount of high-frequency content al-
though retaining a long waveset period (e.g. an exaggerat-
edly long waveset full of high-frequency content displaced
upwards due to a very slow frequency component).

One step further regarding complexity, when evaluating
the resulting wavesets formed by two spectrally complex
tones, separated by a major second and played together,
as displayed in Fig. 3, it is possible indeed to recognize
its deterministic structure, although one might image sev-
eral problems related with the transformation of such vari-
able segments. Here, the wavesets’ graphical content gets
strongly complex and this example, however, is far from
the complexity of recorded sounds, illustrating how the
transformation of wavesets faces intricate issues. All these
temporal variations on the waveset content will increase
complexity when basic sound phenomena and properties
like energy envelope, reverberation, background noise, etc,
are present on the contemplated signal.

3. DISTORT TRANSFORMATIONS

3.1 Overall

As shown in Table 1, the CDP classifies waveset transfor-
mations under the umbrella term “distortion” [3]. In gen-
eral terms, the distort functions available on the CDP either
modify the wavesets order (shuffle, repeat, omit) or modify
their content (average, clip, etc).

These functions were mainly named “distort” because, in
general terms, they introduce high-frequency content and
noise to the signal, which is mainly perceived as distor-
tion. Although this nomenclature can be meaningful for
sound sources like human-voice and musical instruments,
in which radical modifications of the content are perceived
by the listener as a degradation of the signal message (or
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Function Description

Average Average the waveshape over N ‘wave-
cycles’

Cyclecnt Count ‘wavecycles’ in soundfile
Delete Time-contract soundfile by deleting

‘wavecycles’
Divide Distortion by dividing ‘wavecycle’ fre-

quency
Envel Impose envelope over each group of cy-

clecnt ‘wavecycles’
Filter Time-contract a sound by filtering out

’wavecycles’
Fractal Superimpose miniature copies of

source ‘wavecycles’ onto themselves
Harmonic Harmonic distortion by superimposing

‘harmonics’ onto ‘wavecycles’
Interact Time-domain interaction of two sounds
Interpolate Time-stretch file by repeating ‘wavecy-

cles’ and interpolating between them
Multiply Distortion by multiplying ‘wavecycle’

frequency
Omit Omit A out of every B ‘wavecycles’, re-

placing them with silence
Overload Clip the signal with noise or a (possibly

timevarying) waveform
Pitch Pitchwarp ‘wavecycles’ of sound
Pulsed Impose regular pulsations on a sound
Reform Modify the shape of ‘wavecycles’
Repeat Timestretch soundfile by repeating

‘wavecycles’
Repeat 2 Repeat ‘wavecycles’ without time-

stretching
Replace The strongest ’wavecycle’ in a cyclecnt

group replaces the others
Replim Timestretch by repeating ’wavecycles’

(below a specified frequency)
Reverse Cycle-reversal distortion in which the

‘wavecycles’ are reversed in groups
Shuffle Distortion by shuffling ‘wavecycles’
Telescope Time-contract sound by telescoping N

wavecycles into 1

Table 1. Description of distort functions in the CDP Doc-
umentation [3].

distortion), it can be inaccurate or misleading when dealing
with electronic sounds and some instruments like guitars,
percussion, electric pianos, etc. For this reason, the doc-
umentation sometimes uses the term “constructive distor-
tion” for referring to distinct sound results obtained when
using these functions. In the following sections, we are
going to delineate some of the broad results covered by the
category “distortion”.

The identification of wavesets is done through zero-
crossings counting. However, the zero-crossing rate is
also an indication of pitchness and noisiness of the signal.
When the zero-crossing rate is stable at a low value, we
have a rough indication that the signal holds a steady pitch

characteristic, on the contrary, when the zero-crossing rate
is high (being stable or not in this case) it strongly indicates
that we have the presence of noise, harshness and signal
instability. In this way, a criterion for selecting the mini-
mal waveset length usually helps to avoid operating on the
noise content of the sound file and reduces the introduc-
tion of harsh and noisy characteristics on the transformed
signal.

3.2 Distortion and non-linearity

The term distortion is more commonly used by the audio
community as a synonym of harmonic distortion, when a
system applies a non-linear 1 curve to its inputs, especially
clipping and soft clipping caused by amplifiers, filters,
valves, pedals, and other devices, introducing harmonics
which were not present in the original signal [16].

Another use for the term distortion in the audio commu-
nity refers to procedures in which information is lost or de-
grade. Two commonly used types of this effect are sample-
rate reduction (samples are discarded thus reducing the
bandwidth) and resolution reduction (amplitude quantiza-
tion bits are discarded).

Besides these two main types, several other digital au-
dio effects operate with strongly non-linear characteristics:
compressors, limiters, de-essers, analog simulators (tape,
valve, amps, etc), exciters, enhancers, etc. Purely linear
conditions are often a too hard constraint, and some distor-
tion is always expected in any kind of audio system.

3.3 Wavesets transformation introducing
non-linearities

Operations with wavesets are essentially non-linear proce-
dures because each waveset is going to be processed in-
dividually, so each block is subjected to the same wave
manipulation, independently of its content. Instead of uni-
formly transform the signal, sample-by-sample, we are
introducing discontinuities due to the block processing.
As a frequent result, this may either generate subsequent
wavesets with amplitude gaps on their transitions or may
produce radically different waveset content varying at a
higher rate – which can be perceived as noise.

As a simple test for this second effect, we produced
a sinewave with two different amplitude values for each
subsequent waveset, therefore each full wave-cycle would
be alternating between these two amplitude values. Un-
der low background noise conditions, for a frequency of
440 Hz when the amplitude difference between the two
wavesets was greater than around 0.17dB, it is possible to
hear the introduction of new harmonic content. This pro-
vides a rough parameter about how sensible our auditory
system is to modification in such short fragments.

3.4 Other artifacts introduced

One strategy to avoid the previous problem is to operate on
a group of wavesets, therefore introducing discontinuities

1 A system is called linear if it satisfies the property of superposition,
expressed in 𝐴𝑥1(𝑛) + 𝐵𝑥2(𝑛) → 𝐴𝑦1(𝑛) + 𝐵𝑦2(𝑛) in which two
given inputs 𝑥1 and 𝑥2 produce the output 𝑦1 and 𝑦2 with its correspon-
dent scalar multiplication.
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at a lower rate and reducing the high-frequency content
introduction. Furthermore, another option is to execute
modifications that are based on the rearrangement of the
wavesets, instead of modifying their shape. These strate-
gies partially solve the “distortion” problem but usually in-
troduce other artifacts, especially a mechanical repetition
which is perceived as grains of steady pitch or unnatural
periodicity. In general, these strategies do not consider the
long-term variations of the sound wave (envelope, vibrato,
tremolo, allure) and tend to break them cyclically, produc-
ing repetitions.

Another procedure suggested on the CDP documenta-
tion [3] is to “filter” the application of a waveset transfor-
mation, which consists of applying transformations only
on wavesets of a certain length. As the random and
the harmonic part of the recorded signal are generally
fully blended, this procedure leads to utterly unpredictable
sound results (or from another point of view, leads to re-
sults that are strongly source-dependent). In some cases,
this process can modify only a portion of a given signal
while, in other cases, the resultant sound may consist of
sections in which transformed and non-transformed blocks
alternate.

Summarizing, the transformation of wavesets – particu-
larly when made without considering other temporal pa-
rameters or without applying any smoothing correction
– tends to be highly non-linear, introducing several au-
dible artifacts. Moreover, numerous factors modify the
wavesets’ shape, duration, and rate of recorded sounds (re-
verberation, DC component, microphone position, intrin-
sic source characteristics, etc). As a result, the wavesets
transformations presented here tend to produce highly un-
predictable and source-dependent sound results.

3.5 Traditional approaches

Typical approaches for managing this issue involve some
form of overlap and add (OLA) using tapering windows.
The most related method is the pitch-synchronous overlap
and add (PSOLA), which analyses the pitch of a signal to
place the window so that it fits the pitch wavecycle [16].
Therefore, PSOLA is strongly dependent on the quality of
its pitch detection algorithm as well as on the degree of
pitch stability, noisiness, and inharmonicity. This method
is used mainly for pitch shifting and time scale modifica-
tion, although for more radical transformation, like those
proposed by the CDP, it is not commonly used.

4. TRANSFORMATION CASES

4.1 Time Stretch

Waveset-based time-stretching transformations are made
by repeating either a single or a group of wavesets. Soni-
cally, the result is far from the traditional harmonic distor-
tion and can lead to peculiar effects. When single wavesets
are repeated in a small amount it can range from an in-
troduction of a sound similar to rubber friction. As the
repetition rate increases, the static pitch of each waveset
emerges. When a group of wavesets is considered, details
of the inner structure of the sound file (e.g. like grains,

allures, small pitch variations) tend to be revealed due to
their repetition. It can also produce steady pitches, but as
the reproduction rate tends to not be transformed, it is more
common to result in repetitions akin to short loops. Further
comparisons and audio examples can be found in [17].

4.2 Wavesets alternation (substitution)

When alternating wavesets between two audio files (CDP’s
distort reform function), especially when working with
bigger groups of wavesets, it is possible to obtain some
unique mixtures between two sounds. This can be used
to emulate the phenomena like multiphonics and crosstalk
[17]. Moreover, it is a form of achieving multiphonics-
alike sounds for instruments that do not easily allow
this technique or to produce cross-over sounds made of
wavesets extracted from distinct sources. Additionally, this
technique produces several amplitude modulation effects
which are strongly source-dependent.

4.3 Some effects on vocal sources

The resultant sonorities from the application of wavesets
transformation on vocal sources are remarkably varied and
cannot be exhausted. Here we inevitably enter the realm of
speech perception, which brings a big amount of new top-
ics to the investigation. To point out a few aspects, three
CDP functions promote utterly different results when com-
pared with harmonic distortion: distort pitchwarp, distort
replace, and distort average. The first introduces a quaver
quality to the voice, approximating it to the vocal charac-
teristics of elder speakers. The second increases this ap-
proximation by adding a rough/harsh quality. Moreover,
it also introduces some features which allude to a speaker
with breathing difficulties. The last function is the one that
is more similar to harmonic distortion, although it can be
more related to the production of a hoarse voice than to
vocal overdrive [18].

4.4 Distort harmonic and instrumental usage

Some waveset transformations can operate mainly empha-
sizing qualities of the sound sources, rather than changing
or destroying them. The distort harmonic function acts like
an additive synthesizer, summing the content of a waveset
with its correspondent waveset harmonic – that is, inte-
ger multiples of that waveform. The main sonic result of
this procedure is similar to a resonant filter, enhancing and
focusing some spectral information as well as promoting
sometimes the sensation of pitch shifting. When tested
with orchestral instruments, the results could be aurally
related to the change of instrument materials (e.g. wood
marimba to glass marimba) or to the effect of highlighting
amplitude modulations (e.g. more intensity on the vibrato
present at the attack time).

5. CONCLUSIONS

Waveset transformations allow artists to explore construc-
tive distortions and numerous other artifacts as creative re-
sources. Furthermore, it also enables new types of combi-
nations and mixtures between different sounds.
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In general, few computer music resources provide
waveset transformations, therefore there is still plenty of
space for new improvements and propositions. The trans-
formation of wavesets, although seems a straightforward
task, demands detailed and careful operations to avoid
the excessive introduction of high-frequency content and
noise. We could not find in our bibliographical review a
criterion or a curve-fitting method to reduce noise, harsh-
ness, and distortion. As the proposed auditory experiment
showed, it is possible to outline some limits, but more com-
plex transformation strategies still need to be tested and
discovered.

6. FURTHER DEVELOPMENTS

Currently, we are developing a Python-based library that
implements waveset functions and techniques. The main
purpose of the library is to provide regular CDP transfor-
mations along with new strategies of waveset manipula-
tions. Moreover, we are investigating the usage of different
audio descriptors to inform the waveset transformations by
means of audio features.

A second strategy, that has shown interesting initial re-
sults, is the application of waveset processes in conjunc-
tion with other DSP pre-processing and transforms (FFT,
DCT, etc) as an intermediate step of analysis/re-synthesis
procedures.
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ABSTRACT

In this paper, we present WDmodels, a wave-digital mod-
eling library for the Faust programming language. Recent
advancements have made wave-digital models a popular
method for simulating analog audio circuits. Despite this,
wave-digital modeling techniques have remained challeng-
ing to implement for amateurs due to high model complex-
ity. Our library provides a straightforward platform for im-
plementing wave-digital models as real-time digital audio
effects.

In this paper, we demonstrate how WDmodels is used
to implement wave-digital models containing nonlinear
dipoles, such as diodes, and linear R-type adaptors. We
describe the library-specific implementation of the con-
nection tree, a data structure commonly used when imple-
menting wave-digital models. We also detail the use of
common wave-digital adaptors that have already been im-
plemented in the library. We show how the library may
be extended to complex wave-digital models through the
implementation of custom adaptors. In order to demon-
strate the flexibility of the library, we also present imple-
mentations of several audio circuits, including the equal-
ization section of the Pultec EQP-1a program equalizer.
Finally, we compare benchmarks from WDmodels and a
C++ wave-digital modeling library to demonstrate code ef-
ficiency.

1. INTRODUCTION

Faust is a programming language for digital signal process-
ing (DSP) that has grown in popularity in recent years. Its
high-level approach to DSP has led to its use by both mu-
sicians and experienced DSP programmers [1]. Further-
more, Faust’s ability to compile into highly optimized C++
and other low-level coding languages makes it a platform
suitable for large, computationally intensive physical mod-
els [2].

Despite these advantages, Faust’s functional method for
describing DSP algorithms is incompatible with imple-
mentations of physical models that rely on object-oriented

Copyright: c○ 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

data structures. Faust does not currently support direct im-
plementation of multi-directional digital waveguide struc-
tures that are commonly found in physical models [3, 4].
To implement a model with multi-directional wave travel
in Faust, it must be transformed by inspection into its cor-
responding direct DSP structure. This process is tedious
and unsuitable for large or complex models.

Specific physical modeling methods are supported in
Faust through the Faust Libraries 1 . For example,
physmodels.lib supports the creation of digital-
waveguide models of musical instruments by creating cus-
tom methods for representing bidirectional traveling waves
[5]. mi.lib works in conjunction with an external script-
ing language to generate systems of mass-spring interac-
tions.

In this paper, we present WDmodels, a new addition to
the Faust Libraries, that simplifies the creation of wave-
digital models of analog audio circuits. Wave-digital
models are described by a symbolic representation of the
model’s connection tree, implemented in Faust using meta-
programming. The library uses the Faust compiler to in-
terpret the symbolic connection tree and produce the cor-
responding direct DSP structure. Many common adaptor
types are included in the library, allowing users to easily
generate simple models. The library also can be used to
create circuit-bendable models of analog-audio circuits for
use in real-time processing.

Wave-digital models are a discrete wave-domain rep-
resentation of physical systems [4]. For circuits,
the Kirchoff-based representation is transformed into a
traveling-wave-based representation through the bilinear
transform. Recent developments extending their capabil-
ities have made wave-digital techniques a popular choice
for creating virtual-analog audio effects of analog audio
circuits. Their use as a flexible platform for real-time audio
simulations has been thoroughly researched [6–8]. Until
now, no wave-digital modeling libraries existed in higher-
level audio programming languages that are targeted for
easy use by artists and musicians. Libraries do exist for
C++ [9], a language which is often challenging for begin-
ners, and MATLAB [10], which can be challenging to im-
plement for real-time audio processing. As a result, the
modeling technique has remained opaque to many and dif-
ficult to learn.

1 https://github.com/grame-cncm/faustlibraries
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Figure 1: The process for creating the wave-digital model of a second-order RC lowpass filter using SPQR decomposition.

WDmodels uses a simple process for implementing
wave-digital models, allowing those unfamiliar with wave
digital modeling to explore the technique for the first time.
The block-diagram algebra representation of the DSP pro-
cesses produced by the library can offer insights into how
the compiled model actually functions. The compiled code
created by the library runs at speeds comparable to wave-
digital model code written in low-level languages. Models
may be easily exported to various audio formats for numer-
ous platforms through the faust2... tools [11].

In section 2, we provide background information on
the creation of connection tree implementations of wave-
digital models from analog circuits. Section 3 provides
general instructions for using the library. Section 4 intro-
duces two example models and discusses specifics aspects
relating to their implementations. Section 5 compares the
benchmarking results for WDmodels and a modern wave-
digital modeling library written in C++. Section 6 con-
cludes the paper and discusses possible future research di-
rections for this library.

2. BACKGROUND

2.1 Wave-Digital Adaptors

Wave-digital models are networks of connected waveg-
uides called adaptors. When modeling analog circuits,
adaptors correspond to parts of the physical system. For
example, for each capacitor in the circuit there will be a
corresponding adaptor in the wave-digital model. Each
adaptor is a wave-scattering junction composed of ports;
each port is characterized by an incoming wave, 𝑎, a trans-
mitted wave, 𝑏, and a port resistance 𝑅. The behavior of
linear adaptors is described by a scattering equation of the

form
b = Sa, (1)

where b is a vector of transmitted waves, a is a vector of
incident waves, and S is a scattering matrix. A port of an
adaptor is defined to be non-reflective if the port’s transmit-
ted wave is not dependent on the current incident wave. An
adaptor which includes a non-reflective port is described as
“adapted” [4].

The voltage wave definition relates the Kirchhoff behav-
ior of an element to its wave-digital adaptor.

b = 𝑣 + R𝑖 (2)
a = 𝑣 −R𝑖 (3)

Where v is a vector of voltages across the component, i
is a vector of currents through the component, and R is a
vector of port resistances [12].

Typically, simple circuit components have corresponding
one-port adaptors while circuit topology is represented by
adaptors with two or more ports. Many linear circuit ele-
ments, such as voltage sources, resistors, parallel connec-
tions, and series connections, may be digitized directly us-
ing the parametric wave definition. Reactive circuit ele-
ments are digitized using a conformal frequency mapping,
generally the bi-linear transform [8]. The resulting adaptor
formulation will rely on sample delay and is said to contain
part of state of the system [4].

2.2 The Connection Tree

The connection tree of a model is formed by performing
SPQR decomposition on the graph of a circuit. In this pro-
cess, the circuit’s graph is broken into simpler sections by
recursively removing series and parallel elements. From
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1 secondorder(R2, C2, in1) = wd.buildtree(tree)
2 with{
3 //declare components
4 vs1(i) = wd.u_voltage(i, in1);
5 r1(i) = wd.resistor(i, 4700);
6 c1(i) = wd.capacitor(i, 2.2e-6);
7 r2(i) = wd.resistor(i, R2);
8 c2(i) = wd.capacitor_Vout(i, C2);
9 //form connection tree

10 tree = vs1 : wd.series : (r1, (wd.parallel :
(c1, (wd.series : (r2, c2)))));

11 };

Figure 2: The implementation of a second-order RC low-
pass filter simulation in Faust using WDmodels. The cor-
responding wave-digital model is shown in Figure 1

these sections, a tree is formed. Each node in the tree cor-
responds to an adaptor in the wave-digital model [12, 13].
This process is shown in Figure 1. The leaf nodes (ter-
minating nodes with no downward-going connections) of
the connection tree represent circuit components, such as
resistors and capacitors. Connection nodes (nodes with
both upward-going and downward-going connections) rep-
resent circuit topology, denoting elements connected in se-
ries or parallel.

Since wave-digital models are a complex network of in-
terconnected scattering junctions, it is critical that adap-
tors in wave-digital models are arranged in order to pre-
vent delay-free loops within the structure. This process is
performed by “adapting” the model, where the port resis-
tances of adaptors are set in order to eliminate these loops
by making ports non-reflective. Commonly, this is per-
formed by exploiting the properties of the connection tree.
By setting port resistances such that the upward-facing port
of each node is non-reflective, this guarantees the resulting
structure will contain no delay-free loops. Since the root
node is the only node with no upward-facing ports, it is
the only node left unadapted. All other nodes within the
tree are adapted [14]. Many wave-digital adaptors cannot
be adapted, such as ideal voltages sources or nonlinear de-
vices. Thus, an unadaptable adaptor often is chosen as the
root of the connection tree.

3. LIBRARY IMPLEMENTATION OVERVIEW

3.1 Approaching Wave-Digital Models in Faust

The library uses meta-programming to simplify imple-
menting a wave-digital model in Faust. For each node in
the model’s connection tree, a separate function in Faust is
declared that describes that node’s behavior. To describe
the connection tree, the node functions are combined into
a single symbolic function using Faust compositional op-
erators. Finally, the symbolic connection tree function is
passed to a build-function that generates the model by re-
cursively inspecting the symbolic function.

3.2 Component Declaration

3.2.1 Common Nodes

The library includes many pre-written nodes that corre-
spond to common wave-digital adaptors. These include

both nodes of component adaptors, such as resistor, capac-
itor, and inductor adaptors, and topological adaptors, such
as series and parallel adaptors [8, 10]. A current list of all
nodes included in the library can be found as part of the
Faust Library Documentation 2 .

Code lines 4-8, in Figure 2, shows the declaration of
nodes for the component adaptors of the second-order RC
lowpass filter; its wave-digital model is shown in Figure
1e. Line 5 declares a resistor adaptor node with a compo-
nent value of 4.7 kΩ.

1 r1(i) = wd.resistor(i, 4700);

Note the parameter i, an index parameter required by the
model-building function. Each node in the model must be
declared using this form. The prefix u_ to a node name,
as seen in line 4, denotes a node corresponding to the un-
adapted version of that adaptor.

3.2.2 Model Inputs

Model inputs within the library must be declared explicitly
as named parameters of the model. A wave-digital model
may receive inputs in the form of voltage, resistance, or
any other component value. By declaring inputs as param-
eters of the enclosing function, they may be called explic-
itly as component values. This convention is shown in Fig-
ure 2; the variables R2, C2, and in1 are model parameters
that are used to set component values. Note that the empty
signal operator “ ” should never be used as a component
value, as it will break the internal signal flow of the model.

3.2.3 Model Outputs

Outputs of the model are declared by calling specialized
nodes, such as in code line 8, Figure 2.

1 c2(i) = wd.capacitor_Vout(i, C2);

The model will output the voltage across 𝐶2 as an audio
signal.

Nodes which include a model output will have a suffix
that describes its output. Only voltage across a component
(suffix _Vout) and current through a component (suffix
_Iout) are currently supported as possible outputs from
the model.

3.2.4 Custom Nodes

Since a wave-digital model might include a specialized
adaptor unique to the circuit, the library also includes
several functions that help generate nodes from wave-
scattering junctions of custom adaptors. Wave scatter-
ing junctions can be formed formed according to methods
in [3]. Each sequential input-output pair of the scattering
junction will correspond to a port of the node. The au-
tomatic adapting process requires the scattering junction
have the upward-facing port resistances declared as param-
eters.
u_genericNode forms an unadapted node from the

scattering junction. genericNode forms an adapted
node from the scattering junction. The function as-
sumes that the first input-output pair is the non-reflective

2 https://faustlibraries.grame.fr/libs/
wdmodels/
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Sub-tree based associativity is used to represent multi-level
trees.

pair. It also depends on the port resistance rule that cre-
ates the non-reflective behavior. genericNode_Vout
and genericNode_Iout form leaf nodes similarly to
genericNode while also treating the node as a model
output.

3.3 Connection Tree Formation

To describe the connection tree, WDmodels implements
a custom symbolic representation of trees using existing
Faust operators. Sequence composition declares a parent
(𝑃 ) to child (𝐶) relationship between nodes:

𝑃 : 𝐶. (4)

If a parent node has multiple children, they are declared in
a list using parallel composition:

𝑃 : (𝐶1, 𝐶2, . . . 𝐶𝑛) (5)

More complex trees are implemented by using this defini-
tion recursively. A complex tree can be broken into simple
functions representing subtrees, then each subtree function
is treated like a single node. This symbolic representation
is detailed for several example trees in Figure 3. The dec-
laration of the connection tree for the model in Figure 2
occurs in line 10.

The implemented connection tree must be properly
formed along wave-digital model conventions. All nodes
in the connection tree must be adapted, except for the root,
which must be unadapted. Each node also expects a spe-
cific number of parent and child nodes based on its internal
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𝑅1

𝐷1 𝐷2 𝐶2

+
𝑣out

−

(a) schematic

1

2 3
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root:

(b) connection tree −+

𝑣in

𝑅1

𝐶1

𝐷𝒫
root

𝒫1

(c) wave-digital model

1 diode-clipper(in1) = wd.builtree(tree)
2 with{
3 //declare components
4 c1(i) = wd.capacitor(i, c1)
5 vres(i) = wd.resVoltage(i, in1);
6 dp(i) = wd.u_diodeAntiparallel(i, Is, Vt);
7 //declare connection tree
8 tree = dp : wd.parallel : (c1, vres);
9 }

(d) Faust implementation

Figure 4: The wave-digital model and simplified Faust im-
plementation of a one-capacitor diode clipper. The antipar-
allel diode is modeled using Schottky’s diode law and im-
plemented with an iterative Lambert 𝒲 function solver.

characteristics. For example, an adapted node implement-
ing a three-port parallel adaptor must have two children
and one parent in the connection tree.

3.4 Building the Model

To create a working model, the connection tree function is
passed to the model-building function buildtree. This
step is declared in Figure 2, line 1. buildtree interprets
the meta-programming of the connection tree and produces
the final model function. As part of the model-building
process, the wave-digital model is adapted. The port re-
sistances of all adaptors are automatically set to the proper
values.

Most implementations of wave-digital filters rely on a
tree data structure to implement the connection tree. Adap-
tors are implemented as node objects in the tree. A recur-
sive tree traversal of the connection tree data-structure is
performed for each computation cycle of the connection
tree [9, 13].

The library uses an alternative implementation of wave-
digital models. Instead of performing a tree-traversal at
each step, we perform a tree inspection during compi-
lation, generating an instructional method for computing
the model. In the tree inspection, the buildtree re-
cursively inspects the connection tree function and cre-
ates three functions corresponding to the computations of
downward-going waves, upward-going waves, and root-
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(c) connection tree

1 pultec(in1) = wd.buildtree(tree)
2 with{
3 //declare components
4 ...
5 //declare the R-type by declaring a scattering matrix
6 u_6port(i) = u_genericNode(i, scatterJunction)
7 with{ scatterJunction(Ra, Rb, Rc, Rd, Re, Rf) =
8 ro.matrix(6, 6, scatter)
9 with{ scatter = case{

10 (1, 1) => S_11
11 (1, 2) => S_12
12 ...
13 (6, 6) => S_66
14 };};};
15 //declare connection tree
16 tree = u_6port : (P_1 : ...), (S_3 : ...), Rb, Rd,
17 (S_5 : ...) , (S_6 : ...);
18 };

(d) simplified faust code

Figure 5: The wave-digital model and simplified Faust implementation of the Pultec EQP 1-A passive equalization section.
The R-node is implemented by creating 6 × 6 scattering junction and using library tools to form a custom node.

reflected waves. Each function consists of parametrized
node functions and specialized routing for signals.

4. IMPLEMENTATION EXAMPLES

4.1 Diode Clipper

The one-capacitor diode clipper circuit has been thor-
oughly studied as a virtual analog model [15, 16]. As a
wave-digital model, it can be simulated using four adap-
tors. Figure 4 shows the implementation of a one capacitor
diode-clipping circuit as a wave-digital model using WD-
models. The resistive voltage source adaptor encloses both
𝑣in and 𝑅1. The antiparallel diode pair is modeled using a
single nonlinear adaptor chosen as the root of the tree.

The diode pair adaptor is formed using Schottky’s ideal
diode law, as shown in [17]. The diode adaptor’s behavior
is described by

𝑏 = 𝑎+ 2sgn(𝑎)
[︂
𝑅𝐼𝑠 − 𝑉𝑇𝒲

(︂
𝑅𝐼𝑠
𝑉𝑇

𝑒
sgn(𝑎)𝑎+𝑅𝐼𝑠

𝑉𝑇

)︂]︂
,

where 𝒲(𝑥) is the Lambert 𝒲 function, 𝐼𝑠 is the diode’s
saturation current, and 𝑉𝑇 is the diode’s thermal volt-
age. The library node which implements an antiparallel
diode pair adaptor, u_diodeAntiparallel, relies on
lambert, a custom Lambert 𝒲 function approximation
that uses Newton-Raphson iteration to approximate the so-
lution [18]. Since compiled Faust code cannot contain

loops, lambert uses a set number of iterations that will
be performed at each sample.

4.2 Pultec EQP-1A

The library also provides several functions which allow the
implementation of user-generated adaptors as nodes. This
allows for the simulation of complex circuits through the
implementation of R-type adaptors.

Here we present an implementation of the Pultec EQP-
1a’s passive equalization section. The EQP-1a is a pro-
gram equalizer popular with audio engineers for master bus
equalization and general mastering [19]. The equalization
is performed by an passive RLC network. The output is
then passed through a tube makeup-gain stage.

We implemented the passive RLC network as a wave-
digital model as shown in Figure 5. Figure 5a shows the
simplified schematic of the EQP 1-A RLC equalization
network. By performing SPQR decomposition, we found
the connection tree associated with the circuit, shown in
Figure 5c. The circuits equivalent wave-digital model is
shown in Figure 5b. A resistive voltage source with negli-
gible series voltage was chosen to model the voltage input.

The scattering matrix of this R-type adaptor was derived
using methods described in [12]. To implement this adap-
tor as a node in the library, we used u_genericNode.
First the adaptor’s scattering matrix was used to form a
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C++ WDF WDModels
time (s) ratio time (s) ratio

Second-Order 0.197 50 0.0746 130
Large Network 0.606 16 0.162 61
Diode Clipper 0.176 57 0.507 20

Figure 6: A comparison of computation benchmarks for
WDmodels and a C++ wave-digital modeling library. Time
to compute for each was averaged over three runs. The
ratio of real time to computation time is also displayed for
comparison purposes; higher is better.

6 × 6 scattering junction, scatterJunction, using
methods in [3]. The six upward-facing port resistances
(𝑅𝑎, 𝑅𝑏, . . . , 𝑅𝑓 ) were declared as parameters. The scat-
tering junction was passed to u_genericNode to form
it into an unadapted node.

5. COMPARISON

To determine both the realizability and optimization of the
WDmodels, we benchmarked it against a personal wave-
digital modeling library 3 written in C++. The bench-
marks were performed on a desktop PC with an AMD
Ryzen 2600x processor and 16GB of RAM running Man-
jaro Linux. Three models were tested: the second-order
RC lowpass filter shown in Figure 1e, the diode clipper
shown in Figure 4c, and an arbitrary large linear model.
The three models were first implemented in both libraries.
For the Faust library, the Faust code was then compiled
into C++. Each implementation was then tested to deter-
mine the time it took to process 10 sec of randomized au-
dio at 192 kHz sample rate. A high sample rate was chosen
to show the potential for oversampling, as oversampling is
commonly used to improve the accuracy of physical mod-
els. Three runs for each implementation were performed
and times were averaged together to determine a mean
computation time for each implementation. The results are
displayed in Figure 6. The full code used for testing is
available on GitHub 4 .

Our benchmarks show that both libraries produce simula-
tions capable of easily running in real time at high sample
rates. For the linear networks, WDmodels outperforms the
C++ library by a factor of 2-3. This can be attributed to
the Faust compiler, which is designed to produce highly
optimized DSP processes. It should be noted that the C++
library used is already optimized through templating; com-
parison to C++ libraries that perform recursion through
the model’s connection tree in real time would likely have
slower performance.

WDmodels is outperformed by the C++ library on the
diode clipper by a factor of about 3. This is likely due the
C++ library using a more optimized method for computing
the Lambert 𝒲 function. Further optimization lambert
would be helpful to improve the performance of the diode
clipper.

3 https://github.com/Chowdhury-DSP/chowdsp_
utils

4 https://github.com/jatinchowdhury18/
wdf-bakeoff

These benchmarks show that WDmodels is an excellent
platform for real-time simulation using wave-digital mod-
els. The highly optimized code produced by the Faust com-
piler is suitable for use in digital audio effects or other real-
time applications.

6. CONCLUSION

In this paper, we presented a new Faust library, WDmod-
els. The library greatly simplifies the process of imple-
menting wave-digital models in Faust by creating a sym-
bolic representation of the connection tree data structure
using meta-programming. We explained how the symbolic
representation is used within the context of the library and
showed examples that demonstrate its use.

Typical wave-digital modeling libraries rely on recursion
through a tree for the computation of each sample, which
can be computationally expensive. In the library, a tree
traversal is only performed once at compilation instead of
every sample at runtime, resulting in a significant reduc-
tion of computational complexity of the model. We have
also shown that the Faust compiler is able to produce C++
code that rivals or outperforms C++ wave-digital modeling
libraries, in some cases. The code produced is suitable for
implementation in real-time digital audio effects.

Currently, the library only includes nodes for some one-
port nonlinearties, specifically the diode. Most complex
audio circuits rely on complex nonlinear elements, such
as transistors and vacuum tubes, which are modeled us-
ing multiport nonlinearties [20]. Thus, the development of
methods to support multiport nonlinear adaptors in faust
would greatly widen the scope of models which can cre-
ated with default library nodes and functions.
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ABSTRACT

This paper describes our ideas and experience using a mu-
sical accompaniment system — the Informatics Philhar-
monic (Info Phil) software application — in new composi-
tions that combine live performance on an acoustic instru-
ment with computer-generated sound.

Using this system, we adapted three compositions of Ja-
cob ter Veldhuis (“JacobTV”) for solo instrument and tape:
Billie, Garden of Love, and Farewell Feathered Friends.
We will discuss our experience adapting these works, and
analyze the adapted versions in terms of enabling the
longevity of the composition, musical effect, and perfor-
mance ease. Lastly, we show how the Informatics Philhar-
monic technology can be extended to include other pro-
grams, such as Max/MSP, to allow virtually unlimited in-
teraction between a soloist and recorded or live-processed
sound.

1. INTRODUCTION

Since the 1950s, many composers have chosen to com-
bine acoustic and electronically-generated musical mate-
rial. Early examples such as Stockhausen’s Gesang Der
Junglinge utilized a completely fixed format, meshing
recorded vocal lines with processing and generated sounds
[1]. For many decades composers have also incorporated
live performers with pre-assembled tape tracks. For exam-
ple, Steve Reich’s Different Trains joins a live string quar-
tet with tape composed from processed vocal material and
train sounds, and Thea Musgrave’s Niobe pairs solo oboe
with tape containing high vocal-like lines and bells. Unlike
completely fixed works, these mixed works can vary from
performance to performance based on the live player’s ex-
pressive input. The performer is still entirely responsible
for coordinating with the tape, but such pieces need little
technological infrastructure; usually only a microphone,
playback device and speaker are required for a successful
concert.

Another popular mixed composition paradigm combines
live acoustic performance with interactive electronics.
Works such as John Chowning’s Voices, Pierre Boulez’s
Antemes and George Lewis’s Emergent pair a live acoustic
soloist with electronics that distort and react to their play-
ing in real time. This type of composition allows direct

Copyright: c○ 2021 the Authors. This is an open-access article distributed un-
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interaction between players and electronics, but often re-
quires nontrivial technological setup and execution. Unless
the composer is present at a performance or the performer
is especially technology-literate, these complex setups can
serve as a barrier to a work’s accessibility [2].

The development and maturation of real-time score fol-
lowing technology has brought exciting possibilities to the
world of mixed composition. Introduced by Dannenberg
and Vercoe in the mid 1980s [3, 4], score following allows
a computer to know a player’s position in a predetermined
score at all times. New music compositions which incor-
porate score following take different approaches. For ex-
ample, Tensio by Phillip Manoury has a “live media” ap-
proach, using the IRCAM Antescofo score following sys-
tem to automatically trigger electronic events and real-time
audio processing in intricate response to a live string quar-
tet [5, 6].

Another approach, advocated by the authors, builds on
top of score following by adding a model for musical tim-
ing. In the Informatics Philharmonic (Info Phil) software
[7], a musical timing model translates the onset times of
each soloist note into a continually-evolving prediction of
future musical evolution. This model allows the system to
coordinate through prediction, rather than response, rep-
resenting the most important difference between our work
and that of IRCAM. These predictions can be used to drive
a MIDI accompaniment or to continually modify the play-
back speed of a pre-recorded accompaniment track. In this
context performers are free to choose their tempo at all
times, closely simulating the experience of playing with
human collaborators.

Examples of this approach in new music include Nick
Collin’s Concerto for Accompaniment for oboe and
computer-controlled piano [8]. Collins wrote this piece
explicitly for the Info Phil, composing a piano part that
was not “humanly performable” then using the Info Phil
to synchronize MIDI-generated piano with a live player.
Jan Beran also wrote a series of works for Info Phil uti-
lizing a similar approach [9]. A hallmark of these pieces
is the use of the unlimited technical virtuosity of the com-
puter, including unplayably fast passages and highly com-
plex rhythms such as simultaneous groups of 7 and 11.

In Fall 2019, we approached Dutch composer Jacob ter
Veldhuis — “JacobTV” — about adapting his work Gar-
den of Love (2002) for oboe (or soprano saxophone) and
tape to work with the Info Phil. He and a longtime collab-
orator, saxophonist Connie Frigo, suggested we also adapt
Billie (2003), a jazz-based piece commissioned by Frigo
for alto saxophone and tape. Frigo premiered the Info Phil
adaption of Billie at the 2020 North American Saxophone
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Accompaniment Track Marked Spectrogram

Points synchronizing 

with soloist

Measure 1 Measure 2 Measure 3
Score

Figure 1: Given a spectrogram of the accompaniment tape and a full score, one can use Info Phil to create a marked track
with accompaniment entrances, soloist entrances, and other temporal information.

Alliance (NASA) Biennial Conference. In Summer 2020,
we adapted Farewell Feathered Friends, a piece composed
by JacobTV during the COVID-19 pandemic for piccolo
and tape. Our version was premiered at the recital of Jamey
Guzman, a master’s student at the Jacobs School of Music
at Indiana University, Bloomington (JSoM).

2. PROCESS

2.1 Informatics Philharmonic Overview

We will start by discussing the considerations and capabil-
ities of the Info Phil score-following and AI accompani-
ment software [7]. While the Info Phil can produce MIDI-
generated accompaniment, the most common use case in-
volves a prerecorded accompaniment track. Using audio
time-stretching techniques, the track is resynthesized in
real time to follow a soloist.

2.1.1 Requirements and Operation

The Info Phil requires two items to create its reactive ac-
companiment: a recording of the accompaniment alone
and a full score in symbolic notation. We first generate
an “index” into the accompaniment audio by performing
offline polyphonic score alignment, followed by some de-
gree of manual adjustment. When this phase is complete,
each note in the score is matched to its corresponding time
point in the accompaniment recording. See Figure 1 for
a visual representation of this process. After this marked
accompaniment information is loaded into the Info Phil ap-
plication, a player simply needs to press the “play” button
on the Info Phil’s GUI interface to start reactive accompa-
niment playback.

2.1.2 Score Following and Soloist Prediction Model

During rehearsal or performance, the Info Phil uses a Hid-
den Markov Model(HMM)-based online score follower to
analyze the soloist’s movement through the score in real
time. In this method, the soloist’s audio is read into the Info
Phil as 30 milisecond frames. The HMM model relates
the sequence of “heard” frames to the sequence of notes

making up the monophonic soloist part, allowing the Info
Phil to continually determine the performer’s position in
the marked score. An additional layer — the timing model
— uses this information to predict when the soloist’s next
notes will occur. The track’s playback rate is then sped up
or slowed down through phase vocoding to maintain the
correct rhythmic relationship between solo and accompa-
niment.

A high-level example showing how the Info Phil’s audio
recognition and prediction systems work together in real
time can be seen at this link: http://www.music.
informatics.indiana.edu/˜craphael/
info_phil/info_phil_2012/Maria_RC.mp4,
which shows an Info Phil-based performance of the 4th
movement of Lalo’s Symphonie Espagnole.

2.1.3 Training

The Info Phil will also learn from a player’s past perfor-
mances, should they choose to “train” on that data. Infor-
mation about the player’s past tempo tendencies allows the
Info Phil to better anticipate their future interpretation by
estimating free parameters of the timing model.

2.1.4 Audio Stretching and Compression

The Info Phil utilizes a generic variety of phase vocoding
which does not distinguish between pitch and noise-based
content. This means that when the soloist plays at a dif-
ferent tempo from the original accompaniment recording,
the speedup or slowdown in accompaniment playback rate
is the same regardless of what content is being stretched
or compressed. A side effect of this phase vocoding strat-
egy is that noise-based sounds which should take the same
amount of time regardless of tempo (e.g. percussion, wind
entrances, and non-traditional music elements like found
sounds and birdsong) are altered to be faster or slower than
their normal length. Usually this change is not notice-
able to the human ear, but may sometimes sound unnatural
when extreme playback rate changes are applied.

We found that training the system on previous perfor-
mances was generally effective in decreasing these arti-
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facts. Usually, the most extreme shifts occur when the
Info Phil encounters a player’s note in an unexpected lo-
cation, then must quickly move through the audio track to
re-align. Training allows the Info Phil to learn the player’s
tendencies, and thus helps protect against extreme track
modifications likely to result in artifacts.

2.2 Adapting Fixed Media Works

In adapting JacobTV’s music, the track marking process
described in Figure 1 is complicated by his extensive use
of hard-to-notate sound sources like spoken voice and bird-
song. The Info Phil was constructed for traditional West-
ern art music, thus assuming discrete pitches and “rational”
rhythm. Birdsong and spoken voice have many microtonal
shifts and slides, and thus are hard to notate within a tradi-
tional written music framework.

Fortunately, JacobTV’s score already converted these
sounds to notes and rhythms in order to help the soloist
better interpret their rhythmic relationship with the ac-
companiment track. Since this notation was meant as a
performer’s guide rather than an absolute specification,
the track labeling process in Figure 1 was only semi-
automatic, relying heavily on manual input.

This indirect way of translating voice and birdsong into
absolute rhythms also has another effect: the “true” rhythm
specification is a compromise between the written score
and the tape track. In JacobTV’s music, live players of-
ten need to play in unison with birdsong or voice. In
the preface to Billie’s score, Connie Frigo explains that in
these cases, if a player finds slight deviations between the
notated rhythm and Billie Holiday’s voice samples, they
should always assume the audio recording is correct and
alter their rhythm to match vocal inflections. This perfor-
mance practice poses a potential issue for Info Phil adap-
tation. Since the program bases its behavior on the score,
it only seeks simultaneity between a solo event and an ac-
companiment event if both events are explicitly notated at
the same score position. To combat this issue, we edited
the score so true simultaneous sections always had equiva-
lent rhythmic notation. As long as the birdsong or voice
“notes” occur at the same rhythmic positions as soloist
notes, the Info Phil tries to align these events during per-
formance.

3. JACOBTV’S PIECES

3.1 Garden of Love

Our first adaptation was Garden of Love, originally for
oboe and tape, though now more well-known as a piece
for soprano saxophone. Based on the poem “Garden of
Love” by William Blake, the piece uses spoken audio sam-
ples to create rhythmic “voice melodies.” JacobTV com-
bines these vocal samples with synthesized sixteenth notes
and birdsong to create a driving, high-energy, at times me-
chanical piece. While rehearsing Garden of Love we ob-
served that the Info Phil facilitated the performer’s task by
allowing pauses to enable breathing and otherwise assist-
ing coordination. Since the original version requires al-
most continual playing to keep up with the tape, we found

that slight breaks between sections made playing the piece
a more enjoyable experience. We also noticed that the Info
Phil was able to automatically get back on track when the
soloist made rhythmic or timing errors.

This sense of performance ease was reinforced by Wes
Taylor, a JSoM saxophone student whom we worked with.
He appreciated that similar to performing with a live ac-
companist, the Info Phil allowed computer and human to
share the responsibility for coordinating their parts instead
of the player being solely responsible. While the Info Phil
makes things easier for the performer, the composer had
mixed feelings about the adaptation. The majority of Gar-
den of Love is characterized by a relentless, mechanical
“groove” created from synthesized midi sixteenth notes or
cut-up voice samples. Since mechanical precision is im-
portant for the character of the piece, the flexibility allowed
by the Info Phil may be somewhat at odds with musical in-
tent. We will return to discussing this issue in Section 4.

3.2 Billie

Billie, for alto saxophone and tape, incorporates a similar
“voice-melody” approach to Garden of Love using sam-
ples from rare interviews with jazz singer Billie Holiday.
However, since the piece is jazz-inspired and more relaxed,
there was more room for tempo variation than in Garden
of Love. We found that in Billie, freedom with timing led
to new expressive possibilities. Frigo observed that play-
ing with the adapted version gave her the impression of
a “real-time conversation” with Billie because she could
“flex the soundtrack in response to what she was saying.”
Frigo was also able to change the emotional impact in cer-
tain sections of the piece. She stated that choosing slightly
different tempos from the original can “change the charac-
ter of Billie’s voice. It can create more anxiety, it can make
the speech sound more laid back, or nonchalant, stressed...”
JacobTV further commented that “with this technique, you
could be a stage director, telling Billie to get more excited,
or irritated, or angry . . . this person, Billie Holiday, comes
alive through the speed Connie picks for the piece.”

The character shift described by JacobTV and Frigo is
clear when comparing the two different ways Frigo per-
formed measures 21-26 of Billie at the NASA conference.
The audio at https://drive.google.com/file/
d/1SFzXUInAHG9aukAuUxovLZzcBd6M3aeF/
view?usp=sharing shows Frigo first playing this
section with the fix track, then with the Info Phil. The
version with the original track, constricted by a fixed
tempo, is calm, steady and deliberate. In the flexible
version, Frigo chose to first accelerate, creating a sense
of agitation, then slow down at the end of the phrase to
give a sense of release. A link to her full performance and
our talk at the NASA Biennial Conference can be seen at
https://vimeo.com/407549620. Frigo preceded
her “real” performance at the conference with a rather wild
interpretation, demonstrating the high degree of flexibility
supported by the Info Phil, though also raising questions
about how the technology should work in tandem with
musical considerations.

While performer and composer were both positive about
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the performance at the conference, we did note some skep-
ticism from at least one conference participant regarding
the musical appropriateness of making the piece more flex-
ible. Bille is well-known to the saxophone community, and
the accompaniment recording released with the piece has
enforced a high degree of conformity in the way it is per-
formed since one cannot stray from the tape track’s tim-
ing. We wondered if the preference by some for a more
mechanical interpretation of Billie was simply the gravita-
tional pull of what is familiar.

3.3 Farewell Feathered Friends

At its best, Info Phil adaptions allowed for the tight
synchronization required by JacobTV’s works without
constricting the player to a fixed temporal interpretation.
This advantage was most striking in our third adaptation,
Farewell Feathered Friends for piccolo and tape. The tape
track of Farewell Feathered Friends prominently features
birdsong from seven species of endangered European
birds. The piccolo often sounds much like another bird,
in either conversation or in synchrony with the recorded
birdsong, though perhaps more lyrical. The Info Phil
version was performed by JSoM student Jamey Guzman,
who enjoyed how the timing freedom in this version
allowed her to respond to the birdsong. She commented
in her recital introduction that “[the Info Phil] truly lets
me lead and express the emotions in the piece without
feeling locked into the same tempo every time like in a
traditional fixed media piece.” Guzman’s performance can
be viewed at https://drive.google.com/file/
d/1RbgunOAdcGy2oX9c8S0CyMQOTVh0ha5A/
view?usp=sharing .

4. OUR EXPERIENCE WITH JACOBTV’S MUSIC

Through our experience creating and working with the Info
Phil adaptions for Garden of Love, Farewell Feathered
Friends, and Billie, we have gained a deeper understanding
of the advantages and questions raised by this new musical
medium. Our observations coalesced into two main issues
to consider when deciding among performance options for
a tape piece.

4.1 Longevity

One of the biggest barriers to wide performance of live
media pieces is the complexity needed to set up and per-
form live electronics. Often, the composer, or another
individual familiar with the work’s construction, must be
personally involved in the performance, as expressed in
Bruce Pennycook’s article, “Who will turn the knobs when
I die?” [2]. Using the Info Phil to control an originally
fixed track offers the interactivity associated with live me-
dia with comparatively easy setup. Our work with Guzman
and Farewell Feathered Friends is a good example. As a
result of the COVID-19 pandemic, we were unable to offer
Guzman in-person technical support. We only met once
to give her necessary equipment: a pair of speakers and a
Mac computer installed with the Info Phil software. De-
spite these less-than-optimal circumstances, Guzman was

able to successfully run the program by herself during both
rehearsals and her performance. As one can see in video
of Guzman’s performance in Section 3.3 , Info Phil usage
is very straightforward; once the program starts, no exter-
nal input from the performer or a technician is necessary.
That said, the traditional non-interactive performance strat-
egy of mixed music with fixed tape is nearly unbeatable in
terms of facilitating a composition’s longevity.

4.2 Learning vs. Performance

We observed that the performer’s experience with the Info
Phil could be divided into two categories: the learning pro-
cess and the performing process. The players we collabo-
rated with had a range of familiarity with JacobTV’s mu-
sic. Some, like Frigo, had performed the fixed media ver-
sion of Billie for more than a decade. Others, like Taylor
and Guzman, had just started their experiences with Gar-
den of Love and Farewell Feathered Friends. All these
collaborators brought engaging perspectives on their expe-
riences performing and learning these works with the Info
Phil.

4.2.1 The Info Phil as a Learning Tool

Taylor first started learning Garden of Love with the fixed
track two weeks before trying the Info Phil version. He
observed that the ability to practice sections with the ac-
companiment at a slower-than-marked tempo was a major
benefit. Specifically, a slower tempo allowed him to pay
attention to technical aspects of playing like tuning and
rhythmic precision. He noted that “much like putting a
piece together with a piano, you always start slow so you
can find alignment between both parts, tuning issues, and
work on passing off melodic lines . . . Being able to take
sections at slower tempi [with the Info Phil] allowed for
me to work on the same things.” Aside from these techni-
cal improvements, Taylor also gained new insight on Gar-
den of Love’s musicality, finding “grooves in sections [he]
was not previously aware of.” Lastly, Taylor found that the
flexible version of Garden of Love allowed him to gain a
deeper understanding of the relationship between the solo
and accompaniment parts:

“Another advantage of being able to play
through Garden of Love at a slower tempo
was that it helped ingrain different parts of
the track in my head. I walked out of the of-
fice that day with a much better idea of how
the piece was constructed, how it was sup-
posed to sound, and what aspects of the track
were helpful to me as a performer. I definitely
would say I learned more about the piece in
those two hours than I did in the 2-3 week
window prior in which I was learning it [with
the fixed track].”

Thus a big potential benefit of the accompaniment system
is in learning the piece at hand, whether or not one chooses
to perform that way.

Having premiered Billie in 2003, Frigo had a different
perspective on the learning process. Her experience with
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the Info Phil version involved adjusting previous expecta-
tions playing with fixed track to work with the new, flex-
ible format. Frigo was concerned saxophonists who only
used the Info Phil to learn Billie could use the flexibility
as a “crutch.” When playing fixed media pieces, even re-
hearsing the work requires one to be intimately aware of
how the solo part fits within the accompaniment track. But
since the Info Phil is resilient to rhythmic mistakes, one
can play the piece from start to finish without a robust un-
derstanding of the accompaniment. When asked whether
one should learn from the fixed track or the flexible ver-
sion, Frigo stated:

“The reason I can be so flexible, even when
experimenting, is because I know the sound-
track so well. And if you don’t know the
soundtrack, you’re not actually aware of what
you’re playing with. When you play with
fixed [track], you get to know there’s a note
right here, there’s a cymbal here, a bass note
here . . . and if you don’t know that, it’s just
like going into a rehearsal with a pianist with-
out doing score study in advance . . . . [First
practicing with the fixed track] would be a re-
quirement just to give justice to the piece and
understand how to create spontaneity within
it.”

In summary, Taylor noted a contribution the Info Phil
brings to learning new pieces, though Frigo expressed
some skepticism that this contribution could be abused. Of
course, the fixed-media approach — playing along with
a recording, is a time-honored way of learning the in-
terrelations between parts, as well as introducing young
musicians to the coordination demands of ensemble play-
ing. However, we note an important problem with learning
from fixed recordings. When the live player starts to lose
track of her place in the larger structure, things often fall
completely apart, with the live player unable to find her
way back. In contrast, the Info Phil is more tolerant, able
to help the player recover from a moment of uncertainty
without getting irretrievably lost, potentially leading to a
more robust experience.

4.2.2 Performing with the Info Phil

We consistently observed that the Info Phil makes the pro-
cess of performing a fixed media piece significantly easier.
The program is an equal partner in creating a synchronous
performance, rather than putting this burden entirely on the
soloist. For instance, the program allows a wind player to
breathe in a more natural way, and supports, rather than
punishes, the temporary glitches that pervade nearly all hu-
man performance scenarios.

On a deeper level, it solves the biggest challenge of play-
ing with fixed media: making the performance sound spon-
taneous and interactive instead of constricted by a prede-
termined set of timing requirements. Though a skilled per-
former can create the impression of interactivity within a
fixed tape framework, considerable virtuosity and familiar-
ity with the work is necessary to sustain that illusion [2].

Even if one successfully projects the illusion of freedom
with a non-interactive accompaniment, it can still make the
performer feel like a puppet, tightly controlled by external
strings. By fostering the performer’s feeling of immersion
and flow, the Info Phil can contribute to the their overall
sense of comfort.

But are all types of music suitable to this flexible for-
mat? The Info Phil was originally conceived with the
Romantic solo work in mind. Here the soloist may lead
a pianist or ensemble using flexible timing, among other
means, to make the music expressive. This leader-follower
model is a reasonable approximation for a lot of solo mu-
sic, while the recognition of these asymmetric roles is com-
monly acknowledged in discussions about music perfor-
mance. However, from a different perspective, the leader-
follower model seems even more justifiable in a human-
machine musical collaboration since only one of the two
performers actually cares what happens, or is fit to judge
the level of success. Of the pieces we adapted, not all made
these same implicit assumptions of fluid timing and leader-
follower roles. Most notably, Garden of Love’s driving,
metronomic tone felt at odds with the flexibility afforded
by the Info Phil. Since rigidity is a key musical component,
the added flexibility, while making the performance easier
for the human, may work against the piece’s aesthetic na-
ture.

Of course there are a great many pieces of music that
seem to require an unrelenting steadiness on the part of the
performers, such as marches and perpetual motion pieces.
Even if one accepts that inflexible timing is indeed the mu-
sical objective, there is still some subtlety in understanding
the appropriateness of a flexible accompaniment system
like the Info Phil. The accompaniment system does not
keep the player from performing with robotic precision, so
one can still pursue this inflexible musical agenda if de-
sired. On the positive side in such a case: since the player,
being human, will not succeed in being perfectly accurate,
the accompaniment system will accommodate the small
and inevitable inconsistencies. On the negative side, there
will always be small inaccuracies in the system’s identi-
fication of note onset times played by human musicians,
thus drawing the accompaniment away from metronomic
performance. The tension between these two issues cre-
ates a subtle tradeoff that, ultimately, must be decided by
personal preference.

One of our subjects, Taylor, had played Garden of Love
with both fixed and flexible tracks, thus was poised to make
comparisons. He mentioned that while practicing with the
fixed track, certain entrances were very stressful because
an initial alignment misjudgement on his end could com-
promise the rest of the section. When playing with Info
Phil, he was able to start sections without worrying about
alignment issues. Energy not spent anticipating a tricky
entrance can be instead focused on expressive or stylistic
playing; Taylor commented that “this security allowed me
to focus on playing my part at a higher level”.

Even when tight synchrony between soloist and accom-
paniment is a decidedly good thing, as we believe to be the
case in the overwhelming majority of Western solo music,
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the issue still has its subtle side. While synchrony may be
a desirable objective, it is not the only objective. A good
accompanist seeks to preserve the internal consistency in
her part, while, at the same time, staying with the soloist.
These objectives often come into tension and cannot be re-
solved in any obvious way, though good musicians seem
to successfully navigate this challenge all the time. We do
not have a ready answer to this issue, except to observe
that the Info Phil is among the first generation of accom-
paniment systems. We cannot resist recommending this
problem as an unsolved challenge for the future develop-
ment of accompaniment systems, since we certainly hope
that the Info Phil will not be the last word on the subject.

5. GENERALIZING BEYOND FIXED-MEDIA
COMPOSITIONS

Though the examples we investigated in this paper all in-
volve adapting fixed-media works, e.g. recordings of “ac-
companiment,” Info Phil technology can be extended to
form a more general-purpose framework for new compo-
sitions using acoustic instruments and computer-generated
sound. Here our presumption is that the live player would
lead the performance, introducing an element of spontane-
ity and musicality sometimes missing from computer-only
music. However, we still leave open limitless possibili-
ties for both computer-generated sound and live process-
ing/modification of the soloist’s audio. In this way we
hope to allow both human and computer to do what they
do best. Ideas along these lines have been pursued at IR-
CAM, as with Manoury’s works such as Tensio [6], though
we seek to establish a portable implementation that would
allow anyone to write or play such a piece without requir-
ing a detailed knowledge of our system’s inner workings.

The score to such a composition would be similar to a
traditional Western score in some fundamental ways. The
solo part would be notated with traditional rhythm and
pitch, with a best approximation given for extended tech-
niques like multiphonics, flutter-tonguing, quarter tones,
etc. that do not fit neatly into traditional pitched nota-
tion. Notation whose timing might be represented in sec-
onds could easily be translated into a traditional rhythmic
scheme as well. We grant that there may be some mu-
sical elements in the solo part that are awkward to rep-
resent in traditional notation. However, the Info Phil un-
derstands its flexible timing as the warping of traditional
rhythm through a time-varying tempo process, so we are
bound to this rhythmic representation. Furthermore, we
expect that the downside of using traditional notation for
the solo part is just that it over-specifies musical notions
that are not so precisely conceived, e.g. music without
pulse naturally expressed in seconds.

Like the soloist’s part, the computer’s part is also rep-
resented in terms of traditional rhythm. As described in
Section 2.2, it must clearly show all points of coincidence
with the soloist as well as any other intricate rhythmic in-
terrelationships . However, the important issue of what the
computer will do at each rhythmic location is left open –
what happens at these points will be “filled in” by the com-
poser. Every rhythmic event in the computer part could be

assigned to one or several actions, where potential actions
include triggering playback of pre-recorded audio; record-
ing soloist audio; processing soloist audio via filtering, har-
monizing etc.; or terminating any of these processes. Ulti-
mately, the computer’s part is simply a list of actions that
must be run when the associated musical times occur.

How is this list of musical actions executed? Just like per-
forming a fixed accompaniment, the Info Phil listens to the
traditionally-represented solo part, predicting solo note on-
set times as the performance evolves. Using these predic-
tions, Info Phil creates a “scheduler” which continually up-
dates the predicted times of future accompaniment events.
Specifically, at any point during the performance the Info
Phil focuses on the currently pending computer event —
the first as-of-yet unperformed computer action. As solo
note information is accumulated, this pending event will
be scheduled and rescheduled, making use of all currently
available information. To see the scheduling process in ac-
tion, see the Lalo video referenced in Section 2. In this ex-
ample and JacobTV’s fixed media pieces, these predicted
events are used to determine the amount of time stretch-
ing necessary to stay aligned with the soloist. However,
in the context of the proposed live media system, the pre-
dicted time of each pending event will be used to directly
trigger musical actions in the computer part. In practice,
the program that implements the computer’s part simply
receives the scheduled and rescheduled event times from
the Info Phil, acting when the currently-scheduled time fi-
nally arrives. A visual representation of how this schedul-
ing mechanism could work in tandem with live media pro-
cessing can be seen in Figure 2.

It is worth contrasting this paradigm for acoustic-
computer compositions with the frequently encountered
one in which an operator — often the composer themselves
— must perform an intricate, and sometimes terrifying, se-
quence of button presses, slider movements, etc. in a vir-
tuosic dance with the live performer. We seek to simplify
the performance of such a piece to a more generic and less
human-dependent model, thus making a composition more
portable and potentially longer-lasting. We have not yet
implemented this scheme, but envision that we could cre-
ate an integrated Max patch encapsulating the listening and
scheduling functionality of the Info Phil. This would elim-
inate potential communication lag between the Info Phil
and Max/MSP, as well as simplifying inter-process com-
munication.

Besides live composition, this general workflow can also
apply to other domains where events are scheduled based
on a pre-determined score. Possibilities include opera su-
pertitles, or automatically controlling stage lighting and
projected backgrounds for performances with audio and
visual components.

We were able to prototype this live media triggering
pipeline by adapting the music video for Billie to work
with the Info Phil. During Billie performances with
the original tape track, players have the option of si-
multaneously projecting a video where visual changes
align with specific beats. Since our flexible renditions
of Billie deviate from the tape’s pre-determined tempos
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Figure 2: Schematic of information flow in pieces combining acoustic soloist, flexible tape, and live processing. Audio
data from the soloist is first processed by the Info Phil to produce flexible, tape-based electronics. The Info Phil then sends
times of projected accompaniment events to an external Max patch. The Max patch can serve the dual purpose of both
directly processing soloist audio and triggering changes based on the player’s position in the score.

and rhythms, the original video could no longer be used
during performance. A new way of displaying video was
needed to match the player’s real-time decisions. We
created a responsive video by linking the video’s playback
rate to scheduling information from the Info Phil. That
is, the Info Phil sends messages in the form “player will
reach score position x at time y” to a Max patch. When
the Max patch receives such a message it resets its video
playback rate so that the musical position (beats) will
be reached at the desired time (seconds). A demo can
be seen at https://drive.google.com/file/
d/1fq_XTW6pg-ywjt8NWTIG1cDetNCu2irH/
view?usp=sharing .

Our last word is a call to composers to write the kind of
piece that can be implemented in the manner we describe.
We invite such collaborations and look forward to seeing
them take shape in the future.
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ABSTRACT

In this work, we employ deep learning methods for vi-
sual onset detection. We focus on live music performances
involving bowed string instruments. In this context, we
take as a source of meaningful information the sequence
of movements of the performers’ body and especially the
bowing motion of the (right) hand. Body skeletons for each
video frame are extracted through OpenPose and are then
used as input for Temporal Convolutional Neural Networks
(TCNs). TCNs prove capable of handling such tempo-
ral information by conditioning outputs on an adequately
long history (i.e. variable receptive field), ensuring highly
parallelizable lightweight computations and a multitude of
trainable parameters that provide robustness. As another
source of information for our task, we consider the more
subtle movements of the (left) hand fingers which are re-
sponsible for pitch changes. Detections in this case rely
directly on pixel data from specifically chosen regions of
interest. Here, a 2D Convolutional Neural Network (CNN)
is applied on the input in order to learn the features to
be fed to the TCN. The models were trained and evalu-
ated on single-player string recordings from the University
of Rochester Multi-Modal Music Performance (URMP)
Dataset. We show that these two approaches provide some
complementary information.

1. INTRODUCTION

Onset times is one of the most fundamental elements of the
temporal organization of a music piece. Onsets are placed
relatively to the metrical grid of a music piece and their
positions on this grid (along with duration and velocity)
greatly determines the rhythm structure of a music perfor-
mance. Moreover, the micro-timings, i.e. small time de-
viations of the onset with respect to the ideal metrical grid
are very related to aspects of human expressivity. Conse-
quently, onset detection comprises a fundamental problem
in the field of Music Information Retrieval and it is related
to many other tasks including tempo estimation, beat track-
ing, music transcription, source association.

Copyright: © 2021 the Authors. This is an open-access article distributed un-
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Music is often experienced by humans in a visual context.
The visual perception plays a key role whether the stimulus
involves an album cover, a video clip or a live music perfor-
mance [1]. Research in psychology has documented an im-
pact of the visual information on the judgment over musi-
cal live performances [2] or even on how musical structure
is perceived [3]. During the past few years, audiovisual
analysis has drawn the attention of the music information
retrieval community. Visual information can be important
for deducing a performer’s stylistic techniques, recogniz-
ing the playing instruments, capturing the emotional vari-
ations in a piece, etc. Innovative information extraction
techniques employed in such a multimodal context have
been evolved [4]. Traditional image processing, pattern
recognition and deep learning methods have been used to
deal with tasks relevant to this emerging field.

The development of convolutional networks has been de-
cisive for the advancements in computer vision during the
last decades. Convolutional Neural Networks (CNNs),
which apply two-dimensional convolutions, play a crucial
role in machine learning because they enable learning la-
tent features from images, adaptable according to each spe-
cific task. During the last few years, convolutions have also
been employed to handle sequential data using learnable
filters to convolve over the axis of time. These types of
architectures which involve one-dimensional convolutions
are called Temporal Convolutional Networks (TCNs) and
have exhibited some advantages over the often employed
Recurrent Neural Networks (RNNs) such as Long Short-
Term Memory (LSTM) units.

For many musical instruments, the produced sounds cor-
respond to certain visible movements and specific posi-
tioning of the instrument player’s hands. More particu-
larly, with regard to the bowed string instruments, the bow-
ing motions lead to the articulations of music notes (see
Fig. 1). Such visual cues are detectable by the human eye
quite easily. Pitch change requires altering the positioning
of the fingers on the neck of the instrument. Each fingering
transition is strongly correlated to note onsets.

Capturing such visual information content with computa-
tional methods can be challenging, that is why state-of-the-
art computer vision techniques need to be employed. Oc-
clusions and irrelevant or subtle movements are not easy
to cope with. Naturally, not all right hand movements cor-
respond to onsets, and several onsets can be produced by
legatos (i.e. left hand pitch change) without changing the
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Figure 1. Instances of a moving skeleton extracted from a violin performance. Trajectories of the right hand are displayed
with blue color and for the left hand with red.

direction of the bowing motion. Similarly, fingering transi-
tions of the left hand may not bear musical information, or
might not signal the exact time location of an onset. Such
motion can also be difficult to discriminate from vibrato.
Also, onsets of the same note can be produced simply by
new bow strokes without any change in the fingering. Dif-
ficulties arise since part of the left hand is occluded by the
neck of the instrument and occlusions might occur between
fingers, depending also on the relative position of the hand
to the camera. Additionally, discriminating between the
motion of the hand in the scene and the relative motion of
the hand on the neck of the instrument constitutes another
challenging aspect of the problem. Since these movements
can be very subtle, the stability of the camera and its dis-
tance from the hand are also crucial parameters.

The standard process to infer onset locations is by work-
ing on the audio signal. In this paper, however, we present
a method for visual onset detection. We deploy TCNs and
CNNs, and we demonstrate that the visual modality can be
a source of meaningful musical information that, handled
correctly, can help to cope with this challenge. We focus
on bowed string single-instrument performances where the
hand and body movement can provide visual information
for the onset locations.

The rest of the paper is organized as follows. Section 2
provides related work for the fields of onset detection, the
multimodal or purely visual approaches for music analysis
and generation. Section 3 describes the proposed method,
and section 4 provides the experimental results. Section 5
concludes the paper with discussion and future directions.

2. RELATED WORK

2.1 Visual-based Music Analysis and Generation

Visual-based approaches on music analysis have been ap-
plied on several different tasks during the past years.
The visual modality has played a critical role in tasks
such as audio-visual source association, fingering analy-
sis, playing/non-playing (P/NP) activity detection, vibrato
analysis, automatic music transcription and onset detec-
tion [4]. Parekh et al. [5] have engaged in audio-visual
source separation in polyphonic performances, focusing
on motion tracking of bowed string performers, using un-
supervised learning techniques like Non-negative Matrix
Factorization (NMF). Several research teams have worked
on fingering tracking focusing on instruments like guitar,
based on computer vision and statistical tools [6–9], aim-
ing as far as music transcription in symbolic forms like
tablature [10, 11]. In [8], finger tracking on the guitar
player was used to detect "key frames" (i.e. the time lo-

cations of chord changes), a notion very close to onset-
corresponding frames. In [12] a method for guitar tran-
scription is presented relying on video close-up recordings
of the vibrating strings [12]. Fingering recognition and
hand tracking systems have also been developed for piano
performances [13, 14] and violin [15].

Other teams have undertaken audio-visual analysis using
deep learning models. CNNs have been used in tasks like
instrument recognition where the visual modality is promi-
nent [16, 17]. CNNs have also been used for localization
of specific regions in video frames that correspond to dis-
tinct music signal sources and thus also make it possible
to separate the two signals [18]. Extracted skeleton poses
have also been used to extract music information from the
visual modality or to study audio-visual correspondence.
Pedersoli and Goto [19] introduced the task of Dance Beat
Tracking, where they employed TCNs to predict onset lo-
cations, having as input skeleton poses of the dancers while
performing.

Apart from the context of music analysis of the visual
content, body motion related recognition techniques have
been deployed in the context of music generation, as for
example using skeleton data from Kinect sensor for air-
guitar playing [20] or using finger motion data for rec-
ognizing gestures in order to perform on virtual instru-
ments [21]. GANs were recently been employed for vi-
sually enhanced audio inpainting based on live music per-
formances [22].

2.2 Audio and Visual Onset Detection

Traditionally, the task of onset detection has been dealt
with using information from the audio signal. The state-
of-the-art uses a Convolutional Neural Network (CNN) ar-
chitecture [23] in a similar way as CNNs have been used
for edge detection in the field of computer vision. Three
versions of 80-band log-mel features were used to rep-
resent the audio input with three different corresponding
window sizes. Hence, the input was given in the form of
three channels on which 2D convolutions were applied us-
ing two layers involving max-pooling. RNNs have also
been employed successfully to tackle the problem [24].

Zhang and Wang [15] engaged in audio-visual music
transcription for violin. Onset detection was a fundamen-
tal part of such a system. They presented both visual
and audio methods for detecting onset times. The audio-
based method relied on training Gaussian Mixture Models
(GMMs) on Mel-Frequency Cepstral Coefficient (MFCC)
features. The visual-based method was centered on the
analysis of two different sources of visual information pro-
vided by two cameras, one recording the bowing motion
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Figure 2. A flow diagram depicting our methodology for visual onset detection.

and the other recording the fingering transitions. Distinct
prediction functions for the two video signals were em-
ployed, in the first case relying on tracking the hand hold-
ing the bow and in the second, concentrating on recogniz-
ing the violin strings and the relative position of the hands
on them. The resulting prediction scores of each distinct
source of information were finally combined using feature
level and decision level fusion.

Audio-visual analysis focusing on onset detection for
string ensembles has also been conducted by Li et al. [25],
serving as a basis for score-informed audio-visual source
association. The onset locations were estimated by focus-
ing on bow stroke detection and more specifically, on the
zero-crossings of the principal motion velocity, computed
using the information by optical flow vectors. Audio-
visual source association has been handled using vibrato
analysis [26], too. In contrast with the aforementioned
works, in [27], the visual information was reduced, using
OpenPose [28], to keypoints representing body and fin-
ger joints. The vibrato and bow stroke approaches have
been combined and the onset detection task has been aided
by following the finger movements of the players’ left-
hand, thus also permitting the generalization of the anal-
ysis on woodwind and brass instruments. Recently, TCNs
have been used to detect onsets from the audio and visual
sources and for fusing these two modalities [29]. In our
current work, we focus on the visual modality and present
a significantly improved feature extraction procedure and
a more robust TCN model architecture to process skeleton
data. We compare this strategy to a pixel-based approach
which aims at capturing left-hand motion.

3. METHOD DESCRIPTION

3.1 Method Overview

An overview of the proposed methods is illustrated in
Fig. 2. First, the videos are cropped in order to work with

single-player performances. For each single-player per-
formance, we apply OpenPose in order to extract the per-
former’s skeleton. The extracted skeleton is smoothed and
we subsequently extract velocity and acceleration features,
while from the centroid of the left-hand keypoints we ex-
tract Regions of Interest (ROIs) in order to isolate the hand
from the rest of the image. For these ROIs, we compute
the optical flow to capture the motion of the left hand. The
extracted body skeleton features are used to train a TCN,
while the left-hand features are used to train a network that
comprises conventional CNN and TCN layers.

3.2 Video Processing

3.2.1 Preprocessing

As a first step, the videos were automatically cropped us-
ing ffmpeg command-line tool, in order to ensure that only
one person would appear in each recording. For this task,
we took advantage of the available information about the
number of the players involved in every performance and
we chose to segment the frames accordingly, in equal parts,
with respect to the x-axis. Minor corrections were required
to be done by hand in the case of only one recording. We
used OpenPose [30] for 2D pose estimation by employ-
ing the BODY_25 output format with hand keypoint de-
tection enabled using the officially suggested scale number
and scale range values (6 and 0.4 respectively) for achiev-
ing best results. We thus extracted body skeletons com-
prised of 25 points, together with 21 extra keypoints for
each hand.

3.2.2 Body Motion Information

Deriving onsets only from body movements does not re-
quire all of the predicted skeleton keypoints. In this setting,
hand joint keypoints, ears and eyes, as well as those points
corresponding to the knees and below were all ignored be-
cause they were considered redundant or in some cases
they were prone to occlusions. We were left with 11 body
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Figure 3. Skeletons and ROIs are extracted from a video
frame involving a violonist from a performance in the
URMP Dataset [28]. Optical flow is further computed for
the isolated hand ROI.

keypoints (see Fig. 3) and hence 22 coordinate values. We
followed the processing steps from [31] in order to create
continuous skeletons: we eliminated joints with confidence
score lower than 0.2 and, in order to rule out abrupt and un-
natural keypoint shifts, we discarded keypoints if distance
of a joint from one frame to the other was found larger than
the 10 percent of the nose to hip distance. In frames where
certain joints were occluded or eliminated (following the
above criteria), or even in the rare cases where OpenPose
failed to capture a skeleton, the keypoints were recreated
using linear interpolation between valid frame instances.
Centered moving average with window size 5 was used to
further smooth the skeleton motion.

After having computed the centroid of the skeletons for
each frame and the corresponding standard deviation of the
keypoints, we have applied z-score normalization in 2D
space using the mean values of the two magnitudes along
time. This procedure was applied separately for each per-
formance. In this manner, we have first of all imposed a
new center of axis which enabled us to rule out the differ-
ences among the positioning of the performer in relation
to the edges of the video frames for each distinct record-
ing. Secondly, we eliminated the variation of skeleton sizes
among the performances which is introduced especially
due to the different distances of the performer from the
camera. Finally, keypoint velocities and accelerations were
used as additional features, leading to a 66-dimensional in-
put.

3.2.3 Pixel Data

In order to get information from the hand responsible for
the pitch changes, one should focus on the finger move-
ments and positioning. The OpenPose keypoints corre-
sponding to the performers’ hands are highly inaccurate
in this particular setting since they are often occluded by
the neck of the instrument and involve jitter. The rela-
tively long distance of the hand from the camera makes
things even worse. This raises the need for extracting fea-
tures directly from the images. For this task we chose to

employ Convolutional Neural Networks (CNNs). In or-
der to eliminate redundant visual information and focus on
the (left) hand movements we took advantage of the pre-
dicted hand keypoints to isolate specific regions of interest
(ROIs). To achieve this, we computed the centroids of the
left hand joint for each consecutive frame as in [27], but we
used only the average centroid across time. This point in
2D space serves as the center of a steady square ROI. We
avoided the use of moving ROIs following the hand cen-
troid as in [27] because we observed a strong effect of the
changing background patterns to our recognition system.
The size of the ROIs in the case of violin and viola perfor-
mances was 100x100 pixels while for the violoncellos and
the double basses 200x200 frames in order to capture all
the range of vertical hand movement on the instrument’s
neck. These last larger ROIs were rescaled to 100x100 im-
ages in order to ensure same input sizes for the onset detec-
tor. When dealing with ROIs that extend out of the frame
(on the right side to be specific), we employ zero-padding
to ensure proper image sizes.

3.3 Temporal Convolutional Networks

Temporal Convolutional Neural Networks (TCNs) consti-
tute a family of architectures designed to grasp dependen-
cies among sequential data. Dilated one-dimensional con-
volutions enable control of the network’s receptive field,
that is the considered length of dependencies among tem-
poral data. Every added layer increases the temporal scope
of the network exponentially. Consequently, with few
added trainable parameters one can ensure adequate source
of information. Another hyper-parameter that is pertinent
to the temporal dependencies that one intends to grasp is
the size of the convolutional filters across the time axis.
A good combination of these two values permits handling
of complex data associations. As in the case of two-
dimensional convolutions, the computations can be effi-
ciently parallelized using GPUs. That is a limit that Recur-
rent Neural Networks (RNNs) are confronted with since
each new forward pass shall wait for the output of the pre-
vious step to be produced. Various versions of TCNs have
recently been introduced in [32–34], for generative or clas-
sification purposes.

Henceforth, TCNs definitely fit our needs for the problem
of visual onset detection which requires handling sequen-
tial data. TCNs proved to lead to exceptional results with
strong generalization abilities. Using a stack of TCNs, in-
stead of only one, was found to lead to over-fitting in our
setting which involves relatively few data. The architecture
that was tested in this work is inspired by Wavenet [32]
and the TCN proposed in [34]. We do not however stick
to the proposed causal setting where each prediction relies
on past observations. Our non-causal configuration visu-
alized in Fig. 4 involves 9 layers (𝑙 ∈ [1, 9]) where two
distinct sets of one-dimensional convolutional filters 𝑊1,𝑙

and 𝑊2,𝑙 are learned. Weight normalization is applied in
both arrays. Hyperbolic tangent is used in the first case and
sigmoid activation function in the other. The two outputs
are then combined using element-wise multiplication.

This parallel configuration imposes non-linear filtering
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tanh (𝑊1,𝑙 * 𝑥) and a learnable mask 𝜎(𝑊2,𝑙 * 𝑥) applied
in each layer. In every layer, 256 convolutional filters com-
prise each of the two convolutional blocks. Residual con-
nections appear in each layer involving 1x1 convolutions
to upsample the input and fit it to the size of each layer’s
output when needed. The use of 9 layers with a variable di-
lation factor 2𝑙 (assuming videos with standard frame rate
(29.97 fps) as in our case) entails a receptive field of about
17 𝑠𝑒𝑐, centered around the timestamp for which a pre-
diction is to be made. Small kernels of size 3 across the
time axis are used and symmetrical zero-padding (increas-
ing from layer to layer in accordance to the dilation factor)
is applied at the beginning and at the end of each perfor-
mance to ensure non-causality. Dropout with probability
0.25 is applied to avoid over-fitting, as well as gradient
clipping with a corresponding coefficient of value 0.2. A
linear fully connected layer followed by a softmax func-
tion is used to output 2-dimensional vectors for each input
frame, with each coordinate representing the probability of
an occurring and a non-occurring onset respectively.

3.4 Convolutional Neural Networks

However suitable TCNs may be when fed with features
such as sequences of post-processed skeleton coordinates,
they cannot efficiently extract information directly from
pixel data as in the case of left-hand ROIs. Proper features
should be extracted first in this case. An end-to-end config-
uration where latent features are learned has been proven
an effective strategy since it can be directly adaptable to
specific tasks. CNNs constitute a standard for image han-
dling. In our case, a 3-layer CNN is employed with 5x5
kernel size as displayed in Fig. 4. The number of filters
increases from one layer 𝑙 to the next, by 4 · 𝑙. ReLU is
used as activation function after batch normalization. Max
pooling with kernel size 3x3 and stride 3 is applied in or-
der to downsample each layer’s output. In the network’s
output, 16 feature arrays of size 4x4 are produced and are
then fed to the TCN after having been flattened, ending up
with vectors of 256 dimensions.

4. EXPERIMENTS AND RESULTS

4.1 Datasets

We trained and evaluated the proposed models on video
recordings from the University of Rochester Multi-Modal
Music Performance (URMP) Dataset [28]. This dataset
provides videos of multi-instrument performances that
were created by assembling audio-visual recordings of in-
dividual music players performing separately, yet coordi-
nated. The audio recordings of individual instrumental per-
formances are also provided in the dataset, thus enabling
the matching of each separate track with the correspond-
ing cropped video (i.e. individual performances). Among
these videos only the string instrument performances were
used in our experiments. So, in total 61 single-instrument
performances comprise our data. The duration of these
performances vary strongly from 35 𝑠𝑒𝑐 to 3.8 𝑚𝑖𝑛.

Figure 4. On the left side a 9-layer TCN is displayed, re-
ceiving as input skeleton features. A linear fully connected
layer is applied on the output with a softmax activation
function. On the right side a CNN-TCN model is depicted.
The 3-layer CNN learns features from consecutive images
and feeds them as input to a TCN.

4.2 Training and Evaluation Procedure

For the purpose of our models’ evaluation we undertake
8-fold cross-validation using pytorch python library. The
code can be found in [35]. The data were shuffled before-
hand. All string instruments were involved in the train-
ing procedure. While training, a window of 3 frames
around the annotated timestamps was considered to corre-
spond to valid onset instances and, hence, we assigned as
ground-truth for the 2D softmax output the probability vec-
tor 𝑦 = (1, 0) in the case of occurring onset and 𝑦 = (0, 1)
when no onset occurs. Trainable parameters are consid-
ered to be all the 1D and 2D convolutional filters involved,
plus the fully-connected linear layer in the output. Cross-
entropy loss function was employed. The value 0.001 was
opted for the initial learning rate, together with Adam op-
timizer. The average F measure is computed separately for
the training, validation and test set. A maximum of 250
training epochs were run for each fold and the best model
parameters were stored using as a criterion F measure val-
ues calculated for the validation set. After training, the best
performing model versions in the validation set were then
reloaded for the final testing. Two experiments were run:

• a TCN was applied on the extracted skeleton features

• a CNN-TCN was applied on the left-hand ROIs

An estimated note onset was considered to be correct if it
was found ±50 ms around the annotated timestamp. This
is an adequately small range in the case of visual onset
(also proposed in [4]), used instead of the ± 25 ms tight cri-
terion, since the distance between subsequent video frames
(∼33 ms) exceeds this value. Local maxima of the activa-
tion function were computed. The peaks were found us-
ing a centered moving maximum with a window size of 3
consecutive frames. We used a threshold of 0.5 to derive
predictions. For each individual recording, either audio or
video, precision, recall and F measure were computed.
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4.3 Results

4.3.1 Skeletons and Hand ROIs

As a first step, we investigated the ability to detect on-
sets by focusing on body movements. Sequences of post-
processed 11-keypoint skeletons were given as input to the
TCN model (TCN-Sk). Next, we applied the CNN-TCN
(CNN-TCN-ROI) on the isolated ROIs capturing the left
performers’ hand. We compared the two results quantita-
tively and qualitatively. The model trained on the skeleton
poses outperformed the pixel model by 17% in the overall
accuracy as presented in Table 1. This fact leads us to the
conclusion that the explicit movements of the body and es-
pecially the bowing motions of the right hand (see Fig. 1)
can provide very clear information concerning the time of
each note articulation, even on the relatively small train-
ing set we used. One can notice that Precision exceeds
Recall for TCN-Sk. On the other hand, CNN-TCN-ROI
yields slightly greater Recall than Precision. This signifies
that TCN-Sk behaves in a more "reluctant" way as com-
pared with CNN-TCN-ROI which takes more "risky" deci-
sions, thus being prone to more false positive predictions.
This can be interpreted by the fact that vibrato induces a
lot of irrelevant motion which can be quite challenging for
the corresponding classifier to discriminate from fingering
transitions.

We also present the average results for each different in-
strument. Both models performed best in the case of vio-
lins where TCN-Sk reached the F measure value of 0.846.
Both models exhibited their worst performance in the case
of cellos. Each distinct model yields quite average results
for double bass and viola. The relatively low results given
by CNN-TCN-ROI in the case of cello performances can
again be explained by the extensive use of vibrato by the
cellist and the small area that the left hand occupies in the
downscaled 100x100 frames. This in not the case for the
double bass even if the same downscaling was forced on
the extracted ROIs because, in all the three videos that this
instrument appears, the position of the performer in each
recording is closer to the camera than usual. Finally, the
aforementioned pattern with regard to Precision and Recall
holds true for both models in three out of four instruments.

4.3.2 Comparison with Previous Works

The above results can be compared with the performance
of models presented in previous works. Bastas et al. [29]
have deployed another TCN variant (with 6 layers) on post-
processed upsampled skeleton data (93.75 fps). This frame
rate was chosen to match the audio spectral representations
which were themselves fed to a 4-layer TCN dedicated to
the aural modality.

The current method outperforms the previous visual ap-
proach by 13.9% (see Table 2). There are various reasons
for this. In the current setting we avoid standardization of
the input vectors across time since it can lead to a loss of in-
formation with regard to the (relative) position of each key-
point. This is because the values of features corresponding
to different coordinates of distinct body joints are forced
to acquire a zero mean value across time. By avoiding

Instrument Precision Recall F measure
Skeletons (TCN-Sk)

Violin 0.867 0.833 0.846
Viola 0.785 0.722 0.746
Cello 0.655 0.596 0.620
Double Bass 0.730 0.734 0.732
Total 0.806 0.762 0.779

Hand ROIs (CNN-TCN-ROI)
Violin 0.685 0.737 0.705
Viola 0.581 0.587 0.574
Cello 0.390 0.324 0.349
Double Bass 0.544 0.598 0.567
Total 0.604 0.622 0.606

Table 1. Precision, Recall and F measure results for the two
proposed models (TCN-Sk and CNN-TCN-ROI). Separate
average measurements for each instrument and total results
after 8-fold cross-validation.

Model F measure
TCN-Sk 0.779±0.079
CNN-TCN-ROI 0.606±0.092
TCN on Skeletons (Bastas et. al [29]) 0.640±0.058
TCN on Audio (Bastas et. al [29]) 0.921±0.018
CNN on Audio (Schlüter and Böck [23]) 0.886±0.012

Table 2. Mean value and standard deviation of the F mea-
sure results for different tested methods on URMP [28].

standardization across time we also ensure intact ranges
of motion of each keypoint, since we avoid the enforce-
ment of a common standard deviation (i.e. 𝜎 = 1). What
proved to be important is also the size of the receptive field
which, in the previous method, is quite small (only 0.68
sec). Finally, we should also consider as a boosting fac-
tor the current configuration of the TCN-Sk which is more
similar to the Wavenet architecture since it involves gated
activation units. The results obtained by the pixel data are
very promising as well. Even though the onset detection
from fingers is more difficult, CNN-TCN-ROI yields re-
sults less than 4% worse than the results obtained from the
skeletons with the previous method.

To obtain a more comprehensive view on the onset de-
tection task, we compared our method to state-of-the-art
methods applied on audio. The CNN model presented
in [23] is trained on spectral representations from vari-
ous audio excerpts. It is packaged in the madmom library
and so it can be easily tested on the URMP Dataset. The
TCN used in [29] is trained and tested using 8-fold cross-
validation on the URMP Dataset. The results of TCN-Sk
are less than 11% lower than the ones obtained by the CNN
and 14.2% lower than the TCN that uses the aural modal-
ity as input. Finally, we notice a slightly greater standard
deviation for the two newly introduced methods, which in-
dicates better adaptation on a certain subset of the data,
naturally on different instruments.
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Model Recall
TCN-Sk 0.762
CNN-TCN-ROI 0.622
Combined True Positives 0.837

Table 3. Recall results of the separate models and of their
combined yielded true positives.

4.3.3 Complementary Outputs

The question arises about whether these two methods cap-
ture complementary information or not. For this purpose,
we assigned for each annotated onset a True label if it was
indeed detected and False if it was not. We did this for all
the string performances, for both the skeleton and the pixel
model. The union of the Boolean labels outputed by the
two models for each performance yields the combined true
positive predictions. If the number of true positives or their
proportionate occurrence (i.e. the Recall) would remain
the same as the one of the best performing model, then
there would not be any complementary information cap-
tured by the two approaches. However, the Recall value
that results from the previous procedure is found to be
higher by 7.5% than the Recall of TCN-Sk as depicted in
Table 3. This finding is in agreement with the fact that
note articulation might involve only fingering transitions
(i.e. legatos) or only bow strokes (i.e. same note played).
It also brings to light the distinct value and possibilities of
each separate approach.

5. CONCLUSION

Both visual onset detection approaches (i.e. the one rely-
ing on skeleton features and the one relying on pixel data)
proved successful in capturing information pertinent to this
task. The subtlety of the fingering transitions on the in-
strument’s neck is shown to pose greater difficulties for a
model to grasp. However, the complementary information
that can be captured with this method should be consid-
ered of great value for an enhancement of the overall per-
formance on the task. Hence, as future work, one prior-
ity would be the development of a fusion method which
would be able to efficiently combine the information cap-
tured from the two different information sources. Our pre-
liminary experiments [29] on fusioning skeleton data with
audio, pave the way for advancing new fusion methods.
Multi-modal fusion involving trainable models was proved
beneficial also in tasks like speech recognition [36]. One
interesting direction would also be to study the possibility
of an approach independent of a skeleton extraction phase.
One reason for this is to reduce the time spent in the infer-
ence procedure by making predictions relying directly on
the pixel data.
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ABSTRACT

Musical performance is an expressive art form where mu-
sicians interact with each other using auditory and non-
verbal information. This paper aims to discover a robust
technique that can identify musical phases (beats) through
visual cues derived from a musician’s body movements
captured through camera sensors.A multi-instrumental
dataset was used to carry out a comparative study of
two different approaches: (a) motiongram, and (b) pose-
estimation, to detect phase from body sway. Decomposi-
tion and filtering algorithms were used to clean and fuse
multiple signals. The final representations were analysed
from which estimates of the beat, based on a ’trust factor’,
were obtained. The Motiongram and pose estimation were
found to demonstrate usefulness depending on the musi-
cal instrument as some instrument playing gestures stim-
ulate more movement in the players than others. Overall,
the results were most promising using motiongram. It per-
formed well where string instruments were used. The spa-
tial derivative technique based on human pose estimation
was consistent with woodwind instruments, where only a
small degree of motion was observed.

1. INTRODUCTION

Human bodies typically move along to musical rhythms
and studies conducted on infants have shown that already
at such a young age there is a strong sensory link be-
tween body movement and auditory rhythm processing [1].
When people listen to musical performances, their mind
subconsciously starts participating with it. Audience mem-
bers can be seen to respond by tapping their feet, clapping
their hands, or nodding their head. Musicians also move
their body in different ways to perform expressive pieces
depending upon the instruments they are playing. These
movements enable them to express and portray their musi-
cal ideas [2], and their body movements an have a signif-
icant effect on musical rhythm perception. Understanding
the underlying dynamics of this strong correlation between
music and movement has been identified as an important
component within the music, art, and engineering inter-
disciplinary field [3]. Non-verbal gestures and movements
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also provide musicians with a strongly connected commu-
nication between each member of the ensemble during per-
formance as well as the audience. The interaction adds a
unique and immediate dimension to a live performance that
is unavailable from a recording. There is a constant trans-
fer of information through the expressive movements of the
musicians during the performance offering an integrated
auditory and visual experience. Wanderley et. al, [4] stud-
ied the performances of five clarinettists to analyze the
significance of gesture in three different ways: immobile,
standard and expressive. The results of this experiment
emphasized the presence of ancillary gestures which were
consistent throughout the performance and were an inte-
gral part of musical performances. It is difficult to get mu-
sicians to perform completely still and change ingrained
movements. Conscious and unconscious movements by
musicians are made during the performance to make the
performance look natural and expressive.

There exists a large computational complexity in cor-
rectly decoding musical cues from body movements using
video data, and so it still remains a challenging task [5] [6].
Additionally, accuracy in identification is not obtained eas-
ily. In this paper, we focus on analysing the connection be-
tween musicians’ body movements and the associated au-
dio rhythms. We evaluated the performance of two differ-
ent approaches to understand and predict rhythmic phases
or beats from multiple musician’s while they are perform-
ing. The method developed offers a general representation
and approach that is independent of the number of instru-
ments and musicians.

2. RELATED WORK

There are some examples in the literature of multi-modal
methods of ascertaining the rhythm of a performance, that
is, by not analysing the musical signal alone, and incorpo-
rating other information sources. As might be expected,
the wide availability of video encourages the use of gestu-
ral cues but others have taken more novel perspectives. In
the category of novel is a very recent study by [7] on Indian
Classical Dance. Here, the music of the dancing combined
with features extracted using speech processing techniques
were analysed for rhythm marking.

Intuitively, it is expected that there should be a correlation
between gestural behaviour and the rhythm of a perfor-
mance. However, the connection is not fully understood.
Some work has been put into furthering our understand-
ing, others have looked at synthesizing gestural and audio
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data. In the former case, preliminary findings have been
obtained regarding the manifestation of period and phase-
locking behaviour in full-body movements associated with
how people participate in music. [8]. More comprehensive
measurements of whole-body movement were also made.
In the study of [2], the freedom of use of the head and
upper body in the movements of pianists were examined
along with their relationship to the performance. To bet-
ter understand how to synthesize a convincing interaction
between movement and sound, animation and video ma-
nipulation have been used. A method based on pixel mo-
tion sonification was introduced by [9]. Its success led to
the analytical tool known as the Motiongram (to be dis-
cussed in Section 4). In the study [10], they did a similar
manipulation of an animation. They used an LSTM net-
work, trained using the input sound signal (piano and vio-
lin) along with measured gestures, to estimate the positions
(termed as body keypoints) on an animated skeleton. This
was the first time such a procedure was attempted using
these keypoint features, and the demo was rated as work-
ing well. Similarly, Liu et al. [5] involved the recreation
of violinists’ body movements from music recordings and
videos. Improvements and additions were made to the ma-
chine learning model to account for the finger positions and
the orientation of the 3D skeleton. Kao and Su [3] gener-
ated a model formed in a U-net based encoder architecture,
that included two additional network architectures created
for the body and the right hand, and a self-attention mecha-
nism. This was used to animate a virtual violinist’s skeletal
movements in 3D synchronized with a music signal. Mov-
ing away from animations, Davis and Agrawala [11] stud-
ied visual rhythm from videos, seeking associated features
that are manifested in the temporal dynamics of the visi-
ble motion. They applied this to develop a novel way for
manipulating actual performances in a dance video, keep-
ing the movement and audio in synchronization. Lastly,
in tandem with this thread in the research, other authors
have focused on creating better beat tracking algorithms
and analysis by including gestural cues. An audio-visual
rhythm analysis was carried out by tracking body skele-
ton features detected using a Kinect sensor combined with
the audio signals in [12]. They fused the video and audio
data using a ’tempo likelihood’ to create a predictor for the
tempo and beat. It was reported that the video cues out-
performed the traditional audio beat tracking in a noisy en-
vironment in the tempo prediction. To summarise, mixing
gestural and audio data would improve beat and rhythm
estimation. However, the method to do this is not fully
established. This paper will contribute by developing al-
gorithms that can work on features derived from represen-
tations of performances extracted from video. The next
section introduces the dataset and the experimental setup.
The following section goes through the methodology, ex-
plaining the Motiongram and pose estimation representa-
tions and the features extracted from them. There is a set
of results presented along with a discussion. The paper
ends with some conclusions and recommendations for fu-
ture work.

Figure 1. Example of the Midi and Audio representations
(left and right panel respectively) used for their alignment
to determine the beats

3. DATASET AND EXPERIMENTAL SETUP

We used an audio visual multi-instrument dataset, which
contains 44 full musical performances [13]. The dataset is
ideal for this experiment as the musical tracks had a signifi-
cant tempo and clearly observable musical leader-follower
exchanges unlike a typical live orchestra. As later in part
5, we evaluate on fugue composition where a short phrase
is successively introduced from multiple musicians behav-
ing as a ’lead’, while others ’follow’ the cue. The dataset
contains four major types of performances: 11 Duets, 12
Trios, 14 Quartets, 7 Quintets.

For this study, three random videos were selected from
each of the sections. The dataset also provided the audio,
MIDI, and musical notations of each performance used to
generate the ground truth.

3.1 Finding The Audio Beat

To understand musical phases, the time of the audio beats
are important. The audio beats were considered as the
ground truth value in our experiment. To compute audio
beats, an audio-MIDI alignment technique was used [14].
As shown in Fig 1, the MIDI file representation (left hand
side) was converted to its equivalent audio (right hand
side). Dynamic Time Warping (DTW) was applied to ef-
fectively match and align the music recordings with the
corresponding MIDI transcriptions. After which, the beats
were estimated from the aligned-MIDI information. This
process was repeated for the whole dataset.

4. METHODOLOGY

For estimating the musical phases of the video signal,
firstly the video needed to be converted into a 1-D time-
series signal. Two different approaches were used to iden-
tify a robust and scalable representation with respect to the
number of musicians in the frame. In this experiment we
used the following:

4.1 Video to Motion Signal

To convert the videos to a signal representing motion, we
investigated two different approaches. They were :
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Figure 2. Three signals generated from motiongram data
of a video (a), X: Horizontal motion ,Y: Vertical motion, Z:
Quantity of motion (b) The three X, Y and Z motion signals
with the time instances of the audio beat superimposed on
them

4.1.1 Motiongram

The motiongram was created by calculating the spatio-
temporal motion using the average pixel intensity change
between frames of video. It provides a series of images
showing motion in two dimensions across the image plane,
𝐼 with dimensions 𝑛×𝑚, for some small time-step 𝑑𝑡, see
Equation 1. The signals generated with respect to the mo-
tiongram are shown in Fig 2. In the plot in the upper panel
the X-value refers to the average horizontal pixel positions
in the image, while the Y-value refers to the average verti-
cal pixel positions. The other feature used was the ’quan-
tity of motion’ [15], that represented the overall average
amount of motion at that time-step. The signals were nor-
malized independently for further processing. The lower
panel shows the relationship between the X, Y and Z sig-
nals and the locations of the beats in the music. Change in
number of participants was found to not effect the output
of motiongram.

𝐼(𝑡+ 𝑑𝑡) = |𝐼(𝑥, 𝑦, 𝑡+ 𝑑𝑡)− 𝐼(𝑥, 𝑦, 𝑡)| ∈ R𝑛×𝑚 (1)

4.1.2 Pose Estimation

Recognizing human activities from video sequences is a
challenging task. While humans can do this easily, it is
a more complex process for computers to recognize hu-
man activities efficiently, and such operations are based on
multimodal activity recognition methods [16]. The pose
estimation algorithm extracted the 2D coordinates of hu-
man body joint locations (such as arms,head) from videos.

To use pose estimation, we considered each musician as an
individual oscillator. The average body movements gener-
ated by each of them was interpreted as a 1D motion signal.
We used openpose, an improved and robust model pose es-
timation model that applies Part Affinity Fields (PAFs) to
predict body keypoints for multiple humans [17]. These
coordinates were used to compute the full body motion for
each musician. It generated, 17 body keypoints, 𝒦, from
each frame of the video. The inter-keypoint distance of
each individual was recorded over time from their body-
center.

Two different approaches were tested with pose estima-
tion. They are :

• First Frame as Reference

• Spatial Derivative of keypoints

In the first technique, the first frame was considered as the
point of reference for calculating the motion. An average
value was computed to find the relative motion resulting in
a 1D signal for each musician as shown in the lower panel
of Fig 3. This measured the variances of the keypoints for
each time-step, see Equation 2 1 where 𝑘 ∈ R2 is each
keypoint, 𝑘 is the keypoint average, and 𝑛 is the number
of keypoints ∈ 𝒦. Each musician was considered as an
individual signal source. Therefore, with the increase in
number of participants, there were more signals present.

𝜎𝑡 =

∑︀𝑛
𝑖=1 𝐿2(𝑘𝑖, 𝑘)

𝑛
∈ R (2)

The spatial derivative was used in the second technique
to generate the average motion signal of each individual
by comparing each frame’s keypoints 𝒦𝑡 with its previous
frame, similar to optical flow [18]. Given that the points
had already been localized, there was no need to calculate
the intensity-based image gradients. The spatial derivative,
∆𝑘, was calculated for each keypoint ∈ 𝒦𝑡 using Equa-
tion 3, where 𝑘 is each keypoint on the image plane. To
get a measurement of how much motion was associated
with each keypoint at time-step 𝑑𝑡, the magnitude of the
vector ∆𝑘 was calculated, and an overall average 𝜇𝑡 for all
the keypoints ∆𝑘𝑖 at that time-step 𝑛 was found, as given
in Equation 4.

∆𝑘 = 𝑘(𝑡+ 𝑑𝑡)− 𝑘(𝑡) ∈ R2 (3)

𝜇𝑡(∆𝒦) =

∑︀𝑛
𝑖=1 ‖∆𝑘𝑖‖

𝑛
∈ R (4)

4.2 Post Processing

4.2.1 Filtering the signal

The signals generated by motiongram and pose estimator
showed a rhythmic pattern when they were plotted. The
Okada filter was used for smoothing the dataset [19]. This
was used as it can increase the data precision without dis-
torting or affecting the position of the signal peak. It is

1 𝐿2(·, ·) represents the 𝐿2 norm between two points or the Euclidean
distance
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Figure 3. The upper panel shows a frame of the video of the
musicians where each musician represents as an oscillator
and the lower frame gives the average motion calculated by
pose estimation on each musician based on the first frame
as reference and the spatial derivative of keypoints from
each participants

based on logistic function over a single continuous differ-
entiable equation as shown in Equation 5. Here, 𝑥𝑡 refers
signal value(x) at time t and 𝑥𝑡−1 and 𝑥𝑡+1 are at the pre-
vious and next time points respectively. 𝛼 is a weighting
factor and is typically set to be 100.

𝑥𝑡 ← 𝑥𝑡 +
𝑥𝑡−1 + 𝑥𝑡+1 − 2𝑥𝑡

2(1 + 𝑒−𝛼(𝑥𝑡−𝑥𝑡−1)(𝑥𝑡−𝑥𝑡+1))
(5)

4.2.2 Matrix Decomposition

We considered each signal as a dimension.Thus, using
a matrix decomposition algorithm,we converted multiple
signals into a single dimension. This one dimensional sig-
nal showed a high correlation with the audio beats (ground
truth). We investigated five different dimensional reduc-
tion algorithms [20]. These included :

• Incremental principal components analysis (IPCA)

• Principal component analysis (PCA)

• Kernel Principal component analysis (KPCA)

• Dimensionality reduction using truncated SVD (aka
LSA)

• FastICA: a fast algorithm for Independent Compo-
nent Analysis

The multi-collinearity was handled by removing the re-
dundant features. In Fig 4, the five dimension reduced sig-
nals were used for both motiongram and pose estimation
output. The motiongrams horizontal(x-value), vertical im-
age plane values(y-value) and quantity of motion(QOM-
Value) were decomposed together, as shown in Fig 4(a).
However,during these performances, there were multiple
musicians interacting with each other.The body keypoints
of each musician was considered as an individual indepen-
dent oscillator generating a signal. For example, in a quar-
tet performance,four average motion signals were treated

Figure 4. 1D signals generated after dimensional reduc-
tion of the motion signals with five different algorithms(a)
Three dimensions(X,Y,QoM) of motiongram were reduced
to one-dimensional signal (b)Reduced one-dimensional
signals obtained from multiple musicians’ pose estimated
motion

as four different dimensions. Additionally, matrix factor-
ization techniques were used to combine the movement
data as a single oscillator for phase prediction.

4.2.3 Peak and Valley Detection

Each decomposed signal provided its own set of times-
tamps. A peak detection algorithm [21] was used to de-
tect the peaks and the valleys for each of the five decom-
posed signals. The peaks and valleys were then merged and
sorted in increasing order of time. The times of all the five
signals were superimposed on each other. A voting-based
system was used for selecting phases. Any three of the sig-
nals providing matching timestamps at their peaks/valleys
were considered (following cut off thresholds). Other
peaks/valleys were ignored. Strong points were consid-
ered to be visual beats and compared with the audio beats
(ground truth) as shown in Fig 5.

5. RESULTS

For the evaluation 2 we selected three from each of the four
types of performance, as shown in Table 1 which had not
been used for the training.The classical pieces were com-
posed by renowned composers including Holst, Mozart,
Joplin, Bach and others. The preference for classical music
is that it is often performed with rubato and thus its tempo
more elastic than the beat-driven pop or rock music. In ad-
dition to this, beat detection can be difficult for instruments
of the string, brass, and wind family as their onsets are less
well-defined when not played in a percussive style. Over-
all,this detection problem is exacerbated by the absence of
drums in most classical music.The musical pieces were se-
lected in such a way so that all types of musical instru-

2 https://github.com/SutirthaChakraborty/
motiongramVsPoseEstimation
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Figure 5. To calculate the phase of the movements,(a)
Peaks and (b) Valleys were detected from dimensional re-
duced signals and are shown by red crosses in the upper
and lower panels respectively.

ment were included in the experiment, and thus we could
precisely identify the impact of the instruments’ family on
the accuracy of the two different approaches used for the
video to signal conversion. Musicians can often exhibit an
instrument-specific style of movement that helps them to
maintain the rhythm while playing [22].For computational
accuracy when making the evaluation, we considered two
cases: Firstly, that the beats that were exactly predicted by
the algorithms and secondly, that the beats that lay within
a bound of 100ms on either side of the ground truth beat’s
timestamp. The value of 100ms was chosen as since the
videos are 29.75 frames per second (FPS), it means within
three video frames either side of the audio beat event there
must be a corresponding video beat event [23]. On exe-
cuting the evaluation, we found that the best detection ap-
proach depends mostly on the types of instrument played
and on the number of musicians playing, as shown in Fig 6.
During validation, we achieved a maximum F1-score of
0.34 when using the motiongram, followed by a score of
0.33 when using optical flow to predict the audio beats of
each performance. The First Frame Reference approach
had the worst result of 0.32. The full validation results are
shown in table 2. In Fig 6 the Motiongram output values
(shown by the blue bars) were found to be most distinct
for string instruments. This was expected as the musicians
exhibit greater levels of activity while playing. In contrast,
the pose estimation with the optical flow method worked
well with woodwind instruments as those musicians dis-
play minimal motion. Considering all the instrument fam-
ilies, the Motiongram was found to be more reliable over-
all and yielded a more consistent performance with an in-
crease in the number of musician participants. We also

Type of
Performance Name Duration Instrument* Total

Beats

Duet
Jupiter 01:03 Vn,Vc 86
Sonata 00:46 Vn,Vn 44
The Entertainer 01:27 Tpt, Tpt 216

Trio
Spring for the Four Seasons 00:35 Vn,Vn,Vc 65
Hark the Herald Angels 00:47 Vn,Vn,Va 88
Waltz from Sleeping Beauty 01:33 Fl,Fl,Cl 304

Quartets
Pirates of the Aegean 00:50 Vn,Vn,Va,Vc 163
Pirates of the Aegean 00:50 Vn,Vn,Va,Sax 163
In the Hall of Mountain King 01:25 Vn,Vn,Va,Vc 160

Quintets
Miserere Mei Deus 00:40 Fl,Fl,Ob,Cl,Bn 87
Miserere Mei Deus 00:40 Fl,Fl,Ob,Cl,Bn 86
Chorale 00:53 Tpt,Tpt,Hn,Tba,Tba 144

*Instruments : Vn=Violin, Vc=Cello, Tpt= Trumpet, Va= Viola,
Fl=Flute, Ob=Oboe, Cl=Clarinet, Bn=Basson, Tba= Tuba

Table 1. Performances selected for evaluation

Motiongram First Frame
Reference Optical Flow

F1-Score 0.34 0.32 0.33
Precision 0.35 0.34 0.33
Recall 0.32 0.30 0.31

Table 2. Validation Score

found that musicians frequently tend to move their body
in anticipation of the beat [24]. While not performing as
well as the Motiongram overall the optical flow approach
was reasonably consistent in its output, as can be seen in
the figure. The pose estimation approach, where we con-
sidered the first frame as the reference frame, did not make
reliable predictions as observed by the varying nature of
the values plotted in Fig 6.

Figure 6. The evaluation procedure was carried out on 12
performances to find Fig (a): Quantity of Exact Matches:
the ground truth audio phase matched with predicted phase
from videos Fig (b): Quantity of Close matches:acceptable
lag of the audio phase that is 100ms second apart from the
predicted video phase.

6. CONCLUSION

This study shows how rhythmic phases could be predicted
from a music ensemble or group performance using only
video cues. Although difficult for the human eye to as-
certain consistently, this approach could identify poten-
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tially consistent features from the non-verbal communi-
cation that exists among musicians and how their body
and gestural movements are engaged in maintaining the
phase synchronization across beats during a musical per-
formance. The study considered how the physical play-
ing activity could be considered as oscillators and how
this could characterise the underlying rhythmic dynam-
ics of their body movements. We presented a promising
set of techniques for predicting the beat locations utiliz-
ing data derived from a video recordings of the musicians’
bodies. We can conclude from our results that the ap-
proach is influenced heavily by the instruments that are
being played. If the instruments allow or encourage more
movement during playing, such as string instruments, mo-
tiongrams and pose estimation combined with an optical
flow technique would be more appropriate for predicting
the musical rhythm. Pose estimation alone was more ef-
fective with instruments that inspire less body movement,
such as those of the woodwind family.

For future work, the most immediate concern is to im-
prove the accuracy by developing a post-processing tech-
nique that will eliminate sources of error that lead to false
positives. Another idea is to develop a multimodal ap-
proach that fuses the predictions derived from the audio
and video data. Also, at a higher level it would be useful
to have an automated decision-making system that would
simply choose the most appropriate analysis technique by
identifying the music instrument type from the audio sig-
nal. In the longer term, video footage of larger ensembles
of instruments will be studied, more data will be collected,
and a greater use of machine learning technologies will be
made.
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ABSTRACT

We cast the computational modeling of musical fingering
as an information retrieval (IR) problem in which the task
is to generate an optimally ranked list of fingering sug-
gestions for each phrase in a score. The audience for this
list is a set of performers with potentially diverse fingering
preferences. Specifically, we adapt the expected reciprocal
rank (ERR) metric—proposed by Chapelle and associates
as an improved evaluation metric for retrieving documents
with graded relevance—to develop a set of novel metrics
tailored to the piano fingering IR task. ERR, as origi-
nally described, relies on a heuristic function to estimate
the probability that a user will be satisfied by a document
with a particular graded relevance. For musical fingering,
we instead estimate the likelihood that a given performer
will deem a suggested fingering sequence sufficient for ar-
riving at a satisfactory solution. Finally, we attempt to val-
idate our specific use of ERR by comparing how it judges
several competing models.

1. INTRODUCTION

Pianists typically encounter fingering advice as annota-
tions on a static printed score. In some cases, especially
for more difficult repertoire, pianists may own more than
one editorial score to obtain a variety of fingering sugges-
tions. A key advantage of an automated advice generation
system, therefore, would be its ability to provide a variety
of advice on demand. It is also a common feature of exist-
ing models to output ranked lists of fingering sequences.

Moreover, assessment methods for the published piano
fingering models are inadequate. With few exceptions
[1–3], the extrinsic evaluations performed on proposed
models consider only a single authoritative source of “cor-
rect fingerings.” The same can be said of how models of
guitar fingering have been evaluated. This is a missed op-
portunity, as is affirmed by the variability in the domain
described qualitatively by [1] and [4]. The existence of
multiple ground truths must be acknowledged and accom-
modated in model evaluation.

Parncutt et al. [1] collect “preferred fingerings” from a set
of 28 pianists with unreported hand dimensions or gender,
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ranking particular fingerings by how many pianists pre-
fer them. Their computer model is deemed a success be-
cause, “In most cases, the most popular fingering [among
pianists] is in the top 10 [selected by the model].” Ja-
cobs [2] uses an identical evaluation technique, and boasts
of an improvement because “more pianist’s fingerings are
now included in the top 10.” Nakamura et al. [3] confront
the problem squarely and suggest several methods for com-
paring automatically generated advice with single or mul-
tiple ground truths. These methods rely on perfect matches
at each note position and contemplate evaluating only one
automatically generated fingering sequence at a time. They
also describe a “recombination match rate,” which involves
calculating a cost of “constructing” a generated fingering
sequence by combining the ground truths that are avail-
able.

Our approach here is more straightforward and includes
multiple system outputs as part of the evaluation frame-
work, as seems appropriate for a domain acknowledged to
contain multiple ground truths and for automated systems
that should be expected to produce diverse fingering sug-
gestions.

We therefore cast the development of fingering models
as an information retrieval (IR) task. Given arbitrary mu-
sical input (a “query”), the system generates a list of the
most relevant fingerings (“documents”), ordered optimally
to satisfy the information need of the pianist (“user.”) With
this framing of the task, we draw on recent advancements
in evaluation measures for IR systems to develop a set of
novel evaluation metrics for piano fingering.

Here we demonstrate an application of ERR to piano fin-
gering advice, but the general approach should be apppli-
cable to any instrument where fingering decisions form an
important part of skilled performance. At various times,
accordianists, string players, and many percussionists may
also be eager consumers of fingering (or sticking) advice.
Other instruments (e.g., brasses and woodwinds) typically
have few fingering choices, making computational models
less relevant for them.

To simplify explication, in our application of ERR to the
evaluation of piano fingering advice, we reduce the prob-
lem space to include only monophonic (melodic) musical
phrases played with the right hand.

Open-source implementations of all methods described
below are released as part of Pydactyl [5] at https://
github.com/dvdrndlph/pydactyl. Full release
of the corpora used in validation is forthcoming.
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2. EXPECTED RECIPROCAL RANK

Specifically, we adapt expected reciprocal rank (ERR),
proposed by [6] as an improved metric for search engines
when retrieving documents with graded relevance, to the
musical fingering IR task. ERR generalizes the Reciprocal
Rank (RR) metric of [7], a simple assessment for docu-
ments with binary relevance: the quality of a list of docu-
ments in which the first relevant document appears at rank
𝑟 is estimated as 1

𝑟 . To calculate ERR(𝑅) for a returned
list of 𝑅 documents, system evaluators define a function
to estimate the probability that a user will be satisfied by
a document with a certain graded relevance. Armed with
these probabilities, it is then straightforward to determine
the likelihood that a user will be satisfied after review-
ing a document at each rank. These likelihoods, after be-
ing assessed a reciprocal-rank 1

𝑟 (or similar) discount, are
summed to calculate ERR(𝑅) for a list of length 𝑅. The
basic intuition of ERR is summed up in Equation 1, as de-
fined by [6]:

ERR(𝑅) =

𝑅∑︁
𝑟=1

1

𝑟
𝑃 (user stops at position 𝑟). (1)

The details for leveraging the individual probability es-
timates 𝑃𝑖 (that each recommended document in the list
will satisfy the user) to determine the likelihood that a
user stops the search at rank 𝑟 are conveyed in Equation
2 (with notation slightly altered from the original). The
key point here is that the probability of stopping at a rank
𝑟 is the probability imputed from the graded relevance of
the document at this rank reduced by the probability that
this rank is never reached by the user—that is, that a doc-
ument ranked higher has already satisfied the information
need. Through this property, the ERR measure reflects a
“cascade user model,” which has been applied effectively
to explain user behavior when interacting with web search
results [8]:

ERR(𝑅) =

𝑅∑︁
𝑟=1

1

𝑟

𝑟−1∏︁
𝑖=1

(1 − 𝑃𝑖)𝑃𝑟. (2)

Chapelle and associates illustrate their metric with a
probability estimation function for documents assigned an
integer relevance score 𝑔 ∈ {0, . . . , 𝑔𝑚𝑎𝑥}:

𝒫(𝑔𝑟) =
2𝑔𝑟 − 1

2𝑔𝑚𝑎𝑥
. (3)

Thus, the graded relevance of 𝑔𝑟 of a document at rank
𝑟, the prior probability of the acceptability of document 𝑟
may be estimated:

𝑃𝑟 = 𝒫(𝑔𝑟). (4)

For the musical fingering problem, we adapt the ERR
metric to entail distinct methods for estimating the prior
probability that a document—that is, a fingering se-
quence—will be acceptable to the user. Instead of rele-
vance grading, we propose evaluating the quality of a sug-
gestion according to its similarity to a gold-standard fin-
gering sequence.

We assume that any acceptable system advice, in the vast
majority of cases, will be similar to satisfactory fingering
sequences developed by the performer independent of sug-
gestions from third parties or, more generally, to some ac-
ceptable advice suggested by more expert pianists. By ne-
cessity, fingerings developed by humans form the basis of
the expertise being modeled. Crucially, we do not expect
performers to require each note’s suggested fingering to be
identical to the one they ultimately adopt for that note.

The simplest similarity measure between two fingering
sequences for a phrase is Hamming distance. In this mea-
sure, we simply count the number of individual elements
in a sequence that do not match exactly: The fewer mis-
matches, the more similar the strings. Insofar as previ-
ously published fingering models have discussed perfor-
mance of their models, they appear to refer to “accuracy”
as the percentage of exact matches at the level of individ-
ual fingerings. This measure makes no assumptions about
the process underlying how fingering decisions are made.
Normalizing for the length 𝑁 of the phrase, we have the
following grading function 𝑔 for the fingering at rank 𝑟
produced by system 𝑆:

𝑔𝑟 =
∆(𝐻,𝑆𝑟)

𝑁
, (5)

where 𝐻 is the fingering sequence ultimately adopted by
the human pianist (and included in a gold-standard corpus)
and ∆ is the Hamming edit distance function:

∆(𝐴,𝑋) =
𝑁∑︁

𝑛=1

𝛿(𝐴𝑛, 𝑋𝑛), (6)

where

𝛿(𝑎, 𝑥) =

{︃
0 if 𝑎 = 𝑥,

1 otherwise.
(7)

Normalizing the Hamming distance conveniently implies
0 < 𝑔𝑟 < 1, so we may use the following to estimate the
probability 𝒫 that advice at rank 𝑟 will satisfy the user:

𝒫𝑟 = 1 − 𝑔𝑟. (8)

2.1 Modified Unigram Edit Distance

Motivated by the observation that not all fingering devia-
tions are equally significant, however, we pose a modifica-
tion to simple Hamming distance for use in the piano do-
main. Clearly, choosing the index finger (2) over the mid-
dle finger (3) in many cases might seem arbitrary to the
player, or at the very least a substitution readily made as
circumstances allow. As such, a 2-3 or 3-2 variation is less
likely to damage the overall opinion one holds of a com-
plete sequence. This intuition is supported by pedagogues
who place fingers 3 and 2 on near parity. Per [9, p. 115],
“The third finger is by nature the skilfullest and strongest.
The style of touch which it possesses serves for a time as
a standard for the other fingers. . . . The second is the next
strongest and skilfullest. Its mobility is probably greater,
but in strength it yields to the third.”

Selecting the middle finger (3) over the ring finger (4),
though perhaps more controversial, is still a relatively mi-
nor deviation when compared to substituting more remote
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1 2 3 4 5
1 0 1 1 1 1
2 1 0 1

2 1 1
3 1 1

2 0 1
2 1

4 1 1 1
2 0 1

5 1 1 1 1 0

Table 1. Confusion matrix for one-handed “adjacent long”
weighted edit distance for piano.

fingers. Fingers 2, 3, and 4 are the longest fingers and as
such they are adept at playing both black and white keys.
While 3 is stronger than 4 typically, these fingers are used
interchangeably frequently in certain patterns and reflect-
ing different pianists’ approach to standardized structures.

We therefore propose an alternative weighted edit dis-
tance, defined as a confusion matrix in Table 1, as a more
appropriate 𝛿(𝑎, 𝑥) for piano. We refer to the ∆ function
applying this confusion matrix as the “adjacent long” edit
distance function.

2.2 Trigram Edit Distance

The edit distance functions described above measure de-
viations between fingerings of individual notes. We have
reservations about applying such unigram measures to a
problem that is fundamentally about transitions between
fingered positions (at least for keyboard and string in-
struments) and also about planning for future transitions.
We therefore here pose alternatives, which measure con-
sistency in two fingering sequences within a sliding win-
dow of three-note groups—𝜏 trigram distance functions.
The simplest (and most unforgiving) of such measures, de-
scribed formally in Equation 9, requires exact matches for
the finger used to play each note in the group:

𝜏(𝐴,𝑋, 𝑛) =

{︃
1 if eq(𝐴𝑛

𝑛−2, 𝑋
𝑛
𝑛−2),

0 otherwise,
(9)

where

eq(𝑎𝑏𝑐, 𝑥𝑦𝑧) =

{︃
0 if 𝑎 ̸= 𝑥 or 𝑐 ̸= 𝑧 or 𝑏 ̸= 𝑦,

1 otherwise.
(10)

The added context of the trigram allows us, for piano, to
incorporate the concept of adjacent long finger similarity
discussed above with more precision. In our “nuanced”
formulation, captured in Equation 11, we discount mis-
matches involving adjacent long fingers by some 𝜀 only for
the middle note in a trigram and only when the surrounding
notes are fingered identically. That is,

𝜏(𝐴,𝑋, 𝑛) =

⎧⎪⎨⎪⎩
0 if eq(𝐴𝑛

𝑛−2, 𝑋
𝑛
𝑛−2),

1 − 𝜀 if sim(𝐴,𝑋, 𝑛),

1 otherwise,
(11)

given equal(𝑎𝑏𝑐, 𝑥𝑦𝑧) is defined as above in Equation 10,

sim(𝐴,𝑋, 𝑛) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if eq(𝐴𝑛

𝑛−2, 𝑋
𝑛
𝑛−2),

0 if 𝐴𝑛−2 ̸= 𝑋𝑛−2 or 𝐴𝑛 ̸= 𝑋𝑛,

1 if proxy(𝐴𝑛−1, 𝑋𝑛−1),

0 otherwise,
(12)

and where

proxy(𝑎, 𝑥) =

⎧⎪⎨⎪⎩
1 if 𝑎 ∈ {2, 3} and 𝑥 ∈ {2, 3},
1 if 𝑎 ∈ {3, 4} and 𝑥 ∈ {3, 4},
0 otherwise,

(13)

with 0 ≤ 𝜀 ≤ 1. Clearly, the decision made for the middle
note in a trigram has essentially no bearing on the finger-
ings outside the scope of the trigram when the outer two
notes are fingered identically. A pianist should be quite
forgiving of such deviations and be able to substitute their
own preferences easily.

We suspect that pianists will be similarly accepting of
these similarities, bracketed as they always are by finger-
ings with which they completely agree, when they appear
in other positions (first or third) in other trigrams. We
therefore pose one final “relaxed” 𝜏 distance function:

𝜏(𝐴,𝑋, 𝑛) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if equal(𝐴𝑛

𝑛−2, 𝑋
𝑛
𝑛−2),

1 − 𝜀 if simat(𝐴,𝑋, 𝑛− 2) and
simat(𝐴,𝑋, 𝑛− 1) and
simat(𝐴,𝑋, 𝑛),

1 otherwise,
(14)

where

simat(𝐴,𝑋,𝑚) =

⎧⎨⎩1 if 𝐴𝑚 = 𝑋𝑚 or
sim(𝐴,𝑋,𝑚 + 1),

0 otherwise.
(15)

Note that any of these 𝜏 functions may be used in place
of the 𝛿 functions included in Equation 5, like so:

∆(𝐴,𝑋) =

𝑁∑︁
𝑛=1

𝜏(𝐴𝑛
𝑛−2, 𝑋

𝑛
𝑛−2). (16)

Note that each note is evaluated in its full trigram con-
text. That is, each individual note contributes to three tri-
gram evaluations, with the first and last two evaluations
including referencing positions outside the scope of the
note sequence. Such blank or null values are considered
equal when compared. To check everything completely, 𝑁
must be increased by two for all calculations involving tri-
gram measures. Table 2 demonstrates how the summation
in Equation 16 aggregates for each iteration (1–9) over the
seven-note phrase using the three candidate trigram func-
tions. Here we assume 𝜀 = 1, but using a number slightly
less than one (such as 0.99, as we do in the experiments
described below) affords better differentiation.

3. GENERAL PROBABILITY FORMULATION

We apply this measures into our estimate for the probabil-
ity that system 𝑆 advice at position 𝑟 in a ranked list will
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𝑛 -1 0 1 2 3 4 5 6 7 8 9
𝐻 2 5 3 5 2 3 1
𝑆𝑟 3 5 4 5 3 4 2

Match = = ≈ = ≈ = ̸= ̸= ̸= = =
𝜏trigram 1 2 3 4 5 6 7 8 9
𝜏nuanced 1 1 2 2 3 4 5 6 7
𝜏relaxed 0 0 0 0 1 2 3 4 5

Table 2. The calculation of ∆(𝐻,𝑆𝑟) using the competing 𝜏 trigram distance functions (𝜀 = 1).

satisfy the human who prefers fingering sequence 𝐻 like
so:

𝒫𝑟 = 1 − ∆(𝐻,𝑆𝑟)

𝑁
. (17)

We attempt to validate the utility of Equation 17 with var-
ious ∆ definitions in the experiments described below.

4. EVALUATING THE EVALUATIONS

Chapelle et al. [6], as a preamble to the evaluation of their
ERR metric applied to web search: “The evaluation of new
metrics is challenging because there is no ground truth to
compare with. Because of that, most papers that propose
new metrics do not have direct evaluations.” They proceed
to defend the application of ERR to web search by leverag-
ing click-through data as a surrogate for what they would
ideally have—namely, actual people interacting with lists
comprised only of documents with known grades. We find
ourselves in a similar position here, as we do not have data
from a set of pianists interacting with fingering advice from
competing models. What we have are passages fingered by
pianists and several model implementations.

4.1 Corpora

Our initial validation efforts here are performed using the
fragments from Czerny’s challenging 160 Kurze Übungen
[10] that form the basis for evaluation of the original pi-
ano fingering model [1]. Parncutt and associates [1] pub-
lish fingering data for the opening notes of seven exercises,
ranging from four to eight notes in length. Of the 28 pi-
anists who provided fingerings, 25 “performed regularly
on a regular basis” and three were enrolled in an “under-
graduate music program.” They report a “mean total num-
ber of years practicing and/or performing = 31” for partic-
ipants. Data from this cohort constitute what we call the
“published” corpus.

In addition, using these same Czerny exercises, we have
assembled a more extensive corpus via an online survey
and a web application [11] built for the purpose. Sub-
jects were recruited from personal acquaintances of the re-
searchers, email lists published by several music teachers’
associations (California, Florida, Georgia, Massachusetts,
New Jersey, Ohio, Pennsylvania, and the greater Chicago
metropolitan area), and music departments at universities
and colleges across the United States and Canada. In all,
5345 recruitment emails were sent, asking recipients to
complete the survey and/or forward it to potentially in-
terested students and colleagues. From this, 352 people

(6.6%) responded. For the subset of 199 subjects who pro-
vided enough information, we determine a median of 36
“years of piano study.” Included in this full corpus are all
complete fingering sequences provided by any participant.

We deem all these data to represent expert fingering ad-
vice. Details about each corpus are provided in Table 3.

4.2 Models

To put ERR and our competing probability estimation
methods through their paces, we leverage our own imple-
mentations [5] of the original piano fingering model de-
scribed by Parncutt et al. [1] (hereafter referred to as the
parncutt model) and the enhancement of this model de-
scribed by Jacobs [2] (the jacobs model).

We use the distributions of the published and full corpora
to synthesize two high quality models, which we dub ideal-
p and ideal-f, respectively. The “system” lists produced by
such models are composed of the most popular fingering
suggestions from a large group of expert pianists. An au-
tomated system this good would surely define the state of
the art.

Finally, we define two models—random-p and random-
f —that simply apply a random fingering (1–5) to every
note in a sequence, generating intentionally sub-optimal
ranked “system” lists. These models should clearly under-
perform any reasonable advice generating system. (We
seed the random number generator with a constant arbi-
trary value to guarantee reproducible results.)

4.3 Approach

For each corpus, we apply four models to each piece to
obtain 28 𝑆 ranked fingering lists of length five. We then
calculate five different ERR scores for each 𝐻 fingering
provided by a human, applying a different ∆ function to
estimate the probability 𝑃𝑟 that the suggestion presented
at rank 𝑟 in the 𝑆 list will satisfy the pianist. Each of the
five estimates is determined by a different method: two that
consider unigrams—Hamming distance (as in Equation 7)
and “AdjLong” (as captured in Table 1)—and three that
compare trigrams (either requiring exact trigram matches
(Equation 9), nuanced matches (Equation 11), or yet more
relaxed matches (Equation 14).

To summarize our results, we simply average the ERR
scores achieved by each method to obtain a mean ERR
value,

MERR(A) =
1

𝐴

𝐴∑︁
𝑖=1

ERR(𝐻𝑖), (18)
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Corpus full published
Piece Notes Annotators Annotations Notes Annotators Annotations
A (Op. 821 no. 1) 16 202 3232 8 28 224
B (Op. 821 no. 37) 16 201 3216 4 28 112
C (Op. 821 no. 38) 18 198 3564 5 28 140
D (Op. 821 no. 54) 16 190 3040 7 28 196
E (Op. 821 no. 62) 15 195 2925 8 28 224
F (Op. 821 no. 66) 16 192 3072 6 28 168
G (Op. 821 no. 96) 18 195 3510 7 28 196
Totals 115 22559 45 1260

Table 3. Details on Czerny corpora used in evaluation.

where A is the number of human-annotated phrases 𝐻 in
the corpus.

We expect to see ERR methods rank the four models in
order from best to worst:

1. ideal

2. jacobs

3. parncutt

4. random

We also expect to see an advantage of trigram methods
over unigram methods.

We use the scipy and statsmosdels python packages for
statistical analysis.

4.4 Results

The MERR results are displayed in Table 4. The expected
ordering of models is present for all four methods em-
ployed.

Eight one-way between-subjects ANOVAs conducted to
analyze the differences reported between ERR means
found all of them to be statistically significant (𝑝 < 0.001).
Follow-up Tukey post-hoc tests indicated statistically sig-
nificant (𝑝 < 0.05) differences between all pairs of means
except for the jacobs-parncutt pairs in both corpora. None
of the differences in those means are found to be statis-
tically significant. Thus, none of the methods here allow
us to state definitively that this accepted enhancement is
clearly better than the original. So we can only safely say
this about the relative quality of our models per ERR:

1. ideal

2. jacobs or parncutt

3. random

This still suggests that ERR is a valid measure for the
piano fingering IR task, in all of its tested guises.

Another noteworthy observation is the apparently supe-
rior ability of trigram methods to emphasize differences
between very good and very bad models. Consider the
Hamming MERR of 0.81098 for ideal-f and 0.40306 for
random-f, a difference of 0.40792. This is a surprisingly
narrow advantage for the state of the art over one of the
worst models imaginable. The “Relaxed” trigram measure

provides a wider spread of 0.73802− 0.13289 = 0.60513,
which is almost 50% higher. This increased spread is sta-
tistically significant (𝑝 < 0.001) and is a desirable attribute
in an evaluation method.

5. CONCLUSIONS

The musical fingering problem is best thought of as an in-
formation retrieval task, similar to web search. One of its
key advantages over static fingering advice like that avail-
able in books is its ability to provide a variety of finger-
ing suggestions on demand. The need for such variety of
advice is apparent from the ready acceptance of multiple
ground truths by the earliest and latest researchers in the
domain [1–3].

There are two fundamental ways to frame the fingering
problem. The most straightforward is to model the deci-
sions of a single performer. With this framing, to train
and to evaluate models, one need only consider passages
fingered by this pianist. With few notable exceptions, all
prior research in the domain that has striven for quantita-
tive evaluation has implicitly [12–14] or explicitly [15,16]
focused on this (simplified) formulation. Doing so has al-
lowed the field to ignore what is clearly large disagree-
ment among pianists for even the shortest [1] and most
routinized [17] of musical segments. Indeed, the seven ex-
ercises in the published corpus [1] were selected because
“at least two distinct, but arguably equally good, fingerings
existed for the opening of each piece.”

Presenting the “arguably equally good” as needed should
be the charter for future computational models of piano fin-
gering. Note that the “ideal” model we describe above is
likely far from ideal. As we try to motivate with our en-
hanced distance functions, some fingerings differ in trivial
ways, in ways that explicitly do not render them “distinct”
in the sense that Parncutt et al. use the word. Identifying
archetypes of distinct clusters of fingerings and present-
ing these archetypes in an optimal order should produce
more optimal lists. Clearly, distinct and diverse sugges-
tions make the best lists. Fortunately, an “extension” to
the ERR metric [6, S7.4] provides explicit support for this
intuitive notion of “diversity.” We expect future work to
leverage distance measure like those described here for pi-
ano to identify diverse clusters and that such extended ERR
metrics will better estimate the utility of musical fingering
models.
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Corpus Model Hamming AdjLong Trigram Nuanced Relaxed
full ideal-f 0.81098 0.85675 0.70206 0.71696 0.73802
full jacobs 0.66966 0.76734 0.51501 0.54404 0.58154
full parncutt 0.66409 0.75903 0.49974 0.52864 0.5402
full random-f 0.40306 0.53721 0.07596 0.10698 0.13289
published ideal-p 0.83794 0.87434 0.77743 0.78681 0.80017
published jacobs 0.6517 0.72936 0.50254 0.51927 0.54028
published parncutt 0.6028 0.70779 0.45561 0.47757 0.50518
published random-p 0.42696 0.58084 0.17156 0.21516 0.25573

Table 4. Mean ERR score using various ∆ functions, all phrases treated equally. Mean pairs in shaded rows are not
statistically significant.

Again, we have limited the piano fingering problems sup-
ported by the methods described above to monophonic
phrases played by the right hand. It is straightforward to
include the left hand, applying the logic described symet-
rically in the obvious ways. Either hands may be evaluated
using the Python implementation available at https://
github.com/dvdrndlph/pydactyl. There is also
a pragmatic justification for focusing on melodic fingering:
it is arguably where pianists are most in need of good ad-
vice. Radicioni and Lombardo [18] convincingly demon-
strate that chord fingering for guitarists is much less chal-
lenging than melodic fingering because the choices are so
severely constrained. If anything, chord fingering in pi-
ano is even more highly constrained. Having multiple fret-
board locations to play a given note, along with more two-
dimensional options for placing fingers, affords the gui-
tarist degrees of freedom that are not at the pianist’s dis-
posal. Moreover, unlike for guitar, the fingers in a piano
chord played with one hand (as is customary or obliga-
tory in the vast majority of cases) must be applied in an
ascending order coinciding with the ascending notes. Fin-
gers may be skipped in building the chord, but the order is
constrained.

We also note that the metrics can be applied to polyphonic
music and will likely perform reasonably well in the face
of limited polyphony. However, we must concede that the
piano model metrics described here are not comprehensive.

But broadly speaking, ERR is a promising method for
evaluating the now clearly framed musical fingering IR
task. Its utility must be validated more comprehensively
in future work.
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ABSTRACT

Principal Component Analysis (PCA) has been often used
for HRTF compression and individualization. However,
there is significant variation in how the input matrix on
which PCA is applied is constructed. Here, we study the
effect of choices on the selection of independent variables,
the domain in which impulse responses are represented,
the HRTF database used, and possible smoothing on the
compression efficiency and the reconstruction quality of
the resulting PCA model. Several findings replicate well
across different databases. Results point to a benefit for
signal compared to space PCA and for using minimum-
phase HRIRs or HRTFs. Smoothing HRTFs leads to an
increase in compression efficiency and a reduction in spec-
tral distortion and using HRTFs with logarithmic magni-
tude leads to lower spectral distortion compared to linear.

1. INTRODUCTION

Head Related Transfer Functions (HRTFs) allow design-
ers and engineers to create 3D audio using headphones [1]
with applications in virtual and augmented reality. HRTF
models that support individualisation, compact represen-
tation, and transfer are important as HRTFs are relatively
long filters that are specific to individual users and need
to be measured for all positions of interest in a relatively
resource-intensive process [2].

A compact HRTF model can be reached by decompos-
ing an HRTF set upon a set of orthogonal basis functions
and obtaining the related weights (or loadings). Such de-
compositions can be used to reduce the, typically high, di-
mensionality of HRTF sets and serve as a basis for com-
pression, individualization, and the investigation of their
numerical and perceptual properties. Most often, Princi-
pal Component Analysis (PCA) e.g., [3–6] and the Spher-
ical Harmonic Transform e.g., [7–9] have been used for
this purpose. More recent approaches focus on deep learn-
ing [10].

This article focuses on using PCA for HRTF modelling.
It is motivated by the fact that HRTF functions have been
arranged in markedly different ways for PCA processing
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in the literature and aims to investigate the extent to which
such differences may affect the compression efficiency and
representation ability of the obtained model.

2. BACKGROUND

2.1 HRTFs

The head-related impulse response (HRIR) h(θ, ϕ, t) de-
notes the time domain impulse response for a sound orig-
inating at azimuth θ and elevation ϕ measured at or inside
the ear-canal. The head-related transfer function (HRTF)
H(θ, ϕ, f ) is the frequency domain representation of the
HRIR. HRTFs are recorded using miniature microphones
for a subject and source position of interest [2], most com-
monly, on a dense sampling grid. Frequently, HRTFs are
diffuse-field equalized to exclude the ear canal resonance
and measurement system response and come in the form
of directional transfer functions (DTFs).

Binaural cues encoded in the interaural transfer function,
IT F = HL(θ, ϕ, f )/HR(θ, ϕ, f ) help localize sounds in the
horizontal plane. Monaural cues in the magnitude HRTF
spectrum are used for elevation perception and front/back
and up/down discrimination [11, 12]. These are spectral
peaks and notches between 4 and 16 kHz that are mainly
effected by the shape of the outer ear. For example, a
prominent 1-octave notch centered between 6 and 11 kHz
changes systematically with the vertical source location
[13].

Whereas HRTFs incorporate the effects of the whole
body, pinna-related transfer functions (PRTFs) indicate
only the contribution of the pinna and reduce the depen-
dence with respect to azimuth. They can be calculated
by applying a 1 ms right window at the beginning of the
HRIR signal in order to eliminate reflections by torso and
shoulders [14] and then transformed into frequency do-
main. Such functions are helpful when relating features
in the magnitude spectrum to particular anthropometric di-
mensions. Spectral features below 3 kHz are mainly pro-
duced by head diffraction and torso reflections [15].

2.2 Principal Component Analysis

Principal Component Analysis is normally applied onto a
two-dimensional matrix, with columns defining the inde-
pendent variables and rows containing observations. PCA
can be calculated directly using the eigendecomposition of
the sample covariance matrix CY of the observations or
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using the Singular Value Decomposition [16]. The sam-
ple covariance matrix CY of a set of observations Y with
M rows of observations and N columns of variables corre-
sponding to a random vector is defined as

CY = YT Y . (1)

CY is as a symmetric, real-valued, square matrix. Y needs
to be centered by subtracting the observation means. The
eigenvectors of the covariance matrix CY are also called
the principal components of Y. Since CY is symmetric, it
is also diagonalizable,

CY = V D V−1 , (2)

with a diagonal matrix D (m × m) containing the eigen-
values of CY and V as an orthonormal eigenvector matrix
including the right eigenvectors as columns.

Eigenvectors and eigenvalues may also be obtained
through the singular value decomposition (SVD), using
which Y can be written as

Y = U S VT , (3)

where U are (m×n) and VT (n×n) orthogonal matrices in-
cluding left and right eigenvectors uk and vk, respectively.
S (n × n) is a diagonal matrix with nonzero non-negative
diagonal elements, so that S = diag(s1, ... , sn), also known
as singular values. Note that

YT Y = (U S VT )T (U S VT ) = V S2 VT , (4)

Consequently, the square root of the eigenvalues of YYT

are the singular values (sk) of Y. The original centered data
Y set can be transformed to the new basis by projecting it
on the eigenvector basis V to obtain the principal compo-
nent weight (PCW) (or score) matrix W which can be used
for reconstruction.

W = Y V and Y =W V−1 (5)

Assuming that the matrix Y has a rank r, it follows that
sk > 0 for 1 ≤ k ≤ r and sk = 0 for (r + 1) ≤ k ≤ n and
one can neglect eigenvalues that are very close to zero to
reduce the dimensionality. Y can thus be approximated by
reducing the number of eigenvectors involved in the recon-
struction.

Yl =

l∑︁
k=1

uk sk vT
k + Ȳ , (6)

l is commonly chosen by calculating the number of com-
ponents required to explain, say 90%, of the variance. The
variance explained by l components is given by:

var(l) =
∑︀l

k=1 sk∑︀N
k=1 sk

· 100 [%] , (7)

where sk is the kth singular value, l is the number of a
particular PC and N is the total number of components.
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Figure 1. Spectral differences between unprocessed (128
coefficients) and smoothed DTF magnitude spectrum (with
64, 32, 16, 8 and 4 coefficients) in ARI database.

2.3 Modelling HRTFs using PCA

Head-related transfer function sets are mutli-dimensional
and typically include the the recorded impulse response for
each subject number, direction of sound incidence, and ear.
To proceed with PCA, the dataset needs to be placed into
a 2D input matrix before calculating principal components
and associated weights. Subsequently, the number of re-
quired principal components is determined depending on
the application [6, 14, 17].

Most of the studies use enough components so as 90% of
the variance in the data is explained [3, 15, 18]. Promising
results have been obtained when evaluating sound local-
ization with HRTFs that have been reconstructed with a
limited set of components subject to the aforementioned
variance constraint [3, 19].

Structuring the PCA input matrix: Studies in the litera-
ture differ in the HRTF set used, the domain the signal is
represented in, and in the way they are transformed into a
2D matrix for PCA.

Some studies apply PCA on HRIRs [5, 15, 20–23]. This
is appealing as the time-domain signals maintain delay
and phase information and can easily be windowed to iso-
late the effects of pinna, head, or shoulder. Other stud-
ies use minimum-phase HRIRs [5, 15, 23] which do not
include direction-dependent delays. Several other studies
use HRTF magnitude [3, 4, 17, 24–27] when forming the
PCA input matrix and minimum-phase is used when trans-
forming in the time domain. Minimum-phase is used based
on the assumption that the original signal phase can be dis-
carded and replaced by a direction-dependent delay.

In the case of HRTFs, PCA has been applied to both lin-
ear [4, 28] and logarithmic magnitude spectrum [3, 17, 18,
25, 26, 29] A further difference originates in the number of
points that are used in the DTF to estimate the frequency
spectrum. More recent studies use the complex spectrum
as input to PCA [30, 31].

Most commonly, signal amplitude (time-domain repre-
sentations) or spectral magnitude (frequency-domain rep-
resentations) are used as variables in columns and subjects
and directions of incidence as observations (rows). Re-
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cently, an alternative model has been proposed [6] which
uses spatial directions as variables in columns and signal
amplitude or spectral magnitude for each subject in rows.

The way the signals from the left and right ears enter the
PCA input matrix has also been treated in different ways
in literature. Sometimes only one ear is modelled and
the second one is considered to be symmetric and there-
fore duplicated by the modelled one [5, 15]. Alternatively,
it can be attempted to use PCA to explain the variability
across the two ears. This can be done either by using the
time/frequency signals from the second ear as observations
in rows [3, 29] in the PCA input matrix.

PCA has not been always performed on the complete set
of sound directions in the dataset. Decomposition has been
applied on the whole database [3,25], smaller subsets, such
as the median [5, 23] or horizontal plane [22, 32], and on
single sound directions [15]. The latter approach yields
a different set of principal components for each direction,
which may not be optimal from a compression perspective.
However, as the variability due to direction is not present
such an approach allows to focus on individual differences
caused by subjects’ anthropometry for smaller sets.

A final difference is the HRTF database used to per-
form the analysis. In general, principal components ob-
tained from different HTRF datasets are consistent as long
as the number of measurement directions and subjects is
reasonable. This invariance is more evident for compo-
nents explaining a large amount of variance, as compo-
nents of smaller variance reflect specificities that might not
be shared across datasets. Middlebrooks and Green [26]
were among the first who compared basis vectors calcu-
lated from their own measurement data (8 subjects, 360
positions) with an existing database by Kistler and Wight-
man [3] (10 subjects, 265 positions) and indeed confirmed
a high correlation between the components, which how-
ever decreased with rising principal component order num-
ber.

2.4 Summary and Research Questions

The literature review shows that the differences in con-
structing the PCA input matrix relate to the domain used
(time or frequency), the representation (linear or loga-
rithmic magnitude spectrum), the use of minimum-phase
HRIRs, the handling of the two ears, and the number of
directions analyzed. Given the complexity of modelling
HRTFs, it is reasonable to ask what is the impact of choices
for the aforementioned parameters on the compression ef-
ficiency and the reconstruction potential of the obtained
PCA basis. Quite reasonably, researchers would favor an
alignment that can represent and re-synthesize the HRTF
dataset with the lowest possible number of components and
smallest distortion.

Despite the obvious benefit in identifying an optimal
PCA basis, few studies have attempted a direct compari-
son. Leung and Carlile [19] investigated the PCA compres-
sion efficiency and came to the conclusion that the optimal
format for PCA decomposition in terms of compression
is the linear amplitude form in frequency domain. They
used an HRTF dataset of 393 directions. They found that

5 PCs are required for explaining 90% variance when lin-
ear magnitude is used; there were less than the number
required with logarithmic magnitude. However, the num-
ber of subjects or the structure of the PCA input matrix is
not clearly described. Takane et al [33] extend the work
of Liang et al [34] and compare four data representations:
HRIR, complex spectrum HRTF, linear spectral magnitude
HRTF, and log-spectral magnitude HRTF. Sample ampli-
tude (or frequency bin magnitude) appear on input matrix
columns and input structures are evaluated based on ex-
plained variance, signal distortion, and signal-to-distortion
ratio using the KEMAR HATS database [35]. The results
confirm an advantage in using representations in the fre-
quency domain but are somewhat inconclusive otherwise.
The HRIR database used in this study is this of a dummy
head and does not include several or real subjects. Fur-
thermore, the structure of the input matrix structure is not
varied to include spatial PCA. Another parameter that has
not been considered is the extend to which HRTFs were
smoothed. It has been shown that mild spectral smooth-
ing does not affect localization accuracy after reconstruc-
tion [36]. Smoothing may have a positive effect on the
compression efficiency as perceptually-irrelevant details of
HRTF magnitude are smoothed out [37, 38]. For this rea-
son, the smoothing factor is worth including as a param-
eter in simulations. Overall, a more systematic investiga-
tion on the impact of setting up the PCA input matrix on
compression efficiency and reconstruction accuracy is at-
tempted here.

3. NUMERICAL EVALUATION

The parameters varied in the evaluation were: HRTF
database, the structure of the input matrix, the domain
in which the signal was represented, and extent to which
HRTFs have been smoothed as explained below. Compres-
sion efficiency was evaluated by examining the number of
components required to explain 90% of the variance in the
input data and by estimating the error in the reconstruction
accuracy of the original HRTF set. HRTF reconstruction
was evaluated in the frequency domain using the Spectral
Distortion (SD). For an arbitrary subject s and sound inci-
dence from at θ,ϕ, SD it is calculated by:

S D(s, θ, ϕ) =

⎯⎸⎷
1
N

N∑︁
j=1

⎡⎢⎢⎢⎢⎣20 log10
|H(s, θ, ϕ, f j)|

|Ĥ(s, θ, ϕ, f j)|

⎤⎥⎥⎥⎥⎦2 (8)

where H(s, θ, ϕ, f j) and Ĥ(s, θ, ϕ, f j) are measured and es-
timated HRTF logarithmic magnitudes respectively, and f j

refers to the frequency index, and N is the total number
of frequency bins used in the calculation. The synthesized
signal is more similar to the measured one when a small
SD is obtained. According to [39], the spectral distortion
of a reconstructed HRTF should not be greater than 5.7 dB.
To measure spectral distortion, the number of PCs used
in reconstruction was manipulated from one to all PCs in
five steps and the signal distortion was estimated. When
HRIRs were used, original and reconstructed HRIRs were
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Figure 2. The number of PCs required to explain 90% of variance for signal and spatial PCA in the examined cases. HRIRs
were not smoothed and are presented as single points up left on each plot.

transformed in the frequency domain in order to estimate
the spectral distortion. The calculation extended over the
entire frequency range. Simulations were performed in
MATLAB®.

3.1 HRTF Databases

Three open access HRTF databases were used: the Acous-
tics Research Institute (ARI) HRTF database [40], the LIS-
TEN database from the Institut de Recherche et Coordi-
nation Acoustique/Musique [41] and the HRTF database
from the University of California at Davis (CIPIC) [42].
ARI contains HRIRs of 256 samples measured at 1550
sound locations and the first 80 subjects were used here.
CIPIC includes HRIRs of 200 samples from 45 subjects
measured at 1250 sound locations. The LISTEN database
HRIRs of 512 samples from 50 subjects and 187 positions.
Two subjects were excluded from calculations because im-
pulse responses were not measured for all sound direc-
tions. In addition, subject ID 1034 in the LISTEN database
resulted in outlying weights and was excluded from the
dataset.

3.2 PCA Input Matrix Structure

The first structure (Signal PCA) follows a common pat-
tern that has been also used by Kistler and Wightman
[3, 29]. Here, signal bins (in frequency or time domain)
are the independent variables in columns, while replica-
tions for the different subjects and measurement directions
are observations in rows. This leads to an input matrix
with (subjects × sound directions) rows and (signal bins)
columns. The number of rows is doubled if both ears are
included and the resulting principal component weights
(PCWs) for each subject can be used to recreate the HRIR
or HRTF for both ears of each subject and for all directions.

The second structure (Spatial PCA) has (subjects ×
signal bins) rows and (sound directions) columns and was
also used by Xie [6,25]. It lists each sound direction as in-
dependent variable in the matrix columns while frequency

or time samples from the head-related functions of all sub-
jects are placed as observations in rows. The number of
rows is doubled if both ears are included. It has been called
spatial PCA because analyzed directions are independent
variables placed in columns. The resulting weights can be
used to recreate each frequency or time bin for a given po-
sition, ear, and subject. In the simulations, HRTFs from
both ears were entered as observations in rows for both in-
put structures.

3.3 Signal Domain

For each of the input structures, four signal representa-
tions were tested. The first two were in the time domain:
the HRIR and the minimum-phase HRIR. The minimum-
phase HRIR was used because it allows to remove the
direction-dependent initial delay and phase and may re-
duce the number of components required to represent the
signal. Direction-dependent delay can be added after re-
construction in case such a representation is used for com-
pression or individualization. The latter two were in the
frequency domain: the magnitude spectrum in either linear
or logarithmic amplitude, a common difference in studies
applying PCA to HRTFs.

3.4 Smoothing

Smoothing was done by taking the logarithm of the HRTF
spectrum, performing FFT, and limiting the number of the
Fourier coefficients used to recreate the spectrum, a low-
pass filtering operation. Even as few as 16 coefficients
within a spectrum of 512 coefficients, a smoothing factor
of 1/32 for IR length of 1024 samples, were found to yield
satisfactory localization [36]. An example of the output
of the smoothing process is shown in Figure 1. Smooth-
ing was only applied when constructing PCA bases using
HRTFs and not when using HRIRs.
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Figure 3. Spectral Distorion upon reconstruction averaged among subjects, ears, and directions for unsmoothed head related
functions in the conditions examined in the simulations.

4. RESULTS

The results of the simulation ar epresented next starting
from the number of components required to explain 90% of
the input matrix variance and following up with the spec-
tral distortion results.

4.1 Compression Efficiency

By observing Figure 2, it can be seen that the input matrix
structure has a considerable impact on compression effi-
ciency. For the CIPIC and LISTEN databases, most effi-
cient is signal PCA followed by spatial PCA. This is con-
sistent across smoothing factors. For the ARI database,
spatial PCA using either linear or log HRTF magnitude
yields a compression efficiency that is higher than signal
PCA.

Quite clearly, the HRIR representation requires most
components, irrespective of whether signal or spatial PCA
is performed. Taking the minimum-phase HRIR re-
sults in a significant reduction in the number of PCs re-
quired to explain 90% of the variance which makes us-
ing minimum-phase HRIRs comparable to PCA using un-
smoothed HRTFs in terms of compression efficiency. This
result is consistent across the databases examined here.

The number of PCs required by frequency domain rep-
resentations is reduced significantly due to the application
of spectral smoothing. Each time the Fourier coefficients
used in spectral reconstruction are halved, a significant re-
duction in the number of components required to explain
90% variance is observed.

The impact of a linear or logarithmic magnitude rep-
resentation in the frequency domain is not as clear-cut.
For unsmoothed HRTFs, a small advantage for linear am-
plitude representation is registered for the LISTEN and
CIPIC database for both signal and space PCA. As long
as smoothing is applied, the situation is reversed and the
logarithmic representation results in a smaller number of
required components. For the ARI database, a small ad-

vantage for logarithmic magnitude representation appears
which remains consistent as smoothing is applied.

The number of components required to explain 90% of
the variance is consistent across databases for the signal
PCA. However, it varies considerably when spatial PCA
is considered and the number of required components is
doubled for ARI to CIPIC and then the LISTEN database.

4.2 Spectral Distortion

By observing Figure 3, it can be seen that spectral dis-
tortion results are in agreement with the compression effi-
ciency observations. Spectral distortion was highest when
HRIRs were used in the input matrix. Spectral distortion
was reduced significantly when minimum-phase HRIRs
or HRTFs were used. This result is consistent across
databases.

For signal PCA, signal distortion is lowest when
minimum-phase HRIRs and the logarithmic HRTFs are
used in the PCA input matrix and falls below 5 dB as
soon as 5 components are used for reconstruction. Signal
PCA with with linear amplitude HRTFs result in an overall
higher spectral distortion. This result is consistent across
databases.

For spatial PCA, again PCA with minimum-phase HRIRs
or logarithmic magnitude HRTFs result in the lowest spec-
tral distortion which again falls below 5 dB as long as
at least 5 components are used for reconstruction. Spec-
tral distortion is highest for the ARI database for the lin-
ear magnitude HRTFs and the HRIRs compared to the
rest but the differences among databases were smaller for
minimum-phase HRIRs and log-magnitude HRTFs. Inter-
estingly, achieving a spectral distortion below 5 dB re-
quires a higher number of components than the one re-
quired to explain 90% of the variance in the ARI database
for the spatial PCA. By observing Figure 4, it can be seen
that smoothing does seem to reduce spectral distortion.
This effect was consistent across databases input structures
and appeared both for linear and log-magnitude HRTFs.
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Figure 4. Spectral Distorion upon reconstruction averaged across subjects, ears, and sound directions for smoothed head
related functions taken from the LISTEN database.

5. DISCUSSION

In this study, we investigated the impact of choices in the
design of the input matrix used to analyze head related
impulse responses or head related transfer functions us-
ing principal component analysis. The impact of matrix
structure (signal or spatial PCA) and the signal domain
(time or frequency) was manipulated. For the time-domain
HRIRs both raw and minimum-phase HRIRs were com-
pared, while for the frequency domain linear and loga-
rithmic amplitude was compared. Finally, for frequency
domain representations, the impact of spectral smoothing
was also considered. Three different HRTF databases were
used in the analysis. The number of components required
to explain 90% of the variance and the spectral distortion
upon reconstruction were used as objective measures for
the purpose of comparison.

The difference in the number of components required to
explain 90% of the variance among the databases used here
was small for signal PCA compared to spatial PCA. The
variable to observation ratio for spatial PCA was 0.27 for
ARI, 0.15 for CIPIC, and 0.015 for LISTEN, while for
signal PCA it was 0.013 for LISTEN 0.0009 for CIPIC,
and 0.0005 for ARI. The signal PCA configurations have a
better variable to observation ratio which may explain the
better consistency of the results across databases for signal
compared to spatial PCA.

For the LISTEN and CIPIC databases, fewer components
were required to represent 90% of the input matrix vari-
ance and the resulting spectral distortion upon reconstruc-
tion was lower for signal PCA in comparison to spatial
PCA. However, a lower number of components was re-
quired to account for 90% of the variance when analyzing
the ARI database using spatial compared to signal PCA
required, which was even lower when the log-magnitude
spectrum was used. The number of components required
for spatial PCA in the ARI database was consistently small
even when the number of database locations used was
reduced and the variable to observation ratio improved.

However, the suggested number of components yielded in-
creased spatial distortion upon reconstruction and would
need to be increased to keep spectral distortion below 5 dB.
Further incestigation is required to confirm if Spatial PCA
can lead to an effective PCA basis and to explain the dis-
crepancy among databases.

Overall, the raw HRIR representation was the most in-
efficient both in terms of compression efficiency and in
terms of the resulting Signal Distortion upon reconstruc-
tion, in agreement with observations in the literature [33].
Removing the direction dependent delay and phase from
the signals by taking the minimum-phase impulse response
reduced the number of components and the spectral distor-
tion upon reconstruction dramatically and made principal
component analysis as efficient as with input matrices us-
ing spectral HRTFs.

A beneficial effect of smoothing for PCA using HRTFs
was observed which improved compression efficiency and
reduced spectral distortion. As smoothed HRTFs have
been found to provide good sound localization, this may
be a good option to consider in future applications of prin-
cipal component analysis up to the point where localiza-
tion is not affected and coloration does not appear [36]. It
would be interesting to examine if a similar result would
have been observed if the HRIRs were smoothed using a
low pass filter in the time-domain but this was not investi-
gated here.

Concerning the impact of a linear or logarithmic repre-
sentation for PCA analysis based on spectral HRTF data
the results are not as clear-cut. On the one hand, there is a
tendency for lower number of components for representing
90% of the variance for the linear amplitude, as also men-
tioned by [19, 33, 38] but this advantage tends to be can-
celled as long as smoothing is applied. Furthermore, the
logarithmic representation leads to a lower spectral distor-
tion. It appears therefore that the logarithmic representa-
tion may be more efficient if PCA is to be performed on
HRTFs and both criteria are considered.
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6. CONCLUSION

We presented a study that investigated the impact of HRTF
database, input structure (signal or space), signal domain
(time or frequency), and HRTF smoothing on the compres-
sion efficiency and the spectral distortion upon reconstruc-
tion when modelling HRTFs using Principal Component
Analysis. The results of the numerical simulations show
that signal PCA has a better compression efficiency (2/3
databases) and lower spectral distortion (3/3 databases)
upon reconstruction. Furthermore, using HRIRs as input
to PCA leads to worse compression efficiency and higher
spectral distortion compared to HRTFs. Using minimum-
phase HRIRs compensates for this discrepancy. Minimum-
phase HRIRs lead to comparable compression efficiency
and spectral distortion compared to HRTFs. Applying
smoothing to HRTFs leads to an increase in compres-
sion efficiency and a reduction in spectral distortion for
all databases used. Logarithmic magnitude leads to lowest
spectral distortion when using HRTFs while compression
efficiency depends on the database used.
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ABSTRACT

We present vaRays, our open-source room acoustic mod-
elling library (C++/Python) that uses acoustic ray tracing
to model acoustic interactions of sources, listeners and the
virtual environment and auralize the scene in 3D using an
ambisonic convolver. The paper describes the different
sub-systems of the library: the ray tracer, the ambisonic
impulse response encoder and the auralizer, as well as the
design choices targeting live auralization of 3D scenes. We
demonstrate the use of vaRays with navigation in a 3D
model in which sound sources and listener position are
communicated to vaRays from a 3D game engine through
network message (OSC). We also demonstrate the use of
vaRays as a live acoustical simulation system in our large
dome, simulating continuously varying acoustic applied to
acoustical musical instrument captured with a microphone.

1. INTRODUCTION

At the forefront of live spatial audio research and applica-
tions, the object-based spatialization [1] paradigm, where
sources are located in space using positioning data (az-
imuth, distance and elevation with reference to the lis-
tener), is leading authoring tools and spatial audio com-
positions. In this paradigm, the spatialization of sound is
recreated synthetically by considering the sound sources as
points located in space, without the knowledge of the ge-
ometry of the simulated space. Inclusion of geometry spe-
cific acoustic calculations such as occlusion, sound transfer
through materials and reverberation are left to the user.

Fortunately a geometrical scene description (a 3D
model), annotated with acoustical properties for each sur-
face, enables the design of algorithm and tools for live
computation of spatial audio. More precisely, real-time
modelling of the acoustics of a scene at regular intervals
is investigated here for virtual reality and immersion appli-
cations. Several geometrical acoustic techniques have been
described in the past [2] to find acoustic paths between
a source-listener pair, such as image-source method, ray
tracing and beam tracing. With these paths, a directional
specification of the delays and the power of the reverber-
ations constitute what is called the Impulse Response (IR)

Copyright: © 2021 the Authors. This is an open-access article distributed un-
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of the location for the listener-sound source pair. More pre-
cisely, we are interested in real-time auralization, i.e. the
process of making audible, by physical or mathematical
modelling, the sound field of a sound source in a geometri-
cal space for a specific listener position [3]. This auraliza-
tion strategy has already been experimented and presented
in the literature [2, 4]. It is usually based on live computa-
tion of Room Impulse Response (RIR), used to live feed a
convolution reverberation.

In this paper, we introduce vaRays, our open-source room
acoustic simulation C++ library that aims to address some
issues pertaining to acoustic simulation. vaRays uses real-
time ray tracing to model the transmission of acoustic en-
ergy and its interactions with the environment in a virtual
scene. Some of these interactions include absorption by air
molecules (air attenuation) and by the surfaces in the vir-
tual environment (material absorption), specular and dif-
fuse reflections, diffraction and transmission through sur-
faces. Ray tracing is a geometrical acoustic modelling
technique [2] where these interactions are modelled by
launching rays or packets of energy that travel in straight
lines, much like in ray optics to identify the paths through
which acoustic energy is transmitted from the sources in a
scene to the listener. In vaRays, these modelling results are
used to create spatial RIRs in ambisonic format which are
then used in the auralization of the virtual scene.

vaRays was first mentioned in [5] as a supplementary tool
during its early stages. Here, we discuss vaRays in de-
tail describing the different sub-systems, illustrating and
elaborating our design choices. The next section gives an
overview of the vaRays pipeline, starting with the scene
geometry all the way to auditory output. We provide an
overview of vaRays and discuss in detail the different sub-
systems of vaRays in Sec. 2, describe in brief a typical us-
age along with tools built at the Society for arts and tech-
nology [SAT] in Sec. 3 and finally conclude and discuss
some future pathways in Sec. 4.

2. THE SUB-SYSTEMS OF VARAYS

The vaRays library is primarily written in modern C++ in
order to provide acoustic simulation and auralization in
real-time on Unix based operating systems. The vaRays
software package also includes a Python wrapper for all
the important classes for ease of application development
and compatibility with popular game engines and 3D ani-
mation tools such as Godot and Blender.

vaRays is mainly organized into three mutually exclusive
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sub-systems based on the operations performed, namely:

1. vaRays Context, which is responsible for tasks re-
lated to the ray tracing operation such as parsing the
geometry of the environment, launching and trac-
ing rays and providing simulation results in the form
of sound events for each source-listener pair in the
scene,

2. vaRays Encoder, which is responsible for generat-
ing ambisonic RIRs from the ray tracing results,

3. vaRays Auralizer, which performs live convolution
of audio streams with the RIRs generated by the
vaRays encoder.

In the following sections, we describe each of these sub-
systems in detail.

2.1 vaRays Context

Acoustic ray tracing is in many ways similar to the ray trac-
ing techniques employed in computer graphics to compute
illumination of objects by light sources, with the main dif-
ference that sound takes a finite measurable time to travel
from a source to a listener, while light can be considered
to travel instantaneously for all practical purposes. We use
ray tracing to find acoustic paths between the sources and
listeners in real time, mainly using methods described in
[6]. Since ray tracing is a stochastic technique, the greater
the amount of rays thrown, the more accurate the RIRs will
be, but the slower the calculations will be as well. New
RIRs are generated periodically for every source and lis-
tener pair that exists in the scene. The following informa-
tion is required in order to perform ray tracing:

1. Sources and listeners: At least one source and one
listener are necessary for the ray tracing to occur.
For each pair of source and listener that exists within
the scene, one set IRs will be generated (for achiev-
ing spatialization - explained in Sec. 2.2). The listen-
ers correspond to coordinates in a scene and do not
have a volume. The sources are also coordinates, but
vaRays considers them to be spheres with a radius
that can be modified by the user.

The main reason for the sources having a volume is
to avoid missing rays that are close to the source be-
cause of the stochastic nature of ray-tracing. This
was first introduced by Vorlander [7]. The larger the
volume, the more energy will be picked up by the
source. Since volume is only used to calculate en-
ergy, it does not interact with the scene. As such,
the volume of the source mostly has an incidence on
the decay of the energy relative to the distance. A
larger volume can, for example, help mitigate unex-
pected spikes of volume when the listener ventures
too close to the source.

Each source also has its own energy level that will be
split between each thrown ray. That energy can have
a different level depending on frequency, though the
default values are evenly distributed. All sources

are considered to be omnidirectional. Directivity for
sources is not yet supported, but will be in a future
update.

2. Room geometry: The geometry is the environment
in which rays will be thrown. It is given to the ray
tracing engine and updated when required. The ge-
ometry contains all surfaces, whose interaction with
the incident acoustic rays will be simulated. It how-
ever does not contain the sources and listeners as we
do not consider collisions with these objects possi-
ble during the ray tracing. Geometries are currently
loaded using Wavefront OBJ files and do not con-
sider vertex normals (collisions will occur on both
faces of a surface regardless).

3. Materials: All surfaces in the environment are made
of materials which are described by absorption and
scattering coefficients in different frequency bands.
The scattering coefficients correspond to the propor-
tion of energy that will be diffused during reflections
as opposed to reflected specularly. Currently, this
coefficient will always be the same regardless of the
incident angle of a ray. The absorption coefficient
corresponds to the amount of energy that will be lost
when a reflection occurs on that surface.

A large amount of stochastic rays are thrown periodically
from every listener in a scene. Each of those rays carries
an energy map for different frequencies. When a ray hits
a surface or a diffraction area, more stochastic rays will be
thrown from that point and the energy carried by the ini-
tial ray that remains after absorption will be split between
children rays. This happens recursively until a maximum
reflection order or a minimum energy threshold has been
reached for an individual ray. The sources and listeners
are not objects in the scene. In order to know if sound
reaches its destination, visibility tests are computed from
every collision points. Here are the different steps to the
ray tracing:

2.1.1 Ray trajectory

It is recommended to throw the rays from listeners, rather
than from the sources, which might be unintuitive. The
main reason is that when using the diffuse rain method
(see Fig. 3) with more than one source in the scene, tracing
the rays backwards will greatly reduce the amount of rays
to be traced. This will be described with more details in
Sec. 2.1.3. While it saves lots of rays from being thrown,
this method does have an important drawback. Specular
reflections are reciprocal, which means that they will be
the same regardless of the point from which we throw the
rays. Diffuse reflections are not. While this error is not sig-
nificant for most room shapes, the possibility of throwing
the rays forward always remains if tests show that it is.

2.1.2 Initial rays and direct sound

For each source, the amount of energy emitted from the
listener is fixed. Before launching rays, the proportion of
energy carried by the direct sound reaching a source with
line-of-sight from the listener is calculated as a function of
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Figure 1. Direct sound computation for a pair of listener
and source.

the solid-angle that it subtends (see Fig. 1). The remaining
energy is then distributed equally among the rays that are
launched. It is important to note here that no two sources
in the scene share the energy launched from the listener,
i.e., from the perspective of a given source, all the energy
launched from the listener either reach the source or is lost
due to absorption, but not received by any other source in
the scene.

After the direct sound is computed, the initial rays are
thrown. As we throw the ray backwards, rather than con-
taining energy, each ray represents a proportion of receiv-
able energy from the listener. Those rays are sent from
a specific point which corresponds to the coordinates of a
listener in the scene. The rays are thrown in random direc-
tions (uniformly distributed on the surface of a sphere), and
the receivable energy is evenly distributed between them.
When a ray is thrown, the ray tracer will return the coordi-
nates of the first collision point it reaches (if any) and the
material that was defined for that surface.

2.1.3 Reflections

When a thrown ray hits a surface, a reflection event occurs
(see Fig. 2). First, the proportion of receivable energy is
attenuated by the absorption coefficient of the surface. The
remainder is then split in two parts using the scattering co-
efficient of the surface, the specular and diffuse energies.

Figure 2. Reflection model used in vaRays.

1. Specular: A specular reflection will always occur
from every reflection point, and it carries the full
proportion of receivable specular energy that was
calculated previously.

2. Diffuse: The amount of diffuse rays sent from ev-
ery reflection point depends on the user properties
(see Fig. 2), and it can change depending on the re-
flection order. The diffuse proportion of receivable
energy at the collision point is evenly split between
each diffuse ray that will be created. The proportion
of energy that is diffusely reflected from the collision
point is evenly split between the Lambertian diffuse
rays whose directions are normally distributed about
the normal to the surface. This distribution could be
changed or modified in the future.

Figure 3. Diffuse rain method.

Before any reflected rays are thrown, a visibility test with
each source in the scene is done, similar to what was done
to calculate the direct energy. This method is called dif-
fuse rain [6]. If a source is visible, the proportion of spec-
ular and diffuse energy that reaches the source is calcu-
lated. Since the specular energy only has one specific di-
rection, the proportion that reaches the source is either 0
or 1. In order to calculate the proportion of diffuse en-
ergy that reaches the source, we use a variation of the same
method we did to calculate the direct energy that reaches
the source. The energy that reaches the source is saved
(and will contribute to the IR), then subtracted from the
sum of energy that will get reflected from that point. Fig. 4
shows the acoustic reflection paths computed by tracing
stochastic rays in a virtual environment.

2.2 vaRays Encoder

In this section and Sec. 2.3, we explain our approach to
auralization, the process of translating simulation results
to auditory output. There are majorly two known methods
for auralizing simulation results:

1: delay-line based approach, where a single delay-line
(or a single output of a multitap delay-line) rep-
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(a) In-world viewcaption

(b) Top view

Figure 4. Acoustic paths (orange lines) identified between
a source (green ball) and a listener (yellow monkey head)
in a model of an 18th century Parisian city block, visual-
ized on Blender.

resents a single acoustic path along with the filter
blocks for simulating material absorption,

2: convolution based approach, where all acoustic
paths are reduced to a finite set of IRs that are con-
volved with dry/unprocessed audio signal from the
source.

The first approach is very effective in auralizing dynamic
scenes (moving listeners and sources) by updating delay
lengths and filter coefficients at audio-rate [4], thus being
able to auralize acoustic phenomena such as Doppler shift.
However, it suffers from the major disadvantage of be-
ing computationally expensive for dense simulations with
large number of acoustic paths.

The second approach is very efficient in auralizing dense
simulations (computational cost is fixed for fixed IR
lengths) but is not effective in auralizing dynamic scenes
and requires filter update mechanisms. In vaRays, we take
a hybrid approach exploiting both techniques. The com-
putation of IRs for convolution is discussed in detail in

this section and the auralization system is explained in
Sec. 2.3.1.

Assuming all interactions between the acoustic rays and
the acoustic surfaces in the scene are linear and time-
invariant (LTI), static source-room-listener systems can
be considered as LTI systems described by RIRs. For
any given scene configuration, the vaRays context pro-
vides us with the following information about acous-
tic paths between each source-listener pair, using which
the vaRays encoder computes spatialized RIRs in higher-
order-ambisonic (HOA) format:

1. Path distance: The distance travelled by the ray
from the listener to the sources after reflections.

2. Direction of departure: The initial direction in
which the ray was launched from the listener. This
information is essential for spatialization of the RIR.

3. Energy profile: The energy distribution of the ray
over pre-determined frequency bands (explained in
greater detail later in this section).

An RIR is essentially a series of delayed, filtered and
scaled Dirac impulses corresponding to the acoustic paths
between a source and a listener (currently in vaRays, the
phase evolution of the impulses during propagation is not
considered). The vaRays encoder essentially builds con-
volution kernels (signals with which the dry audio signal
from the source is convolved) from the time-energy-space
echograms produced by the ray tracer. We employ filter
updating techniques to auralize dynamic scenes from static
RIRs (explained in Sec. 2.3). In real-time auralization of
dynamic scenes, computing these spatial RIRs with min-
imal time delay is critical in maximizing immersion [8].
We mainly considered two approaches to generating RIRs,
but we only discuss the approach that better suits real-time
auralization requirements in this paper. Detailed account
of the experiments and choice of approach can be found
here 1 .

Each ray reaching a source from the listener is filtered
by the surfaces participating in its propagation due to
their acoustic properties (frequency dependent absorption,
transmission and scattering) and attenuated due to air ab-
sorption. The vaRays material property database (mostly
derived from [8] and [4]) contains properties defined for 8
octave bands between the range of 125 - 16000 Hz. Air ab-
sorption coefficients are computed [9] for these frequency
bands on start-up and are saved for use during auralization.
In vaRays, we take a source-filter approach to generate
RIRs by supplying excitation pulses as input to a perfect-
reconstruction filter-bank.

We make use of a digital Linkwitz-Riley [10] crossover
filter tree that consists of filter pairs as shown in Fig. 5.
The Linkwitz-Riley filter pair is made of a 4th-order But-
terworth highpass and lowpass filter with their critical fre-
quencies at the crossover point (the frequency separating
two adjacent bands). This filter structure is known for its
orthogonality property and is widely used in loudspeaker

1 https://gitlab.com/sat-metalab/vaRays/-/tree/
master/Playground/IR_Generation, accessed May 2021.
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crossover circuits and digital multi-band processing. In our
context, we use the LR filter tree as the filter in the source-
filter model with 8 inputs corresponding to the 8 octave
bands.

Figure 5. Block diagram of the Linkwitz-Riley crossover
filter tree used for generating RIRs in vaRays. Blocks with
flat line followed by decreasing ramp are lowpass filters
and those with increasing ramp followed by flat line are
highpass filters. The inputs to the filter tree are excitation
impulse trains (left extreme) corresponding to bands be-
tween the crossover frequencies indicated by dotted lines,
and the output is the RIR (right extreme).

An LR filter tree with 𝑁 stages (here 𝑁 = 3) has 2𝑁

inputs for a different frequency band (8 inputs). Each
stage 𝐼 of the filter tree is responsible for band-merging
at crossover frequencies 𝑓𝑖 where 𝑖 = 𝐼 + 𝑛 *

(︀
2𝐼+1

)︀
and

𝑛 ∈ 0, 1, .., 2𝑁−(𝐼+1) − 1. The all-pass filters (denoted
by the letter 𝐴 in Fig. 5) compensate for the phase shifts
caused by the LR filter pairs on the other branches of the
tree.

For a mono IR, the vaRays encoder first generates a train
of Dirac impulses delayed by an amount proportional to
the propagation path of the rays and scaled proportional to
the energy contained in each frequency band, giving a total
of 8 excitation impulse trains to be fed synchronously to
the corresponding inputs of the LR filter tree. The output
of the filter-tree is a mono IR. For an ambisonic RIR of
order 𝑁𝑎𝑚𝑏𝑖, the same structure is repeated for each of the
(𝑁𝑎𝑚𝑏𝑖 +1)2 ambisonic channels with the impulses being
scaled additionally by the ambisonic coefficients for the
direction of departure of the ray from the listener. vaRays
currently supports only up to 6th order SN3D ambisonic
format.

This approach to generating RIRs scales very well with
increasing density of simulation with increasing number
of acoustic paths for a source-listener pair. Table 1 shows
the time taken to generate IRs of different lengths and dif-
ferent number of acoustic paths on a laptop with i5-4200M
processor and 8 GB of RAM. It can be seen that the time
taken remains relatively unchanged across different num-
ber of acoustic paths and the depends only on the lengths
of the generated IRs.

IR Length (samples)
Computation Time / IR (ms)
Number of Acoustic Paths

10k 25k 50k 100k
24000 6.0 5.8 6.2 6.1
48000 11.3 11.3 11.4 12.0
96000 23.6 23.4 23.7 24.8

Table 1. Computation time of IRs of different lengths and
different number acoustic paths.

2.3 vaRays Auralizer

”Auralization” is the process of sonification of the acous-
tics in an environment by means of physical and mathe-
matical modelling of the propagation of acoustic energy to
induce a sense of immersion in the space [3]. In vaRays,
the auralizer subsystem is responsible for producing audio
output for a given scene configuration.

The vaRays auralizer uses the zita-convolver library by
Fons Adriaensen 2 to convolve audio signals from sources
with their respective RIRs using the non-uniform parti-
tioned overlap-and-save method (NUPOLS) [11]. The
NUPOLS method is a block convolution algorithm where
the IR is partitioned into chunks of non-decreasing lengths
to provide zero latency and increased computational effi-
ciency.

In dynamically changing scene configurations, the RIRs
also change dynamically, requiring live updates to the
convolution kernel. Several additions were made to the
zita-convolver in order to facilitate real-time IR updates.
Smooth transition between IRs during updates is neces-
sary to avoid audible artifacts especially in highly dynamic
scenes considering the stochastic nature of the ray trac-
ing algorithm and the absence of path tracking mechanism.
Cross-fading between the old and the new IR is a popular
method for smooth transition and there are several ways in
which this can be accomplished. Some IR update strategies
are described in chapter 6 of [12].

Among the ones described, the two main strategies we
considered were: 1) the immediate coherent exchange,
where all the IR partitions are simultaneously cross-faded
over one partition duration, and 2) the successive asyn-
chronous exchange, where the IR partitions are cross-faded
successively. After experimentation, we chose the first
method since for very long IRs the updates are instanta-
neous, hence reducing the wait time for all partitions to be
swapped. However, the drawback of this method is that if
the new IR is much longer than the previous one, the older
buffered samples will erroneously be convolved with the
new IR and become audible. This can be overcome by a
hybrid approach where the immediate coherent exchange
strategy is employed when the IR length decreases and
successive asynchronous exchange strategy is used when
it increases. This will be implemented in vaRays in a fu-
ture release.

Another important acoustic phenomenon that takes place
in dynamic environments with moving sources and listen-

2 http://kokkinizita.linuxaudio.org/linuxaudio/
index.html, accessed March 2021.
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ers is Doppler shift [13]. In vaRays, this is auralized by the
Doppler shift engine.

2.3.1 Doppler shift engine

The change in apparent frequency of sound due to rela-
tive motion between the source and the listener is known
as Doppler shift or Doppler effect. In room acoustic simu-
lators that use the delay-line approach for auralization [4],
Doppler shift can be produced by updating delay lengths at
audio-rate. However, it is impossible to produce Doppler
shift in auralization systems that use the convolution ap-
proach. In vaRays, we use a delay-line based Doppler shift
engine like in [14], alongside the convolution engine to au-
ralize Doppler shift only for direct paths and ignore the
reflected paths. With the addition of a path tracking mech-
anism, Doppler shift may be produced for persistent re-
flected paths as well.

Doppler effect depends on the instantaneous relative ve-
locity between a source and a listener, which is usually
provided by game physics engines. However, in the ab-
sence of a game physics engine, the instantaneous veloc-
ities must be computed from positional information. In
vaRays, we use a high resolution clock to measure the time
difference between successive positional updates for each
source-listener pair to estimate the relative velocity.

3. EXAMPLE USAGE

In this section, we discuss two different use cases for
vaRays which we have tested:

• Live navigation in a 3D model filled with sound
sources, spatialized with vaRays and rendered into
binaural audio 3 .

• Live auralization of live acoustical instrument while
navigating in geometry displayed inside our 12-
meter large dome 4 .

Before describing these use cases in more detail, we in-
troduce the technical pipeline in which vaRays has been
integrated with the other tools built at the SAT.

3.1 Technical pipeline

There are three main components in the pipeline:

1. Edition-In-Situ [15] (EiS), a 3D environment for in-
situ editing of a virtual scene. We use this tool for
visualization and navigation of the environment in
real-time.

2. a vaRays application developed in C++ using the
vaRays library. This application provides the inter-
face required to modify the virtual environment and
perform acoustic simulation in real-time.

3 The following video, https://vimeo.com/507255065, ac-
cessed March 2021 shows an example of the Bretez use case.

4 The following video, https://vimeo.com/484122810, ac-
cessed March 2021, shows a live auralization of acoustical instruments
using vaRays.

3. SATIE [16], a spatial audio scene manager for
decoding the ambisonic audio stream in binaural.
SATIE is also capable of decoding the ambisonic
stream into VBAP for auralization in multi-speaker
setups [5].

Fig. 6 shows a block diagram indicating communica-
tion between the three components in the pipeline. This
pipeline requires an active Jack audio 5 server for routing
audio between vaRays and SATIE. The ambisonic order to
be used for auralization is set on start-up and a correspond-
ing number of Jack output ports for vaRays and Jack input
ports for SATIE are created. Further, a number of JACK
output ports are created for SATIE to stream the decoded
audio stream. For example, 2 output ports are created when
decoding the ambisonic output of vaRays to binaural.

Figure 6. Information flow between different pipeline
components.

The acoustic scene in vaRays is updated via OSC mes-
sages from EiS. Each time a new source is created, EiS
creates a Jack output port with the selected audio source
stream and sends an OSC message to vaRays to create a
new Jack input port to receive the stream to be convolved
with the generated RIR for the source. When a source or
the listener moves in the scene, the new positions are up-
dated via OSC and a new ray tracing iteration is triggered
in vaRays to recompute the ambisonic IR. The output am-
bisonic stream from vaRays contains the entire scene au-
dio, i.e., it is a sum of ambisonic streams from all sources
in the scene, for a fixed listener orientation. The ambisonic
rotation corresponding to the listener orientation is per-
formed by SATIE before the binaural decoding based on
Euler angles received directly from EiS.

3.2 Bretez

The Bretez project aims at developing immersive editing
tools for historians, helping in creating immersive experi-
ences of 18th century Paris [17]. In order to simulate real-
istic audio in real time, we use the vaRays with the pipeline
described in Sec. 3.1. The ray tracing computation time
depends on the complexity of the room geometry in the
scene. It is advised to use a low-resolution/low-poly ver-
sion of the room geometry to speed up the ray tracing pro-
cess while maintaining acoustic simulation quality, thereby
reducing the latency between scene changes and the au-
ralized output. We, however, use a high resolution model

5 https://github.com/jackaudio/jackaudio.
github.com/wiki, accessed March 2021.
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for graphic rendering on EiS for a better visual experience.
Fig. 7 shows the models used for graphics and acoustics in
this demonstration.

(a) Model used for graphic rendering

(b) Low resolution/low-poly model used for acoustic ray tracing

Figure 7. Two version of the 18th century Paris from the
Bretez project. These two versions are aligned and opti-
mized for the two following separate operations: graphic
rendering and audio ray tracing.

3.3 Live auralization

We have also used the pipeline described in Sec. 3.1 to cre-
ate a live auralization experience using vaRays, except for
SATIE providing ambisonic order three decoded for our
dome speaker system. By using only one source within the
scene and using the same coordinates as the listener for it,
we create an acoustic experience that corresponds to expe-
riencing the acoustics of a simulated room geometry. We
use a mono microphone input as the one source, simulat-
ing in real time your own presence in a virtual room. We
have tested this by moving the editor in the virtual envi-
ronment in real time while recording acoustic instruments
with the microphone and playing it back in a multichannel
audio setup using ambisonic decoding.

4. CONCLUSION AND FUTURE WORK

In this paper, we have described vaRays and its different
sub-systems in detail along with some design approaches,
challenges and known shortcomings of the library. This
library is intended for use with popular game engines and
3D renderers supporting C++ or Python scripting, making
an attempt to reduce the threshold of entry into the world
of acoustic simulation and facilitate more realistic artistic
and immersive experiences.

The choice of Python for a first wrapper around the C++
library is to further simplify integration of vaRays into dif-
ferent software tools, since Python has lately become the
de-facto programming language for integrating software
building blocks.

Future work will be on the inclusion of transmission of
energy through surfaces, diffraction and source directivity
in the physical simulation of acoustic propagation, all of
which should increase its realism. Alternative simulation
methods should be considered for late reverberations as
this implies a lot of reflections (hence computations) with
our ray-tracing approach.

We are also working in the direction of simulating non-
fixed 3D scenes which is mostly a matter of updating the
3D geometry used for ray-tracing, as well as on the cre-
ation of multiple datasets comprised of physical measure-
ments of room impulse responses and 3D reconstruction of
the recorded location, to allow for validating the employed
simulation method.

Lastly, even though the current implementation can han-
dle realtime simulation there is room for many optimiza-
tions which should be applied before our method is com-
pared to other methods, like geometrical acoustic solvers
for example.

We, at SAT, strongly believe in open-source software
since it bolsters scientific and technological evolution
by democratizing knowledge. By making vaRays open-
source, like the other tools developed at SAT, we hope it
will greatly benefit the community of digital artists and
acoustic researchers alike.
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MONTRÉAL PLAYING BEETHOVEN’S SYMPHONY NO. 6

Zack SETTEL(zsettel@sat.qc.ca)1,2, Jean-Yves MUNCH(jymunch@sat.qc.ca)1,2,
Gabriel DOWNS(gdowns@sat.qc.ca)1, and Nicolas BOUILLOT(nbouillot@sat.qc.ca)1

1Musique6D, Montreal, Quebec Canada
2Society for arts and technology, Montreal, Quebec Canada

ABSTRACT

We present our work towards the recording and reproduc-
tion of a captured soundfield as a virtual walking expe-
rience. In this context, we propose a methodology for
recording symphonic concerts that captures both stage and
concert hall listening perspectives. The recreation of the
experience allows for a virtual walker to explore a plural-
ity of listening perspectives in the venue, and is attended
by new challenges in performance capture, mastering and,
rendering–all of which stem from the need to maintain a
musically balanced listening experience that can adapt to a
constantly changing listener position. We present our ap-
proach through the creation of an immersive music expe-
rience which is deployed for evaluation on two different
kinds of audio displays: one with binaural rendering to
headphones, and the other that renders to a hybrid loud-
speaker system comprising our Satosphere (a large dome
with a total of 157 speakers aggregated into 31 channels)
for far field audio, and our set of five 12-channel spherical
speakers (called Audiodice) for near field audio. The col-
lected data is composed of 64+ audio channel recordings
of the Orchestre Symphonique de Montréal conducted by
Kent Nagano and a 3D model of the Maison Symphonique
de Montréal. This data is described in detail below, and
made available with a non-commercial Creative Commons
licence.

1. INTRODUCTION

Mainstream uses of game engines and related technolog-
ical advancements in authoring and rendering 3D object
audio scenes have paved the way for a new paradigm in
music experience, and by extension, music creation. Us-
ing these novel technologies, music can be represented as
a spatial arrangement of sound source objects in a virtual
3D audio scene in which a virtual listener is located. The
quality of the listening experience, or listening perspective
as we call it, is determined by the position and orientation,
or 6DoF pose (Degrees of Freedom), of the virtual listener
with respect to the surrounding sound source objects in the

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

audio scene. Moving the listener and/or sources within the
audio scene yields a change to the listening perspective,
and thus allows a listener to focus or zoom his/her listening
attention on different features of the music. This activity
changes the relative intensities among source sounds that
comprise a piece of music and thus can eliminate auditory
masking effects [1], allowing for otherwise inaccessible
features of the music to be revealed. Simply put, the abil-
ity to navigate one’s listening perspective within a musi-
cal structure can translate to the ability to hear more, es-
pecially when listening to music of greater timbral and/or
compositional complexity. Interestingly enough, our in-
formal experiences with the public suggest that this ability
tends to benefit trained and untrained listeners alike.

In this paper we describe our novel approach to ensem-
ble recording, mastering, and music listening. What sets
our approach apart from traditional methods is the ability
to provide a plurality of listening perspectives within the
recording space. While microphone placement is key in
all approaches, our underlying strategy greatly differs. In
traditional classical recording the microphones are strate-
gically placed within the recording space to constitute a
single listening perspective. Remixing the captured audio
streams to constitute other listening perspectives is inef-
fective because the originally targeted listening perspec-
tive is “baked in” to the streams. Conversely, in our ap-
proach, a comparatively greater number of microphones is
strategically deployed and distributed to capture zones of
musical interest within the recording space. Subsequently,
the set of captured audio streams can be blended to create
unique listening perspectives that correspond to locations
within the physical recording space. Using this technique,
audio renderers allow a user to dynamically transition, or
navigate, his or her listening perspective throughout the
captured recording space. In the following discussion we
will present our approach and corresponding end-to-end
pipeline, from instrument to ear drum, which comprises
capture, authoring, and rendering stages.

This paper provides a background about sound field cap-
ture (Section 2) and discusses our 6DoF capture strategy
in a large-scale symphonic music deployment (Section 3).
We describe the dataset and how it is distributed for future
research (Section 4). Finally, we demonstrate the use of
the dataset for prototyping immersive experiences involv-
ing live navigation within the captured sound field (Sec-
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tion 5). We conclude with a discussion of our results and
enumerate our work’s future directions (Section 6).

2. BACKGROUND

Human beings moving in space rely on hearing cues that
contribute to a spatial understanding and appreciation of
our surrounding sound field and space. The simulation of
this primal sensation imposes many challenges regarding
sound capture and reproduction. One of these challenges is
the ability to reproduce navigation in an audio scene along
6 degrees of freedom (6 DoF), i.e. lateral, height and side
rotations with translation along the 3 Cartesian axes.

According to Zhang et al. [2] spatial audio capture is di-
vided into two main families: binaural capture and sound
field capture. Binaural capture, by definition, provides a
realistic stereo image in terms of sound depth but suffers
from several major problems:

• the captured binaural signal does not allow naviga-
tion in the audio scene (0 DoF). Indeed, each micro-
phone corresponds to one ear, not allowing different
orientation afterwards when listening.

• the natural filter imposed by the shape of the lis-
tener’s head and ears contribute significantly to the
perception of sound localization. As a result, one
must be able to measure these coefficients for each
listener [2] if one wants to provide a faithful spatial
listening.

Sound field capture using 3D microphones allows sound
to be recorded in all directions simultaneously, offering
three additional degrees of freedom: lateral, vertical, and
side rotation. While this capture method allows the sound
field to be captured as a whole, sound sources are localized
without being differentiated into independent audio chan-
nels. There is no known method today to infer the per-
spective of a sound scene from a single surround capture,
but from another position in space. This is mainly due to
the difficulty of isolating the sounds constituting the sound
scene, their position, as well as the varying acoustics of
complex geometry of the environment [3].

The use of 3D microphone arrays is still quite marginal
and is gradually addressing the problems imposed by
6 DoF navigation. For example, [4] improves the perfor-
mance of sound field capture by reducing the number of
microphones needed for audio capture to follow a mobile
sound source, such as a teleconference speaker [5]. This
research emphasizes the accurate capture of a 2D shot by
focusing primarily on the capture of mobile sound sources.

For the production of audio content in Virtual Reality,
an English team evaluated the use of several microphone
matrix configurations (3 and 6 DoF), with the objective
of producing a binaural rendering synchronized with im-
mersive video navigation [6, 7]. More recently, the com-
pany ZYLIA 1 has experimented with sound field cap-
ture using a 3D microphone array, with the aim of pro-
ducing a 6-DoF navigation system [8]. This approach

1 http://www.zylia.co (accessed Dec. 2020)

Figure 1. Microphone placement map for room capture

is based on a regular disposition of microphones in the
space. Our approach provides more extensive “near-field”
navigation where musician-specific locations are captured
and provides independent gain control of acoustic (room
microphones) and source (stage microphones) energy for
wet/dry balancing.

Applications making use of acoustic space modelling us-
ing in situ measurements do not usually provide a 6 DoF
navigation experience of the simulated space [9]. How-
ever, just like the shape and characteristics of sound
sources, the reverberation effects of places are determin-
ing factors in the final sound effect perceived by the lis-
tener [10].

3. 6 DOF CAPTURE

While a conventional stereo master is created for a single
listening perspective, a 6DoF master must accommodate
a plurality of unique potential listening perspectives that
could be rendered for a listener. The captured audio scene
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consists of two basic types of sound sources: instrumental
and reverberant. The main challenge is to capture a maxi-
mum amount of local sonic detail at data rates that can be
rendered afterwards in real-time. The microphone set den-
sity, types and placement among the instruments or within
the concert hall address this challenge.

To capture reverberation in the hall, we deploy 23 micro-
phones, including the main rig, which is composed of three
microphones arranged in a Decca tree [11]. These micro-
phones are symmetrically positioned along the length of
the venue. All are suspended from the ceiling at increasing
heights from front to back. Most of the microphones are
omnidirectional with a few exceptions. Room microphone
detail is provided in Table 2, while on-stage microphone
placement for instrumental capture is illustrated by Fig. 1.
Most of the choices for microphone directivity patterns are
inspired from state-of-the-art aspects of recording acoustic
classic music [12].

3.1 Recording space

The Maison Symphonique de Montreal 2 is the perfor-
mance venue of the Orchestre Symphonique de Montréal
and its conductor, Maestro Kent Nagano. Built in 2011,
it was designed by Diamond Schmitt Architects and Ædi-
fica with lead acoustician Bob Essert. The tall and narrow
room, based on a traditional shoebox design, is a compo-
sition of convex curves of varying size, spreading out the
sound and creating a warm, lush timbre. “The walls are
large, gently convex panels, designed to spread the sound
throughout the hall, to create an intense and immersive
sound, drawing the audience into the performance. The
scale and curvature of the panels are carefully tailored to
refine the frequency spectrum, and therefore the timbre of
the sound.” 3 The auditorium meets noise criterion N1, in
which the background noise level in the hall is not audible
to the human ear. The recording control room is close to
the stage on the left.

For our recordings, the Orchestre Symphonique de
Montréal, conducted by Maestro Kent Nagano, was per-
forming Beethoven’s 6th Symphony (Pastorale) on Febru-
ary 18th 2020 with rehearsals on February 16th and 17th.
The orchestra is arranged in an antiphonal setup, so the first
violins are on the left of the conductor, with the second vio-
lins on his right. This is the main difference from the more
common Stokowski Shift seating arrangement [13].

3.2 Capture Description

The equipment used for the recording is based on a MADI
backbone and Merging Technologies Pyramix DAW. The
recording session running on two redundant Window lap-
tops is set @ 96kHz / 24 bits, 62 discrete sources are
recorded along with a guide stereo mixdown. All micro-
phone preamps are remote-controlled from the recording
booth, so they can be placed close to the sources to which

2 https://www.osm.ca/en/the-hall/, accessed in March
2021.

3 Essert, B. (2011) Acoustics Design – La Maison Symphonique,
Montreal in https://www.soundspacevision.com/, accessed
Feb. 2021.

they are connected. The microphones are divided in two
groups. Group 1 includes all the point source inputs that
are placed on stage, recording local instruments. Group
2 represents the room sources; all microphones are sus-
pended from the ceiling. As the capture took place during
a live performance in a packed venue for Maestro Kent
Nagano’s final concert with the Orchestre Symphonique
de Montréal (OSM), we needed to integrate the following
constraints:

• No microphone stands or running cables in the space
where the audience was seated.

• All room microphones had to be suspended from the
ceiling.

• A limited number of cable-pass-thru holes in the
ceiling that thus determined microphone positions.

• Limited time to suspend microphones and make ad-
justments.

• A one-take session, in which a single performance
was captured, removing the option to edit in post-
production.

The 38 microphones on stage capture isolated instru-
ments or groups of instruments. They are mounted on mi-
crophone stands and connected to the microphone preamps
through multi-pair cables. Original files are captured as a
multi-channel wav file with 96kHz sample rate and 24 bit
depth. More details are provided by Table 1 and micro-
phone placement on the stage is illustrated by Fig. 2. In
the tables, X, Y and Z are expressed in meters, the origin
is located at the feet of the conductor, X being directed
toward its right (left-right axis), Y toward its front (front-
back axis), and Z towards its top (vertical axis).

4. DATASET

As part of our work, we have created a dataset of high
quality live recordings of Beethoven’s 6th Symphony per-
formed by the OSM. We used these recordings to drive our
navigable virtual model of the symphony hall described in
Section 5. The dataset consists of 62 wav files, one for
each microphone placed in the hall. Each file has the same
duration, containing a single audio channel that was cap-
tured at a specified location in the hall during a live per-
formance of the symphony. The dataset also includes a 3D
model of the Maison Symphonique de Montreal, contain-
ing a simple representation of the performance space, as
well as both groups of microphones deployed in the hall
and on stage respectively.

We have made the complete dataset freely available
for download at https://archive.org/details/
savr_audio_dataset in the hopes that others will be
able to use it for further audio research. These recordings
are licensed under a Creative Commons Attribution Non-
Commercial ShareAlike 4.0 International License.
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Group # label Microphone Preamp X Y Z Filename Directivity

1st violin

24 V1.1 Neumann KM 143 Grace Design m108 #4 -1.43 1.08 1.5 024 V1 1 cardioid
25 V1.2 Neumann KM 140 Grace Design m108 #4 -2.91 1.36 1.5 025 V1 2 cardioid
26 V1.3 Schoeps CMC621 Grace Design m108 #4 -4.26 1.49 1.5 026 V1 3 between omni and cardioid
27 V1.4 Schoeps CMC621 Grace Design m108 #4 -5.56 1.74 1.5 027 V1 4 between omni and cardioid
28 V1.5 Neumann KM 140 Grace Design m108 #4 -7.05 2.06 1.5 028 V1 5 cardioid

2nd violin

29 V2.1 Neuman KM 143 Grace Design m108 #4 1.2 1.04 1.5 029 V2 1 between omni and cardioid
30 V2.2 Neuman KM 140 Grace Design m108 #4 2.74 1.32 1.5 030 V2 2 cardioid
31 V2.3 Neuman KM 140 Grace Design m108 #4 3.85 1.53 1.5 031 V2 3 cardioid
32 V2.4 Neuman KM 140 RME Octamic XTC #1 5.39 1.88 1.5 032 V2 4 cardioid
33 V2.5 Neuman KM 140 RME Octamic XTC #1 6.86 2.26 1.5 033 V2 5 cardioid

Violas

34 Va.1 Sennheiser MKH 8040 RME Octamic XTC #1 0.64 2.3 1.5 034 Va 1 cardioid
35 Va.2 Sennheiser MKH 8040 RME Octamic XTC #1 2.35 3.27 1.5 035 Va 2 cardioid
36 Va.3 Schoeps CMC622 RME Octamic XTC #1 0.91 4.23 1.5 036 Va 3 between omni and cardioid
37 Va.4 Schoeps CMC622 RME Octamic XTC #1 2.83 4.72 1.5 037 Va 4 between omni and cardioid
38 Va.5 Neuman KM 140 RME Octamic XTC #1 1.26 5.59 1.5 038 Va 5 cardioid

Cellos

39 Vc.1 Coles 4038 RME Octamic XTC #1 -0.84 2.35 0.8 039 Vc 1 figure eight
40 Vc.2 Sennheiser MKH 800 Grace Design m108 #5 -2.54 2.82 0.8 040 Vc 2 cardioid
41 Vc.3 Sennheiser MKH 800 Grace Design m108 #5 -0.93 4.09 0.8 041 Vc 3 cardioid
42 Vc.4 Sennheiser MKH 800 Grace Design m108 #5 -2.86 4.67 0.8 042 Vc 4 cardioid
43 Vc.5 Sennheiser MKH 800 Grace Design m108 #5 -1.08 5.55 0.8 043 Vc 5 cardioid

Basses
44 Vb.1 Coles 4038 Grace Design m108 #5 -5.38 5.42 0.8 044 Vb 1 figure eight
45 Vb.2 Neumann TLM 103 Grace Design m108 #5 -6.98 3.97 0.8 045 Vb 2 cardioid
46 Vb.3 Sennheiser MK 8020 Grace Design m108 #5 -7.85 5.52 0.8 046 Vb 3 omni

Woodwinds 47 Fl.2 Neumann KM 84 Grace Design m108 #5 -1.49 6.93 1.3 047 Fl 2 cardioid
48 Fl.1 Neumann KM 84 RME Octamic XTC #2 -0.68 6.99 1.3 048 Fl 1 cardioid

Oboes 49 Ob.1 Neumann KM 84 RME Octamic XTC #2 0.26 6.91 1.3 049 Ob 1 cardioid
50 Ob.1 Neumann KM 84 RME Octamic XTC #2 1.14 6.88 1.3 050 Ob 2 cardioid

Clarinets 51 Kl.2 Neumann KM 84 RME Octamic XTC #2 -1.55 8.26 0.8 051 Clar 2 cardioid
52 Kl.1 Neumann KM 140 RME Octamic XTC #2 -0.79 8.317 0.8 052 Clar 1 cardioid

Bassoons 53 Fg.1 Neumann KM 85 RME Octamic XTC #2 0.87 8.439 1 053 Bsn 1 cardioid
54 Fg.2 Neumann KM 140 RME Octamic XTC #2 1.736 8.167 1 054 Bsn 2 cardioid

Horns 55 Horn.1 Neumann KM 84 RME Octamic XTC #2 -4.34 8.85 0.8 055 Hrn 1 cardioid
56 Horn.2 Neumann KM 84 Millennia HV-3R -5.11 8.32 0.8 056 Hrn 2 cardioid

Trumpets 57 Tpt.1 AEA R84 Millennia HV-3R 2.47 10.65 1 057 Trp 1 figure eight
58 Tpt.2 AEA R84 Millennia HV-3R 3.65 10.36 1 058 Trp 2 figure eight

Trombones 59 Tbn.1 Neumann TLM 67 Millennia HV-3R 4.92 9.84 1 059 Tbn 1 cardioid
60 Tbn.2 Neumann TLM 67 Millennia HV-3R 6.03 8.89 1 060 Tbn 2 cardioid

Timpani 61 Tim.1 AKG c414 Millennia HV-3R -0.51 11.13 1.9 061 Timb 1 cardioid
62 Tim.2 AKG c414 Millennia HV-3R 0.4 11.19 1.9 062 Timb 2 cardioid

Table 1. Specification of microphones used for the audio capture of instruments.

Figure 2. Microphone placement map for instrument cap-
ture.

5. NAVIGATION IN THE ORCHESTRA

5.1 Concepts and Strategies

The ability to navigate a listening perspective anywhere
within a virtual audio scene is at the core of our approach,
and greatly differs from methods used in conventional
recording and mastering, which seeks to provide one single
pre-determined listening perspective.

Our work combines theoretical and empirical approaches
to the authoring and rendering of navigable symphonic mu-
sic listening experiences. This includes a musical orienta-
tion, tempered by years of first-hand experience in orches-
tral sound recording, mastering and music composition. In
working with the presented orchestral music, the goal has
been to create a navigable music scene with the following
essential properties:

1. The scene is balanced among captured channels
from any listening position.

2. The scene provides a high degree of differentiation
and detail when zoomed on particular instrument
zones.

3. The scene provides a natural sounding stereo image
whose width changes appropriately with distance.

4. The scene provides, at any distance, a natural sound-
ing balance of reverberant and instrumental sound
sources.
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# label Microphone Preamp Hole# X Y Z Height (m) Filename Directivity

1 Main L DPA 4006 Grace Design m108 #1 23 -1 0.04 4 4.00 001 L omni
2 Main R DPA 4006 Grace Design m108 #1 22 1 0.04 4 4.00 002 R omni
3 Main C DPA 4006 Grace Design m108 #1 19/18 0 1.37 3.45 3.75 003 C omni
4 Side L Sennheiser MKH8020 Grace Design m108 #1 23 -5.9 0.04 2.2 2.23 004 Side omni
5 Side R Sennheiser MKH8020 Grace Design m108 #1 22 5.9 0.04 2.1 2.10 005 Side omni
6 AB L DPA 4006 Grace Design m108 #1 28 -1 -4.44 6.17 6.17 006 AB omni
7 AB R DPA 4006 Grace Design m108 #1 27 1 -4.44 6.17 6.17 007 AB omni
8 Room L Sennheiser MKH8020 Grace Design m108 #1 34 -1.3 -8.96 7 7.00 008 Room omni
9 Room R Sennheiser MKH8020 Grace Design m108 #2 33 1.3 -8.96 7 7.00 009 Room omni
10 Room WL DPA 4006 Grace Design m108 #2 36 -5.9 -8.96 5 5.00 010 Room W omni
11 Room WR DPA 4006 Grace Design m108 #2 31 5.9 -8.96 5 5.00 011 Room W omni
12 Salle 1L Schoeps CMC641 Grace Design m108 #2 34 -1.6 -8.96 7 7.00 012 Salle1 hypercardioid
13 Salle 1R Schoeps CMC641 Grace Design m108 #2 33 1.6 -8.96 7 7.00 013 Salle1 hypercardioid
14 Salle 2L Sennheiser MKH8020 Grace Design m108 #2 47 3.6 -14.11 5 5.00 014 Salle2 omni
15 Salle 2R Sennheiser MKH8020 Grace Design m108 #2 44 -3.76 -14.11 5 5.00 015 Salle2 omni
16 Salle 3L Sennheiser MKH8020 Grace Design m108 #2 54 -5.88 -18.04 5 5.00 016 Salle3 omni
17 Salle 3R Sennheiser MKH8020 Grace Design m108 #3 49 5.88 -18.04 5 5.00 017 Salle3 omni
18 Salle 4L Schoeps CMC641 Grace Design m108 #3 54 -6 -22.27 6 6.00 018 Salle4 hypercardioid
19 Salle 4 R Schoeps CMC641 Grace Design m108 #3 49 6 -22.27 6 6.00 019 Salle4 hypercardioid
20 Balc 1L Sennheiser MKH8020 Grace Design m108 #3 48 -5.89 -14.11 5 6.60 020 BalcL omni
21 Balc 2L Sennheiser MKH8020 Grace Design m108 #3 54 -6.52 -18.04 6.6 6.60 021 BalcL omni
22 Balc 1R Sennheiser MKH8020 Grace Design m108 #3 43 6.01 -14.11 5 6.60 022 BalcR omni
23 Balc 2R Sennheiser MKH8020 Grace Design m108 #3 49 6.52 -18.04 6.6 6.60 y023 BalcR omni

Table 2. Specification of microphones used for the audio room capture.

The biggest challenge has been to combine and balance
all the above in one single audio scene. Ideally, at one
moment, the listening perspective can be navigated to a
central location in say, the 7th row, in order to deliver a
well-blended listening experience akin to those targeted by
conventional concert recordings. Then at another moment,
the perspective can be smoothly navigated to a different lo-
cation within the orchestra to reveal fine sonic detail among
the woodwinds. Via strategic capture and rendering tech-
niques, we address the challenges that accompany listening
perspective navigation.

5.2 Mixing by Arrangement

Our virtual audio scene is a collection of reverberant and
instrumental sound sources, each emitting audio that was
captured by a particular microphone. As shown earlier,
twenty-eight microphones were suspended from the ceil-
ing to capture reverberation in the concert hall shown in
Fig. 1, while thirty-four microphones were positioned on
the stage to capture the direct instrumental sounds shown
in Fig. 2. The location of each source in the 3D audio
scene corresponds to the location of a specific microphone
in the real concert hall. Thus, the arrangement of the sound
sources in the virtual scene exactly corresponds to the mi-
crophone arrangement in the recording session as shown in
Fig. 3. The quality of the output mix is determined by the
virtual listener’s position and angle, or 6DoF pose, in the
virtual audio scene, with respect to all the scene’s sound
sources.

5.3 Rendering the Listening Perspective

The listening perspective consists of a weighted sum of
processed outputs from all the scene’s audio sources. The
processing of each audio source is based on the difference
between that source’s 6DoF pose and the 6DoF pose of the
listener. Any time a listener or source moves, the perspec-
tive is updated, and low level parameters are computed (az-
imuth, elevation, gain, delay and spread) based on the fol-
lowing geometrical information: i) The distance between

Figure 3. Virtual audio sources positioned one to one ac-
cording to the microphone placement map

the listener and the source, ii) The angular position of the
listener relative to the source, and iii) The incidence of the
listener relative to the source.

Using these relations, we dynamically compute values for
each source mixing parameter below: i) Attenuation, us-
ing distance and incidence, ii) Near Field Processing, us-
ing distance, iii) Filtering using distance and incidence, iv)
Spread using distance, and v) Delay or Doppler using dis-
tance.

Our renderer offers the ability to describe distance/value
functions for these parameters, thus allowing us to define
custom attenuation-by-distance curves, etc. In addition to
the dynamic parameters above, the following static mixing
parameters can be adjusted independently for each source:
i) Attenuation Trim (db), ii) Doppler Effect (percent), iii)
Near Field Effect (percent), and iv) Near Field Radius (me-
ters)

5.4 6DoF Mastering

Unlike a conventional non-navigable master, which is cre-
ated for a single listening perspective, a 6DoF master must
accommodate a plurality of different listening perspectives
as shown in Fig. 5. Whereas a conventional master, such
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Figure 4. Source audio processing based on relative dis-
tances and incidences to listener

Figure 5. Mastering to accommodate a plurality of listen-
ing perspectives

as stereo or surround, is a rendered piece of audio content,
the 6DoF master is a renderable 3D virtual audio scene.
To a certain extent, our workflow resembles a game de-
velopment environment. In order to create navigable au-
dio scenes, we have developed custom workflows that help
us achieve an optimized balance of the essential proper-
ties mentioned earlier. To achieve this balance, our work-
flow allows us to carefully adjust or tune both dynamic and
static parameters, shown above, for all the scene’s rever-
berant and instrumental sound sources.

Except for the Doppler/delay parameters, which we min-
imize for musical applications, our parameter adjustments
determine the following attributes of the mix:

1. Wet to Dry Ratio, which in our case, refers to the
balance between reverberant sources and instrumen-
tal sources.

2. Near Field Dynamics [14], that determine the qual-
ity and amount of sonic zoom that occurs when lis-
tening close to instrumental sources.

3. Spatial Localization Intensity, the degree to which, a
given source is perceived to originate from a singular
location in the space surrounding the listener.

We begin the mastering process by pre-establishing, in
musical terms, overall ranges for the attributes above as

the perspective is moved variously throughout the entire
audio scene. We then go about adjusting the mixing pa-
rameters in order to achieve a reasonable balance of es-
sential properties across a wide range of potential listening
perspective locations. Furthermore, we refer to this activ-
ity as tuning the audio scene. Based on the type of source
sound, reverberant or instrumental, a source’s mixing pa-
rameter values will be tuned to augment or reduce the de-
grees of spatial localization, near-field effect, attenuation
by distance, etc. To make this authoring process easier and
more efficient, we have developed mixing operations such
as grouping, for subsets of reverberant sources, and for in-
strumental sources. In addition to parameter changes, these
groups also allow us to mute and offset the gains of their
respective sources, as we tune our mixes.

In conventional mastering, the final outcome is the re-
sult of iterations of adjustment and evaluation on different
loudspeaker configurations. The same holds true for our
6DoF mastering process. To our great surprise, the result-
ing 6DoF master audio scene yielded the same high-quality
music experience when rendered for stereo headphones,
and for the 31 channel Satosphere dome, alike. No “re-
tuning” of the audio scene was required when changing
among output rendering formats, even when they differed
greatly. Even more surprising, when rendering on the hy-
brid audio system combining the Satosphere and five Au-
diodice 4 spherical speakers, for far and near field display
respectively, the audio scene still did not require adjust-
ment 5 .

To date, we have applied our workflow to create
unique 6DoF masters for three different symphonic works:
Beethoven’s Pastoral, Beethoven’s Seventh, and Pascal
Dusapin’s “Wave”. In the process, we have observed that
reusing an audio scene with parameters adjusted for one
piece of music, such as the Beethoven Pastoral, when ren-
dering a different work, such as the Dusapin’s “Wave”,
yielded poorer listening experiences in terms of the es-
sential properties mentioned earlier. As with conventional
masters, if not even more so, it would appear that 6DoF
masters need to be uniquely crafted to each piece, based
on possible variations among sound sources locations and
specific nature of the compositions.

5.5 Platform

5.5.1 Rendering

The rendering stage of our pipeline shown in Fig. 6 in-
corporates both the Unity and SuperCollider environments,
each of which has been extended to render the music scene
in tandem 6 . Running in SuperCollider, the SATIE [15]
library, developed by the SAT Metalab, provides an ex-
tremely efficient realtime dynamic audio processing envi-
ronment, and offers a wide range of extendable output for-
mat configurations. The inputs to SATIE consist of raw au-

4 See the Audiodice prototype building at https://vimeo.com/
519938720. Accessed March 2021.

5 See our demonstration video at https://vimeo.com/
519940468. Accessed March 2021.

6 The code repository is published under the GPL licence
and is available here : https://gitlab.com/sat-metalab/
6dmastering4savr
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Figure 6. Distributed authoring and rendering pipeline

Figure 7. Authoring tools for 6DoF mastering

dio streams and asynchronous rendering messages. SATIE
outputs rendered audio streams for one or more listen-
ers, in one or more audio output formats, such as binaural
stereo, high-order ambisonics, or the custom 31-channel
Satosphere Dome format. SATIE can also simultaneously
render near and far field perspectives, as separate audio
output streams, which can be useful when using hybrid au-
dio displays [16].

In our pipeline, SATIE functions as an audio processor,
computing a node-based DSP graph of sources and syncs.
Input messages to SATIE mainly comprise source-specific
lists of DSP update parameters for gain, delay and filtering.
The messages are sent asynchronously over IP by a library
running in the Unity Environment called Satie4Unity, also
developed by the SAT Metalab. Satie4Unity provides con-
trol for update message density, which we typically limit
to no more than 10 to 20 times per second, per source
node. In SATIE, the received update message parameters
are smoothed.

The input to Satie4Unity is the 3D audio scene graph, or
“6DoF master” referred to above, which contains one or
more listeners and a spatial arrangement of reverberation
and instrumental source objects. Basically, Satie4Unity
converts changes to 3D source and listener geometry into
batches of source-listener DSP parameter updates, which
are transmitted as OSC messages to SATIE.

5.5.2 Authoring

Satie4Unity also extends Unity’s native authoring UI, and
thus allows us to build tools that integrate existing UI fea-
tures for editing curves or adjusting parameters, shown in
Fig. 7. As our Authoring/Rendering pipeline runs in re-
altime, these tools serve our requirement to instantly hear
adjustments we make to the audio scene during the master-
ing process.

6. DISCUSSION AND FUTURE WORKS

The approach we describe here provides general guidelines
for building navigable listening experiences, and more par-
ticularly about the working pipeline strategy. The divi-
sion of the capture in zones (stage vs. hall) has pro-
vided expected results in terms of 6DoF mastering flexi-
bility when fine-tuning the 6DoF navigation for different
recorded pieces. Additionally, our strategy takes advan-
tage of conventional capturing equipment, techniques and
expertise, permitting for the use of particular microphones
with specific patterns and preamps.

Our work to date has led us to consider several improve-
ments and promising new deployments to investigate :

1. Use of ambisonic microphones to capture reverber-
ation in the acoustic space. Ambisonic microphones
will provide extra directionality and may improve
subtle variations in reverberation

2. Add a rendering effect to enhance the degree of
spatial encompassment at different distances from a
cluster of instrumental source sounds.

3. Use of outside in microphone arrays to capture and
then render a single source from multiple surround-
ing angles.

4. Extension of near field rendering techniques for
sources captured by outside in microphone arrays,
and rendered for the Audiodice spherical audio dis-
play system.

5. Implementation of geometry-based acoustic mod-
elling for live navigable reverberation rendering with
live ray tracing [17].

6. The use of binaural recordings, captured by an itiner-
ant listener during the recording session, for compar-
ative evaluations of rendered listening experiences.

7. Extension of the dataset with directional impulse re-
sponses measures of the Maison Symphonique de
Montréal

7. CONCLUSION

Indeed, the ability to navigate complex forms of music,
such as symphonic works, modern or otherwise, can yield
a particularly compelling listening experience in terms of
one’s ability to recognize and differentiate timbral and
structural elements in the music. We are convinced that
our efforts have been effective in developing a pipeline that
can deliver navigable music listening experiences of high
musical quality. We have furthered our understanding of
microphone deployment density and placement. In the au-
thoring of the three previously mentioned 6DoF masters,
we have addressed the need to potentially render all lis-
tening perspectives, and created workflows with musically
prioritized steps and operations to simplify the task and
improve the result. Finally, we have been able to evaluate
the effectiveness of music scene organization in terms of
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reverberation and instrumental sources. While we are ex-
cited by the results we obtained, we recognize that there is
much work still to be done, including potential to extend
the captured navigable space to improve listening quality at
elevated locations in the audio scene. Finally, through our
work with real-time interactive experience rendering on a
large symphonic scale, we have achieved a difficult balance
between data density and musical experience quality.
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ABSTRACT

We introduce a novel approach for personalisation of an
efficient 3D binaural rendering system designed for mo-
bile, auditory mixed reality use cases. A head-related
transfer function (HRTF) ranking method is outlined for
users of real-time, interactive sound and music applica-
tions. Twenty participants tested the approach and its im-
pact on their capacity to locate a continuous musical sound
rendered in varying 3D positions. Analysis of HRTF rank-
ings across three separate sessions reveal encouraging lev-
els of reliability amongst some participants. Patterns of in-
teraction show a significant benefit to horizontal precision
that results from the selection process. In contrast, length
of system exposure (rather than HRTF preference) demon-
strates a significant degree of improvement to aspects of
vertical perception and overall speed of response, with no
detriment to horizontal accuracy. These findings provide
an initial basis from which to consider priorities in the de-
sign of audio-only immersive applications and accompany-
ing methods for effective user controlled personalisation.

1. INTRODUCTION

Since the 1990s, sound computing research has explored
spatially located interactive audio within real world con-
texts. The principles and applications of binaural synthesis
(i.e. 360∘ sound simulation over headphones) were given
prominent discussion in Begault’s major work on 3D audio
for multimedia [1]. Bederson’s virtual tour guide presented
an early design for personalised real-time audio interven-
tion to augment physical environments [2]. Possibilities
for blending acoustic and digitally situated sound were
later investigated with closed-ear headphones (Cohen’s ex-
periment with artificially spatialised sound sources [3]) and
wearable speakers (Sawnhey’s Nomadic Radio [4]).

Mobile computing has brought renewed focus on person-
alised interactive sound design that supplants or supple-
ments environmental acoustics, for example through multi-
layered spatial auditory display to encourage exploration
of art exhibitions [5]. ‘Hearable’ headsets have further ac-
celerated development. These devices feature integrated
orientation and often positional sensing to enable immer-
sive audio spatialisation. Direct or electronically assisted

Copyright: © 2021 the Authors. This is an open-access article distributed un-
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openness to environmental sound is also enabled in some
instances. Recent evaluation of these devices has high-
lighted potential affordances and some initial interaction
design recommendations. It has also introduced new work-
ing definitions to distinguish the variety of hardware fea-
tures and modes of experience that coexist in auditory
mixed reality (AMR), a term that ‘encapsulates any audi-
tory VR and AR experiences’ (i.e. forms of sonic virtual or
augmented reality) [6]. These technologies have recently
prompted structured experimentation with creative social
gameplay [7], as well as direct industry research address-
ing how audio virtual reality might be applied to music
discovery activity [8].

Research into personalisation of spatial rendering for
these audio-only contexts is limited. The potential bene-
fits to user orientation and sense of immersion from incor-
porating HRTF personalisation have been highlighted in
previous spatial audio experience studies as an area requir-
ing structured investigation [5, 9]. This paper presents and
evaluates a method for user selection of preferred HRTF
sets via a custom binaural rendering system for mobile, in-
teractive spatial audio. Section 2 discusses the limitations
of prior work on HRTF selection for end-user audio-only
contexts and specific considerations therein. Section 3 out-
lines the method conceived for 3D HRTF comparison and
the experimental protocol for measuring its performance.
Results of the evaluation are presented in section 4, fol-
lowed by discussion of outcomes and summary conclu-
sions in sections 5 and 6.

2. BACKGROUND

HRTF sets are location dependent filters that simulate spa-
tialisation of sources around a listener. HRTF sets com-
prise multiple head-related impulse responses (HRIRs),
which are measured within the left and right ear of a hu-
man or dummy head, using an excitation source placed at
incremental surrounding positions. The efficacy of HRTF
processing is dependent on both the density of the mea-
surements, and correlation between the HRIRs and fea-
tures of the listener’s morphology that affect spatial per-
ception (chiefly the shape of their head, pinnae and upper
body) [1, 10]. Use of a generic or poorly matched HRTF
set is liable to impact sound localisation accuracy, discrim-
ination between sources in front/behind and above/below,
externalisation (i.e. sense that a sound is emanating from
outside the lister’s head), and tonal clarity.

A growing body of research demonstrates the efficacy of
parametric methods for either selecting or simulating best-
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fitting HRTF sets according to user morphology [11–14].
However, precise and reliable acquisition of anthropomet-
ric head, ear and torso features in the case of mobile sys-
tem end-users is a nontrivial challenge. Selection of a
best-fitting HRTF set from a database of alternatives is an-
other established strategy for customising binaural render-
ing [15, 16]. However, the latter approach – which is the
area of concern for the remainder of this paper – also raises
specific design problems for the context of AMR.

2.1 Working criteria for end user HRTF selection

The authors have previously discussed the difficulties
of applying established HRTF evaluation methodologies
within an end user system [17]. Objective approaches re-
quire subjects to repeatedly identify perceived locations of
sources placed in various spatial positions, for alternate
HRTF sets. This is by its nature time-consuming and typ-
ically relies on a laboratory-style format and rapid serial
responses to short test signal stimuli [18–20]. Subjective
approaches, by contrast, ask users to rate the effect of alter-
nate HRTF sets using separate criteria, such as consistency
in motion/trajectory, hemispherical distinction or degree of
externalisation [21,22]. Evidence suggests that repeatabil-
ity of such qualitative judgements is contingent on listener
expertise [23–26].

A design for HRTF selection in 2D was previously
devised using interactive holistic A/B comparison, with
recorded music as the stimulus signal. The approach was
evaluated against these four criteria with encouraging out-
comes [17].

• Reliability – clear and consistent selection outcomes

• Validity – spatial fidelity that is fit for purpose

• Usability – of potential benefit to any end user

• Efficiency – a duration acceptable for the use case

2.2 Considerations for 3D audio-only mobile contexts

Adapting the 2D holistic approach for 3D judgement of
HRTFs in mobile use cases presents three challenges:

1. Thorough comparative judgement of 3D involves a
much wider range of spatial positions and trajecto-
ries, all of which must be adequately explored to
make valid selections.

2. Mobile and ‘hearable’ devices have either restricted
or no visual display, meaning that judgements
should be made without reference to dynamic graph-
ics or complex interfaces that would be necessary for
audiovisual interaction.

3. A clear indication of selection repeatability is neces-
sary in light of the above complexities.

This research deploys a virtual vector base amplitude
panning (VBAP) [27] system developed on an open-source
embedded Linux platform. The approach uses eight HRIR
pairs to simulate a sparse, pseudo-spherical virtual loud-
speaker array. Individual sound sources are positioned via

VBAP processing prior to binaural encoding. Five virtual
speakers are located on the horizontal plane (0∘ elevation)
at 0∘, -60∘, 60∘, 120∘ and -120∘. Three further speakers
are placed around the median plane (0∘ azimuth) at 90∘ (di-
rectly above), -45∘ (below front) and -135∘ (below back).
VBAP has been shown to render with favourable levels
of spatial and tonal consistency in this virtual configura-
tion [28] and more generically [29]. However, specific lim-
itations to vertical cue representation in a sparse array lay-
out, such as that defined above, are also well known [30].

3. METHODOLOGY

A selection method was devised and evaluated against the
four criteria in section 2.1. Participants undertook three
identical study sessions (to assess reliability). In each ses-
sion, part one comprised of the HRTF selection procedure
(to test usability and efficiency) and part two consisted of a
follow-up objective localisation task (to measure validity).

3.1 Participation

Twenty-one participants (aged 25-45, 6 female and 15
male) were recruited on to the study, which was approved
by the Queen Mary University of London (QMUL) Ethics
Committee (reference 2038). Each session was approxi-
mately 45 minutes, with a minimum of 48 hours between
sittings. Participants received £20 in compensation for
their time at the end of their third session. All partici-
pants were recruited via an open call to staff and doctoral
students across QMUL’s School of Electronic Engineer-
ing and Computer Science. No hearing impairments were
declared, other than from two participants who reported
occasional and slight tinnitus that neither regarded as pro-
nounced. A questionnaire was used to collect information
on musical training, headphone listening habits and prior
exposure to binaural audio.

Participants wore a battery powered embedded device
running the rendering, study journey and response logging
software. They used an iOS device to submit responses
and progress through the study. Sennheiser HD650 head-
phones (without any equalisation for binaural synthesis ap-
plied) were secured to participants with an elasticated hair-
band. The head-tracking sensor was mounted on top of
the headphones to counter-rotate the sound scene and take
head position readings at 1∘ angular resolution. Head-
tracking was only enabled in part two of the study.

3.2 Part one: HRTF selection

A comprehensive tournament structure used 21 pairwise
comparisons between the optimised shortlist of seven
human-measured HRTF sets from the LISTEN database
[31] identified in [32]. A notable previous investigation
into HRTF selection repeatability used stimuli with fixed
trajectories that were not responsive to head-tracking [23].
The test pursued here followed a similar approach, but used
content derived from recorded music, rather than test tone
signals. The comparison stimulus was compiled from ex-
cerpts of an anechoic recording of Haydn’s Trumpet Con-
certo in Eb performed on unaccompanied cornet [33].
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Figure 1. Trajectory for virtual VBAP HRTF comparison

3.2.1 Trajectory

The trajectory in figure 1 addresses considerations 1 and
2 specified in section 2.2. The horizontal plane orbit con-
sisted of a single sustained note lasting approximately two
seconds. Five short bursts in four static positions on the
median plane used an even four-note phrase of around one
second. The overall stimulus was a little under ten sec-
onds. A key feature of the trajectory was that it passed
through all eight virtual speaker locations, which takes ad-
vantage of VBAP’s amplitude panning approach to spatial-
isation. Although the trajectory covered just 363 of 64,082
potential coordinates, this small minority focussed on the
eight fundamental points from which all locations are ren-
dered (consideration 1). The trajectory was also judged
sufficiently short and simple enough to enable purely in-
ternalised A/B auditory comparison without reference to
dynamic or interactive graphics (consideration 2).

3.2.2 Selection process

Participants used the GUI shown in figure 2 to compare
trajectories and submit preferences. They were also given
the diagram in figure 1 and an accompanying instruction:

Which has the more convincing 3D effect,
excerpt A or B?
When comparing A and B, you may wish to
consider:

• horizontal accuracy during the orbit
and at the four static central positions

• sense of spread between front/back and
up/down positions

• sense of distance or how “outside of
your head” the sounds seem

Participants completed one example response to check
their understanding of the task before starting. For each
response, both the time elapsed and outcome of each com-
parison was logged automatically. Participants were al-
lowed to listen to either trajectory as many times as they

Figure 2. User interface for HRTF preference submission

Figure 3. Localisation testing setup showing equipment
worn, personalised calibration point and interaction mode

wished, but were forced to listen to A and B at least once
in their entirety, before response buttons became enabled.

Both the sequence of comparisons and the order of A/B
pairs were randomised for each participant, at all three sit-
tings. For each of their three sessions, the HRTF sets cho-
sen and rejected most often were designated as the pre-
ferred and least favoured options. In the event of a draw
one of the tied sets was picked at random. These two des-
ignations were then used as the best and worst fitting HRTF
sets in participants’ subsequent localisation test.

3.3 Part 2: Interactive localisation test

The localisation test was conducted following a break of
around five minutes. Before starting, the head-tracker was
calibrated to a personalised position measured and agreed
as approximately directly ahead and level with their eye-
line and therefore considered as 0∘ azimuth, 0∘ elevation.
Figure 3 shows the physical setup of the test environment.
The localisation stimulus used 20 seconds of continuous
music from the same recording used in part one [33].
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Figure 4. User interface for localisation test submission

3.3.1 Target locations

Localiation targets were divided into three strata, so that
anticipated shortcomings in upper and lower hemisphere
rendering cues could be evaluated independently:

• at 45∘ elevation – seven azimuths of -153∘, -102∘,
-51∘, 0∘, 51∘, 102∘ and 153∘

• at 0∘ elevation – six of the azimuths stated above
(0∘ was not used)

• at -45∘ elevation – the seven azimuths stated above

3.3.2 Localisation process

The test used egocentric head-pointing to report perceived
source position, comparable to [34]. Participants used the
simple GUI in figure 4 with the instruction:

Where is the target sound source?
Find the location of the target sound. Point
your nose towards what you hear to be the
source position.

The source will be from somewhere around
you and sometimes above or below your ear
level. In some cases, you might need to ro-
tate in your seat and/or tilt your head to point
accurately.

Participants completed two example responses to check
that they understood what was required before starting the
task. For each response, both the time elapsed and variance
in head position from target location was logged automati-
cally (as azimuth and elevation co-ordinates). Participants
were allowed as much time as they needed to respond for
each target. The 20 second excerpt continued on a loop,
if necessary, until they registered a response, after which
time the next target location began automatically.

Both the sequence of 20 co-ordinates and the order of
the two groupings (preferred and least favoured HRTF set)
were randomised for each participant, at all three sittings.

Systematic Weak Fair or Good
Disagreement Agreement Agreement

C -0.306 (n) A 0.349 (n) B 0.429 (n)
D -1.080 (o) G 0.186 (n) E 0.743 (p)
H -0.095 (o) K 0.075 (n) F 0.437 (n)
J -0.418 (o) O 0.342 (p) I 0.715 (n)
L -0.840 (p) P 0.380 (o) N 0.726 (p)
M -0.795 (n) Q 0.142 (o) R 0.648 (o)
T -1.151 (p) U 0.258 (o) S 0.510 (o)

Table 1. HRTF selection reliability values and category
for each participant (A-T), including binaural experience
indicator (n = none; o = occasional; p = practised)

Therefore, a total of 120 data points was recorded for each
participant using between a minimum of two (in the event
of perfectly repeated best and worst selections) and maxi-
mum of six different HRTF sets.

4. RESULTS

All participants completed three study sessions at least 48
hours apart. During the session and on later examination
of data, it became evident that one participant had not un-
derstood the requirements of the localisation task and had
provided responses that did not actively seek out the posi-
tion of the sound source. This participant’s data is reflected
in the analysis that follows in part one, but not in part two.

4.1 Part one: HRTF selection outcomes

Between the 21 participants, 63 HRTF selection proce-
dures were completed. The average time taken across these
was a mean of 13 and median of 11.8 minutes.

4.1.1 Ranking method

For each session, the outcomes of a participant’s compar-
isons were translated into rank order based on the number
of times each HRTF set was selected (a maximum of six
and minimum of zero occasions). Tied HRTF sets were
given a shared ranking at the highest jointly occupied posi-
tion. So, for example, a ranking list of 1,2,3,4,4,4,7 reflects
three HRTF sets gaining a score equal to fourth place.

4.1.2 Intra-class correlation measurement

Intra-class correlation (ICC) is a statistical approach used
for measuring consistency between different raters to ver-
ify the robustness of a rating system [35]. ICC has
been used previously to evaluate the reliability of repeated
HRTF set ratings expressed by the same raters [26]. The
HRTF selection reliability established for each participant
via ICC is presented in table 1. Calculation of ICC was
achieved using the R statistical computing package, ac-
cording to the guidance and numerical outcome classifi-
cations provided in [35], where: less than 0.0 represents
lower than chance levels of agreement (systematic dis-
agreement); between 0.0 and less than 0.4 is an above
chance (but weak) level of agreement; from 0.4 to less
than 0.6 indicates fair agreement; between 0.6 and less than
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0.75 shows good agreement; 0.75 and beyond constitutes
excellent agreement.

Details provided by participants about their musical train-
ing, headphone listening habits and level of prior exposure
to binaural audio were analysed by the groups in table 1 us-
ing chi-square and multiple linear regression tests. No re-
lationship was evident between selection consistency and
any factor. Each participant’s level of experience with bin-
aural audio is shown in table 1 for reference.

4.2 Part two: Interactive localisation outcomes

Three factors mean a reasonable degree of error was to be
expected, particularly at the upper and lower strata (45∘ /
-45∘ elevation). Firstly, even under optimal acoustic con-
ditions, localisation blur of broadband sound immediately
in front of a listener is established to be in the order of +/-
3.6∘ for azimuth and +/- 9∘ for elevation [36]. Secondly,
inaccuracy in head pointing orientation was an further con-
tributor to response error. Bahu et al [34] suggest that, for
sources with substantial vertical displacement (57∘), head
pointed localisation can introduce mean unsigned error of
3∘ in azimuth and 12∘ in elevation. Thirdly, sparseness
of the virtual speaker array in the upper and lower binau-
ral hemisphere would have degraded spatial representation
of sources originating in these areas far beyond optimal
acoustic conditions [28, 30].

Given these constraints, minimum standards of accuracy
were established to evaluate localisation outcomes. For az-
imuth, a tolerance of +/-15∘ was used to test whether the
rendering system could provide reliable interactive presen-
tation of sound sources at a minimum lateral separation of
30∘. For elevation, a +/-22.5∘ threshold was applied to test
simply whether users could reliably distinguish between
sources located above, below and on the horizontal plane.

4.2.1 Influence of HRTF selection

Quality of HRTF fit could have impacted both response
accuracy and time. Figure 5 shows the distribution of par-
ticipant outcomes for best and worst HRTFs. Plots show
the distribution of participants’ overall azimuth and ele-
vation success rate and their mean response duration, for
each stratum (45∘, 0∘ and -45∘). If there were objec-
tive interaction benefits to the HRTF selection procedure,
we would expect to see higher successful identification
rates and lower mean response times. This is only evi-
denced clearly in relation to azimuth accuracy in the upper
hemisphere (upper and middle plots of column one in fig-
ure 5). A Wilcoxon signed rank test confirmed significant
improvement in accuracy of azimuth for sources placed
on the horizontal plane, when using a preferred HRTF set
compared to least preferred (𝑝 = 0.047). The same non-
parametric test for significance did not uncover any other
effects from using the best judged HRTF set, for any of the
remaining eight metrics in figure 5.

Further analysis was conducted to evaluate the influ-
ence of HRTF selection consistency on localisation per-
formance. A Kruskal-Wallis test was conducted between
the participant groupings shown in table 1 (but without
the participant identified in 4, who was within the ‘Weak

Agreement’ group) and the same nine metrics reflected in
figure 5. Significant difference was found in elevation ac-
curacy at 0∘ (𝑝 = 0.008, 𝜒2 = 9.575). Post-hoc Tukey-
Kramer analysis identified that the ‘Systematic Disagree-
ment’ group performed with significantly better accuracy
against this metric than the ‘Weak’ group.

4.2.2 Influence of learning effects

Figure 6 represents the distribution of participant outcomes
when viewed as the first and second halves of their ses-
sions (irrespective of best/worst HRTF sequencing, which
was always randomised). A Wilcoxon signed rank test
confirmed significant improvement in accuracy of eleva-
tion identification with sources placed at 45∘, for responses
given in the second half of localisation trials (𝑝 = 0.041).
The same non-parametric test further identified that re-
sponses at 45∘ (𝑝 = 0.003) and 0∘ (𝑝 < 0.001) were
quicker in the second half, without any detrimental impact
on azimuth or elevation precision.

5. DISCUSSION

We return to the four criteria put forward in section 2 for
evaluating the success of an HRTF selection system.

5.1 Reliability

A third of participants demonstrated a fair to good level
of consistency in the rankings that resulted between their
three HRTF selection sessions. A further third showed
some tendency towards repeating their patterns of selec-
tion beyond chance level. The final third returned sets of
rankings that actively diverged from each other to a greater
degree than chance level.

Although absolute values and proportions of participants
between these groups do not indicate a mechanism that
could yet be described as reliable, for a significant minority
it was possible to attain outcomes that were repeatable to
an acceptable level. Given the holistic nature of the com-
parison judgement (simultaneously considering azimuth,
elevation and externalisation) and speed of the overall se-
lection process, the approach shows substantial potential
for further development towards more reliable usage. More
detailed analysis of the selection process and localisation
data presented here will help to identify how the stimulus,
trajectory or written guidance outlined in section 3 could
be further simplified to focus the comparison process.

5.2 Validity

Analysis showed apparent benefits to azimuth localisation
accuracy in the upper hemisphere from preferred HRTF se-
lection, which was significant along the horizontal plane.
It is unsurprising that preferred HRTFs were of most ben-
efit across this dimension, where five of the eight virtual
speakers reside. Although this finding validates the selec-
tion approach in one respect, it is notable that positive ele-
vation detection was increased by general exposure to the
localisation task (albeit from a low starting base). This im-
provement and accompanying increases in response speed
occurred independently of best or worst HRTF usage. The
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Figure 5. Distributions of participant azimuth/elevation success rates and mean response times, by HRTF preference*

Figure 6. Distributions of participant azimuth/elevation success rates and mean response times, by sequence*

* Plots with blue background indicate significant difference between distributions
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selection routine might therefore be validly applied in tan-
dem with a structured pre-exposure phase to optimise per-
ceptual experience.

It should also be noted that no meaningful statistical rela-
tionship was found between participants’ HRTF ranking
consistency and localisation performance. Significantly
improved elevation accuracy was found in the ‘Systematic
Disagreement’ group for sources on the horizontal plane.
However, this apparent strength is actually a by-product
of that group returning a greater overall proportion of re-
sponses that neglected vertical localisation and remained
overly focussed at 0∘ elevation. The group was less likely
to have noticed vertically displaced sources and performed
particularly poorly in elevation accuracy at heights of 45∘

and -45∘.

5.3 Usability

It is notable that the two most reliable raters judged them-
selves to be practised in binaural listening. However, there
was no significant advantage to ranking consistency found
through statistical analysis of musical training, headphone
listening habits or prior binaural exposure. Moreover,
some of those with only occasional and even no binaural
experience were able to achieve fair or good levels of re-
peatability.

5.4 Efficiency

An average completion time between 12 and 13 minutes
can be regarded as within the realms of an acceptable du-
ration for single-time calibration of a 3D end-user system.

6. CONCLUSION

A new generation of headsets is enabling various forms of
auditory mixed reality with interactive spatial sound. The
efficacy of those binaural experiences will be at least partly
impacted by the degree to which rendered scenes fit the
perceptual profile of individual users. To date, there is no
established method for personalising the HRTFs deployed
for end-users of audio virtual or augmented reality in mo-
bile contexts. The approach outlined here begins to ad-
dress this issue and its first iteration has shown promising
outcomes against previously identified evaluation criteria.
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ABSTRACT

The potential of physics-based synthesis algorithms for
developing computer-based musical instruments relies on
the inclusion of articulatory elements that enable physi-
cally plausible and musically meaningful interactions. In
this paper, non-excitational interaction with a rectangu-
lar vibrating plate is modelled through time variation in
distributed contact parameters. For numerical simulation
a finite difference approach is taken, enabling efficient
modelling of local interactions. Comparison between the
continuous- and discrete-domain system power balances
confirms conditional stability and a match in the source
terms due to parameter time-variance. The methodology
is exemplified with a few case studies, and its potential for
application in the design of a virtual-acoustic plate-based
musical instrument is discussed.

1. INTRODUCTION

Music performed with mechano-acoustic instruments is of-
ten articulated through physical contact, either directly be-
tween the musician and a resonating element or via an ex-
tension (e.g. a mallet, bow, or slide). Such embodied inter-
action generally serves two kinds of purposes. The first is
to inject energy into the instrument’s vibrating parts, such
as plucking a string or striking a membrane. The second is
to alter the vibrating properties of the instrument, for ex-
ample holding down a string against a fretboard to achieve
a specific pitch. Some forms of contact serve both purposes
simultaneously, e.g. guitar tapping [1].

In the case of 2-D vibrating systems, such as membranes
and plates featuring in percussion instruments, contact for
the second purpose is often of a distributed nature, and
generally involves damping, clamping, and mass-loading.
For any specific form of contact, typically one of those
phenomena dominates. For example, Figure 2(a) displays
a common way to damp the sound of a vibrating cym-
bal, in which the hand’s strong damping is accompanied
by small additional stiffness (which can be considered as
clamping) and mass-loading. The spectrogram in Figure
2(d) of a recorded cymbal strike with hand damping ap-

Copyright: c○ 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

Figure 1. Schematic representation of the locally reacting con-
tact layer. The grey object represents the plate, and the green ele-
ments represent additional surface density. The springs represent
additional stiffness and damping per unit area.

plied at around 𝑡=1.2s shows how the partials may not be
damped to the same extent, and also shows slight lowering
of some of the resonance frequencies. Figure 2(b) shows a
partially clamped vibraphone bar, introducing spring-like
distributed restoring forces over the clamped region, and
altering the resonant characteristics. As can be seen in the
spectra shown in Figure 2(e), the specific resonance alter-
ations depend on where the system is clamped. Somewhat
similar to placing a capo on the guitar neck, this form of
contact is conducted more on the level of design and recon-
figuration than performatory action. Figure 2(c) shows the
partial submersion of a small round gong in water, effec-
tively introducing strong mass-loading on the submerged
region, which lowers the resonance frequencies. Mod-
ulating the plate’s resonance frequencies by dynamically
changing the amount of submerged plate surface is an es-
tablished performance practice with gongs and tam-tams
(see, e.g. [2]). Figure 2(f) shows the spectrogram of a gong
strike followed by gradually lifting the gong upwards and
then back downwards, thus effecting a temporary decrease
in submerged surface area.

From a music articulation perspective, dynamic contact is
of particular interest. The three aforementioned phenom-
ena are therefore considered here as time-varying.

This paper focuses on the simulation of such time-
varying, non-excitational distributed contact, with a view
to facilitate physically plausible contact with intuitive pa-
rameter control in physics-based sound synthesis, using a
rectangular plate model with free edges as a testbed 2-D
resonator. The approach is to model the contact in terms
of additional damping, stiffness, and mass-loading terms
(see Figure 1), in effect adding what is known in room
acoustics as a locally-reacting layer. Similar to earlier
work on modelling string excitation [3, 4], dynamic con-
tact is emulated via time variation of the local contact pa-
rameters. For example, initiating contact of a hand with
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(a) (b) (c)

(d) (e) (f)

Figure 2. Examples of distributed contact in 2-D musical resonators: (a) regional damping of a cymbal via local hand contact, (b)
regional clamping of a vibraphone bar, (c) regional mass loading of a round gong by submerging it partially in water, (d) spectrogram of
a cymbal strike with hand damping at 𝑡 = 1.2 s, (e) amplitude spectra of a struck vibraphone bar clamped at two different positions, (f)
spectrogram of a gong with time-varying water submersion.

the plate is modelled by ramping up from zero the spring
stiffness and damping per unit area as well as the surface
density. For static values of the contact parameters the
model is grounded in Newtonian physics, but the speci-
fication of how the parameters vary to emulate dynamic
contact is, due to the simplifications involved, more phe-
nomenological. It would be more physically correct to
model the motion of the hand or other external object sepa-
rately, allowing also to simulate collisions, such as recently
reported in the context of slide-string articulation in [5].
The reasons for not taking a more complex approach are
(a) collisions have a limited role in most practical exam-
ples of non-excitational contact (except for sympathetic vi-
brations, which can be modelled separately), (b) it would
require updating a large set of additional mass positions,
adding significant computational burden, and (c) in a real-
time scenario, the distance between the object and the 2-D
resonator would have to be sensed across the spatial co-
ordinates, which is a challenge in its own right. For the
simpler model chosen, only a pressure map needs to be
sensed, which can be done with available sensing devices,
such as the Sensel Morph 1 ; the local contact parameters
may then be specified as an implicit function of the local
control pressure.

Regarding the modelling of plate vibrations, i.e. the sys-
tem without contact terms, the equations of motion given
in Section 2 and their discretisation and associated energy
analysis presented in Section 3 are equivalent to those pre-
sented in earlier work on plate modelling [6, 7]. The novel
aspect in these sections revolves around the introduction of
the time-varying contact terms and their discretisation.

1 https://sensel.com/

2. PLATE MODEL WITH CONTACT

Let 𝜕𝑥𝑢 and 𝑑𝑥𝑢 denote the partial and total derivative of
𝑢 with respect to 𝑥, respectively.

2.1 System Equations

Consider transversal vibrations of a thin plate with damp-
ing and distributed contact terms:

𝜌ℎ𝜕2𝑡 𝑢 = −𝐷∆2𝑢+ 2𝜌ℎ [𝜎2∆ − 𝜎0] 𝜕𝑡𝑢+ 𝜓𝐹e

−𝜕𝑡(�̄�𝜕𝑡𝑢) − 𝑘𝑢− 2𝜌ℎ�̄�𝜕𝑡𝑢⏟  ⏞  
contact

, (1)

where 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) denotes transversal displacement, 𝜌
is mass density, and 𝜎0 and 𝜎2 are damping constants. The
parameter𝐷 = 1

12𝐸ℎ
3/(1−𝜈2) can be considered as char-

acterising the plate stiffness, where 𝐸 is the Young’s mod-
ulus, ℎ is the plate thickness, and 𝜈 is the Poisson’s ratio.
The first term on the right-hand side of (1) can be written

−𝐷∆2𝑢 = −𝐷
(︀
𝜕4𝑥 + 𝜕4𝑦 + 2𝜕2𝑥𝜕

2
𝑦

)︀
𝑢,

= 𝜕2𝑥𝑚𝑥 + 𝜕2𝑦𝑚𝑦 + 2𝜕𝑥𝜕𝑦𝑚𝑥𝑦, (2)

where the plate bending moments

𝑚𝑥 = −𝐷
(︀
𝜕2𝑥𝑢+ 𝜈𝜕2𝑦𝑢

)︀
, (3)

𝑚𝑦 = −𝐷
(︀
𝜕2𝑦𝑢+ 𝜈𝜕2𝑥𝑢

)︀
, (4)

𝑚𝑥𝑦 = −𝐷 (1 − 𝜈) 𝜕𝑥𝜕𝑦𝑢, (5)

are introduced due to their usefulness in defining boundary
conditions and in performing energy analysis. The term
𝜓 = 𝜓(𝑥, 𝑦, 𝑡) = 𝛿𝐷(𝑥 − 𝑥e(𝑡), 𝑦 − 𝑦e(𝑡)) defines the
position of the driving force 𝐹e = 𝐹e(𝑡).
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The lower line in (1) contains three time-varying terms
due to distributed contact, in accordance with Figure 1.
The contact surface density �̄� = �̄�(𝑥, 𝑦, 𝑡), stiffness 𝑘 =
𝑘(𝑥, 𝑦, 𝑡) and damping �̄� = �̄�(𝑥, 𝑦, 𝑡) are each modelled
here as being dependent on a non-dimensional distributed
control pressure map 𝑝 = 𝑝(𝑥, 𝑦, 𝑡):

�̄� = 𝑎𝜆𝑝, 𝑘 = 𝑎𝑘𝑝, �̄� = 𝑎𝜎𝑝(1 + 𝑔) + 𝜎0𝑔, (6)

where 𝑔 = �̄�/(𝜌ℎ) and 𝑎𝑖 ≥ 0, 𝑖 ∈ {𝜆, 𝑘, 𝜎} can be
tuned to suit specific interaction design purposes, and with
0 ≤ 𝑝 ≤ 1. The control pressure is a map that - for real-
time application - could be sensed with a force-sensitive
electronic pad, such as the Sensel Morph. Grouping com-
mon terms, one can re-write (1) as

𝜕𝑡
[︀(︀
𝜌ℎ+ �̄�

)︀
𝜕𝑡𝑢

]︀
= −

[︀
𝐷∆2 + 𝑘

]︀
𝑢+ 𝜓𝐹e

+ 2𝜌ℎ [𝜎2∆ − (�̄� + 𝜎0)] 𝜕𝑡𝑢. (7)

Hence the effective frequency-independent damping is

𝜎0,eff =
2𝜌ℎ (�̄� + 𝜎0)

2
(︀
𝜌ℎ+ �̄�

)︀ (6)
= 𝜎0 + 𝑎𝜎𝑝, (8)

which shows how the specific form for �̄� in (6) facilitates
direct control of the effective additional local damping. Eq.
(7) also brings to light how practical ranges for each of the
contact parameters are relative to the ‘corresponding’ plate
parameters.

2.2 Boundary Conditions

Free boundary conditions are imposed, mainly to enable a
natural way of damping by grabbing the edge of the plate
(like in cymbals, see Figure 2a). For a rectangular plate of
size 𝐿𝑥 × 𝐿𝑦 , at the edges we have [8]

𝑥 = 0, 𝐿𝑥 : 𝑚𝑥 = 0, 𝜕𝑥𝑚𝑥 + 2𝜕𝑦𝑚𝑥𝑦 = 0, (9)
𝑦 = 0, 𝐿𝑦 : 𝑚𝑦 = 0, 𝜕𝑦𝑚𝑦 + 2𝜕𝑥𝑚𝑥𝑦 = 0, (10)

Through substitution this can be written as

𝑥=0,𝐿𝑥: 𝜕2𝑥𝑢+𝜈𝜕2𝑦𝑢=0, 𝜕3𝑥𝑢+(2−𝜈)𝜕𝑥𝜕
2
𝑦𝑢=0, (11)

𝑦=0,𝐿𝑦: 𝜕2𝑦𝑢+𝜈𝜕2𝑥𝑢=0, 𝜕3𝑦𝑢+(2−𝜈)𝜕𝑦𝜕
2
𝑥𝑢=0. (12)

An additional condition is required at corners:

𝑚𝑥𝑦 = 0, =⇒ 𝜕𝑥𝜕𝑦𝑢 = 0. (13)

2.3 Energy Analysis

Given the functions 𝑓(𝑥, 𝑦, 𝑡) and 𝑔(𝑥, 𝑦, 𝑡), let’s define the
plate domain

𝒫 = {(𝑥, 𝑦) ∈ R | 0 ≤ 𝑥 ≤ 𝐿𝑥, 0 ≤ 𝑦 ≤ 𝐿𝑦} (14)

and the associated inner product and norm

⟨𝑓, 𝑔⟩𝒫 =

∫︁ 𝐿𝑦

𝑦=0

∫︁ 𝐿𝑥

𝑥=0

𝑓(𝑥, 𝑦, 𝑡) 𝑔(𝑥, 𝑦, 𝑡) 𝑑𝑥𝑑𝑦, (15)

‖𝑓‖𝒫 =
√︀
⟨𝑓, 𝑓⟩𝒫 , (16)

which will allow compact notation of energy terms. Mul-
tiplying (1) with 𝜕𝑡𝑢 and integrating over the plate domain
𝒫 , one obtains the power balance

𝑑𝑡 (𝐻p +𝐻c) = 𝑃e + 𝑃c −𝑄p −𝑄c, (17)

with the (non-negative) energy components

𝐻p =
1

𝐷(1 − 𝜈2)

[︁
1
2‖𝑚𝑥‖2𝒫 + 1

2‖𝑚𝑦‖2𝒫 − 𝜈⟨𝑚𝑥,𝑚𝑦⟩𝒫
]︁

+ 1
2𝜌ℎ‖𝜕𝑡𝑢‖2𝒫 +

1

𝐷(1 − 𝜈)
‖𝑚𝑥𝑦‖2𝒫 , (18)

𝐻c = 1
2 ⟨𝑘𝑢, 𝑢⟩𝒫 + 1

2 ⟨�̄� 𝜕𝑡𝑢, 𝜕𝑡𝑢⟩𝒫 . (19)

The power input terms (of indeterminate sign) are

𝑃e = 𝐹e⟨𝜓, 𝜕𝑡𝑢⟩𝒫 , (20)
𝑃c = 1

2 ⟨𝑢 𝜕𝑡𝑘, 𝑢⟩𝒫 − 1
2 ⟨𝜕𝑡𝑢 𝜕𝑡�̄�, 𝜕𝑡𝑢⟩𝒫 . (21)

and the (non-negative) damping terms are

𝑄p = 2𝜌ℎ
(︀
𝜎0‖𝜕𝑡𝑢‖2𝒫 + 𝜎2‖𝜕𝑡∇𝑢‖2𝒫

)︀
, (22)

𝑄c = 2𝜌ℎ⟨�̄� 𝜕𝑡𝑢, 𝜕𝑡𝑢⟩𝒫 . (23)

In the above, the subscripts ‘p’, ‘c’, and ‘e’ indicate ‘plate’,
‘contact’, and ‘excitation’, respectively. As explained in
[7], additional boundary terms in (17) obtained initially af-
ter integration by parts vanish for the boundary conditions
in (9), (10), and (13).

3. NUMERICAL FORMULATION

3.1 Discretisation Operators

Employing the usual spatio-temporal gridding notation
𝑢𝑛𝑙,𝑚 to denote 𝑢 at time 𝑡 = 𝑛∆𝑡 and position 𝑥 = 𝑙∆𝑥,
𝑦 = 𝑚∆𝑥, the following shift operators are defined:

𝜖𝑡+𝑢
𝑛
𝑙,𝑚 = 𝑢

𝑛+1
2

𝑙,𝑚 , 𝜖𝑡−𝑢𝑛𝑙,𝑚 = 𝑢
𝑛−1

2

𝑙,𝑚 . (24)

Elemental temporal difference and averaging operators can
then be constructed as

𝛿𝑡 =
𝜖𝑡+ − 𝜖𝑡−

∆𝑡
, 𝜇𝑡 =

𝜖𝑡+ + 𝜖𝑡−
2

, (25)

𝛿𝑡+ =
𝜖2𝑡+ − 1

∆𝑡
, 𝜇𝑡+ =

𝜖2𝑡+ + 1

2
, (26)

𝛿𝑡− =
1 − 𝜖2

𝑡−
∆𝑡

, 𝜇𝑡− =
1 + 𝜖2

𝑡−
2

. (27)

Various finite-difference approximations can be achieved
by directly applying or combining these elemental opera-
tors, e.g.

𝛿2𝑡 𝑢
𝑛
𝑙,𝑚 =

𝑢𝑛+1
𝑙,𝑚 − 2𝑢𝑛𝑙,𝑚 + 𝑢𝑛−1

𝑙,𝑚

∆2
𝑡

≈ (𝜕2𝑡 𝑢)*, (28)

𝛿𝑡·𝑢
𝑛
𝑙,𝑚 := 𝛿𝑡𝜇𝑡𝑢

𝑛
𝑙,𝑚 =

𝑢𝑛+1
𝑙,𝑚 − 𝑢𝑛−1

𝑙,𝑚

2∆𝑡
≈ (𝜕𝑡𝑢)*, (29)

𝜇2
𝑡𝑢

𝑛
𝑙,𝑚 =

𝑢𝑛+1
𝑙,𝑚 + 2𝑢𝑛𝑙,𝑚 + 𝑢𝑛−1

𝑙,𝑚

4
≈ 𝑢*, (30)
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where the asterisk denotes that the relevant quantity is eval-
uated at time 𝑛∆𝑡 and position (𝑙∆𝑥,𝑚∆𝑥). Spatial oper-
ators can be defined analogously, by replacing 𝑡with 𝑥 or 𝑦
in the above, and using ∆𝑦 = ∆𝑥 for convenient analysis
and implementation [6]. A discrete Laplacian and bihar-
monic operator can be constructed as

∆̃ = 𝛿2𝑥 + 𝛿2𝑦, (31)

∆̃2 = 𝛿4𝑥 + 2𝛿2𝑥𝛿
2
𝑦 + 𝛿4𝑦. (32)

3.2 Product Identities

The following product identities hold for any two time se-
ries 𝑓 = 𝑓𝑛 and 𝑔 = 𝑔𝑛:

𝜇𝑡 (𝜇𝑡𝑓 · 𝜇𝑡𝑔) · 𝛿𝑡·𝑔 = 1
2𝛿𝑡

[︀
𝜇𝑡𝑓 · (𝜇𝑡𝑔)2

]︀
− 𝛿𝑡·𝑓 · 𝜇𝑡+𝑔 · 𝜇𝑡−𝑔, (33)

𝛿𝑡 (𝜇𝑡𝑓 𝛿𝑡𝑔) · 𝛿𝑡·𝑔 = 1
2𝛿𝑡

[︀
𝜇𝑡𝑓 · (𝛿𝑡𝑔)2

]︀
+ 𝛿𝑡·𝑓 · 𝛿𝑡+𝑔 · 𝛿𝑡−𝑔, (34)

which is easily proven by direct evaluation of the terms to
which discretisation operators are applied. These identities
are useful in energy analysis regarding the terms with time-
varying parameters. For the time-invariant terms, here re-
lating to plate vibrations, use can be made of a handful of
identities involving inner products (see, e.g. [6, 7]).

3.3 Numerical Scheme

The fully explicit numerical scheme employed here results
from applying discretisation operators to (7) as follows:

𝛿𝑡
[︀(︀
𝜌ℎ+ 𝜇𝑡�̄�

𝑛
𝑙,𝑚

)︀
𝛿𝑡𝑢

𝑛
𝑙,𝑚

]︀
= −𝐷∆̃2𝑢𝑛𝑙,𝑚 + 𝜓𝑛

𝑙,𝑚𝐹
𝑛
e

− 𝜇𝑡

(︀
𝜇𝑡𝑘

𝑛
𝑙,𝑚 𝜇𝑡𝑢

𝑛
𝑙,𝑚

)︀
− 2𝜌ℎ

[︀
�̄�𝑛
𝑙,𝑚 + 𝜎0

]︀
𝛿𝑡·𝑢

𝑛
𝑙,𝑚

+ 2𝜌ℎ𝜎2∆̃𝛿𝑡−𝑢𝑛𝑙,𝑚, (35)

where 𝜓𝑛
𝑙,𝑚 is a discrete-domain version of the distri-

bution function 𝜓(𝑥, 𝑦, 𝑡) obtained through bilinear de-
interpolation. Dropping the indexes in the notation, e.g.
𝑢 = 𝑢𝑛𝑙,𝑚, one may write the first term on the right-hand
side in terms of the discretised moments:

−𝐷∆̃2𝑢 = 𝛿2𝑥𝑚𝑥 + 𝛿2𝑦𝑚𝑦 + 2𝛿𝑥−𝛿𝑦−𝑚𝑥𝑦, (36)

where

𝑚𝑥 = −𝐷
(︀
𝛿2𝑥𝑢+ 𝜈𝛿2𝑦𝑢

)︀
, (37)

𝑚𝑦 = −𝐷
(︀
𝛿2𝑦𝑢+ 𝜈𝛿2𝑥𝑢

)︀
, (38)

𝑚𝑥𝑦 = −𝐷 (1 − 𝜈) 𝛿𝑥+𝛿𝑦+𝑢, (39)

with𝑚𝑥𝑦 = 𝑚𝑛
𝑥𝑦,𝑙+1

2 ,𝑚+1
2

. By substitution, we can recover
the biharmonic operator in the form of (32).

3.4 Boundary Conditions

Using a non-centered approach for the boundaries, at the
left and bottom edge one may specify [7]:

𝑥=0 : 𝑚𝑥 =0, 𝛿𝑥−𝑚𝑥+2𝑒𝑥−𝛿𝑦−𝑚𝑥𝑦 =0, (40)

𝑦=0 : 𝑚𝑦 =0, 𝛿𝑦−𝑚𝑦+2𝑒𝑦−𝛿𝑥−𝑚𝑥𝑦 =0. (41)

Through substitution we obtain:

𝑥=0 : 𝛿2𝑥𝑢+𝜈𝛿2𝑦𝑢=0, 𝛿𝑥−
[︀
𝛿2𝑥𝑢+(2−𝜈)𝛿2𝑦

]︀
𝑢=0, (42)

𝑦=0 : 𝛿2𝑦𝑢+𝜈𝛿2𝑥𝑢=0, 𝛿𝑦−
[︀
𝛿2𝑦𝑢+(2−𝜈)𝛿2𝑥

]︀
𝑢=0, (43)

which is analogous to (11,12). For the corner at 𝑥 = 0, 𝑦 =
0, a suitable numerical condition is

𝑒𝑥−𝑒𝑦−𝑚𝑥𝑦 = 0, =⇒ 𝛿𝑥−𝛿𝑦−𝑢𝑛𝑙,𝑚 = 0. (44)

Appropriately symmetric versions of the above conditions
are applied to the other edges and corners.

3.5 Energy Analysis

For non-centered boundaries, the numerical inner product
takes the form [6, 7]

⟨𝑓, 𝑔⟩𝒫 =

𝑀𝑥∑︁
𝑙=0

𝑀𝑦∑︁
𝑚=0

𝑓𝑛𝑙,𝑚 𝑔𝑛𝑙,𝑚 ∆2
𝑥. (45)

where 𝑀𝑥 and 𝑀𝑦 define the grid size. After multiplying
(35) with 𝛿𝑡·𝑢 and performing summation by parts, one ob-
tains the power balance

𝛿𝑡
(︀
𝐻𝑛

p +𝐻𝑛
c

)︀
= 𝑃𝑛

e + 𝑃𝑛
c −𝑄𝑛

p −𝑄𝑛
c , (46)

where, making use of the product identities presented in
Section 3.2, the energy components and power input terms
can be specified as

𝐻
𝑛+1

2
p = 1

2𝜌ℎ‖𝛿𝑡+𝑢‖𝒫 +
1

𝐷(1 − 𝜈)
⟨𝑚𝑥𝑦, 𝑒𝑡+𝑚𝑥𝑦⟩𝒫

− 1
2𝜌ℎ𝜎2∆𝑡

(︀
‖𝛿𝑡+𝛿𝑥+𝑢‖2𝒫 + ‖𝛿𝑡+𝛿𝑦+𝑢‖2𝒫

)︀
+

1

𝐷(1 − 𝜈2)

[︁
1
2 ⟨𝑚𝑥, 𝑒𝑡+𝑚𝑥⟩𝒫

+ 1
2 ⟨𝑚𝑦, 𝑒𝑡+𝑚𝑦⟩𝒫 − 1

2𝜈⟨𝑚𝑥, 𝑒𝑡+𝑚𝑦⟩𝒫

− 1
2𝜈⟨𝑒𝑡+𝑚𝑥,𝑚𝑦⟩𝒫

]︁
, (47)

𝐻
𝑛+1

2
c = 1

2 ⟨𝜇𝑡+𝑘 𝜇𝑡+𝑢, 𝜇𝑡+𝑢⟩𝒫
+ 1

2 ⟨𝛿𝑡+𝑢𝜇𝑡+�̄�, 𝛿𝑡+𝑢⟩𝒫 , (48)
𝑃𝑛
e = 𝐹𝑛

e ⟨𝜓, 𝛿𝑡·𝑢⟩𝒫 , (49)
𝑃𝑛
c = 1

2 ⟨𝜇𝑡+𝑢𝜇𝑡−𝑢, 𝛿𝑡·𝑘⟩𝒫 − 1
2 ⟨𝛿𝑡+𝑢 𝛿𝑡−𝑢, 𝛿𝑡·�̄�⟩𝒫 .

(50)

The damping terms are

𝑄𝑛
p = 2𝜌ℎ

[︁
𝜎0‖𝛿𝑡·𝑢‖2𝒫

+ 𝜎2
(︀
‖𝛿𝑡·𝛿𝑥−𝑢‖2𝒫 + ‖𝛿𝑡·𝛿𝑦−𝑢‖2𝒫

)︀ ]︁
, (51)

𝑄𝑛
c = 2𝜌ℎ⟨�̄� 𝛿𝑡·𝑢, 𝛿𝑡·𝑢⟩𝒫 . (52)

As before with the continuous-domain power balance, ad-
ditional boundary terms in (46) obtained initially after
summation by parts vanish for the boundary conditions in
(40), (41), and (44). The scheme can thus be said to be sta-
ble under the condition that the numerical system energy
𝐻𝑛+1

2 = 𝐻
𝑛+1

2
p +𝐻

𝑛+1
2

c remains non-negative. Given that
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𝐻
𝑛+1

2
c ≥ 0 without further conditions, this requires non-

negativity of 𝐻𝑛+1
2

p , which can be shown to hold if

∆𝑥 ≥ ∆min
𝑥 =

√︃
4∆𝑡

(︂
𝜎2 +

√︁
𝜎2
2 +𝐷/(𝜌ℎ)

)︂
. (53)

In implementatons, this condition is met by setting ∆𝑥 =
∆min

𝑥 and adjusting the plate dimensions to fit to the grid:

𝐿𝑥 = ⌊𝐿′
𝑥/∆𝑥⌉⏟  ⏞  
𝑀𝑥

∆𝑥, 𝐿𝑦 = ⌊𝐿′
𝑦/∆𝑥⌉⏟  ⏞  
𝑀𝑦

∆𝑥, (54)

where 𝐿′
𝑥 and 𝐿′

𝑦 are the initial target dimensions. Com-
parison of the above equations with those of section 2.3
reveals that, provided that the stability condition is satis-
fied, the numerical system mirrors the energy behaviour of
its underlying continuous-domain counterpart, in that (a)
the system is strictly dissipative in the absence of external
forces and time-variation in the contact parameters, and (b)
variation in �̄� or 𝑘 results in articulatory power sources of
matching form, i.e. (50) takes the form of a direct discreti-
sation of (21).

3.6 Update Equation

For the scheme in (35) one can derive the general update
equation:[︁
𝑐0 + 𝜁𝑛𝑙,𝑚 + �̄�

𝑛+1
2

𝑙,𝑚 + 𝛾
𝑛+1

2

𝑙,𝑚

]︁
𝑢𝑛+1
𝑙,𝑚 =[︁

𝑐3 − (�̄�
𝑛+1

2

𝑙,𝑚 + �̄�
𝑛−1

2

𝑙,𝑚 ) + (𝛾
𝑛+1

2

𝑙,𝑚 + 𝛾
𝑛−1

2

𝑙,𝑚 )
]︁
𝑢𝑛𝑙,𝑚

+
[︁
𝑐4 + 𝜁𝑛𝑙,𝑚 − �̄�

𝑛−1
2

𝑙,𝑚 − 𝛾
𝑛−1

2

𝑙,𝑚

]︁
𝑢𝑛−1
𝑙,𝑚

+ 𝑐2𝑣
𝑛
𝑙,𝑚 + 𝑐5𝑣

𝑛−1
𝑙,𝑚 + 𝑐1

[︁
2𝑠𝑛𝑙,𝑚 + 𝑤𝑛

𝑙,𝑚

]︁
+ 𝑐6

[︁
𝜓𝑛
𝑙,𝑚𝐹

𝑛
e

]︁
. (55)

where

𝑣𝑛𝑙,𝑚 = 𝑢𝑛𝑙+1,𝑚 + 𝑢𝑛𝑙−1,𝑚 + 𝑢𝑛𝑙,𝑚+1 + 𝑢𝑛𝑙,𝑚−1, (56)

𝑤𝑛
𝑙,𝑚 = 𝑢𝑛𝑙+2,𝑚 + 𝑢𝑛𝑙−2,𝑚 + 𝑢𝑛𝑙,𝑚+2 + 𝑢𝑛𝑙,𝑚−2, (57)

𝑠𝑛𝑙,𝑚 = 𝑢𝑛𝑙+1,𝑚+1 + 𝑢𝑛𝑙−1,𝑚+1 + 𝑢𝑛𝑙+1,𝑚−1 + 𝑢𝑛𝑙−1,𝑚−1.

(58)

Note that for nodes on and near the boundary, ghost-nodes
(nodes falling outside the domain) come into play in the
expressions in (56), (57) and (58), and these need to be
substituted for using the boundary conditions in (42), (43),
and (44). The various coefficients in (55) are defined as

�̄�
𝑛+1

2

𝑙,𝑚 = 1
4𝜉𝜇𝑡𝑘

𝑛+1
2

𝑙,𝑚 , 𝛾
𝑛+1

2

𝑙,𝑚 = 𝜇𝑡𝑔
𝑛+1

2

𝑙,𝑚 , (59)

𝑐0 = 1 + 𝜁0, 𝑐1 = −𝐾2, (60)

𝑐2 = 8𝐾2 + 𝜁2, 𝑐3 = 2 − 20𝐾2 − 4𝜁2, (61)
𝑐4 = −1 + 4𝜁2 + 𝜁0, 𝑐5 = −𝜁2, 𝑐6 = 𝜉, (62)

with

𝐾 =

√︃
𝐷

𝜌ℎ

∆𝑡

∆2
𝑥

, 𝜁0 = 𝜎0∆𝑡, 𝜁2 =
2𝜎2∆𝑡

∆2
𝑥

,

𝜁𝑛𝑙,𝑚 = �̄�𝑛
𝑙,𝑚∆𝑡, 𝜉 =

∆2
𝑡

𝜌ℎ
, 𝑔𝑛𝑙,𝑚 =

�̄�𝑛𝑙,𝑚
𝜌ℎ

. (63)
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Figure 3. Examples of regional clamping of a square-shaped
steel plate. Top: corner region clamp. Bottom: circular plate
with clamped edges.

4. NUMERICAL EXPERIMENTS

In this section, the functionality of the model is demon-
strated with a few examples. In all cases, the material pa-
rameters used are 𝐸 = 200 GPa, 𝜌 = 8000 kg/m3 and
𝜈 = 0.3, which are typical of steel. The simulations are run
using ∆𝑡 = 1/44100 s. To help manage potential drift, a
very small additional amount of clamping (𝑘 = 100 N/m3)
is systematically applied across the plate.

4.1 Static Contact

4.1.1 Regional Clamping

Figure 3 shows snapshots of two simulations in which a
specific region of a square plate was clamped by setting
𝑘 = 1013 N/m3 in that region. In the first experiment (see
top plot in Figure 3), a small quarter-circular region at one
of the corners was clamped, and the system was brought
into vibration by driving the opposite corner with a sinu-
soid. For such a high 𝑘 value, practically no oscillation can
occur in the clamped region. Setting lower values facili-
tates softly clamped regions, which lead to different system
resonances. In the second experiment (see bottom plot in
Figure 3), the clamped region was chosen as lying outside
a centrally-positioned circle, allowing the simulation of a
clamped circular plate, albeit accepting approximations in
terms of the domain shape due to the spatial discretisation.
The system was driven off-center with the second lowest
resonance frequency of the system, as such revealing the
shape of its (1,1) normal mode.
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Figure 4. Contact damping (�̄� = 1000 s−1) over differently
sized regions. The plate was excited at its lower right corner.
Left: regions. Right: impulse responses. The dark grey curve is
the impulse response with no contact damping applied. The blue
and orange curves match the same-colour damping regions in the
left-hand side plot.

4.1.2 Regional Damping

Similarly, one may apply a non-zero �̄� value to a region
of the plate, in order to locally effect damping. Figure 4
compares the impulse response of a rectangular plate for
two different damping regions with the impulse response
of the same plate with no contact damping applied. The
expected observation of stronger damping with larger con-
tact area also gives an indication of the requirement of any
contact damping having to be distributed in order to facili-
tate strong damping. In other words, there is little scope for
modelling strong damping through a single contact point.

4.2 Dynamic Contact

For dynamic contact, the pressure map 𝑝𝑛𝑙,𝑚 is updated ev-
ery sample by linearly interpolating between control-rate
updates made every𝑁b samples, setting𝑁b = 256. Sound
examples are available on the companion webpage 2 .

4.2.1 Damping of a Single Pulse

A square plate of side length 𝐿𝑥 = 𝐿𝑦 = 0.1415 m and
thickness ℎ = 1.8 mm is excited at coordinates 𝑥e =
0.77𝐿𝑥, 𝑦e = 0.5𝐿𝑦 . A velocity output signal is picked
up at 𝑥p = 0.95𝐿𝑥, 𝑦p = 0.11𝐿𝑦 . The plate damping
parameters were set as 𝜎0 = 1 s−1 and 𝜎2 = 0.001 m2

s−1. Contact damping is applied after 1.6 seconds over a
circular area of radius 42.4 mm, with the circle centre posi-
tioned at 𝑥 = 0.1𝐿𝑥, 𝑦 = 0.5𝐿𝑦 (see the top plot in Figure
5). The damping is effected through linearly increasing the
control pressure uniformly over the circular region, accord-
ing to the profile shown in the middle plot of Figure 5. The
contact-layer constants featured in equation (6) were set to
𝑎𝑘 = 10000 N m−3, 𝑎𝜎 = 250 s−1, and 𝑎𝜆 = 7.2 kg m−2

in order to simulate hand-plate contact with somewhat ex-
aggerated mass loading. The output spectrogram is shown
in the bottom plot. Of particular interest is the small de-
crease in partial frequencies, which is due to the increase
in surface density. In addition, it is noticable that some
partials are damped more effectively than others, which is
mainly due to the chosen region over which damping is ap-
plied. One can also observe a small amount of broadband
power injected at 𝑡 = 1.6 s, which corresponds to the term

2 www.socasites.qub.ac.uk/mvanwalstijn/smc21b

Figure 5. Pulse damping example. The top plot shows the re-
gion over which damping was increased according to the profile
shown in the middle plot, while the bottom plot shows the output
spectrogram.

𝑃c in the power balance equation in (46), and is due to the
variation over time of the contact parameters.

4.2.2 Linear Water Gong

In this example, the plate geometrical parameters are set
as 𝐿𝑥 = 𝐿𝑦 = 0.2983 m and ℎ = 2 mm, and the damp-
ing parameters are 𝜎0 = 1 s−1 and 𝜎2 = 0.0016 m2 s−1.
To emulate suspension of the plate, clamping is applied at
the corner with coordinates 𝑥 = 𝐿𝑥, 𝑦 = 𝐿𝑦 . The plate
is partly submerged into water at the opposite plate corner
(𝑥 = 0, 𝑦 = 0), the water level reaching 30 percent of the
diagonal between the two opposite corners. The plate is
excited at 𝑥e = 0.88𝐿𝑥, 𝑦e = 0.87𝐿𝑦 , and the output ve-
locity is picked up at 𝑥p = 0.08𝐿𝑥, 𝑦p = 𝐿𝑦 . The excita-
tion signal consists of a single short pulse, as shown in the
middle plot of Figure 6. During the simulation, the plate
is gradually lifted upwards and back downwards (see top
plot of Figure 6). Submersion into water is simulated using
𝑎𝜆 = 32 kg m−2 and and setting 𝑝 = 1 over the submerged
region. The ‘additional mass factor’ is thus 2, which is in
line with theoretical and experimental findings for the first
bending mode [9]. The resulting variation of partial fre-
quencies is clearly visible in the spectrogram shown in the
bottom plot of Figure 6. Similar to the measured sound
shown in Figure 2, the frequency variation differs consid-
erably per partial, which is typical for this type of sound,
and sonically distinguishable from phenomena in which all
partial frequencies move synchronously.
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Figure 6. Water gong example. The top plot shows the height
position of the suspended plate with respect to the water level.
The middle plot shows the excitation signal and the bottom plot
shows the output spectrogram.

5. TOWARDS A VIRTUAL-ACOUSTIC PLATE
INSTRUMENT

This section outlines ideas and challenges the authors
are currently encountering and addressing in applying the
methodology towards developing a virtual-acoustic plate
instrument.

5.1 Regional vs Global Contact

Recent publications [10, 11] discuss the development of a
virtual-acoustic plate prototype instrument, the Vodhrán,
featuring a modal synthesis algorithm for real-time sim-
ulation of plate vibrations, and utilising a Sensel Morph
in combination with a contact microphone to sense tactile
interaction. One of the ideas behind the design and de-
velopment of the Vodhrán is achieving and controlling a
degree of alignment with real-world counterparts in terms
of sonically-relevant affordances.

With the Vodhrán, damping is effected via mapping
the overall sum of non-percussive forces detected on the
Sensel surface to the plate model’s damping parameters.
This provides intuitive damping control, but does not ac-
count for the specific damping region, and also lacks any
additional effects (e.g. mass loading) that accompanies any
real-world damping of plates. A real-time implementation
of the proposed finite-difference model will allow a more
natural, region-dependent form of damping.

One may use the same setup to facilitate and explore
clamping configurations. Of particular interest is the po-

Figure 7. Clamping a Sensel Morph.

tential to reconfigure the plate on the fly not through ma-
nipulations in software, but instead through actual clamp-
ing of the sensing device, as shown in Figure 7. This
will open up ways of exploring the affordances of virtual-
acoustic ‘prepared plates’ entirely through embodied in-
teraction, leveraging skills and embodied knowledge ac-
quired via interaction with real-world plates.

Contact that introduces mass-loading over a time-varying
plate region, such as in the water gong example, could
also be realised in real-time, but - if the affordances of
the sensel are to be preserved - this will require an addi-
tional sensor interface. One strategy would be to employ
a spring-loaded fader (similar to e.g. a synthesizer modu-
lation wheel) to control the ‘height’ of the plate relative to
the water level, as this would provide the musician with a
haptic reference. This sensor would then drive the model’s
surface density via an additional term in the mapping, i.e.
changing the first mapping in equation (6) to

�̄� = 𝑎𝜆𝑝+ 𝑎w𝑝w, (64)

where 𝑝w would be set to unity for the submerged region
and zero elsewhere, and 𝑎w is an appropriate scalar.

5.2 Computational Challenges

A number of challenges arise in the real-time implemen-
tation of the proposed model. Firstly, the implementation
in finite-difference form will place limits on the possible
size of the plate (in terms of the number of finite-difference
nodes). Parallelisation techniques, such as Single Instruc-
tion, Multiple Data (SIMD) or Advanced Vector Exten-
sions (AVX) have already proven useful in reducing the
relevant CPU time [12,13]. The new, additional challenges
that emerge here are due to (a) the need to map the pressure
data as sensed on the grid of the sensing device to the finite-
difference grid, which involves 2-D (de-)interpolation, and
(b) the need to carry out linear interpolation on the con-
tact parameters, which are initially calculated at control
rate (i.e. every 𝑁b samples). One investigative route is to
establish whether the grid mapping could be done on the
sensing device, as such off-loading the main processor.

5.3 Model Extensions

While interesting sounds and articulations are possible
with the proposed model, a few further extensions are of
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interest. Firstly, most real-world (thin) plates are charac-
terised by strong non-linear behaviour, and this plays an
important role in many plates of musical interest. Such be-
haviour can be simulated by adding a non-linear term to
the equation of motion, for example in the form of the von
Kármán model [14]; finite-difference discretisations and
associated energy analyses developed in [15, 16] could be
readily applied to the current model, although with signif-
icant additional computational costs. The discretisation of
the linear model could also be further investigated, in par-
ticular regarding ways to reduce numerical dispersion, pos-
sibly using parameterised schemes [17, 18]. Finally, many
musical plates are circular, with a free edge; such a bound-
ary could only be realised in the current approach using
a staggered approximation of the curved edge. Possibly a
better approach would be to apply finite-volume methods
at the boundary, as for example employed in [19] for cir-
cular plates with fixed and clamped boundary conditions.

6. CONCLUSIONS

The proposed numerical model has been shown to en-
able simulation of specific, musically-relevant forms of
non-excitational contact with a rectangular plate. An un-
derlying motivation of the study is the exploration of
new musical behaviours through simultaneous combina-
tions of damping, clamping and mass-loading that would
be impractical or expensive with mechanical technology.
This will require real-time implementation of the pro-
posed model in conjunction with design and development
of sensing strategies, informed by wider instrument design
notions. Further future work will focus on model exten-
sions, including nonlinear plate modelling, and on appli-
cation to membrane-based instruments, which mainly re-
quires a simple replacement in the equation of motion of
the stiffness term with a tension term. Of particular inter-
est is the simulation of the tabla, as its performatory vo-
cabulary consists of numerous intricate forms of dynamic
contact [20]. Finally, the work presented is also relevant
to non-musical sonic interactions, and is part of a wider
project 3 that seeks to improve aural immersion in virtual
and augmented reality settings.
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ABSTRACT

The shamisen is a Japanese three-stringed lute. It is a chor-
dophone that has the front of the body covered by a ten-
sioned membrane which greatly contributes to the distinct
sound of the instrument. Although the shamisen is a tra-
ditional Japanese instrument, it is a rare instrument in the
rest of the world, making it mostly inaccessible by the ma-
jority of artists. To our knowledge, no physically modelled
synthesizer of the shamisen is available, forcing produc-
ers and musicians to use samples. The objective of this
paper is to make the shamisen’s distinct sound more acces-
sible to digital music artists. The real-time implementation
of the shamisen physical model is presented along with
the derivation of solution using the finite-difference time-
domain (FDTD) methods. The digital instrument sounds
mostly as intended, though lacking the shamisen’s distinct
buzzing sound requiring further development.

1. INTRODUCTION

The shamisen (see Figure 1) is a Japanese three-stringed
lute, with origins in China. This instrument is a chordo-
phone that has a membrane covering its soundbox; this
stretched membrane contributes to the distinct sound of the
instrument. The instrument is played using a bachi, a large
plectrum which is held in one hand, while using the fingers
of the other hand to pinch the strings against the neck of the
instrument, allowing the user to play different pitches. The
timbre of the shamisen has a very distinct buzzing which is
associated with a low nut which lets a vibrating string come
in the contact with the neck [1] and the specific playing
technique that increases the percussiveness of the instru-
ment by hitting the body with the bachi during the plucking
of the strings [2].

The main goal of this paper is the digitalization and real-
time simulation of an instrument that, due to its rarity, is
not easily available to the majority of artists. Currently, the
only method of obtaining shamisen sounds without having
the instrument at hand is by using a sample of the instru-
ment [4] or one of the audio plugins [5–7] which are also
based on a sampled shamisen. Usually, a single sample

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

Figure 1. The shamisen (taken from [3]).

of a note played at a single pitch is pitch-shifted enabling
artist to play melodies and chords. Such a method relies
on the recordings being done in an anechoic chamber to
reduce the effects of the room response. Moreover, due to
only usually recorded one note sample, the pitch shifting
can introduce artifacts. Even when the sampling is done
for all possible pitches on each string, the user is stuck
with the way the performer played the instrument during
the recording. To rectify these undesirable qualities of the
sampling method and to create more scope for skillful ar-
ticulation when performing, the shamisen can be simulated
using a physical model instead.

Although several stringed musical instruments have been
mostly simulated using digital waveguides [8–10], in this
paper we model the shamisen by using Finite Difference
Time Domain (FDTD) methods [11]. FDTD methods re-
quire developing a full mathematical description of the sys-
tem. Such a description development uses partial differ-
ential equations which are discretized using FDTD meth-
ods, yielding finite difference schemes (FDSs). FDTD
methods provide better spatial accuracy when the model
has frequency-dependent damping and dispersion [12,13];
in addition, FDTD methods are more flexible as no as-
sumptions are being made about the linearity of the so-
lution [11]. Alternatively, a modal approach – such as
in [14, 15] – could be used as it is generally much more
efficient. Additionally, modal synthesis for 2D systems
appeared in [16, 17], however, to retain generality for con-
trol and easier implementation when connecting multiple
models, FDTD methods are chosen here . In addition,
the nonlinear collision of the bachi with the membrane
can be modelled straight-forwardly using FDTD methods.
The real-time implementation of similar models, modelled
using FDTD approach have been achieved by the authors
of [18], where a real-time banjo is recreated using a field
programmable gate array and by the authors of [19] where
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a real-time implementation of tromba marina is achieved
using C++ and the JUCE framework [20]. In this work, we
offer a real-time implementation of a physical model of
the shamisen based on FDTD methods due to its benefits
regarding flexibility and accuracy.

This paper is organized as follows: Section 2 presents
the physical models used to model the shamisen and Sec-
tion 3 shows the discretization of these models. Section
4 shows details of the implementation such as parameter
choices, excitation and the output of the system, a high
level overview of the calculation order and the graphical
user interface and control. Section 5 shows the results re-
garding output sound and speed of the algorithm and dis-
cusses these, while the future work as well as concluding
remarks are presented in Section 6.

2. MODELING THE SYSTEM

The shamisen can be simplified down to five major parts
that make up the whole instrument: the three strings, the
bridge and the membrane. The rest of the body is excluded
to reduce model complexity which is desirable in order to
achieve a model capable of running in real-time. This sec-
tion will derive partial differential equations (PDEs) in a
form

ℒ𝑞 = 0, (1)

for the mentioned parts of the instrument in isolation.
Here, ℒ is a partial differential operator and 𝑞 = 𝑞(𝑥, 𝑡)
with time t and spatial coordinate 𝑥 ∈ 𝒟, where domain 𝒟
is one-dimensional for the strings and the bridge, and two-
dimensional for the membrane. Moreover, the subscripts
‘s’, ‘b’ and ‘m’ indicate that the variables are used for the
strings, bridge and the membrane respectively.

2.1 Damped Stiff String

Consider a damped stiff string of length 𝐿s defined over
domain 𝒟 = 𝒟s = [0, 𝐿s]. Recalling Equation (1), the
dependent variable 𝑞 = 𝑢(𝑥, 𝑡) describes the transverse
displacement of the string. Furthermore, the operator ℒ =
ℒs can be defined as

ℒs = 𝜌s𝐴s𝜕
2
𝑡−𝑇s𝜕

2
𝑥 + 𝐸s𝐼s𝜕

4
𝑥

+2𝜌s𝐴s𝜎0,s𝜕𝑡 − 2𝜌s𝐴s𝜎1,s𝜕𝑡𝜕
2
𝑥.

(2)

Here, 𝜕𝑡 and 𝜕𝑥 indicate a partial differentiation with re-
spect to time and space respectively. Furthermore, various
parameters are used to define the string behaviour such
as the material density 𝜌s, (circular) cross sectional area
𝐴s = 𝜋𝑟2, 𝑟 being the radius of the string, tension of the
string 𝑇s, Young’s modulus of the string material 𝐸s and
area moment inertia 𝐼s = 𝜋𝑟4/4, along with damping co-
efficients 𝜎0,s and 𝜎1,s.

2.2 Damped Bridge

The bridge of the shamisen is modeled as a damped linear
bar of length 𝐿b with domain 𝒟b = [0, 𝐿b], and dependent
variable 𝑞 = 𝑣(𝑥, 𝑡) describing the transverse displace-
ment. The operator ℒ = ℒb is similar to ℒb in Equation

(2) without the tension term resulting in the following

ℒb = 𝜌b𝐴b𝜕
2
𝑡 +𝐸b𝐼b𝜕

4
𝑥

+2𝜌b𝐴b𝜎0,b𝜕𝑡 − 2𝜌b𝐴b𝜎1,b𝜕𝑡𝜕
2
𝑥.

(3)

Various parameters are used to define the behaviour of the
bridge, such as the material density 𝜌b, (rectangular) cross
sectional area 𝐴b = 𝑏𝐻b, 𝑏 being the width and 𝐻𝑏 the
thickness of the bridge, the Young’s modulus of the bridge
material 𝐸b and the area moment inertia 𝐼b = 1

12𝑏𝐻
3
b ,

along with damping coefficients 𝜎0,b and 𝜎1,b.

2.3 Damped stiff membrane

Finally, the membrane covering the instrument’s soundbox
is modelled as a rectangular damped stiff membrane with
side lengths 𝐿𝑥 and 𝐿𝑦 , domain 𝒟 = 𝒟m = [0, 𝐿𝑥] ×
[0, 𝐿𝑦] and dependent variable 𝑞 = 𝑤(𝑥, 𝑦, 𝑡). The stiff-
ness of the membrane is simulated using a Kirchhoff thin
plate stiffness term. Using the 2D Laplacian

∆ , 𝜕2
𝑥 + 𝜕2

𝑦 , (4)

where 𝜕𝑥 and 𝜕𝑦 indicate partial differentiation with re-
spect to two spatial dimensions, the operator ℒ = ℒm can
be defined as:

ℒm = 𝜌m𝐻𝜕2
𝑡−𝑇m∆ + 𝐷∆∆

+2𝜌m𝐻𝜎0,m𝜕𝑡 − 2𝜌m𝐻𝜎1,m𝜕𝑡∆.
(5)

Again, various parameters are used to define the behaviour
of the membrane, such as the material density 𝜌m, the
membrane thickness 𝐻m, the tension of the membrane 𝑇m,
the stiffness parameter 𝐷 = 𝐸m𝐻

3
m/12(1 − 𝜈2), where

𝐸m is the Young’s modulus of the membrane material and
Poisson ratio 𝜈, along with the damping coefficients 𝜎0,m
and 𝜎1,m.

2.4 Boundary Conditions

Something about distributed systems requiring definitions
for what happens at the boundaries.

The string is clamped at the boundaries according to

𝑢 = 𝜕𝑥𝑢 = 0, where 𝑥 = 0, 𝐿s. (6)

Similarly, the membrane is clamped according to

𝑤 = n · ∇𝑤 = 0 (7)

where ∇𝑤 denotes the gradient of 𝑤 and n is a normal to
the membrane area at the boundary.

The bridge is free at the boundaries according to

𝜕2
𝑥𝑣 = 𝜕3

𝑥𝑣 = 0 where 𝑥 = 0, 𝐿b. (8)

2.5 The complete system

Until now, only systems in isolation have been consid-
ered, i.e., of form (1). To connect the different compo-
nents, a spatial Dirac delta function 𝛿(𝑥−𝑥c) can be used,
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which locates the interaction force between two compo-
nents to the location 𝑥c ∈ 𝒟. The complete system for the
shamisen can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ℒs𝑖𝑢𝑖 = −𝛿(𝑥− 𝑥s𝑖)𝐹t𝑖, (9a)

ℒb𝑣 =
3∑︀

𝑖=1

𝛿(𝑥− 𝑥b𝑖)𝐹t𝑖 (9b)

− 𝛿(𝑥− 𝑥bL)𝐹bL − 𝛿(𝑥− 𝑥bR)𝐹bR,

ℒm𝑤 = 𝛿(𝑥− 𝑥mL, 𝑦 − 𝑦mL)𝐹bL (9c)
+ 𝛿(𝑥− 𝑥mR, 𝑦 − 𝑦mR)𝐹bR,

where subscript 𝑖 indicates the 𝑖’th string, 𝐹t𝑖 is the force
between individual strings and the bridge and 𝐹bL and 𝐹bR
are the forces between the bridge and the membrane at the
left (L) and right (R) sides of the bridge respectively. The
locations 𝑥s𝑖 and 𝑥b𝑖 are the locations where the bridge
connects to each individual string and vice versa, the ‘s’
subscript denotes that it is a location along a string and the
‘b’ subscript denotes the location on the bridge. The three
strings have one connection each, while the bridge is con-
nected to all three strings. In addition, the locations with
subscripts ‘bL’ and ‘mL’ correspond to where the mem-
brane connects to the left side of the bridge and vice versa.
The same is indicated for the right side using subscripts
‘bR’ and ‘mR’.

3. DISCRETIZATION

This section discretizes the full system described in (9) us-
ing FDTD methods. These methods subdivide continuous
systems (such as described in the previous section) into
time samples and grid points in space. The notation used
in this section follows [11].

3.1 Finite Difference Operators

The first step of implementing FDSs is to define a sampling
interval of the continuous system. Time is discretized as
𝑡 = 𝑛𝑘, with temporal index 𝑛 ∈ [0, 1, 2...∞) and sam-
pling interval 𝑘 = 1/𝑓s where 𝑓s is the sample rate. Space
is discretized as 𝑥 = 𝑙ℎ, where the dimension of spatial
index 𝑙 is determined by the number of dimensions of the
system at hand and ℎ is some spatial sampling interval.
Since up-sampling or down-sampling is not needed, 𝑘 re-
mains the same for all the parts of the model. Once the
sampling intervals have been defined, 𝑞(𝑥, 𝑡) is approxi-
mated as a grid function 𝑞𝑛𝑙 .

Regardless of the dimension of 𝑙, shift operators can be
applied to a grid function. Temporal shift operators are
defined as

𝑒𝑡+𝑞
𝑛
𝑙 = 𝑞𝑛+1

𝑙 , 𝑒𝑡−𝑞
𝑛
𝑙 = 𝑞𝑛−1

𝑙 . (10)

Using these shift operators, more complex difference op-
erators can be defined for approximating a first-order time
derivative. The forward, backward and centered difference
in time operators can be defined as

𝛿𝑡+ :=
𝑒𝑡+ − 1

𝑘
≈ 𝜕𝑡, 𝛿𝑡− :=

1 − 𝑒𝑡−
𝑘

≈ 𝜕𝑡,

𝛿𝑡· :=
𝑒𝑡+ − 𝑒𝑡−

2𝑘
≈ 𝜕𝑡.

(11)

where the forward and backward difference are first-order
accurate and the centered difference is second-order ac-
curate. Using these first-order difference operators, the
second-order difference operator can be defined as a com-
bination of the forward and backward difference operators:

𝛿𝑡𝑡 = 𝛿𝑡+𝛿𝑡− :=
𝑒𝑡+ − 2 + 𝑒𝑡−

𝑘2
≈ 𝜕2

𝑡 . (12)

Spatial shift operators in 1D, i.e., 𝑙 = 𝑙 can be similarly
defined as

𝑒𝑥+𝑞
𝑛
𝑙 = 𝑞𝑛𝑙+1, 𝑒𝑥−𝑞

𝑛
𝑙 = 𝑞𝑛𝑙−1, (13)

after which the following first-order difference operators
can be defined using the spatial sampling interval ℎ

𝛿𝑥+ :=
𝑒𝑥+ − 1

ℎ
≈ 𝜕𝑥, 𝛿𝑥− :=

1 − 𝑒𝑥−
ℎ

≈ 𝜕𝑥,

𝛿𝑥· :=
𝑒𝑥+ − 𝑒𝑥−

2ℎ
≈ 𝜕𝑥,

(14)

(following the same orders of accuracy as the first-order
time operators) and second-order difference in space oper-
ator

𝛿𝑥𝑥 = 𝛿𝑥+𝛿𝑥− :=
𝑒𝑥+ − 2 + 𝑒𝑥−

ℎ2
≈ 𝜕2

𝑥. (15)

The fourth-order spatial derivative operator is obtained by
applying operator (15) twice:

𝛿𝑥𝑥𝑥𝑥 = 𝛿𝑥𝑥𝛿𝑥𝑥 =
1

ℎ4
(𝑒2𝑡+−4𝑒𝑡++6−4𝑒𝑡−+𝑒2𝑡−), (16)

where a squared shift operator simply means to apply it
twice.

The mixed temporal-spatial derivative operator is ob-
tained by applying the backward-time difference operator
from (10) to operator (15)

𝛿𝑡−𝛿𝑥𝑥 :=
𝑒𝑥+ − 2 + 𝑒𝑥− − 𝑒𝑡−(𝑒𝑥+ − 2 + 𝑒𝑥−)

𝑘ℎ2
≈ 𝜕𝑡𝜕

2
𝑥,

(17)
where a backward difference in time is chosen to keep the
system explicit.

Furthermore, in 2D, i.e., 𝑙 = 𝑙,𝑚, shift operators are de-
fined as

𝑒𝑥+𝑞
𝑛
𝑙,𝑚 = 𝑞𝑛𝑙+1,𝑚, 𝑒𝑥−𝑞

𝑛
𝑙,𝑚 = 𝑞𝑛𝑙−1,𝑚,

𝑒𝑦+𝑞
𝑛
𝑙,𝑚 = 𝑞𝑛𝑙,𝑚+1, 𝑒𝑦−𝑞

𝑛
𝑙,𝑚 = 𝑞𝑛𝑙,𝑚−1,

(18)

and finite difference operators can be defined as

𝛿Δ = 𝛿𝑥𝑥 + 𝛿𝑦𝑦 ≈ ∆ and
𝛿Δ𝛿Δ = 𝛿𝑥𝑥𝑥𝑥 + 2𝛿𝑥𝑥𝛿𝑦𝑦 + 𝛿𝑦𝑦𝑦𝑦 ≈ ∆∆,

(19)

where 𝛿𝑦𝑦 and 𝛿𝑦𝑦𝑦𝑦 are similarly defined to Equations
(15) and (16) but using shifting operator 𝑒𝑦+. Finally, the
mixed temporal-spatial operator in 2D is similarly defined
as operator (17) using a backward difference in time oper-
ator.

It is important to mention that the discrete FDSs derived
from the continuous equations such as (9) are an approxi-
mation rather than a sampled version of the system.
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3.2 Discrete Models

In the following, parameters containing a subscript 𝑖 indi-
cate that these vary between each individual string.

In the case of the strings, we use 𝑥 = 𝑙ℎs𝑖 to get
𝑢𝑖(𝑥, 𝑡) ≈ 𝑢𝑛

𝑖,𝑙, where 𝑙 ∈ [0, . . . , 𝑁s𝑖] and 𝑁s𝑖 =
floor(𝐿s/ℎs𝑖). All the strings are the same length, 𝐿s, but
the grid spacing ℎs𝑖 depends on the individual string pa-
rameters. The minimal grid spacing where the solution
is stable is calculated using von Neumann stability anal-
ysis [11]:

ℎs𝑖 ≥

√︃
𝑐2s𝑖𝑘

2 + 4𝜎1,s𝑘 +
√︀

(𝑐2s𝑖𝑘
2 + 4𝜎1,s𝑘)2 + 16𝜅2

s𝑖𝑘
2

2
.

(20)
Here, the wave speed 𝑐s𝑖 =

√︀
𝑇s𝑖/𝜌s𝐴s𝑖 and the stiffness

𝜅s𝑖 =
√︀

𝐸s𝐼s𝑖/𝜌s𝐴s𝑖. The closer ℎs𝑖 is to this condition,
the higher the simulation quality will be. The same goes
for the conditions given below.

For the bridge we use 𝑥 = 𝑙ℎb to get 𝑣(𝑥, 𝑡) ≈ 𝑣𝑛𝑙 , where
𝑙 ∈ [0, . . . , 𝑁b] and 𝑁b = floor(𝐿b/ℎb). The grid spacing
ℎb is defined as

ℎb ≥
√︂

2𝑘
(︁
𝜎1,b +

√︁
𝜎2
1,b + 𝜅2

b

)︁
, (21)

with stiffness parameter 𝜅b =
√︁
𝐸b𝐻b

2/12𝜌b.
In the case of the membrane, we use 𝑥 = 𝑙ℎm and

𝑦 = 𝑚ℎm to get 𝑤(𝑥, 𝑦, 𝑡) ≈ 𝑤𝑛
𝑙,𝑚 where the horizontal

index 𝑙 ∈ [0, . . . , 𝑁𝑥] with 𝑁𝑥 = floor(𝐿𝑥/ℎm) and verti-
cal index 𝑚 ∈ [0, . . . , 𝑁𝑦] with 𝑁𝑦 = floor(𝐿𝑦/ℎm). The
membrane is modelled to be square, i.e., 𝐿𝑥 = 𝐿𝑦 , mak-
ing 𝑁𝑥 = 𝑁𝑦 . The minimal grid spacing ℎm is calculated
using

ℎm ≥
√︂

𝑐2m𝑘2 + 4𝜎1,m𝑘 +
√︁

(𝑐2m𝑘2 + 4𝜎1,m𝑘)2 + 16𝜅2
m𝑘2,

(22)
where the membrane wave speed 𝑐m =

√︀
𝑇m/𝜌m𝐻 and

the stiffness 𝜅m =
√︀

𝐷/𝜌m𝐻 .
In order to discretize the Dirac delta functions found in

system (9) we introduce the spreading operator 𝐽(𝑥c) that
applies the force to the coordinate 𝑥c, which is defined as
[19]

𝐽(𝑥c) =

{︃
1
ℎ𝑑 , 𝑙 = 𝑙c = round(𝑥c/ℎ),

0, otherwise.
(23)

The rounding function here is used for simplicity, but
higher-order spreading functions as found in [11] may be
used. In the equation (23) 𝑑 is a number of the dimensions
of domain 𝒟 on which 𝑥c is defined. So in the case of the
strings and the bridge 𝑑 = 1 and 𝑑 = 2 for the membrane.

3.3 Boundary Conditions

Recalling 𝑁s, 𝑁b, 𝑁𝑥 and 𝑁𝑦 from Section 3.2, and the
finite difference operators from Section 3.1, the strings and
the membrane have their boundaries set as clamped which
yields boundary conditions for the strings to be

𝑢𝑛
0 = 𝛿𝑥+𝑢

𝑛
0 = 0, and 𝑢𝑛

𝑁s
= 𝛿𝑥−𝑢

𝑛
𝑁s

= 0, (24)

and the membrane to be

𝑤𝑛
0,𝑚 = 𝛿𝑥+𝑤

𝑛
0,𝑚 = 0,

𝑤𝑛
𝑁𝑥,𝑚 = 𝛿𝑥−𝑤

𝑛
𝑁𝑥,𝑚 = 0,

𝑤𝑛
𝑙,0 = 𝛿𝑦+𝑤

𝑛
𝑙,0 = 0,

𝑤𝑛
𝑙,𝑁𝑦

= 𝛿𝑦−𝑤
𝑛
𝑙,𝑁𝑦

= 0.

(25)

The bridge on the other hand, has a free boundary condi-
tion, which is described as

𝛿𝑥𝑥𝑣
𝑛
0 = 𝛿𝑥𝑥𝛿𝑥·𝑣

𝑛
0 = 0, and

𝛿𝑥𝑥𝑣
𝑛
𝑁b

= 𝛿𝑥𝑥𝛿𝑥·𝑣
𝑛
𝑁b

= 0.
(26)

3.4 Complete Discrete System

The discretized version of continuous complete system (9)
is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℓs𝑖𝑢
𝑛
𝑖,𝑙 = −𝐽(𝑥s𝑖)𝐹t𝑖, (27a)

ℓb𝑣
𝑛
𝑙 =

3∑︀
𝑖=1

𝐽(𝑥b𝑖)𝐹t𝑖 − 𝐽(𝑥bL)𝐹bL (27b)

− 𝐽(𝑥bR)𝐹bR,

ℓm𝑤
𝑛
𝑙,𝑚 = 𝐽(𝑥mL, 𝑦mL)𝐹bL (27c)

+ 𝐽(𝑥mR, 𝑦mR)𝐹bR,

where the ℓ operators are discretized versions of the par-
tial differential operators ℒ in system (9) and follow [11]
using centered temporal differences for the frequency in-
dependent damping terms and backward differences for the
frequency dependent damping terms to keep the system ex-
plicit (as mentioned in Section (3.1)). Due to the fact that
the forces acting on two connected components are equal
and opposite due to the rigid connections used, it can be
shown that the system is stable as a whole [11].

3.5 Coupling

The shamisen model consists of 3 strings, a bridge and
a membrane, all coupled together to form a complete
instrument (see Figure 2).

 

𝑙c,s1 and 𝑙c,b1 

𝑙c,s2 and 𝑙c,b1 

𝑙c,s3 and 𝑙c,b3 

𝑙c,bL and 𝑙c,mL, 𝑚c,mL 

 

𝑙c,bR and 𝑙c,mR, 𝑚c,mR 

 

Bridge 𝑣 

Membrane 𝑤 

Strings 𝑢1, 𝑢2 and 𝑢3 

Figure 2. Schematic showing the full coupled system. The
different components are highlighted, together with the lo-
cations at which they are connected. For the latter, also see
Table 1.

The only thing left to do is to calculate the interaction
forces between the components. To do this, all schemes in
system (27) need to be expanded (written in full) around
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every individual connection location which is done by tak-
ing an inner product with every individual spreading op-
erator 𝐽 [11]. Expanding ℓs𝑖 in Equation (27a) and using
subscript 𝒮𝑖 = 𝑖, 𝑙c,s𝑖 for compactness, where 𝑖 ∈ [1, 2, 3]
is the string index and 𝑙c,s𝑖 is the corresponding location
on string 𝑖 where it connects to the bridge, we obtain the
following

𝛿𝑡𝑡𝑢
𝑛
𝒮𝑖

= 𝑐2s𝑖𝛿𝑥𝑥𝑢
𝑛
𝒮𝑖

− 𝜅2
s𝑖𝛿𝑥𝑥𝑥𝑥𝑢

𝑛
𝒮𝑖

− 2𝜎0,s𝛿𝑡·𝑢
𝑛
𝒮𝑖

+ 2𝜎1,s𝛿𝑡−𝛿𝑥𝑥𝑢
𝑛
𝒮𝑖

− 𝐹t𝑖

ℎs𝑖𝜌s𝐴s𝑖
.

(28)

Similarly, for the bridge, we can expand ℓb from Equation
(27b) and take the inner product with the spreading opera-
tors belonging to the connections with the strings to obtain

𝛿𝑡𝑡𝑣
𝑛
𝑙c𝑖,b

= − 𝜅2
b𝛿𝑥𝑥𝑥𝑥𝑣

𝑛
𝑙c𝑖,b

− 2𝜎0,b𝛿𝑡·𝑣
𝑛
𝑙c𝑖,b

+ 2𝜎1,b𝛿𝑡−𝛿𝑥𝑥𝑣
𝑛
𝑙c𝑖,b

+
𝐹t𝑖

ℎb𝜌b𝐴b
,

(29)

where 𝑙c𝑖,b indicates the location where the bridge connects
to string 𝑖. Taking the inner product with the spreading
operators belonging to the connections with the membrane
yields

𝛿𝑡𝑡𝑣
𝑛
𝑙c,bL

= − 𝜅2
b𝛿𝑥𝑥𝑥𝑥𝑣

𝑛
𝑙c,bL

− 2𝜎0,b𝛿𝑡·𝑣
𝑛
𝑙c,bL

+ 2𝜎1,b𝛿𝑡−𝛿𝑥𝑥𝑣
𝑛
𝑙c,bL

− 𝐹bL

ℎb𝜌b𝐴b
,

𝛿𝑡𝑡𝑣
𝑛
𝑙c,bR

= − 𝜅2
b𝛿𝑥𝑥𝑥𝑥𝑣

𝑛
𝑙b,bR

− 2𝜎0,b𝛿𝑡·𝑣
𝑛
𝑙c,bR

+ 2𝜎1,b𝛿𝑡−𝛿𝑥𝑥𝑣
𝑛
𝑙c,bR

− 𝐹bR

ℎb𝜌b𝐴b
,

(30)

where 𝑙c,bL and 𝑙c,bR indicate the locations where the left
and right side of bridge connect to the membrane respec-
tively.

Finally, we can follow the same process for the mem-
brane. For brevity, the locations where the bridge and the
membrane are connected are defined as mL = 𝑙c,mL,𝑚c,mL
for the left connection location and mR = 𝑙c,mR,𝑚c,mR for
the right:

𝛿𝑡𝑡𝑤
𝑛
mL = 𝑐2m𝛿Δ𝑤𝑛

mL − 𝜅2
m𝛿Δ𝛿Δ𝑤𝑛

mL

− 2𝜎0,m𝛿𝑡·𝑤
𝑛
mL + 2𝜎1,m𝛿𝑡−𝛿Δ𝑤𝑛

mL +
𝐹bL

ℎ2
m𝜌m𝐻m

,

𝛿𝑡𝑡𝑤
𝑛
mR = 𝑐2m𝛿Δ𝑤𝑛

mR − 𝜅2
m𝛿Δ𝛿Δ𝑤𝑛

mR

− 2𝜎0,m𝛿𝑡·𝑤
𝑛
mR + 2𝜎1,m𝛿𝑡−𝛿Δ𝑤𝑛

mR +
𝐹bR

ℎ2
m𝜌m𝐻m

.

(31)

All the connection locations where the individual compo-
nents are coupled together are summarised in Table 1.

There are multiple ways of connecting components to-
gether [11]. In this work, rigid connections are assumed,
which means that for all 𝑛

𝑢𝑛
𝒮𝑖

= 𝑣𝑛𝑙c𝑖,b
, 𝑣𝑛𝑙c,bL

= 𝑤𝑛
mL,

and 𝑣𝑛𝑙c,bR
= 𝑤𝑛

mR .
(32)

All the operators in Equations (28), (29) and (30) can
be expanded according to the definitions given in Section
(3.1) and solved for the states at 𝑛+1. We can introduce an
intermediate state 𝑞I

𝑙 which is 𝑞𝑛+1
𝑙 without the effect of the

Strings 𝑙c,s1 𝑙c,s2 𝑙c,s3
Bridge 𝑙c1,b 𝑙c2,b 𝑙c3,b

𝑙c,bL 𝑙c,bR

Membrane 𝑙c,mL, 𝑚c,mL 𝑙c,mR, 𝑚c,mR

Table 1. All the connection locations in discrete sys-
tem (27) (also see Figure 2). Subscripts ‘c, s1’, ‘c, s2’
and ‘c, s3’ indicate the connection points to the bridge
on the different strings, ‘c1, b’, ‘c2, b’ and ‘c3, b’ are the
corresponding connection points on the bridge for these
strings. The subscripts‘c, bL’ and ‘c, bR’ indicate connec-
tion points on the left the right side of the bridge, in turn,
‘c,mL’ and ‘c,mR’ are the same points on the membrane.

connection forces. As we know that Equation (32) is true
for all 𝑛, and thus also for 𝑛 + 1, we can set the expanded
schemes at their connection locations at 𝑛+1 equal to each
other. This yields, for the string-bridge connections

𝑢I
𝒮𝑖
− 𝐹t𝑖𝑘

2

ℎs𝑖𝜌s𝐴s𝑖(𝜎0,s𝑘+1)
= 𝑣I

𝑙c𝑖,b +
𝐹t𝑖𝑘

2

ℎb𝜌b𝐴b(𝜎0,b𝑘+1)
, (33)

and for the bridge-membrane connections

𝑣I
𝑙c,bL−

𝐹bL𝑘
2

ℎb𝜌b𝐴b(𝜎0,b𝑘+1)
= 𝑤I

mL+
𝐹bL𝑘

2

ℎ2
m𝜌m𝐻m(𝜎0,m𝑘+1)

,

𝑣I
𝑙c,bR−

𝐹bR𝑘
2

ℎb𝜌b𝐴b(𝜎0,b𝑘+1)
= 𝑤I

mR+
𝐹bR𝑘

2

ℎ2
m𝜌m𝐻m(𝜎0,m𝑘+1)

.

(34)
These can then be solved for the forces which can finally
be substituted back into system (27).

4. IMPLEMENTATION

The physical model of the shamisen has been implemented
in real-time in C++ using the JUCE framework [20]. The
code is available at [25]. The control of the digital instru-
ment is limited to the excitation of the separate parts of the
instrument including the bridge and the membrane. This
section will elaborate on some important considerations
regarding the setup of the system, the algorithm and the
parameter design. In the end, the graphical user interface
(GUI) of the application will be presented.

4.1 System setup

The parameters are set at the beginning of the simulation
according to Table 2. From this, the spatial sampling inter-
vals ℎ for each individual component are calculated using
conditions (20), (21) and (22). After ℎm is calculated, we
check whether it is smaller than a set minimum value and
if it is, use this value instead. Though reducing the quality
of the membrane simulation, it increases the computational
speed, ultimately allowing the real-time implementation to
run smoothly. The value ℎm,min = 0.03 was heuristically
found to be a good trade off between speed and quality.

The spatial sampling intervals are then used to calculate
the number of grid points 𝑁s𝑖, 𝑁b, 𝑁𝑥 and 𝑁𝑦 which deter-
mine the sizes of the state vectors of each component. For
every component three vectors (or matrices in the case of
the membrane) need to be initialised, saving the states of
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Symbol Value (Unit) Parameter
𝑏 2.69 · 10−3 (m)* Width of the bridge
𝐸s 9.9 · 109 (Pa)** String Young’s Mod.
𝐸b 9.5 · 109 (Pa)⋆ Bridge Young’s Mod.
𝐸m 3 · 109 (Pa)⋆ Memb. Young’s Mod.
𝐻b 7.5 · 10−3 (m)* Bridge thickness
𝐻m 0.2 · 10−3 (m)⋆⋆ Membrane thickness
𝐿s 1 (m)† String length
𝐿b 1 (m)† Bridge length
𝐿𝑥 1 (m)† Membrane length
𝐿𝑦 1 (m)† Membrane width
𝜈 0.4 Poisson’s ratio
𝑟s1 4.15 · 10−4 (m) Radius string 1
𝑟s2 2.83 · 10−4 (m) Radius string 2
𝑟s3 2.10 · 10−4 (m) Radius string 3
𝜌s 1156 (kg/m3)** String density
𝜌b 500 (kg/m3)⋆ Bridge density
𝜌m 1150 (kg/m3)⋆ Memb. density

Frequency independent damping
𝜎0,s 1.378 (s−1) String damping
𝜎0,b 1.343 (s−1) Bridge damping
𝜎0,m 2.756 (s−1) Membrane damping

Frequency dependent damping
𝜎1,s 3.57 · 10−3 (m2/s) String damping
𝜎1,b 7.59 · 10−2 (m2/s) Bridge damping
𝜎1,m 0.192 (m2/s) Membrane damping
𝑇m 4 · 103 (N/m) Membrane tension
𝑇s1 138.67 (N) String 1 tension
𝑇s2 145.53 (N) String 2 tension
𝑇s3 140.73 (N) String 3 tension
𝑓s 48 · 103 (Hz) Sample rate

Table 2. List of parameter values used when simulating
the shamisen. Parameters were taken from * [21]; ** [22];
⋆ [23]; ⋆⋆ [24]; all the lengths† are set to 1 and the other pa-
rameters are tuned empirically to produce a desired sound.

𝑞𝑛+1
𝑙 , 𝑞𝑛𝑙 and 𝑞𝑛−1

𝑙 respectively. All of these are initialised
to 0.

4.2 String Tuning

The strings are tuned to ‘C4’, ‘G4’ and ‘C5’ as it is a
common tuning for the shamisen. The desired pitch for
each string is achieved through empirical testing by mainly
changing the tension and adjusting the radius of strings be-
fore the start of the simulation. Although the other pa-
rameters could be adjusted in order to tune the instrument,
changing the density of the string or the Young’s modu-
lus would not be possible with a real instrument so it was
decided to leave these parameters out when tuning.

4.3 Excitation

The system is excited by “plucking” one of the compo-
nents. Simplified plucking is modeled as a raised cosine
added to the current and previous states of the component.
1D components like the string and the bridge use a one di-
mensional raised cosine, where the membrane uses a 2D

Figure 3. GUI of the digital shamisen. Three green rows at
the top are the three strings, red column on the right is the
bridge and the blue matrix is the membrane.

version of this as its excitation. A more realistic excitation
model is left for future work.

4.4 Output

The output of the shamisen is a sum of the components’
outputs. The strings and the bridge have a single output
location which is defined independently for all the compo-
nents. The membrane output is simplified to be is a sum
of the displacements of all the grid points. Depending on
the membrane grid size the gain of the output has to be ad-
justed according to the number of samples in the scheme.

4.5 Order of Calculations

The pseudocode shown in Algorithm 1 gives a very high-
level overview of the order of the calculations done in the
application.

Initialise the parameters;
Calculate the number of grid points 𝑁 ;
Initialise the state vectors ;
while The application is running do

if Mouse click on the component then
Excite the component;

end
Calculate the schemes;
Calculate the connection forces;
Add the force to the schemes;
Retrieve output sound;
Update the states: 𝑞𝑛−1

𝑙 =𝑞𝑛𝑙 ; 𝑞𝑛𝑙 =𝑞𝑛+1
𝑙 ;

end

Algorithm 1: Pseudocode showing the order of calcu-
lations when the program is started and running.

4.6 Graphical User Interface

The graphical user interface (GUI) has a simplistic de-
sign, where the state variables 𝑞𝑛𝑙 are displayed as shown
in Figure 3. Three different colours were chosen, to in-
dicate the three different types of elements. The intensity
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of the colour indicates the displacement of 𝑞 at location
𝑙. The graphical representation is more suited for show-
ing the normalized vibrations of the different components
rather than visualising the instrument itself. Just clicking
on the component will excite it and along with the auditory
feedback, a graphical representation of what is happening
will be shown. The graphics are updated at a rate of 15 Hz.

5. RESULTS AND DISCUSSION

Informal listening tests by the authors and some fellow
students have confirmed that the shamisen has a spe-
cific attack sound that when compared with the recreated
shamisen exhibited similar timbral qualities. Naturally,
formal listening tests need to be conducted to verify this.
The output spectrogram of the three strings excited in suc-
cession is visualised in Figure 4.

Figure 4. A spectrogram of the three shamisen strings be-
ing excited in a succession from the lowest one to the high-
est. The audio sample used to create this spectrogram is
available at [25].

Concerning computational cost, the CPU usage of the
real-time application was tested using a MacBook Pro with
a 2.2 GHz Intel i7 processor. The strings were continu-
ously excited during the profiling process. The full ap-
plication uses ca. 51% CPU, whereas the physical model
alone without the graphics update uses ca. 39% CPU. This
shows that the physical model can easily run in real-time.

As the excitation is adding to the states, sometimes the
audio can start clipping, in some cases producing a desir-
able percussive sound of the membrane and in some cases
producing a digital clipping sound, which can affect the
timbre of the instrument.

6. CONCLUSION AND FUTURE WORK

In this paper, a real-time implementation of a physical
model of the shamisen has been presented. The physical
model is based on FDTD methods and was implemented
in C++ using the JUCE framework. Informal evaluations
show that, while lacking the buzzing, the sound has been
found natural but not entirely faithful to the real instrument
sound.

Future work includes an addition of the buzzing to the
instrument timbre which could possibly be achieved by a
FDS collision modeling as described in [26] or a modal
collisions model by authors of [27]. Furthermore, a com-
parison between the different sized membranes is needed
in order to find the balance of the audio quality and the
CPU usage.

Lastly, a physical implementation of the the “fretting”
and “plucking” would benefit the model by adding the ex-
pressiveness. It would be nice to model “fretting” as done
by the authors of [28] and the “plucking” as described
in [29–31]. Alternatively a less costly functional transfor-
mation method could be applied to model “fretting” [32].
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ABSTRACT

This paper presents a detailed description of the develop-
ment of a real-time spring reverb effect interface which is
built based on the solution of a complex physical mod-
elling implementation of helical springs. Impulse re-
sponses for various helical springs with different physical
parameters are computed offline using an implicit finite
difference scheme. These are then used to manipulate a
real-time input sound by means of a partitioned convolu-
tion implementation, which allows for the use of long im-
pulse responses with low latency. Furthermore, a smooth
transition is carried out when changing from one impulse
response to another, thus providing the means for real-time
manipulation of the physical parameters of the spring and
consequently the effect’s quality.

1. INTRODUCTION

Spring reverbs have been around since the 1940s [1], and
have been developed as cheap, compact devices which give
the illusion of room-reverberation [2]. However, due to
their highly dispersive nature, they could never really re-
produce the sound of a real room. Even so, their sound
had its unique appeal and they became very popular, par-
ticularly due to their affordability and compact size which
allowed them to be included in classic guitar amplifiers
throughout the late 20th century. Spring reverb simulations
have been implemented for example using combinations
of allpass filters [3] or other combinations of filters and de-
lays [4], [5], as well as virtual analogue simulations [6].

In [7], Bilbao and Parker suggest a spring reverb simu-
lation using finite difference schemes (FDSs), based on a
helical spring model where the pitch angle is assumed to
be small, described as a system of two variables: the trans-
verse and longitudinal vibration. The model is a reduced
version of the twelve variable system described by Wit-
trick [8]. Starting from the same model, Bilbao describes
a more complex interleved FDS which includes the effect
of the pitch angle in [9]. Van Walstijn presents an alterna-
tive FDS which uses ghost nodes in order achieve higher
order spatial accuracy in [10], but needs to be evaluated a a

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

very high sample rate of 1 MHz in order to limit numerical
dispersion.

The implicit method proposed by [7] can be run at a typi-
cal sampling frequency of 44100 Hz and capture the com-
plex dispersive properties of the spring and could poten-
tially be implemented as-is in real-time for a fixed set of
spring parameters. This, however, requires a large dimen-
sional matrix inversion for solving the update equation.
Additionally if one desires to change the spring’s physi-
cal parameters dynamically, an optimization procedure is
necessary in order to calculate values for the free parame-
ters of the scheme as to minimize the difference between
the numerical dispersion and the dispersion of the original
system. This computationally demanding fact results in
this solution being impractical for a real-time implementa-
tion.

The main aim in our paper is to make use of Bilbao and
Parker’s helical spring physical model in a real-time spring
reverb application regardless of the limitation described in
the above paragraph. Using this model gives us the flexibil-
ity of easily simulating springs of different physical prop-
erties. We digitally reproduce a spring reverb and embed
it in a physical interface aiming to extend its possibilities
compared to the typical uses, with a focus being on the
real-time manipulation of the spring’s physical parameters.
Our approach consists of computing a database of helical
spring impulse responses, where the physical parameters
of the springs are varied in a consistent way with a fo-
cus on the parameters found to be most critical in terms
of audio perception. These impulse responses can then be
convolved with a dry input sound in order to add the wet
spring reverb quality. This is achieved by implementing a
partitioned convolution algorithm which allows for the use
of long duration impulse responses with minimal latency,
as described in [11].

Using this convolution approach one could be tempted
to skip the physical model part and use measured im-
pulse responses of mechanical spring reverb units instead.
This, however, would reduce the flexibility of changing
the spring physical parameters as desired and achieving a
database with smoothly varying parameters.

Furthermore, an additional feature is developed in order
to achieve a smooth transition of sound when changing be-
tween the various impulse responses. This is an addition
compared to what the first author found as readily avail-
able implementations of partitioned convolution, such as
the one available in the SuperCollider platform [12], where



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

109

one cannot switch from one impulse response to another
without stopping the sound.

2. HELICAL SPRING

2.1 Continuous Model

A simple model for the vibration of a helical structure,
which can reasonably simulate the behavior in the human
auditory range is given by Bilbao and Parker in [7] which
follows their previous work in [13]. They propose a cou-
pled model where the transverse displacement 𝑢, and lon-
gitudinal displacement, 𝜁, along the arclength 𝑥 ∈ [0, 𝐿],
for some unwound spring length 𝐿, are coupled. This is
described in continuous time by the following system of
PDEs, where the subscripts 𝑡 and 𝑥 denote a derivative with
respect to time and space respectively:

𝑢𝑡𝑡 =
−𝐸𝑟2

4𝜌

(︀
𝑢𝑥𝑥𝑥𝑥 + 2𝜖2𝑢𝑥𝑥 + 𝜖4𝑢

)︀
+

𝐸𝜖

𝜌
(𝜁𝑥 − 𝜖𝑢)− 2𝜎𝑡𝑢𝑡,

(1a)

𝜁𝑡𝑡 =
𝐸

𝜌
(𝜁𝑥𝑥 − 𝜖𝑢𝑥)− 2𝜎𝑙𝜁𝑡, (1b)

where 𝑟 is the radius of the wire, which is of circular cross-
section and the parameter 𝜖 ≈ 1/𝑅 is a measure of the
curvature of the spring, with 𝑅 being the coil radius. Fur-
thermore, parameters 𝐸 and 𝜌 are related to the material of
the spring, the first being the Young’s modulus of elastic-
ity and the second being the material density. The param-
eters 𝜎𝑙 and 𝜎𝑡 model loss in the longitudinal and trans-
verse direction respectively. The number of physical pa-
rameters of the spring can be reduced by rewriting the sys-
tem in Equation (1) in a scaled form. This can be done
by introducing the non-dimensional variables 𝑥′ = 𝑥/𝐿,
𝑢′ = 𝜖𝑢 and 𝜁 ′ = 𝜁/𝐿. Furthermore, one can write
𝜅 = (𝑟

√︀
𝐸/𝜌)/(2𝐿2) as a measure of the stiffness of the

spring and 𝛾 =
√︀

𝐸/𝜌/𝐿 as the longitudinal wave veloc-
ity, both measured in s−1. Then the curvature is normal-
ized as the dimensionless parameter 𝑞 = 𝜖𝐿. This results
in the following system (the ′ superscript that indicates the
’scaled’ parameter was removed for brevity):

𝑢𝑡𝑡 = −𝜅2
(︀
𝑢𝑥𝑥𝑥𝑥 + 2𝑞2𝑢𝑥𝑥 + 𝑞4𝑢

)︀
+ 𝑞2𝛾2 (𝜁𝑥 − 𝑢)− 2𝜎𝑡𝑢𝑡,

(2a)

𝜁𝑡𝑡 = 𝛾2 (𝜁𝑥𝑥 − 𝑢𝑥)− 2𝜎𝑙𝜁𝑡. (2b)

One can investigate the typical dispersive characteristic
of the helical spring by deriving the dispersion relation-
ship of the system given in Equation (2) in the lossless
case. This can be done by introducing solutions of the form
𝑢(𝑥, 𝑡) = 𝑈𝑒𝑗(𝜔𝑡+𝛽𝑥) and 𝜁(𝑥, 𝑡) = 𝑍𝑒𝑗(𝜔𝑡+𝛽𝑥), where 𝑈
and 𝑍 are some constants. Solving for the nontrivial so-
lutions of the resulting system of equations the following
relationship governing the dispersion is obtained:

(𝜔2 − 𝛾2𝛽2)(𝜔2 − 𝜅2(𝛽2 − 𝑞2)2 − 𝛾2𝑞2)− 𝛾4𝑞2𝛽2 = 0.
(3)

This results in two separate dispersion relationships, i.e.
pairs of (𝜔, 𝛽) functions that satisfy Equation (3), one of

Figure 1. Auditory range solution to the dispersion re-
lationship for a helical spring system, with 𝜅 = 0.05,
𝛾 = 2000 and 𝑞 = 800.

which lies above the limit of human hearing. The other
solution, which lies in the audiable range, is illustrated in
Figure 1 for a spring with the parameters as given in the
caption, where 𝑓 = 𝜔/2𝜋. This figure is highly illustrative
of the the interesting behavior of helical springs. It can be
seen that dispersion relationship is not monotonic, mean-
ing that components of different wave lengths can have the
same temporal frequency. Furthermore, it can be seen that
the dispersion relationship shown has a zero at 𝛽 = 𝑞 (ver-
tical line in the Figure 1) and has a maximum in the lower
frequency range at approximately 𝛽 = 𝑞/2. This is the
wave length which corresponds to the frequency 𝑓𝑐 given
by:

𝑓𝑐 =
3𝜅𝑞2

8𝜋
√
5
, (4)

which is the transition frequency where the dispersion
regime changes, and is of perceptual interest for reverber-
ation purposes.

2.2 Finite Difference Scheme

The FDS used for solving this system is an implicit scheme
proposed by Bilbao and Parker in [7]. First, the continu-
ous time-space domain over which the PDEs are defined is
discretized across a time-space grid of 𝑡 = 𝑛𝑘 and 𝑥 = 𝑙ℎ,
such that the grid function 𝑢𝑛

𝑙 denotes a discretized version
of 𝑢(𝑥, 𝑡). The same applies for 𝜁 where 𝜁(𝑥, 𝑡) ≈ 𝜁𝑛𝑙 .
Then ℎ is the spatial step of the discretization and 𝑘 is the
time step, which results from a desired sampling frequency
of the model from 𝑘 = 1/𝑓s. Furthermore, 𝑙 and 𝑛 are in-
tegers indexing space and time respectively. As a means of
approximating the derivatives in the continuous-time PDEs
given in Equation (2), the following finite difference oper-
ators are introduced, as per [14]:

𝑢𝑡 ≈ 𝛿𝑡·𝑢
𝑛
𝑙 =

1

2𝑘

(︀
𝑢𝑛+1
𝑙 − 𝑢𝑛−1

𝑙

)︀
, (5a)

𝑢𝑡𝑡 ≈ 𝛿𝑡𝑡𝑢
𝑛
𝑙 =

1

𝑘2
(︀
𝑢𝑛+1
𝑙 − 2𝑢𝑛

𝑙 + 𝑢𝑛−1
𝑙

)︀
, (5b)

𝑢𝑥 ≈ 𝛿𝑥−𝑢
𝑛
𝑙 =

1

ℎ

(︀
𝑢𝑛
𝑙 − 𝑢𝑛

𝑙−1

)︀
, (5c)
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𝑢𝑥 ≈ 𝛿𝑥+𝑢
𝑛
𝑙 =

1

ℎ

(︀
𝑢𝑛
𝑙+1 − 𝑢𝑛

𝑙

)︀
, (5d)

𝑢𝑥𝑥 ≈ 𝛿𝑥𝑥𝑢
𝑛
𝑙 =

1

ℎ2

(︀
𝑢𝑛
𝑙+1 − 2𝑢𝑛

𝑙 + 𝑢𝑛
𝑙−1

)︀
, (5e)

𝑢𝑥𝑥𝑥𝑥 ≈ 𝛿𝑥𝑥𝑥𝑥𝑢
𝑛
𝑙 =

1

ℎ4
(𝑢𝑛

𝑙+2 − 4𝑢𝑛
𝑙+1 + 6𝑢𝑛

𝑙

− 4𝑢𝑛
𝑙−1 + 𝑢𝑛

𝑙−2),
(5f)

𝑢 ≈ 𝜇𝑡·𝑢
𝑛
𝑙 =

1

2

(︀
𝑢𝑛+1
𝑙 + 𝑢𝑛−1

𝑙

)︀
. (5g)

With this framework, a discretization of the system of
equations given in Equation (2) can be written in the fol-
lowing way [7]:

(1 + 𝜂𝜅𝑘𝛿𝑥𝑥)𝛿𝑡𝑡𝑢 = −𝜅2
(︀
𝛿𝑥𝑥𝑥𝑥𝑢+ 2𝑞2𝛿𝑥𝑥𝑢+ 𝑞4𝑢

)︀
+ 𝛾2𝑞2(𝛼+ (1− 𝛼)𝜇𝑡·) (𝛿𝑥−𝜁 − 𝑢)

− 2𝜎𝑡𝛿𝑡·𝑢,

(6a)

(1 + 𝜃𝛾2𝑘2𝛿𝑥𝑥)𝛿𝑡𝑡𝜁 = 𝛾2(𝛼+ (1− 𝛼)𝜇𝑡·) (𝛿𝑥𝑥𝜁 − 𝛿𝑥+𝑢)

− 2𝜎𝑙𝛿𝑡·𝜁.

(6b)

For explicit numerical schemes one can calculate an up-
date grid function value at a location 𝑥 = 𝑙ℎ, i.e. 𝑢𝑛+1

𝑙 ,
knowing the values of the grid function 𝑢 at current (𝑢𝑛

𝑙 )
and previous time steps (𝑢𝑛−1

𝑙 ). Such methods however
need to be run at very high sample rates in order to accu-
rately model the dispersion of the system within an audi-
ble bandwidth [14]. This can be alleviated by the use of an
implicit scheme instead, where the update solution needs
to be computed at multiple locations along the grid func-
tions. Expanding the difference operators in Equation (6),
it is found that in order to compute the future value at the
update point 𝑢𝑛+1

𝑙 , future values at its neighboring points:
𝑢𝑛+1
𝑙+1 and 𝑢𝑛+1

𝑙−1 are needed, hence a linear coupling among
the unknown values of the grid function is introduced. This
is due to the introduction of a number of the difference op-
erators 𝛿𝑥𝑥 to the left side of the equations and 𝜇𝑡· to the
coupling terms (between 𝑢 and 𝜁). The “weights” of these
operators are controlled by a number of free parameters in
the numerical scheme: 𝜂, 𝜃, 𝛼. For example if these three
parameters are all taken as 0, then the scheme in Equa-
tion (6) reduces to an explicit scheme. These parameters
can be tuned to provide a more accurate solution in terms
of dispersion for a given set of physical spring parameters.

Following the suggestion in [14], 𝛼 = 1/2 and an addi-
tional parameter 𝑞 = (2/ℎ) sin(𝑞ℎ/2) is introduced as an
approximation to 𝑞. The remaining parameters 𝜂 and 𝜃 are
free to change.

Similar to how the dispersion relationship was computed
for the continuous model in Equation (3), the numeri-
cal dispersion can be derived by inserting the discretized
form of the test solutions, i.e. 𝑢𝑛

𝑙 = 𝑈𝑒𝑗(𝜔𝑘𝑛+𝛽𝑙ℎ) and
𝜁𝑛𝑙 = 𝑍𝑒𝑗(𝜔𝑘𝑛+𝛽𝑙ℎ) in Equation (6). Figure 2 shows a
comparison of the numerical dispersion with the model
dispersion for different choices of the free parameters. The
effect of the choice of 𝑞 is illustrated going from (a) to
(b), while the effect of tuning the 𝜂 and 𝜃 parameters is
seen going from (b) to (c). The optimal 𝜂 and 𝜃 values

differ for each possible combination of spring parameters,
hence an optimization procedure is used to compute these
optimal values by means of introducing a mean squared
error loss function, ℒ between the values of 𝜔model, result-
ing from the continuous model dispersion relationship and
𝜔FDS, which results from the dispersion relationship of the
FDS, as given in Equation (7):

ℒ =
1

𝑀

𝑀∑︁
𝑖=1

(𝜔model,𝑖 − 𝜔FDS,𝑖)
2,

𝜔model,𝑀 < 𝜋𝑓s,

(7)

where 𝑖 is an index of the 𝜔 values and 𝑀 + 1 is the index
at which 𝜔model is bigger than the range of interest. This
loss is minimized with respect to the 𝜂 and 𝜃 parameters
via a Nedler-Mean simplex algorithm as described in [15].
If one would desire to change the physical parameters of
the spring in real-time this optimization needs to be recom-
puted.

Having a fixed time step 𝑘, then ℎ needs to be computed
such that the numerical solution remains stable. In [7], an
energy-based stability analysis is presented which results
in the following stability conditions for ℎ:

ℎ ≥ 2𝛾𝑘
√
𝜃+, (8a)

ℎ ≥
√︂

𝜅𝑘
(︁
2𝜂+ +

√︀
4(𝜂+)2 + (1 + | cos(𝑞ℎ)|)2

)︁
, (8b)

where 𝜂+ = (𝜂 + |𝜂|)/2 and 𝜃+ = (𝜃 + |𝜃|)/2, describe
the positive parts of 𝜂 and 𝜃 respectively. An ℎ that satisfies
the stability conditions as close to equality as possible, will
result in a more accurate numerical solution. Once an ℎ
value is chosen, the maximum number of grid intervals can
be calculated as 𝑁 = 1/ℎ (since the length of the spring is
normalized to 1 in the scaled system).

Simply supported boundary conditions are considered for
the model at the edges, i.e. 𝑢 = 𝑢𝑥𝑥 = 𝜁 = 𝜁𝑥𝑥 = 0 at
𝑙 = 0 and 𝑙 = 𝑁 , where 𝑁 is the number of discretized
segments of the scaled helical spring. This means that the
domain of calculation will be 𝑙 ∈ [1, 2, ..., 𝑁 − 2, 𝑁 − 1],
as values at the edges will always be 0.

For the actual implementation of the solver, the finite
difference scheme in Equation (6) is rewritten in matrix
form. Hence, the finite-length column vectors u𝑛 =
[𝑢𝑛

1 , ..., 𝑢
𝑛
𝑁−1]

𝑇 and 𝜁𝑛 = [𝜁𝑛1 , ..., 𝜁
𝑛
𝑁−1]

𝑇 are introduced
over the spatial domain (with 𝑙 ∈ [1, . . . , 𝑁 −1]), where 𝑇
denotes the transpose. The resulting matrix equations are
then factorized with respect to u𝑛+1, u𝑛, u𝑛−1, 𝜁𝑛+1, 𝜁𝑛

and 𝜁𝑛−1 resulting in a system of the form

A1u
𝑛+1 +B1u

𝑛 +C1u
𝑛−1

+D1𝜁
𝑛+1 +E1𝜁

𝑛 + F1𝜁
𝑛−1 = 0,

(9a)

A2u
𝑛+1 +B2u

𝑛 +C2u
𝑛−1

+D2𝜁
𝑛+1 +E2𝜁

𝑛 + F2𝜁
𝑛−1 = 0,

(9b)

for Equations (6a) and (6b) respectively. This can be fur-
ther merged by introducing a state vector which concate-
nates u𝑛 and 𝜁𝑛 as: w𝑛 = [𝑢𝑛

1 , ..., 𝑢
𝑛
𝑁−1, 𝜁

𝑛
1 , ..., 𝜁

𝑛
𝑁−1]

𝑇 .
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Figure 2. Comparisons of model dispersion of a helical spring with physical parameters 𝜅 = 0.05, 𝛾 = 2000 and 𝑞 = 800
with numerical simulations using different sets of free parameters. (a) 𝑞 = 𝑞, 𝜂 = 𝜃 = 0. (b) 𝑞 = 2

ℎ sin(𝑞ℎ/2), 𝜂 = 𝜃 = 0.
(c) 𝑞 = 2

ℎ sin(𝑞ℎ/2), 𝜂 = 0.4313, 𝜃 = 0.000327.

(a) (b) (c)

Figure 3. Spectrogram of the impulse response for three helical springs. Black lines represent the model transition fre-
quency 𝑓𝑐. (a) 𝜅 = 0.08, 𝑞 = 600, 𝛾 = 1800. (b) 𝜅 = 0.08, 𝑞 = 1000, 𝛾 = 1800. (c) 𝜅 = 0.08, 𝑞 = 1000, 𝛾 = 1000.

This results in

Aw𝑛+1+Bw𝑛 +Cw𝑛−1 = 0, where,

A =

[︂
A1 D1

A2 D2

]︂
B =

[︂
B1 E1

B2 E2

]︂
C =

[︂
C1 F1

C2 F2

]︂
(10)

from which an update equation to the state vector can be
computed as

w𝑛+1 = A−1
(︀
−Bw𝑛 −Cw𝑛−1

)︀
. (11)

As can be seen, a large matrix inversion is necessary for
solving the system, which along with the optimization of
the scheme’s free parameters necessary to minimize the
numerical dispersion, causes the solution to be impracti-
cal with regards to a direct real-time implementation.

3. IMPLEMENTATION

This section details the implementation of the helical
spring presented in the previous section and the develop-
ment of the spring reverb interface. A demonstrative video
can be found at [16].

3.1 Impulse Response Database

Impulse responses are generated by exciting the helical
spring at one end (at the first free point, i.e. 𝑙 = 1) with a
sine sweep covering the human auditory perception range,
20 Hz to 20 kHz and measuring the output at the other end
of the spring (the last free point, i.e. 𝑙 = 𝑁 − 1). Both
the excitation and pickup are carried out in terms of the
transverse displacement of the spring 𝑢, and is consistent
with [10]. The initial sine sweep is then deconvolved from
this output leaving only the impulse response of the sys-
tem. For the loss parameters, values suggested in [14] are
used: 𝜎𝑙 = 𝜎𝑡 = 1.65.

A database of impulse responses is generated with the
aim that there is a distinct difference between each impulse
response. This is achieved by systematically changing the
parameters of the model in a well-informed manner. Look-
ing again at the dispersion relationship of the continuous
model, it is clear that a highly important parameter is 𝑞, as
it governs both the location where there is a zero, as well as
having a big weight in the transition frequency 𝑓𝑐, as it is
squared in the numerator in Equation (4). Furthermore, the
𝛾 parameter is a scaled version of the longitudinal wave ve-
locity and therefore plays a role in the density of the echoes
of the spring.

This can be seen in Figure 3 where two distinct disper-
sion zones appear: for frequencies above the transition 𝑓𝑐
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the behavior is essentially bar-like with higher frequen-
cies travelling faster, while below 𝑓𝑐 solutions of differing
wave-numbers are possible, [14]. Comparing (a) to (b) one
can see that a higher 𝑞 value raises the transition frequency,
while comparing (b) to (c) one can see that a higher 𝛾 leads
to greater echo density.

For the use in the spring reverb interface, it was decided
to keep 𝜅 = 0.08 as a constant value and only vary the
other two parameters. Since variations in 𝑞 are heuristi-
cally found to be more distinct perceptually, a denser vari-
ation for this parameter is chosen. In total, 27 values are
used ranging from 200 to 600 in increments of 25, then
from 600 to 1000 in increments of 50 and from 1000 to
1200 in increments of 100. This was done to somewhat
mimic the fact that the relationship between frequency and
pitch is exponential. This holds when remembering that 𝑓𝑐
is directly proportional to 𝑞2. Furthermore two values of 𝛾
are considered, 1000 and 1800. These are found to provide
a good distinction in the sound of the resulting impulse re-
sponses. A smaller difference in these values is not very
noticeable, while for significantly higher values of 𝛾, the
accuracy of the numerical solution in terms of numerical
dispersion suffers. As a result of these choices, this leads
to a total of 54 impulse responses. This chosen variation
in the spring physical parameters directly translates to a
variation in 𝑓𝑐, the dispersion regime transition frequency,
by means of Equation (4). Furthermore, a measure of the
delay time of the springs in the low frequency dispersive
region, 𝑇𝑑, can be derived based on the spring parameters
using a relationship given by Parker and Bilbao in [13],
T𝑑 ≈ 4𝐿𝑅/(𝑟

√︀
𝐸/𝜌). The average T40 decay time of

these impulse responses is calculated to be of 2.12 seconds,
using Schroeder’s backward integration method [17].

3.2 Impulse Responses - Convolution

Since the helical spring system is linear time invariant
(LTI) it follows that if one knows the impulse response of
this system one can determine its output via the theory of
convolution [18]. In time domain this is expressed as

𝑦𝑐[𝑛] = 𝑥𝑐[𝑛] * ℎ𝑐[𝑛] =

+∞∑︁
𝑚=−∞

(𝑥𝑐[𝑚]ℎ𝑐[𝑛−𝑚]), (12)

where 𝑥𝑐 is the input to a system which is described by the
impulse response ℎ𝑐 and 𝑦𝑐 is its output. The subscript 𝑐
(for convolution) is used to avoid confusion with the vari-
ables used in the previous section.

However, convolution is better implemented in frequency
domain where Equation (12) transforms into simple mul-
tiplication, after which a conversion back to time domain
can be performed:

𝑌 (𝜔) = 𝑋(𝜔)𝐻(𝜔),

𝑦𝑐[𝑛] = IDFT(DFT(𝑥𝑐[𝑛])DFT(ℎ𝑐[𝑛])),
(13)

with 𝑋 being the frequency response of the input, 𝐻 the
frequency response of the impulse response and finally 𝑌
is the frequency response of the output, while DFT and
IDFT are abbreviations for the discrete Fourier transform
and its inverse.

Figure 4. Partitioned convolution process overview, from
[11].

Using this method, the length of the impulse response
will immediately translate to the latency of the system (ex-
cluding other overheads). This is a straightforward and
efficient method when the impulse response is of a small
length, but the impulse responses of the springs are 2 sec-
onds, or 88200 samples long. A better implementation
of convolution for the current task is partitioned convolu-
tion, described in detail in [11]. It consists of partition-
ing the impulse response, ℎ𝑐, into equally sized blocks of
length 𝐾. Furthermore, these blocks are treated as sepa-
rate impulse responses and are convolved using a standard
overlap-and-save method [11]. That is, each block is zero-
padded to a size 𝐿 = 2𝐾, after which it is transformed to
frequency domain via FFT, obtaining a collection of fre-
quency domain filters 𝑆. These are then applied to chunks
of size 𝐿 of the input signal while overlapping the results
of the latest 𝑃 input blocks. A diagram of the algorithm is
shown in Figure 4, taken from [11]. This is what is used
for the current project and the details of the implementa-
tion are given in the next section.

A major advantage of the partitioned convolution method
is the reduced latency which is only of 𝐿 rather than 88200
samples.

3.3 Interface Development

The concept behind the interface design is to keep a stan-
dard box like design, familiar to most users, while the de-
sign of the parameter controls of the interface went hand
in hand with the implementation of the algorithm and the
various I/O controls. Figure 5 shows the final result.

In order to have the necessary computational power for
the heavy partitioned convolution algorithm, as well as to
have a standalone interface, it was decided to adopt the
Bela platform. The Bela is a small, single-board Linux
computer built on the BeagleBone Black that provides high
quality audio at ultra-low latency, in addition with a large
array of analog and digital I/O options [19]. For this
project, the Bela Mini was chosen due to its reduced size
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Figure 5. Spring reverb interface

and the fact that it provides all the needed features. Also
from the Bela platform, the Bela Trill Square sensor was
used, which is a capacitive touch sensor that supports I2C
communication. Details regarding the choice of the sen-
sors are given in Section 3.4.

A standard ABS plastic enclosure was used for embed-
ding the Bela and the various sensor/controls. The electri-
cal connections between the various sensors and the Bela
board were done on a standard prototype breadboard using
jumper wire cables.

The physical model simulations of the spring impulse re-
sponses were carried out in Matlab [20], while the imple-
mentation of the partitioned convolution algorithm is car-
ried out in the Bela in-browser IDE in C++. The audio
sampling rate used is 44100 Hz, while the analog I/O sam-
ple rate is 22050 Hz.

The block size for the audio render is taken as 256 sam-
ples, while the block size used in the partitioned convo-
lution algorithm (size 𝐿 described in Section 3.2) is 8192
samples. This means that the convolution processing func-
tion is only run every time 8192 new audio samples are
added in the audio input circular buffer. Furthermore, to
avoid possible underruns, a multi-threaded implementation
is carried out for the convolution processing function, mak-
ing sure that the audio render function always has higher
priority.

Moreover it was found that an initial lag between the
global input buffer and the global output buffer of 3 times
the hop size 𝐾 is needed. This basically gives the I/O la-
tency of the interface, which results in 279 ms. Figure 6
shows this latency as measured with the in-browser oscil-
loscope available in the Bela IDE. If one would reduce the
block size 𝐿 to half, i.e 4096 samples for instance, the re-
sulting latency would also be halved.

However, it was found that the real-time capability of the
implementation is limited by the maximum number of fre-
quency domain filter blocks 𝑆 (see Section 3.2), that is how
many overlapped bins the impulse response is divided in.
It was found that the program cannot run in real time when
more than 22 blocks are used, regardless of the block size

Figure 6. Illustration of system latency as measured with
the in-browser oscilloscope available in the Bela IDE. Blue
line is the input signal and red line is the output. There is a
lag of approximately 279 ms between the two.

𝐿. So when reducing the size from 8192 to 4096 samples,
one can only use impulse responses of length 2048·23 =
47104 samples (22 block sizes of length 4096 overlapped
with a hop size of 2048), which is a bit more than 1 sec-
ond at the audio sample rate used. There appears to be a
trade-off between the latency of the implementation and
the maximum length of the impulse responses.

3.4 Parameter Mapping

Since spring impulse responses from the available database
differed with respect to two physical parameters: curvature
parameter 𝑞 and wave velocity 𝛾, it was desired to have
the option to quickly navigate through them with respect
to both these dimensions. Hence, the Trill Square capaci-
tive sensor from the Bela platform was used, and each im-
pulse response was mapped to locations on the (x,y) grid
position on the square. More specifically, the wave speed
𝛾 is mapped to the x-axis while curvature parameter 𝑞 is
mapped to the y-axis.

An important feature of the implementation is that a
smooth transition from using one impulse response to an-
other is achieved. This was done by doing all the process-
ing related to all the impulse responses in the setup part
of the audio algorithm. Then, when moving from one im-
pulse response to another, two convolutions are in fact car-
ried out for a brief transition time chosen as one audio pro-
cessing bin, i.e., 8192 samples (size 𝐿 in the partitioned
convolution algorithm). A square-root fade-in/fade-out is
then carried out between the two resulting outputs. More-
over, when taking the finger off of the sensor the impulse
response used for convolution will be the one associated
with the last read position.

Other parameter controls are carried out by means of
three potentiometers. One is mapped to a global mas-
ter volume, lineally mapped between -40 dB and +6 dB.
Another controls the dry/wet mixture of the output sig-
nal, where the minimum value of the potentiometer gives
a fully dry sound and the maximum value gives a fully wet
sound. The last parameter mapped to the remaining po-
tentiometer is the number of bins of the impulse response
considered in the convolution algorithm.
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3.5 From Effect to Instrument

Another interesting addition to the interface is the fact
that the user can change between two different audio in-
put sources with the use of a toggle switch. The first is an
audio-in jack, which can be connected to any other sound
producing device, in essence turning the interface into an
effect processor. Furthermore, an electret microphone was
embedded in a side panel of the box, for which a signal
amplifier circuit is built on the breadboard. When switch-
ing to the mic input, the interface can be used similarly
to an instrument. One can tap, scratch, whistle and speak
into the microphone while changing the various real-time
parameter controls and produce interesting sounds. Addi-
tional investigations regarding this potential use coupled
with feedback are planned.

4. CONCLUSION

The work described in this paper focused on combining
physical modelling sound synthesis techniques with con-
volution with the aim to supplement each other towards a
real-time implementation of a spring reverb, whose physi-
cal parameters can be adjusted on the fly. While the phys-
ical model with adjustable parameters proved to be too
computationally expensive for a real-time implementation,
using partitioned convolution provided a way around this.
An important addition to this approach is providing a way
to have a smooth transition from the use of one impulse re-
sponse to another, and the fact that the impulse responses
are physically related to each other.

A physical interface was built which allows for an ex-
pressive manipulation of an input sound, via the provided
parameter controls.

Future work will focus on a more streamlined design of
the interface, by means of a CAD software together with
laser cutting or 3-D printing manufacturing options. As
for the electrical components, a more sturdy strip board
implementation followed by a custom PCB design of the
circuit is planned. Additional investigations regarding the
software implementation can focus on pushing the limits
of the model. For instance, how many impulse responses
can be easily processed in the audio setup and mapped to
the Trill square. Since the physical model for the helical
spring is mainly dependent on 3 parameters, an additional
dimension representing the 𝜅 parameter can be added to
the mapping, perhaps using a pressure sensor or making
use of the area of the touch.

While the interface was designed with the concept of a
spring reverb unit in mind, what it is essentially is a real-
time convolution effect processor, with an implemented
use case as a spring reverb. One can easily use other im-
pulse responses and completely change the nature of the
interface. Such other use cases will be looked into. Lastly,
an important observation is that this is a mono audio de-
vice, and expanding it to stereo, perhaps mapping different
impulse responses to each output channel, would be a wel-
come feature.
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ABSTRACT

In this work, a matrix formulation of a piecewise one-
dimensional waveguide model of the vocal tract (having
varying cross-sectional area along its length) is used to de-
rive model transfer functions suitable for both cylindrical
or conical sections, with outputs tapped at the position of
the glottis and the lips. The transfer function tapped at the
lips is then considered in more detail for cylindrical waveg-
uide sections and presented in its more useful form as a ra-
tio of polynomial functions in the discrete frequency vari-
able 𝑧, with coefficients vectors calculated for two cases:
one where model boundaries are scalar losses and the other
where losses are dependent on frequency. Through a trans-
fer function with coefficients that are dependent on param-
eters of cross-sectional area and boundary conditions, the
model may not only be controlled in real time, but the re-
lationship to other vocal tract representations, in particular
linear prediction coding (LPC) of speech, can be more eas-
ily shown, laying the foundation for inverse problems such
as parameter estimation and source-filter separation. Fi-
nally, a comparison between model transfer function coef-
ficients and those estimated by LPC (which assumes an all-
pole filter) is discussed, suggesting that lower-order (and
less computationally costly) LPC estimators might benefit
from acoustically-informed boundary losses and the result-
ing introduction of zeros into the transfer function.

1. INTRODUCTION

The work herein borrows strategies for waveguide mod-
eling of wind instrument bores and bells which, like the
vocal tract, have shapes that are frequently not cylindri-
cal or conical and thus have no known analytic solution.
Though round-trip propagation delay in purely cylindri-
cal and/or conical tubes may be modeled as a single one-
dimensional waveguide (bi-directional delayline) element,
the vocal tract has a varying cross-sectional area along its
length and is better modeled using a piecewise approach
(see Figure 1). Here, the vocal tract model is presented
from the perspective of musical instrument modeling the
desire to have parameters that can be both estimated and
controlled in real time. To that end, the theory of piece-
wise waveguide modeling is reviewed [1–3] and a matrix

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which
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original author and source are credited.

formulation is presented that leads to parametric transfer
functions modeling the vocal tract, one with output tapped
at the position of the glottis and the other at the lips, ini-
tially with no assumption on whether waveguide sections
are cylindrical of conical.

𝐽3

𝑍1,2 𝑍1,3𝑍1,1 𝑍2,1 𝑍2,2 𝑍2,3

𝑚 = 1 𝑚 = 2 𝑚 = 3 𝑚 = 4

𝑟3𝑟2𝑟1 𝑟4

𝐽1 𝐽2

Figure 1. A sequence of 𝑀 = 4 conical/cylindrical
sections with radii 𝑟𝑚 (and corresponding cross-sectional
area) interleaved with 𝑁 = 𝑀 − 1 scattering junctions.

Though representations of the vocal tract have taken on
different forms in the literature several can be made fun-
damentally equivalent—this is true of LPC [4], Kelly-
Lockbaum [5] and piecewise models where sections are
made uniformly cylindrical. These techniques model for-
mants in the produced sound as a result of characteristic
changes in the vocal tract shape and, under certain ba-
sic conditions/configurations, similarly result in an all-pole
filter. The estimation of filter feedback coefficients using
LPC is a frequently used technique and methods have been
proposed to enhance its all-pole approximation by estimat-
ing, often iteratively, more accurate losses in the system
[6]. Here, the contribution of vocal tract boundaries (lip
reflection/transmission) and whether they are modeled as
scalar or frequency-dependent losses, is shown to cause a
divergence in model similarities. The suggestion is, there-
fore, that acoustically-informed boundaries as used in the
piecewise cylindrical model, and the introduction of ze-
ros into the transfer functions as a result of their inclusion,
may enhance the all-pole LPC estimation without requir-
ing higher and more computationally costly filter orders.

In the following, Section 2 reviews the theory of scat-
tering junctions and first derives a scattering matrix for
a single junction, then the “chain” scattering matrix for
the complete vocal tract model. The matrix representa-
tions are then used to derive the model transfer functions
in Section 3, applicable to both cylindrical and conical
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waveguide sections. Section 4 considers the special case
of cylindrical sections, showing a transfer function coeffi-
cient vector that is a function of the boundaries, first with
an assumption of scalar losses that is most strongly related
to LPC, then frequency-dependent losses, represented as
a convolution in matrix form, that are more physically in-
formed. Finally, in Section 5 a discussion is made on the
relationship between waveguide model and LPC followed
by a (preliminary) comparison of how both estimate the
known glottal pulse from the output of a physical model.

𝑇𝐿(𝑧)𝑧−𝑀

𝑌0(𝑧)

𝑧−𝑀

𝑧−1𝑧−1

𝑧−1 𝑧−1

𝐽𝑚𝐽𝑚−1 𝐽𝑚+1

𝑅0(𝑧) 𝑅𝐿(𝑧)

𝑋(𝑧) 𝑌𝐿(𝑧)

Figure 2. The vocal tract’s varying cross-sectional area
along its length may be implemented as a piecewise
model—a cascade of two-port scattering junctions with
interleaved unit-sample bi-directional delays (cylindri-
cal/conical sections), with terminating boundary condi-
tions 𝑅0(𝑧) at the glottis and 𝑅𝐿(𝑧) at the lips and with
outputs 𝑌0(𝑧) and 𝑌𝐿(𝑧) in response to input (𝑋(𝑧). Wall
losses are omitted.

2. VOCAL TRACT SCATTERING MATRIX

As shown in Figures 1 and 2, the one-dimensional piece-
wise conical/cylindrical model of the vocal tract is com-
prised of 𝑀 sections, each a bidirectional unit-sample
delay, corresponding to acoustic propagation distance in
one time sample, interleaved with 𝑁 = 𝑀 − 1 two-port
𝑁𝑝 = 2 scattering junctions.

Scattering, the reflection and transmission of a wave that
occurs when there is a change in the wave’s characteristic
impedance, may be modeled using a multi-port scattering
junction where the number of ports 𝑁𝑝 is twice the dimen-
sionality of the wave propagation and the wave impedance
on each port is determined by the medium (or geometry) it
serves to connect. For waves propagating along the length
of a diverging conical section terminated at port 𝑛 a dis-
tance 𝑙𝑛 from the cone apex, the wave impedance is a com-
plex function of frequency given by

𝑍𝑛(𝑙, 𝜔) =
𝜌𝑐

𝑆𝑛
· 𝑗𝜔

𝑗𝜔 + 𝑐/𝑙𝑛
, (1)

where 𝑆𝑛 is the cross-sectional at the port, 𝜌 is the medium
density and 𝑐 is the propagation velocity. If the wave
is propagating in the opposite direction toward the cone
apex, effectively seeing a converging conical section, its

impedance is given by the complex conjugate,

𝑍*
𝑛(𝑙, 𝜔) =

𝜌𝑐

𝑆𝑛
· 𝑗𝜔

𝑗𝜔 − 𝑐/𝑙𝑛
. (2)

For plane waves traveling in cylindrical sections, the dis-
tance 𝑙𝑛 to the cone apex is infinite and the characteristic
impedance reduces to a real value:

𝑍𝑛 = 𝜌𝑐/𝑆𝑛. (3)

Each of the junction’s ports has a physical pressure 𝑝𝑛 and
volume velocity 𝑈𝑛 that is the sum of wave components
propagating in “𝑖” and out “𝑜” of port:

𝑝𝑛 = 𝑝𝑖𝑛 + 𝑝𝑜𝑛, and 𝑈𝑛 = 𝑈 𝑖
𝑛 + 𝑈𝑜

𝑛. (4)

and which are related by the characteristic impedance:

𝑈 𝑖
𝑛 =

𝑝𝑖𝑛
𝑍𝑛

, 𝑈𝑜
𝑛 = − 𝑝𝑜𝑛

𝑍*
𝑛

, (5)

(the negative output volume velocity accounts for the fact
that it is a directional quantity and moves in the direction
in which it generates pressure [7]). Because the junction is
shared by all mediums it connects, the law for conserva-
tion of mass and momentum dictate that the pressure at the
junction be continuous and equal to the pressure on each
port:

𝑝𝐽 = 𝑝𝑛 = 𝑝𝑖𝑛 + 𝑝𝑜𝑛, (6)

and the sum of volume velocity on each port is equal zero,

𝑁𝑝∑︁
𝑛=1

𝑈𝑛 =

𝑁𝑝∑︁
𝑛=1

(𝑈 𝑖
𝑛 + 𝑈𝑜

𝑛) = 0. (7)

For the two-port (𝑁𝑝 = 2) junction used in the piecewise
vocal tract model, it follows from (6) that

𝑝𝑖1 + 𝑝𝑜1 = 𝑝𝑖2 + 𝑝𝑜2, (8)

and from (7), with the substitution given by (5), that

𝑝𝑖1
𝑍1

− 𝑝𝑜1
𝑍*
1

= −
(︂
𝑝𝑖2
𝑍2

− 𝑝𝑜2
𝑍*
2

)︂
. (9)

Equations (8) and (9) may be conveniently expressed in
matrix form,

C

[︂
𝑝𝑖1
𝑝𝑜1

]︂
= D

[︂
𝑝𝑖2
𝑝𝑜2

]︂
, (10)

where C and D are 2× 2 matrices given by

C =

⎡⎣ 1 1
1

𝑍1
− 1

𝑍*
1

⎤⎦ and D =

⎡⎣ 1 1

− 1

𝑍2

1

𝑍*
2

⎤⎦ , (11)

and rearranged to yield the expression relating left and
right port, 𝑛 = 1 and 2, respectively, input and output pres-
sure wave components:[︂

𝑝𝑖1
𝑝𝑜1

]︂
= C−1D

[︂
𝑝𝑖2
𝑝𝑜2

]︂
, (12)
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where

C−1D =
1

1

𝑍*
1

+
1

𝑍1

⎡⎢⎣
1

𝑍*
1

1

1

𝑍1
−1

⎤⎥⎦
⎡⎣ 1 1

− 1

𝑍2

1

𝑍*
2

⎤⎦

=

⎡⎢⎢⎣
𝑍1 (𝑍2 − 𝑍*

1 )

𝑍2 (𝑍1 + 𝑍*
1 )

𝑍1 (𝑍
*
2 + 𝑍*

1 )

𝑍*
2 (𝑍1 + 𝑍*

1 )
𝑍*
1 (𝑍2 + 𝑍1)

𝑍2 (𝑍1 + 𝑍*
1 )

𝑍*
1 (𝑍

*
2 − 𝑍1)

𝑍*
2 (𝑍1 + 𝑍*

1 )

⎤⎥⎥⎦ . (13)

As may be seen in Figure 3, the left port’s input and out-
put wave components are equal to the right and left trav-
eling pressure waves, denoted by + and − superscripts re-
spectively, in section 𝑚,[︂

𝑝𝑖1
𝑝𝑜1

]︂
=

[︂
𝑝+𝑚
𝑝−𝑚

]︂
= p𝑚, (14)

but the inverse relationship exists between wave compo-
nents on the junction’s right port and traveling waves in
neighbouring section 𝑚+ 1,[︂

𝑝𝑖2
𝑝𝑜2

]︂
=

[︂
𝑝−𝑚+1𝑧

−1

𝑝+𝑚+1𝑧

]︂
=

[︂
0 𝑧−1

𝑧 0

]︂
p𝑚+1, (15)

with vector element ordering made consistent with (14) by
multiplying with an antidiagonal matrix that also accounts
for the unit-sample delay/advance in one section.

. . .

𝑧−1

𝑧−1

𝑝+𝑚+1

𝑝−𝑚+1

𝑝+𝑚

𝑝−𝑚

𝑝𝑖1

𝑝𝑜1 𝑝𝑖2

𝑝𝑜2 𝐽𝑚+1𝐽𝑚 . . .

Figure 3. Relationship between the 𝑚𝑡ℎ junction’s left and
right (subscript 1 and 2, respectively) port input and output
(superscript 𝑖 and 𝑜, respectively) pressure wave compo-
nents to the right (+ superscript) and left (− superscript)
traveling pressure waves in adjacent sections 𝑚 and 𝑚+1.

With the change to traveling wave variables made by sub-
stituting (14) and (15) into (12), the relationship between
right and left traveling pressure waves in adjacent sections
𝑚 and 𝑚+ 1 may be given by

p𝑚 = A𝑚p𝑚+1, (16)

where the scattering matrix for a single two-port junction

A𝑚 =
(︀
C−1D

)︀
𝑚

[︂
0 𝑧−1

𝑧 0

]︂
, (17)

is defined as a product of (13) for the 𝑚𝑡ℎ junction.
The “chain” scattering matrix for the complete vocal tract

model is obtained by first expanding (16),

p𝑚 = A𝑚

A𝑚+1p𝑚+2⏞  ⏟  
p𝑚+1 = A𝑚A𝑚+1

A𝑚+2p𝑚+3⏞  ⏟  
p𝑚+2 (18)

so that traveling pressure waves in the first section can be
expressed as a product of those in the final section,

p1 = P𝑀−1p𝑀 , (19)

where, for a sequence of 𝑀 sections and 𝑁 = 𝑀 − 1
junctions, the model’s final 2×2 chain scattering matrix is
given by the repeated product

P𝑀−1 =
𝑀−1∏︁
𝑚=1

A𝑚 =

[︂
𝑃1,1 𝑃1,2

𝑃2,1 𝑃2,2

]︂
. (20)

3. MODEL TRANSFER FUNCTIONS

To adequately represent the vocal tract so that it may be
coupled to a dynamic model of the vocal folds as in [8], it is
necessary to obtain two (2) transfer functions representing
the model: one with the output pressure tapped at the lips
𝑌𝐿(𝑧) and the other with the output pressure tapped at the
glottis 𝑌0(𝑧) (see Figure 4).

𝑅0(𝑧)

𝑧−1

𝐽1

𝑝−1

𝑧−1𝑋(𝑧) 𝑝+1

. . .

Figure 4. A signal flow diagram of the first waveguide
section, showing how input 𝑋(𝑧) may be represented as a
function of the glottis boundary 𝑅0(𝑧) and traveling pres-
sure waves 𝑝+1 and 𝑝−1 as given by (21).

Both transfer functions are in response to input pressure
𝑋(𝑧) (corresponding to the product of the glottal flow and
the characteristic impedance at the entry to the vocal tract)
which, following Figure 4, can be defined in terms of the
right and left traveling waves in the first section:

𝑋(𝑧) = 𝑝+1 (𝑧)𝑧 −𝑅0(𝑧)𝑝
−
1 (𝑧)𝑧

−1, (21)

which, by employing (19) and (20), may then be expressed
in terms of traveling waves in the final section

𝑋(𝑧) =
(︀
𝑃1,1𝑝

+
𝑀 (𝑧) + 𝑃1,2𝑝

−
𝑀 (𝑧)

)︀
𝑧

−𝑅0

(︀
𝑃2,1𝑝

+
𝑀 + 𝑃2,2𝑝

−
𝑀

)︀
𝑧−1. (22)

Finally, using the definition of the open-end lip reflection
transfer function 𝑅𝐿(𝑧) = 𝑝−𝑀 (𝑧)/𝑝+𝑀 (𝑧) and making the
substitution 𝑝−𝑀 (𝑧) = 𝑅𝐿(𝑧)𝑝

+
𝑀 (𝑧) in (22), the input may

be expressed as a function of only the right traveling wave
in the final section:

𝑋(𝑧) = 𝑝+𝑀 (𝑧) (𝑃1,1 + 𝑃1,2𝑅𝐿(𝑧)) 𝑧 −
𝑝+𝑀 (𝑧)𝑅0(𝑧) (𝑃2,1 + 𝑃2,2𝑅𝐿(𝑧)) 𝑧

−1. (23)

The vocal tract transfer function 𝐻𝐿(𝑧) = 𝑌𝐿(𝑧)/𝑋(𝑧)
tapped at the lips is defined as the ratio of output pressure
𝑌𝐿(𝑧) = 𝑝+𝑀 (𝑧)𝑇𝐿(𝑧) to input pressure 𝑋(𝑧) which, by
substituting (23), yields

𝐻𝐿(𝑧) =
𝑇𝐿(𝑧)𝑧

−1

𝑃1,1+𝑃1,2𝑅𝐿(𝑧)−𝑅0 (𝑃2,1+𝑃2,2𝑅𝐿(𝑧)) 𝑧−2
.

(24)
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The transfer function 𝐻0(𝑧) = 𝑌0(𝑧)/𝑋(𝑧) is the ratio of
the pressure at the glottis (vocal tract base)

𝑌0(𝑧) = 𝑋(𝑧) + 𝑝−1 (𝑧)(1 +𝑅0(𝑧))𝑧
−1

= 𝑋(𝑧) +

𝑝+𝑀 (𝑧)(𝑃2,1 + 𝑃2,2𝑅𝐿(𝑧))(1 +𝑅0(𝑧))𝑧
−1,

to the system input 𝑋(𝑧) given by (23), yielding

𝐻0(𝑧) =
𝑃1,1 + 𝑃1,2𝑅𝐿(𝑧) + (𝑃2,1 + 𝑃2,2𝑅𝐿(𝑧))𝑧

−2

𝑃1,1+𝑃1,2𝑅𝐿(𝑧)−𝑅0 (𝑃2,1+𝑃2,2𝑅𝐿(𝑧)) 𝑧−2
,

(25)

showing how boundary conditions 𝑅0(𝑧) and 𝑅𝐿(𝑧) (fur-
ther discussed in Section 4.2) and, for a cylindrical sec-
tion, the assumed amplitude complementary transmission,
which for pressure is given by

𝑇𝐿(𝑧) = 1 +𝑅𝐿(𝑧), (26)

contribute to the vocal tract transfer functions.
Though the above transfer functions are sufficient for

a frequency-domain representation/implementation of the
model, it is preferable to represent it in its more useful
form as a ratio of polynomials in the (discrete) frequency
variable 𝑧, both to allow for time-domain implementation
using the corresponding difference equation (obtained by
taking the inverse 𝑧-transform) and also for comparison (or
mapping) to all-pole filter coefficients estimated by LPC.

4. POLYNOMIAL TRANSFER FUNCTION FOR
CYLINDRICAL SECTIONS

Though vocal tract sections may be modeled as being ei-
ther cylindrical or conical (see Figure 1) and the above
derivation makes no assumption of either, the section shape
is dependent on the choice of expression for impedance
(1)-(3) in the matrix given by (13). Conical sections in a
time-domain synthesis would require fitting a digital fil-
ter to the complex impedances given by (1) and (2) as was
done in [3] using the impulse-invariant method [9] and also
in [10] using the bilinear transform. Using cylindrical sec-
tions, on the other hand, has considerable computational
convenience for computing the transfer functions as a ratio
of polynomials, as well as allowing better comparison with
LPC and related Kelly-Lochbaum models.

𝑝+𝑚+1

𝑘𝑚

1 + 𝑘𝑚

1− 𝑘𝑚

𝑝+𝑚

𝑝−𝑚
𝑧−1

𝑧−1 𝑧−1

𝑧−1

−𝑘𝑚

𝑝−𝑚+1

Figure 5. Kelly-Lochbaum scattering junction.

For cylindrical sections, as mentioned in Section 2, the
characteristic wave impedance (3) is not a function of fre-
quency but rather a real value inversely proportional to the

plane wave’s surface area. For waves on left and right ports
of the junction between sections 𝑚 and 𝑚+ 1, this area is
the section’s cross-sectional area 𝑆𝑚 and 𝑆𝑚+1, respec-
tively, and the scattering matrix (13) may be reduced to

(︀
C−1D

)︀
𝑚

=
1

2𝑆𝑚

[︂
𝑆𝑚 − 𝑆𝑚+1 𝑆𝑚 + 𝑆𝑚+1

𝑆𝑚 + 𝑆𝑚+1 𝑆𝑚 − 𝑆𝑚+1

]︂
=

1

1 + 𝑘𝑚

[︂
𝑘𝑚 1
1 𝑘𝑚

]︂
, (27)

where the reflection coefficient between sections

𝑘𝑚 =
𝑆𝑚 − 𝑆𝑚+1

𝑆𝑚 + 𝑆𝑚+1
, (28)

is that used in LPC and forms the Kelly-Lochbaum scatter-
ing junction shown in Figure 5.

Substituting (27) into (17) yields the single junction scat-
tering matrix between sections sections 𝑚 and 𝑚 + 1 for
the piecewise cylindrical model

A𝑚 =
1

1 + 𝑘𝑚

[︂
𝑘𝑚 1
1 𝑘𝑚

]︂ [︂
0 𝑧−1

𝑧 0

]︂
, (29)

which, for 𝑀 = 2 sections and 𝑁 = 1 junction, yields a
model scattering matrix (20) given by

P1 = A1 =
𝑧

1 + 𝑘1

[︂
1 𝑘1𝑧

−2

𝑘1 𝑧−2

]︂
, (30)

and for 𝑀 = 3 sections and 𝑁 = 2 junctions,

P2 = A1A2 = P1A2

=
𝑧

1 + 𝑘1

[︂
1 𝑘1𝑧

−2

𝑘1 𝑧−2

]︂
𝑧

1 + 𝑘2

[︂
1 𝑘2𝑧

−2

𝑘2 𝑧−2

]︂
=

𝑧2

2∏︁
𝑚=1

(1 + 𝑘𝑚)

[︂
𝑐0 + 𝑐2𝑧

−2 𝑑2𝑧
−2 + 𝑑0𝑧

−4

𝑑0 + 𝑑2𝑧
−2 𝑐2𝑧

−2 + 𝑐0𝑧
−4

]︂
,

where polynomial matrix elements have coefficients

𝑐0 = 1, 𝑐2 = 𝑘1𝑘2, 𝑑0 = 𝑘1 and 𝑑2 = 𝑘2. (31)

In general, for models having 𝑀 sections and 𝑁 = 𝑀 − 1
junctions, the chain scattering matrix is given by

P𝑁 =
𝑁∏︁

𝑚=1

A𝑚 = P𝑁−1A𝑁 =
𝑧𝑁

𝑁∏︁
𝑚=1

(1 + 𝑘𝑚)

K𝑁 , (32)

where

K𝑁 =

[︂
𝐾1,1 𝐾1,2

𝐾2,1 𝐾2,2

]︂
=

𝑁∏︁
𝑚=1

[︂
1 𝑘𝑚𝑧−2

𝑘𝑚 𝑧−2

]︂

=

⎡⎢⎢⎢⎢⎣
𝑁−1∑︁
𝑚=0

𝑐2𝑚𝑧−2𝑚
𝑁∑︁

𝑚=1

𝑑2(𝑁−𝑚)𝑧
−2𝑚

𝑁−1∑︁
𝑚=0

𝑑2𝑚𝑧−2𝑚
𝑁∑︁

𝑚=1

𝑐2(𝑁−𝑚)𝑧
−2𝑚

⎤⎥⎥⎥⎥⎦ . (33)
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Polynomial entries in (33) have initial coefficients given by

𝑐0 = 1 and 𝑑0 = 𝑘1, (34)

with remaining coefficients being recursively defined by

c𝑁 =
[︀
c𝑁−1 0 0

]︀⊺
+ 𝑘𝑁

[︀
0 d̃𝑁−1 0

]︀⊺
d𝑁 =

[︀
d𝑁−1 0 0

]︀⊺
+ 𝑘𝑁

[︀
0 c̃𝑁−1 0

]︀⊺
, (35)

where .̃ denotes the retrograde vector, one where the order
of elements is reversed (e.g. by multiplying with the ex-
change, or backward identity, matrix of appropriate size),
and where the length-2𝑁 coefficient vectors have the form

c𝑁 =
[︀
𝑐0 0 𝑐2 0 . . . 𝑐2(𝑁−1) 0

]︀⊺
d𝑁 =

[︀
𝑑0 0 𝑑2 0 . . . 𝑑2(𝑁−1) 0

]︀⊺
, (36)

with odd-ordered coefficients (even-numbered vector ele-
ments) being zero since polynomial entries in (33) have
only even-ordered terms (corresponding to the one-sample
propagation delay per section and between junctions).
Consistent with (31), for a number of junctions 𝑁 > 1,
final coefficients are given by

𝑐2(𝑁−1) = 𝑘1𝑘𝑁 and 𝑑2(𝑁−1) = 𝑘𝑁 . (37)

Coefficient vectors for 𝑁 = 1 are obtained by (34):

c1 =

[︂
𝑐0
0

]︂
=

[︂
1
0

]︂
and d1 =

[︂
𝑑0
0

]︂
=

[︂
𝑘1
0

]︂
, (38)

for 𝑁 = 2, by (35) or directly from (37):

c2 =

⎡⎢⎢⎣
𝑐0
0
𝑐2
0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1
0

𝑘1𝑘2
0

⎤⎥⎥⎦ , d2 =

⎡⎢⎢⎣
𝑑0
0
𝑑2
0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑘1
0
𝑘2
0

⎤⎥⎥⎦ , (39)

and for 𝑁 = 3, by (35) (expanded for illustration):

c3 =
[︀
c2 0 0

]︀⊺
+ 𝑘3

[︀
0 d̃2 0

]︀⊺

=

⎡⎢⎢⎢⎢⎢⎢⎣
1
0

𝑘1𝑘2
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦+ 𝑘3

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
𝑘2
0
𝑘1
0

⎤⎥⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎢⎣

1
0

𝑘1𝑘2 + 𝑘2𝑘3
0

𝑘1𝑘3
0

⎤⎥⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎢⎣
𝑐0
0
𝑐2
0
𝑐4
0

⎤⎥⎥⎥⎥⎥⎥⎦
d3 =

[︀
d2 0 0

]︀⊺
+ 𝑘3

[︀
0 c̃2 0

]︀⊺

=

⎡⎢⎢⎢⎢⎢⎢⎣
𝑘1
0
𝑘2
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦+ 𝑘3

⎡⎢⎢⎢⎢⎢⎢⎣
0
0

𝑘1𝑘2
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎢⎣

𝑘1
0

𝑘2 + 𝑘1𝑘2𝑘3
0
𝑘3
0

⎤⎥⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎢⎣
𝑑0
0
𝑑2
0
𝑑4
0

⎤⎥⎥⎥⎥⎥⎥⎦(40)

and so on for models having a greater number of junctions.
With the scattering matrix P𝑁 defined in (32) for cylin-

drical sections, substitution may be made into (24) to yield
transfer functions in their more useful form, as a ratio of
polynomial functions in 𝑧. The final expression for nu-
merator and denominator polynomials are, however, de-
pendent on the boundary conditions 𝑅0(𝑧) and 𝑅𝐿(𝑧),
whether they are scalar or frequency dependent and, in the
latter case, the filter order.

4.1 𝐻𝐿(𝑧) for Scalar Boundaries

In the simplified case (yet important because of its close
relationship to LPC coefficients) of scalar boundaries, any
losses may be lumped in 𝑅0 and the reflection at the lips
simply made lossless but inverting 𝑅𝐿 = −1 (and thus no
longer a function of 𝑧). Since, by (26), this would yield
a transmission at the lips given by 𝑇𝐿 = 1 + 𝑅𝐿 = 0
and a complete attenuation of the signal, the transmission
is omitted for this case. After a substitution of (32), the
transfer function (24) therefore becomes

𝐻𝐿(𝑧) =
𝑧−1

𝑃1,1 + 𝑃1,2𝑅𝐿 −𝑅0(𝑃2,1 + 𝑃2,2𝑅𝐿)𝑧−2

=
𝑧−(𝑁+1)

∏︀𝑁
𝑚=1(1 + 𝑘𝑚)

𝐾1,1 +𝐾1,2𝑅𝐿 −𝑅0(𝐾2,1 +𝐾2,2𝑅𝐿)𝑧−2

=
𝐵(𝑧)

𝐴(𝑧)
, (41)

with the numerator being a pure delay with a scalar value,

𝐵(𝑧) = 𝑧−(𝑁+1)
𝑁∏︁

𝑚=1

(1 + 𝑘𝑚), (42)

showing 𝐻𝐿(𝑧) has no zeros, and a denominator given by

𝐴(𝑧) = 𝐾1,1 +𝐾1,2𝑅𝐿 −𝑅0 (𝐾2,1 +𝐾2,2𝑅𝐿) 𝑧
−2

= 𝑎0𝑧
−0 + 𝑎1𝑧

−1 + · · ·+ 𝑎2(𝑁+1)𝑧
−2(𝑁+1),(43)

with polynomial coefficients given by the (column) vector

A𝑁 = C𝑁R, (44)

where C𝑁 is (2𝑁+3)×4 matrix with columns constructed
from coefficient vectors c𝑁 and d𝑁 given in (35),

C𝑁 =

⎡⎢⎢⎣
c𝑁 0 0 0

0 d̃𝑁 0 0
0 0 d𝑁 0
0 0 0 c̃𝑁

⎤⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐0 0 0 0
0 0 0 0
𝑐2 𝑑2(𝑁−1) 𝑑0 0
0 0 0 0
𝑐4 𝑑2(𝑁−2) 𝑑2 𝑐2(𝑁−1)

0 0 0 0
...

...
...

...
𝑐2(𝑁−1) 𝑑2 𝑑2(𝑁−2) 𝑐4

0 0 0 0
0 𝑑0 𝑑2(𝑁−1) 𝑐2
0 0 0 0
0 0 0 𝑐0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(45)

with each column extending the length-2𝑁 vector by 3 ze-
ros (in bold for better visibility) to accomodate a down-
ward shift by one element from one column to the next,
and where R is a 4× 1 column vector

R =
[︀
1 𝑅𝐿 −𝑅0 −𝑅0𝑅𝐿

]︀⊺
=

[︀
1 −1 −𝑅0 𝑅0

]︀⊺
(46)
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holding scalar boundaries 𝑅0 and 𝑅𝐿 = −1. It may be
observed from (44)-(46) that the interleaved zeros charac-
terizing vectors c𝑁 and d𝑁 carries over to the coefficient
vector A𝑁 . Further, since by (34) 𝑐0 = 1, the first element
of A𝑁 is 𝑎0 = 1 and the last element is 𝑎2(𝑁+1) = 𝑅0 so
that the structure of the length 2𝑁 +3 coefficient vector is

A𝑁 =
[︀
1 0 𝑎2 . . . 0 𝑎2𝑁 0 𝑅0

]︀⊺
. (47)

Equation (43) shows that for 𝑀 cylindrical sections and
𝑁 = 𝑀 − 1 junctions using scalar boundaries 𝑅0 and
𝑅𝐿 = −1, the transfer function 𝐻𝐿(𝑧) is of order 2(𝑁+1)
and, save a scalar with pure delay in the numerator (42), an
all-pole filter consistent with the assumption made in LPC
of speech [4]. In fact, for cylindrical sections with sim-
plified scalar boundaries, the coefficient vector A𝑁 cor-
responds (save rounding error) to the autoregressive pre-
dictor coefficients estimated directly from the impulse re-
sponse of 𝐻𝐿(𝑧) by LPC when the order is 2(𝑁 + 1)
(and the unknown glottal flow and true boundary losses
do not contribute to the observed signal and complicate the
prediction—see Appendix 1).

Figure 6. A scalar boundary loss, 𝑅0 = 0.8 and 𝑅𝐿 = −1
produces a symmetry in the half-bandwidth of the fre-
quency response magnitude.

Factoring A𝑁 for the scalar loss case show poles that are
symmetric about the unit circle and a corresponding sym-
metry in the quarter-bandwidth (sampling rate divided by
four) of the frequency response magnitude, as seen in Fig-
ure 6 for area functions of the vowel sound “aa” [11].

4.2 𝐻𝐿(𝑧) for Frequency-Dependent Boundaries

In more practical applications of voice modeling, though
the reflection at the glottis can often be approximated by a
scalar, the reflection at the mouth is better modeled by ac-
counting for frequency-dependent loss. Borrowing from
work in which waveguide elements are estimated from
measurement [12] and in which the open-end reflection of
a cylindrical tube was shown to be very close to theoretical
expectation [13], it was found here that a cascade of two
first-order shelf filters, producing a second-order-section
(SOS) and having the form

𝑅𝐿(𝑧) =
𝐵𝐿(𝑧)

𝐴𝐿(𝑧)
= − (𝑏𝐿)0 + (𝑏𝐿)1𝑧

−1 + (𝑏𝐿)2𝑧
−2

1 + (𝑎𝐿)1𝑧−1 + (𝑎𝐿)2𝑧−2
,

(48)

with coefficient vectors

B𝐿 =
[︀
(𝑏𝐿)0 (𝑏𝐿)1 (𝑏𝐿)2

]︀
A𝐿 =

[︀
(𝑎𝐿)0 (𝑎𝐿)1 (𝑎𝐿)2

]︀
, (49)

and with a transition frequency of 𝜔𝑡 = 𝑐/𝑟𝑀 , as shown
in Figure 7, produced a very good fit. With the assumption
that the transmission is the amplitude complement of the
lip reflection (26), it may be given here by

𝑇𝐿(𝑧) = 1 +𝑅𝐿(𝑧) =
𝐴𝐿(𝑧) +𝐵𝐿(𝑧)

𝐴𝐿(𝑧)
. (50)

Figure 7. A cascade of two first-order shelf filters, each
with band-edge gain of -10 dB, produces a second-order
filter having the form given in (48) and with transition
𝑓𝑡 = 𝑐/(2𝜋𝑟𝑀 ) Hz (blue). This modeled response pro-
duces a good fit to the theoretical response of an open-end
cylindrical tube having radius 𝑟𝑀 , the radius of the final
cylindrical section when the vocal tract model is config-
ured to the vowel sound “aa” (red).

Substituting (48) and (50) into (41) yields the vocal
tract transfer function tapped at the lips with frequency-
dependent boundaries (denoted by .̂):

�̂�𝐿(𝑧)=
𝑇𝐿(𝑧)𝑧

−(𝑁+1)
∏︀𝑁

𝑚=1(1 + 𝑘𝑚)

𝐾1,1+𝐾1,2
𝐵𝐿(𝑧)

𝐴𝐿(𝑧)
−𝑅0

(︂
𝐾2,1+𝐾2,2

𝐵𝐿(𝑧)

𝐴𝐿(𝑧)

)︂
𝑧−2

=
�̂�(𝑧)

𝐴(𝑧)
, (51)

where the numerator as a polynomial in 𝑧 is given by

�̂�(𝑧) = (𝐴𝐿(𝑧) +𝐵𝐿(𝑧))𝑧
−(𝑁+1)

𝑁∏︁
𝑚=1

(1 + 𝑘𝑚)

=
(︀
𝑏0 + 𝑏1𝑧

−1 + 𝑏2𝑧
−2

)︀
𝑧−(𝑁+1)

𝑁∏︁
𝑚=1

(1 + 𝑘𝑚),

having coefficients obtained by summing vectors in (49),[︀
𝑏0 𝑏1 𝑏2

]︀
= A𝐿 +B𝐿, (52)

and showing an introduction of zeros into the all-pole
transfer function 𝐻𝐿(𝑧) given in (41) for scalar bound-
aries. The denominator of (51) as a polynomial in 𝑧 is
given by

𝐴(𝑧) = 𝐾1,1𝐴𝐿(𝑧) +𝐾1,2𝐵𝐿(𝑧)−
𝑅0 (𝐾2,1𝐴𝐿(𝑧) +𝐾2,2𝐵𝐿(𝑧)) 𝑧

−2

= �̂�0𝑧
−0 + �̂�1𝑧

−1 + · · ·+ �̂�2(𝑁+2)𝑧
−2(𝑁+2),

(53)
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showing polynomial multiplication terms that require
(acyclic) convolution of coefficients to produce coefficient
vector Â𝑁 which, in matrix form, is given by

Â𝑁 =
[︀
�̂�0 �̂�1 �̂�2 . . . �̂�2(𝑁+2)

]︀
=

⎡⎣ C𝑁

0 0 0 0
0 0 0 0

⎤⎦ R̂0 +

⎡⎣0 0 0 0
C𝑁

0 0 0 0

⎤⎦ R̂1 +

⎡⎣0 0 0 0
0 0 0 0
C𝑁

⎤⎦ R̂2,

(54)

where C𝑁 from (45) is extended by two rows of zeros to
accommodate the convolution length (2𝑁+3)+2 (the sum
of C𝑁 column length and 𝑅𝐿(𝑧) coefficient vector length
minus one) and the downward shift of one row for each
subsequent term in the sum. Equation (54) also requires
a modification of the scalar boundary vector in (46) so it
holds coefficients of 𝑅𝐿(𝑧) for corresponding 𝑛th-order
terms as indicated by the subscript 𝑛:

R̂𝑛 =
[︀
(𝑎𝐿)𝑛 (𝑏𝐿)𝑛 −(𝑎𝐿)𝑛𝑅0 −(𝑏𝐿)𝑛𝑅0

]︀⊺
.

(55)
Finally, in addition to being two elements longer than A𝑁 ,
it is, perhaps, worthwhile to note that the coefficient vector
Â𝑁 no longer has the structure of interleaved zeros for
odd-ordered terms, and is a vector more typical of an LPC
estimation from an actual recorded speech signal.

5. DISCUSSION AND CONCLUSIONS

As mentioned in Section 4 and Appendix 1, the coefficient
vector A𝑁 corresponds to the linear prediction coefficients
estimated from the impulse response of 𝐻𝐿(𝑧) if the LPC
order is 2(𝑁 + 1). If, on the other hand, the LPC esti-
mation is on the impulse response of �̂�𝐿(𝑧) and, corre-
spondingly, the order is increased to 2(𝑁 + 2), the order
of Â𝑁 , the estimated coefficients will not accurately cor-
respond to Â𝑁 since the assumption of an all-pole filter
no longer holds. Though an increased order creates a bet-
ter fit, this also introduces computational cost and, more
significantly, impedes the inverse problem by placing the
burden of representing losses on an increased number of
reflection coefficients 𝑘𝑚, thus reducing their correlation
to vocal tract length and cross-sectional area (parameters
frequently estimated from LPC coefficients).

Another way of comparing the LPC estimation to the
piecewise cylindrical waveguide model is by testing its
(in)accuracy in the inverse problem of source-filter sep-
aration and glottal flow estimation. Though a rigorous
treatment is beyond the scope of this work, a prelimi-
nary attempt at separating a model [8] generated volume
flow (source) from the vocal tract model 𝐻𝐿(𝑧) presented
herein (filter), can provide some insight into the role of
the boundaries. Consistent with expectation, as shown
in Figure 9, the inverse filter constructed with LPC esti-
mated coefficients produces a signal (middle) that is closer
to the signal produced by the inverse of �̂�𝐿 without the
transmission filter 𝑇𝐿(𝑧) (bottom), a signal known as the
flow derivative, frequently estimated and fit to the well-
known parametric LF source model [14, 15]). When this
flow derivative is passed through an inverse lip radiation
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Figure 8. Coefficient vector Â𝑧 and same-order LPC esti-
mation from the impulse response of �̂�𝐿(𝑧) (top) and cor-
responding frequency response magnitudes (bottom).

(derivative) filter 𝐿(𝑧) = 1 − 𝑑𝑧−1, where 𝑑 is close
to one ( [6, 16]), the resulting signal (Figure 10, mid-
dle) is effectively integrated and shows a closer fit to the
original volume flow (Figure 10, top), strongly suggesting
that an accurate (acoustically-informed) lip reflection with
amplitude-complementary transmission, may improve the
problem of source estimation.

6. APPENDIX 1

For the transfer function

𝐻𝐿(𝑧) =
𝑌𝐿(𝑧)

𝑋(𝑧)
=

𝑧−(𝑁+1)
∏︀𝑁

𝑚=1(1 + 𝑘𝑚)

1 +
∑︀2(𝑁+1)

𝑖=1 𝑎𝑖𝑧−𝑖
, (56)

the difference equation is given by the inverse 𝑧-transform
to yield output 𝑦(𝑛) at time sample 𝑛:

𝑦(𝑛) =
𝑁∏︁

𝑚=1

(1+𝑘𝑚)𝑥(𝑛− (𝑁 +1))−
2(𝑁+1)∑︁

𝑖=1

𝑎𝑖𝑦(𝑛− 𝑖).

(57)
The impulse response ℎ(𝑛) is the output in response to an
input that is the unit step function 𝑥(𝑛) = 𝑢(𝑛) which, by
definition, has a non-zero value only when 𝑛 = 𝑁 + 1,
yielding

ℎ(𝑛) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, for 𝑛 < 𝑁 + 1
𝑁∏︁

𝑚=1

(1 + 𝑘𝑚), for 𝑛 = 𝑁 + 1

−
2(𝑁+1)∑︁

𝑖=1

𝑎𝑖ℎ(𝑛− 𝑖), for 𝑛 > 𝑁 + 1.

(58)

In linear prediction, future values of a discrete-time sig-
nal are estimated as a linear function of previous samples,
a model that may be represented by an expression that is
very similar to the final case of (58) where the impulse re-
sponse ℎ(𝑛) is defined for 𝑛 > 𝑁 + 1 (an actual model
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Figure 9. Known model glottal flow (top); signal from in-
verse filter with LPC estimated coefficients (middle); sig-
nal from 1/�̂�𝐿(𝑧) without transmission 𝑇𝐿(𝑧) (bottom).
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Figure 10. Known model glottal flow (top); signal from
inverse filter with LPC estimated coefficients with the in-
verse of a lip radiation filter 1/𝐿(𝑧) (middle); signal from
1/�̂�𝐿(𝑧) without transmission 𝑇𝐿(𝑧) (bottom).

would also account for prediction error). In practice, for
a sufficiently long ℎ(𝑛), one with enough samples that the
infinite impulse response is allowed to decay very close to
zero, the estimation of coefficients corresponding to A𝑁

may be made with negligible error.
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ABSTRACT 
The paper illustrates my compositional research aimed at 
the creation of musical works distinguished by the 
integration of computer, electronic and electroacoustic 
systems with instruments, or other acoustic-mechanical 
vibrating bodies, for the augmentation of musical sound 
and gesture through the feedback phenomenon.  

The use of acoustic phenomena for compositional 
purposes, such as resonance, reflection, feedback, is part 
of a research area exploring the possibility of a tangible 
acoustic presence in the listening space.  

The first part of the paper deals with historical and 
aesthetic considerations concerning on the creative use of 
feedback in music. Some previous research on augmented 
instruments embedding feedback systems is then 
presented. These studies have been carried out since the 
1990s by the CRM - Centro Ricerche Musicali in Rome, 
where I designed and built my works and related systems. 

The paper then focuses on my recent feedback 
augmented instrument ResoFlute, designed for the work 
Èleghos, for augmented flute, resonant pipe, and 
electronics (2014), and Feedback for Two, for 2 voices, 2 
megaphones, and 2 feedback systems (2016-2018). 

1. THE AESTHETICS OF FEEDBACK 
The word “feedback” indicates a wide category of 
phenomena characterized by the effect of the action of a 
dynamic system on the system itself, up to the point of 
modifying its results. Feedback is used not only in 
electronics and computer science, but also in many other 
fields, such as biology, neurology, psychology, linguistics, 
acoustics, music. Feedback is essential in all traditional 
musical applications, from instrumental practice, 
including performance, interpretation, and improvisation, 
up to composition.  

In the compositional field, the feedback was intended 
and produced in different ways, in the analogue and digital 
domain, starting from the temporal control of musical 
sound, up to signal processing. In Solo (1966) by 
Karlheinz Stockhausen, and in I Am Sitting in a Room 
(1969) by Alvin Lucier, for example, main compositional 

process consists of two different feedback systems based 
on tape delay, whereas in Post-prae-ludium per Donau 
(1987) by Luigi Nono, feedback delays are used in 
different types of digital algorithms, to create both 
polyphonic structures and sound processing. In art music, 
from the 1960s onwards, several composers have been 
able to use the principle of controlled audio feedback in 
their works, using generic or specific electroacoustic 
systems, often in conjunction with computer systems in 
more recent works. Examples of historical and recent 
compositions include, among others: Electronic Music for 
Piano (1964) by John Cage; Pendulum Music (1968) by 
Steve Reich; Microphone (1973) by David Tudor, Pea 
Soup (1974) by Nicolas Collins, Bird and Person Dyning 
(1975) and Empty Vessels (1997) by Alvin Lucier, Wings 
(2007-08) by Cathy van Eck, the cycle Modi di 
interferenza (2006-2010) by Agostino Di Scipio.  

The development of computer systems has made 
possible the implementation of mathematical models for 
the composition of sound and music. Xenakis’ insights 
into the application of the Gabor’s model on the 
elementary acoustic signal, for example, bring the 
morphological correspondences of sounds with natural 
processes into music. Such correspondences are possible 
through the creative application of physical and 
mathematical theories, such as the kinetic theory of gases, 
or statistical theories, whose calculations require the use of 
computers [1]. The computer allows to create models or 
processes of dynamic composition of music, both in terms 
of sound and structural relationships between sounds. The 
computer becomes a real thinking 'tool', capable of 
establishing a feedback fast enough to ensure dynamic 
interaction between man and machine [2]. Feedback 
techniques are now often used for the implementation of 
self-generating systems, up to the most recent creation of 
music with adaptive features, as in the work of 
Michelangelo Lupone [3, 4]. Adaptivity is in fact possible 
when the system can store previous states and to react to 
external stimuli based on the content stored in the memory.  

The interest of researchers and composers in the 
production and processing of sound, first analog and then 
digital, leads to the use of feedback for the implementation 
of filters and delays, at the basis of many complex digital 
algorithms. The use of feedback in audio digital processing 
also includes synthesis by physical models, developed 
between the 80s and 90s. See, for example: J. O. Smith and 
P. Cook's studies at Stanford University's CCRMA; 
Modalys, physical modeling synthesis program developed 
at IRCAM; Physical modelling synthesis of bowed strings, 
by L. Seno e M. Palumbi, developed at CRM-Centro 
Ricerche Musicali [5, 6].  
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Research was aimed not only at imitating instrumental 
sound, but above all at its reinvention, to create new virtual 
models. Therefore, also in this case, "speed" is 
fundamental, because allows the computer to perform 
calculations fast enough to simulate "real time" and, with 
suitable control tools, allows the user to "play the 
machine" as a musical instrument. The creation of virtual 
instruments is therefore also connected to the production 
of specific controllers, or interfaces for controlling digital 
algorithms. The interfaces are ergonomically designed to 
achieve speed and precision for calibrated data processing, 
as well as comfort and naturalness of gesture for 
expressive music performance. Research on the 
improvement of tactile feedback, by using force-feedback 
on haptic technologies, aims to make the gesture musically 
effective, bringing it closer to the gesture used on 
traditional instruments. A category of interfaces, called 
"hyperinstruments", picks up the articulatory 
characteristics of the instrumental gesture directly on the 
instrument itself, during performance. Some 
hyperinstruments are, for example: MIT's Media Lab 
Hyperstring Project (1990-93); STEIM Overtone Violin 
(2004); IRCAM Augmented Violin (2003-2006); InfoMus 
Lab Iperviolino (2008); STEIM Meta-trumpet (1994) 
Softwind MIDI Synthophone (1986); McGill University’s 
CIRMMT Hyper-flute (1999); ICST SABRe-Sens or 
Augmented Bass Clarinet Research (2012); KMH of 
Stockholm’s Hyper-Hurdy-Gurdy (2015); CCRMA’s 
Hybrid Lutheries Project (2018). To enable the performer 
himself to control the electronic part, sensors are applied 
inside, above, and around the instrument, or on the body 
of the performer. The sensors detect the gestures normally 
used to play, or the ancillary gestures that occur while 
playing, or even additional utilitarian gestures, specifically 
identified by the composer. The ergonomic and 
technological choices of the type of control or sensor, the 
decoding of the data and the mapping of the parameters, 
contribute to the expressive characterization of the music. 
The gesture can be considered in an ergonomic / 
instrumental context, if linked to physiology, or a 
compositional / musical context, if linked to sound. The 
difficulty of playing an instrument is directly proportional 
to the possibility of the instrument itself to respond 
appropriately to the complexity of our physical system. 
However, the extension of the "gesture" does not 
completely solve the augmentation of the instrument, 
which uses computer and electro-acoustic technologies 
inside its vibrating body, to increase generation, 
processing, and diffusion of the sound. The substantial 
dissociation between the production of sound and music 
and its propagation is a condition common to a large part 
of electroacoustic music production. In music for 
instruments and live electronics, the sound diffused by the 
loudspeakers remains unrelated to the instrumental sound, 
even with respect to perceptual identification in the space 
of its diffusion. Electronic sound, whether instrumental, 
concrete, synthetic, or processed, is perceived as 
'disembodied', because it is presented in a 'virtual' context, 

                                                           
1 Feedback is defined as negative when output attenuation and system 
stabilization occurs. 

separated from the perceptual reference of the body that 
causes, generates, and spreads acoustic vibrations. The 
dissociation between the generation of music and its 
propagation in the space of performance is common to 
many contemporary music, from the first works of 
acousmatic music to the so-called "liquid music". The 
need to restore the close connection between the vibrating 
body and the related acoustic phenomena is intertwined 
with the aesthetic need to manipulate the sound material. 
The research area dealing with augmented instruments has 
a strong point in the integration of electro-acoustic and 
digital technologies to the mechanical structure of the 
acoustic instrument [7]. 

Feedback has been widely studied and implemented by 
both researchers and electronic component industries, for 
example in operational amplifiers and in power amplifiers 
(negative feedback)1, or in oscillating circuits (positive 
feedback)2, which were the basis to produce many 
electronic instruments and sound processing systems. 
Some of these are, for example: Synket, o Syn-ket, o 
Synthesiser-Ketoff, by Paolo Ketoff, (1963); Moog, o 
Moog Synthesiser, by Robert Moog (1964); Chua 
oscillator, o Chua circuit, by Leon O. Chua (1983).  

The instrumental sound comes from the close interaction 
between exciter, resonator, and radiator. In “solid body” 
electric guitars and violins, the contribution of the sound 
box is replaced by an analogue or digital sound processing 
system and by an electroacoustic amplification system. 
The first electric guitar, called "frying pan", by Georges 
Beauchamp (1934), produced by Adolf Rickenbacker, was 
immediately followed by the production of "solid body" 
guitars, such as the Telecaster and Stratocaster models by 
Fender, or Les Paul by Gibson, introduced in the 1950s and 
still in production; the first electric violin prototypes were 
mainly acoustic instruments with contact microphones 
inside the sound box, such as the Giant-Tone Radio Violin 
by R.F. Starzl (1927), or electromagnetic pickups placed 
under the bridge, often without a sound box, as VioLectric, 
by Fredray H. Kislingbury (1939). Traditional sound box 
amplification is the cause of "annoying" feedback and its 
elimination allows the sound of the strings to be picked up 
directly, making the system much more stable. The 
acoustic phenomenon known as "Larsen effect"3 is in fact 
considered an unwanted "accident", to be avoided, or 
minimized, through the production and use of specific 
hw/sw technologies, especially in the professional audio 
sector [7].  

In the 1960s, Jimi Hendrix also produced feedback for 
expressive purposes by bringing the pickups of the electric 
guitar closer to the amplifier cone, consolidating a musical 
practice that was spreading into rock and jazz, and more 
generally into the context of pop music. The need to 
prolong the sound, has also stimulated the development of 
several inventions, some of which use feedback, as well as 
other properties of electromagnets. Some experiments 
were done on the piano, resulting in early prototypes, such 
as: Electrophonischen Apparat (1886) by Richard 
Eisenmann; Electrochord and Neo-Bechstein, by Oskar 

2 Feedback is defined as positive when output increases exponentially, up 
to the instability of the system. 
3 Positive feedback discovered by Søren Absalon Larsen (1871–1957). 
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Vierling in the 30s, at Heinrich Hertz Institute in Berlin. 
Some research was also done on the electric guitar, 
resulting in some prototypes still used today, such as: E-
Bow (1969) by Greg Heet; Guitar resonator, of Vibesware 
Company, Fernandes system, patented in the 90s; Moog 
Guitar (2008) by Paul Vo. An important step in the 
research on augmented instruments was given by the 
possibility of implementing audio feedback in 
combination with digital signal processing systems that 
allow, with appropriate signal conditioning, to modify the 
structure of the feedback and to manipulate the sound. See, 
for example: Metasaxophone, by Matthew Burtner, at 
Stanford University's CCRMA (1997); Magnetic 
Resonator Piano, by Andrew McPherson, at Centre for 
Digital Music of Queen’s Mary University of London 
(2010); Halldorophone, by Halldór Úlfarsson at EMuTe 
Lab - Experimental Music Technologies Lab, University 
of Sussex, UK (2018) [7].  

The use of controlled audio feedback for the creation of 
augmented instruments, and for the creation of original 
musical works, is part of a research area that has only 
recently taken on relevance in musical thought, resulting 
in several interesting inventions and various musical 
pieces, in many electronic music research and production 
centres [8, 9].  

Specific studies on feedback have been carried out also 
by CRM - Centro Ricerche Musicali in Rome, since the 
1990s. The research carried out by CRM is constantly 
guided by aesthetic principles and pursues the objective of 
creating works and technologies aimed at developing the 
musical language and creating an innovative artistic 
production, resulting from the constant interaction 
between scientific research and musical composition [10]. 

2. PREVIOUS RESEARCH AT CRM 
The restitution of a "corporeality" to sound and its ability 
to offer a "tangible" presence in the listening space is 
achieved through experiments on the vibrational 
properties of matter and other acoustic phenomena studied 
by the CRM of Rome since 1994.  

Many interactive and adaptive sound installations have 
been designed with waveguides, resonators, reflective 
screens, multiphonic systems, or with original 
technologies such as Holophones and Planophones®, both 
by Michelangelo Lupone.  

Holophones (CRM, 1998), sound projectors, are the first 
prototype of a multiphonic sound diffusion system 
provided with very accurate controls, which permit 
creative modulations of the wavefront. Holophone consist 
of a parabolic surface with a limited band loudspeaker in 
its focal point with controllable radiation angle. Based on 
plane waves emission, the Holophone is designed to 
ensure an accurate control of the soundwave movement 
and profile by appropriate regulation of the phase, 
amplitude, and frequency of the musical signal [11, 12]. 

Planephones® (CRM, 1996) are vibrating plates that 
allow exploiting the vibrational features of natural and 

                                                           
4 Silvia Lanzalone, Il suono incausato, improvise-action for suspended 
clarinet, clarinetist, and electronics. Editions Suvini Zerboni. Clarinetist 
Massimo Munari, Ivrea, Italy, 2005. 

synthetic materials, such as metals, wood, paper, glass, and 
their derivatives, with musical and plastic form. They can 
be considered both planar sound radiators that allow 
diffusion of plane waves, and instruments for sound 
elaboration and spatial diffusion when integrated into art 
sound installations [13]. 

These projects, together with previous studies on the 
physical model of the string [5, 6], have contributed to the 
development of research on augmented instruments 
produced at CRM, as well as to the deepening of my 
personal compositional research.  

 
2.1 Sculptures 
 
Experiments on resonant cavities and vibrating panels of 
different shapes and materials led me to create musical 
installations in collaboration with the visual artist Debora 
Mondovì, as part of a research started in 2005 on the 
sounds that can be produced with terracotta. Terracotta is 
extremely ductile and can be moulded into a variety of 
shapes using different techniques. The terracotta sculptural 
works have been designed considering the relationship 
between the material, the acoustic phenomenon, and the 
electroacoustic system, to achieve a complete integration 
between sculptural and musical form [14].  

Risonanze dalla Terra (2007), Terra delle Risonanze 
(2010) and Voci di Terra (2011) were designed to resonate 
at certain frequencies and consist of sculptural elements 
used as resonators, where amplification, or attenuation 
phenomena occur, according to the shape and the size of 
the cavities.  

Foglie di Terra e di Suono (2009) and Voci d’amore 
(2914) are instead made with terracotta panels of different 
sizes, shapes, and thicknesses, subjected to different 
cooking techniques. The different characteristics of the 
material and the different application of piezoceramic, or 
electromagnetic actuators, according to the Planofoni® 
technique, allows the creation of diversified sound 
elaboration and spatial diffusion, coherently with 
structures in terracotta. 

2.2 Instruments 

Specific applications of the resonance phenomenon on 
traditional acoustic instruments, gave rise to the 
production of three performative works, created from 2005 
to 2011. In these works, the design of the electroacoustic 
system involved in the processing and diffusion of sound 
was integrated into the traditional acoustic instrument, or 
a stylized version of it. 

In the work Il suono incausato4 the clarinet is deprived 
of the mouthpiece and has a loudspeaker inserted in a 
soundproof cone frustum, inserted at the barrel height. 
This device carries out the function of conveying sound 
and air, produced by the movement of the loudspeaker 
membrane inside the instrument. The sound to the 
loudspeaker is produced by a real time algorithm made 
with the software Max/MSP and controlled by the 
performer – the clarinetist – through a MIDI pedal. The 
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clarinet, thus modified, is suspended on a support, to give 
the clarinetist the possibility to "explore" the system, 
performing a gestural score. The score also indicates the 
gestures to be performed for the use of corks and trunks of 
cardboard or aluminum cones of different sizes, to be 
inserted respectively into the holes and into the bell, and 
of shims to be placed under the key levers [14, 15].  

In the work Voce5 the electronic part is performed 
through a structure made up of fifteen resonators, 
consisting of glass cavities of different shapes and sizes 
with fifteen small speakers, grouped on five stands. 
Resonators are selected to achieve the resonances of vowel 
sounds, and the signal processing algorithm emphasizes 
the resonances and creates further transformations 
consistent with the vocal sounds. The installation, called 
"glass choir", dialogues with the vocal performer, giving 
to the voice timbre an original and coherent sound 
characterization [14]. 

Clavecin électrique6 is a performative work produced 
following research into the acoustic and technical 
possibilities of the historical harpsichord, with the aim of 
enhancing its sound diffusion and increasing its range of 
timbres. The work involves the integration of eight 
resonant pipes of different sizes, tuned to the main 
formants of the instrument. The pipes are placed below the 
soundboard, with their radiating end close to the main 
radiation area of the instrument. The sound of the 
harpsichord emitted by the pipes after digital processing, 
is thus transmitted to the soundboard, causing the 
sympathetic vibration of some strings [16].  

The performative character common to the three works 
is developed in each of them according to different levels 
of freedom. The need to dramatize the gesture is implicit 
in the performance score for the new instrument. The 
performer can interact with the augmented instrument in 
an extemporaneous way, relating to the microstructural 
variations of the sound within the formal units; the timing, 
that is the choice of the duration of each formal unit; the 
management and morphology of theatrical actions. 

3. FEEDBACK INSTRUMENTS AT CRM  
Several prototypes of augmented instruments, realised 
with electroacoustic and computer systems in which the 
feedback phenomenon is involved, have been produced at 
the CRM laboratories: Feed-Drum®, SkinAct and 
WindBack, by Michelangelo Lupone; ResoFlute, by Silvia 
Lanzalone [7, 10]. 

The Feed-Drum®, designed in 1999 by Michelangelo 
Lupone for his work Gran Cassa (1999-2002), in order to 
explore the timbre during the bass drum attack phase and 
isolate its vibration modes by means of the membrane’s 
electronic conditioning system. The signal produced by an 
excited membrane is returned through a speaker which, 

                                                           
5 Silvia Lanzalone, Voce, for small choir of glass, female voice, and 
electronics. Editions Ars Publica. Voice Angelina Yershova, Rome, Italy, 
2006; Silvia Schiavoni, Rome, Italy, 2006. 
6 Silvia Lanzalone, Clavecin électrique, for harpsichord with resonant 
pipes and electronics. Editions Ars Publica. Harpsicord Giorgio 
Spolverini, Salerno, Italy, 2011; Rome, Italy, 2011. 
7 Silvia Lanzalone, Èleghos, for augmented flute, resonant pipe, and 
electronics (2014). First performance Festival ArteScienza 2014, 

taking advantage of the feedback principle can potentially 
generate everlasting sounds. The damping of membrane 
motion leads to sound decay. The input energy level can 
be dynamically adjusted, in order to isolate high vibration 
modes [7, 10, 17, 18]. 

The SkinAct is an augmented membrane instrument 
designed by Michelangelo Lupone for the work Spazio 
curvo (2012), which was included in the work Coup au 
Vent, for three SkinActs (2015). The instrument can 
produce long sounds by exciting the membrane of a bass 
drum in a vertical position. The skin puts a vibrational 
detector and different actuators in feedback condition [7, 
10, 18]. 

The WindBack, designed in 2011 by Michelangelo 
Lupone for his work In sordina (2011), is a saxophone 
modified by applying a loudspeaker in front of the bell and 
a miniature microphone placed near the mouth. The 
loudspeaker sends the sound of the instrument picked up 
by the microphone inside the instrument itself, causing 
acoustic feedback. The internal resonances allow the 
feedback to be tuned, and to modify its timbre in relation 
to the position of the keys [7, 10, 19]. 

3.1 ResoFlute 

The personal research on the augmentation of the 
traditional instruments continues, between 2014 and 2018, 
with the production of two more performative works, in 
which the focus shifts to the musical and expressive 
properties of acoustic feedback.  

ResoFlute, augmented instrument designed by myself 
for the work Èleghos7, is a classical transverse Western 
concert flute, modified through the application of six 
miniature microphones inside the body of the instrument, 
a sensor, some control pedals, and an aluminum pipe for 
sound diffusion and resonance [Fig 1]. A miniature 
microphone is applied internally to the instrument’s 
headjoint, instead of the traditional cork, and five other 
electret miniature microphones are placed on the body, 
making holes in the pipe according to the position of 
certain keys8. The six microphones detect resonances and 
sound pressure variations that can be found in different 
parts of the flute opening and closing the different keys. 
The body of the instrument also features a piezo-film 
sensor, used for detecting the position of the right-hand 
thumb, which is normally used by the flautist just to hold 
the instrument. The piezo-film signal is used via threshold 
circuit to produce on-off commands that the performer 
generates moving the right-hand thumb according to the 
score. The flute player also uses MIDI foot controls 
featuring Control Change and Program Change messages 
to activate certain sound processing according to the score.  
The sound of the traditional instrument is ‘augmented’ not 
only using microphones, but also through a digital signal 
processing algorithm and by the aluminum pipe. The latter 

Giardini dell'Accademia Filarmonica Romana, Rome, Italy, 06.07.2014. 
Flutist: Gianni Trovalusci. The previous version of the piece, entitled 
Studio su Èleghos was performed at the Auditorium of the University of 
Rome "Tor Vergata", Rome, Italy, 18.06.2014. 
8 The project on microphones was undertaken with the participation of 
Antonio Marra, audio technician and flute repair specialist. 
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not only diffuses the sound of the flute, but also filters it to 
enhance frequencies corresponding to its normal modes. 
The aluminum pipe mainly allows, thanks to its resonances 
and radiation directivity, to obtain controlled feedback and 
to tune the instrument without insufflation. The resonant 
aluminium pipe, 10 cm diameter and 180 cm length, is 
mounted inside a wooden case featuring the speaker and a 
second cabinet containing other electronic devices, 
including a power amplifier. The speaker is connected to 
the pipe through a conical joint, which enhances acoustic 
power effectiveness. 

The algorithm, implemented with Max/MSP, consists of 
two banks of resonant filters ‘tuned’ on the pitches of the 
instrument. The microphone signal is analysed to extract 
amplitude and pitch envelopes, while the piezo film sensor 
signal is analysed to extract the amplitude peaks. Between 
the two filter banks are placed an FM synthesis process, a 
comb filter, and a modulation by means of a noise 
generator, all regulated by the analysis values. A 
compression algorithm is used to control acoustic 
feedback between the pipe and the microphones placed 
into the flute. 

 
Figure 1. ResoFlute scheme. 

 
Therefore, the entire system comprises an electroacoustic 
system for controlled feedback and digital algorithms for 
for generation and real-time processing of flute and 
feedback sounds. Feedback depends on resonant pipe 
features, responsible for sound diffusion, and on flutist 
position relative to the pipe. Feedback is produced and 

                                                           
9 The first phase of the project was included in the “Make Your Idea 
2017” programme, dedicated to the development of new projects in the 
Lazio Region’s FabLab network. 
10 Silvia Lanzalone, Feedback for Two, for 2 voices, 2 megaphones and 
2 feedback systems (2016-2018). First version: EmuFest 2016, Rome 

'tuned' by specific gestures of the flutist, who modifies the 
sounds by moving the flute closer or further away from the 
pipe. The system has been designed to achieve maximum 
integration and balance between the natural sounds of the 
instrument and the electronic processing, both in terms of 
spectral and spatial diffusion [7, 10, 19].  

The ResoFlute project is still under development for the 
construction of a new prototype, in collaboration with the 
architect and designer Emanuela Mentuccia9. The new 
prototype includes a system of wireless microphones and 
sensors inserted in a removable and easy-to-use structure, 
with a functional and non-invasive design, that can be 
applied to the traditional transverse flute without drilling 
holes or altering its structure. 
 

 
 
Figure 2. Gianni Trovalusci plays ResoFlute. Roma, 2014. 

4. FEEDBACK FOR TWO 
Feedback for Two, composed between 2016 and 201810, 
experiments the possible relationships between two voices 
and two feedback systems, using two megaphones. The 
two megaphones are configured to process voice sounds 
and are placed at the center of two feedback processes, 
involving several transducers, internal and external to the 
same megaphones.  

The typical exponential shape of the megaphone is a 
characteristic of horn loudspeakers, whose feature to adapt 
the acoustic impedance between the transducer and the 
surrounding air makes it possible to achieve a high-power 

Conservatoire of Music ‘S. Cecilia’, 27.10.2016. Final version: Festival 
ArteScienza 2018, Auditorium “Parco della Musica” of Rome, 
14.09.2018. Voices and megaphones, Eleonora Claps and Virginia 
Guidi. Scene and lighting design Emanuela Mentuccia. 
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output. The use of the exponential horn for voice 
amplification, already practiced in Greece in the sixth 
century BC, is found among the inventions of Athanasius 
Kircher, a German Jesuit and scientist of the 17th century. 
Horn shape has always been used for acoustic 
amplification and was integrated in many inventions for 
sound reproduction in the late 19th and early 20th century. 
The horn was inserted, for example, into various models 
of phonographs (Thomas Edison, 1877), of graphophones 
(Chichester Bell and Charles S. Tainter, 1885), and 
gramophones (Emile Berliner, 1887), to help amplification 
of the reproduced sound. In 1899, J.M. Augustus Stroh 
patented a violin amplified by a mechanical system 
consisting of an elastic membrane and a horn, like those of 
the first mechanical phonographs and gramophones of the 
time, with the aim of being able to record the sound with 
sufficient volume. The instrument does not need a sound 
box but is composed of all the other parts of the violin, 
with the vibrating membrane placed near the bridge. This 
invention was later applied to other stringed instruments, 
including the viola, mandolin, and guitar, but was destined 
to disappear from the 1930s onwards, when recording by 
electric amplification became widespread [7]. In the 
Futurist Manifesto L'arte dei Rumori (The Art of Noises) 
of 1013, Luigi Russolo describes the “intonarumori”, the 
instruments he created, all characterised by the presence of 
acoustic horns, whose purpose is to amplify the sound11 
[20]. Stroh's violin and Luigi Russolo's "intonarumori" are 
among the first examples of the implementation of the 
acoustic horn for musical purposes, outside the traditional 
musical instruments. In July 1951 Shitetsu Kamimori 
registered the patent for the "electric megaphone", a 
prototype of an electroacoustic megaphone with shape and 
technical characteristics like the current one12.  

The electric megaphone is functional for remote voice 
amplification and is normally considered as a "closed" 
system, not to be used in a traditional musical context. In 
the 1960s, however, the megaphone began to be used in 
original musical works, mostly experimental, and 
especially together with other instruments, although with 
a marginal role. Ligeti's works Aventures, for three singers 
and seven instrumentalists (1962), involves the use of 3 
megaphones for the amplification of a single long sound 
of the voices that mixes with the sound of the ensemble. 
Kagel's work Acustica, for experimental sound generators 
and loudspeakers, composed between 1968 and 1970, 
involves 2 to 5 performers and uses many objects, recycled 
or self-made, some traditional instruments, such as a 
trumpet, a trombone, a violin, and various technologies for 

                                                           
11 <<Gli intonarumori hanno esternamente la forma di una scatola più o 
meno grande a base generalmente rettangolare. Dal lato anteriore esce 
una tromba che serve a raccogliere e rafforzare il suono-rumore.>> (Luigi 
Russolo, 1913) [20]. Translation: <<The “intonarumori” have externally 
the shape of a more or less large box with a generally rectangular base. 
From the front side comes out a horn that serves to collect and strengthen 
the sound-noise>>. 
12 Official Gazette of the United States Patent Office, Volume 687, Octo-
ber 26, 1954. Shitetsu Kamimori's patent is dated July 13, 1951, and has 
serial number 236,498. 
13 The score indicates that megaphones must be “Velleman M25 SFM” 
(ed. Edition·S – music¬sound¬art Copenhagen, DK).   

recording, reproduction, and sound amplification, such as 
turntables, microphones, speakers, including megaphones.  

The use of the megaphone for musical composition in 
more recent times is still quite rare. There are very few 
works that include the megaphone in the ensemble, 
however always together with traditional instruments and 
with a coloristic function. In the work Dead City Radio. 
Audiodrome, for orchestra (2003), Fausto Romitelli uses 
the megaphone to amplify the voice of the percussionists. 
A recent attempt to bring the essential, almost sinusoidal 
timbre of the feedback that can be produced with the 
megaphone, into dialogue with instrumental sound, was 
made by Simon Steen-Andersen in 2008, with the work On 
And Off And To And Fro, for vibraphone, saxophone/Eb 
clarinet, double bass/cello and three players with 
megaphones. The work includes an electric megaphone 
model with a mobile microphone13 for the pitch of acoustic 
feedback. The score provides detailed instructions on the 
placement of megaphones to amplify the instruments, or to 
produce the desired feedback. 

The first work in which the megaphone plays a “solo” 
role seems to be Solo per megafono, by Giuseppe Chiari, 
whose score reads, in perfect "fluxus" style, <<suonare 
liberamente>>14, without any other indication. The 
performances of Solo per megafono which took place in 
'68 in Palermo and Florence, seem to have been of 
considerable influence15 [21]. In 2009 Alessio Rossato 
produced a work for megaphone quartet and conductor, 
entitled Omaggio a Giuseppe Chiari16. In the quartet, the 
fluxus approach is taken up in a structured way through 
specific indications in the score with respect to "sound 
acts" (irregular rhythms with the power button, 
whispering, breathing noisily, provoking feedback with 
the mouth next to the microphone), “gestural acts” (frontal 
motionless, turning left and right, megaphone up, turning 
around oneself) and other directions for playing with 
megaphones17. 

In my work Feedback for Two, I have chosen to use the 
megaphone as an "instrument" for musical performance, to 
take advantage of its electroacoustic and ergonomic 
characteristics for the controlled management of feedback 
in the air. The high acoustic efficiency of the megaphone 
allows to achieve, with minimally invasive components, a 
significant amplification at medium-high frequencies, 
easily to control for the management of the feedback 
phenomenon. The remarkable directivity of the sound 
radiation allows a very detailed selection of the feedback 
triggering space. Furthermore, the megaphone is already 
ergonomically optimized, not only to be held with one 

14  Translated: <<To play freely>>. The score Solo per megafono (1968) 
is published in G. Chiari, Musica Madre, Giampaolo Prearo Editore, Mi-
lan 1973-2000, together with Solo per clarinetto (1964). Another “solo” 
by G. Chiari is Solo per tromba, Florence 1998, self-published. See: 
Mario Chiari, Fabio Migliorati, Giuseppe Chiari, una bibliografia, 
http://www.giuseppechiari.eu/. 
15 The score of Solo per megafono was previously included in the collec-
tion of G. Chiari entitled La strada, per objects, instruments, 1965 [21]. 
16 A. Rossato has performed / interpreted Solo per megaphone by G. 
Chiari on several occasions, starting from 2009. 
17 Another piece by A. Rossato in which the megaphone is included in a 
mixed ensemble is Ancient dark scarecrow, for piano with carillon, 4 
puppets, soprano with gong, speaking voice with megaphone and resona-
tor, live electronics and 8 digitised tapes (2007). 
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hand and moved according to the acoustic space, but also 
to be manually activated and adjusted via a switch and a 
potentiometer. These features were very useful for 
controlling feedback in the air during the performative 
action required in the piece. 

The megaphone model used in Feedback for Two has a 
power output of 10 Watts RMS, a receive range of about 
500 meters and a weight light enough to play without 
excessive wrist fatigue18. The technical adjustments to the 
megaphones were the exclusion of the original 
microphone, which is band-limited and placed in a fixed 
cabinet behind the horn, to avoid feedback. The 
application, in place of the original microphone, of a 
professional miniature microphone with omnidirectional 
characteristics inserted directly into the horn, required a 
slight acoustic correction. Sound-absorbing material was 
in fact placed at the points of maximum acoustic 
efficiency, where the reflections on the horn walls 
emphasize the feedback, making it unstable. Each 
megaphone system has two feedback chains: the first 
between microphone and megaphone and the second 
between megaphone and loudspeaker.  

The first of the two feedback in each of the two systems 
used by the two vocal performers, takes place between the 
omnidirectional miniature microphone19 and the 
loudspeaker of the megaphone. The second feedback 
involves a second directional miniature headset 
microphone20, placed in front of each performer’s mouth. 
A third feedback occurs between one of the two 
microphones - the megaphone microphone, or the 
performer’s microphone - and one or more loudspeakers, 
in a different way during the piece, according to the score. 
The speakers used have high directivity21 and were placed 
in the middle of the stage, at eye level and behind the stage 
action, to allow the performers to approach and trigger the 
controlled feedback required by the score. The speakers 
contribute to the activation of the feedback and have the 
function of spreading the sound in the hall, so the work is 
self-sufficient in terms of its diffusion in the listening 
space22. Megaphones are also a very efficient acoustic 
source, if suitably pointed towards the audience by the two 
performers, as happens in some points of the work. Each 
described feedback is subjected to different signal 
processing within the feedback loop, with a latency of 
about 12 milliseconds. The live electronics algorithm, 
implemented with Max/MSP and controlled by the 
performer at computer, is composed of different 
processing stages, including compressors, delay with 
feedback, resonant filters, pitch detectors and pitch shift. 
Digital processing of the feedback signal is fundamental, 
not only for its dynamic control, but also to be able to 
obtain as many timbre variations as possible, such as 
harmonic tuned spectra, colored noise, short granular 
sounds, long glissando sounds, clusters with internal beats, 
and various other sounds. The performer at computer 
controls the feedback via software, but the complete sound 
processing take place in the space of the stage, in relation 
                                                           
18 The megaphone model was RCF MG 80 
19 DPA 4060 - Omnidirectional Miniature Microphone 
20 DPA 4088 - Directional Headset Microphone 
21 To preserve the stability of the feedback system I used specific 
loudspeakers with the following technical specifications: dispersion 

to the distances and positions of megaphones, 
microphones, loudspeakers and performers.  

The composition is based on the relationships between 
the two performers and the sound produced through the 
actions with the feedback systems, performed 
extemporaneously, but following the indications included 
in the score. The two performers must shape the sound of 
the feedback generated by the megaphone systems through 
their gestures on stage, in terms of amplitude, intonation, 
length of the feedback, but also in terms of musical 
expression and theatrical action. 

The composition is made according to musical structures 
created by theatrical actions aimed at representing 
different roles: a game, a challenge, a plot, a duel. The 
piece experiments with some possible relationships 
between voices and feedback systems. The two voices, 
sometimes in counterpoint, sometimes as soloists, 
intertwine, merge and blend, or resurface as solos from the 
electronic texture they have created. 
 

 
 
Figure 3. Eleonora Claps (left) and Virginia Guidi (right) 
perform Feedback for Two, by Silvia Lanzalone. 
Auditorium Parco della Musica, Rome, 2018. 

5. CONCLUSIONS 
The phenomenon of acoustic feedback is of particular 
interest for musical composition, as it is directly related to 
the physical, mechanical, and electrical characteristics of 
the electroacoustic components involved. The feedback 
phenomenon is particularly sensitive to micro-variations 
in its generation system, which can be modified by the 
interpreter, if integrated with the musical instrument. The 
unpredictability of the phenomenon given by the feedback 
must be properly controlled by the insertion of a signal 
processing algorithm appropriately calibrated on the basis 
of the characteristics of the specific instrument.  

The insertion of a feedback system within the 
electromechanical system of a musical instrument can give 
a strong originality to the sound. The timbral "vitality" of 

angle of about 60 degrees, efficiency of about 94 dB 1W / 1m, power of 
about 130W RMS. 
22 Depending on the size of the hall, the work may have two to four 
speakers of the same technical characteristics placed at a distance of at 
least 1.5 meters from each other. 
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the feedback depends on the variations that can be made 
on the system by the performer. In fact, the feedback 
system reacts with great adaptability to external stimuli, 
matching to significant sound changes as a result of small 
executive gestures. 

In this paper I tried to highlight how, in my work, the 
phenomenon of acoustic feedback, to be used in the 
compositional field as an autonomous system, requires an 
electroacoustic system to generate the positive feedback 
necessary to self-power the circuit. The implicit instability 
of the system, distinguished by an exponential and 
infinitely increasing sound result, requires the adaptive 
management of a complex set of parameters, some of 
which are entrusted to musical performance. 

Furthermore, the digital signal processing within the 
feedback loop, allows the use of a very varied but 
extremely sensitive timbre palette, because it depends on 
many variables, not only internal, but also external to the 
system. The performer is no longer a simple player of the 
instrument but is responsible for the correct sound 
production and transformation within a complex system. 
The complex feedback system opposes its action to 
continuously tend elsewhere, theoretically towards 
infinity, practically towards its own saturation point. This 
feature reinforces the performative gesture, renewing its 
expressiveness. 

6. REFERENCES 
[1] I. Xenakis, Musique. Architecture, Casterman, 

Tournai, Belgium, 1976. 
[2] G. M. Koenig, Genesi e forma. Origine e sviluppo 

dell’estetica musicale elettronica, Semar, Rome, 
Italy, 1995. 

[3] P. Inverardi, P Pelliccione, M. Lupone, A. Gabriele, 
“Ad-Opera: Music-inspired Self-adaptive System”, 
in Computation for Humanity: Information Technol-
ogy to Advance Society, edited by Justyna Zander, 
Pieter J Mosterman, CRC Press, 2012, pp. 361-379. 

[4] M. Lupone, L. Bianchini, S. Lanzalone, A. Gabriele, 
M. De Luca, “Struttura, creazione, interazione, 
evoluzione: la ricerca al CRM per la realizzazione di 
Forme Immateriali di Michelangelo Lupone”, in 
Proceedings of XXI CIM-Colloquio di Informatica 
musicale, Cagliari, Italy, 2016, pp.77-84.  

[5] M. Palumbi, L. Seno, “Physical modelling by directly 
solving wave PDE”, in Proceedings of ICMC-
International Computer Music Conference. Beijing, 
Republic of China, 1999, pp.325-328.  

[6] L. Seno “Modelli fisici e Strumenti musicali”, in 
Acustica Musicale e architettonica, edited by S. 
Cingolani, R. Spagnolo, UTET, Torino, Italy, 2005, 
pp 455-494. 

[7] S. Lanzalone, “Strumenti aumentati”, in Acustica. 
Fondamenti e applicazioni, a cura di R. Spagnolo, 
UTET, Torino, Italy, 2015, p.877-888. 

[8] E. F. Callery, E. K. Canfield-Dafilou, “Methods for 
Performing with Feedback in Virtual Acoustics”, in 

Proceedings of the 17th SMC-Sound and Music 
Computing Conference, Torino, Italy, 2020, pp.138-
144. 

[9] D. Sanfilippo, A. Valle, “Feedback Systems: An An-
alytical Framework”, Computer Music Journal, The 
MIT Press, Volume 37, Number 2, Summer 2013, 
pp.12-27. 

[10] M. Lupone, L. Bianchini, S. Lanzalone, A. Gabriele, 
“Augmented Instruments at CRM - Centro Ricerche 
Musicali of Rome:  Feed-Drum, SkinAct, WindBack 
and ResoFlute”, in Proceedings of ICMC-
International Computer Music Conference, New 
York, USA, 2019.  

[11] L. Maiorenzi, L. Seno, “A mathematical model for 
the holophone, a high directivity acoustical radiator”, 
in atti del XIV CIM-Colloquium on Musical Infor-
matics, Firenze, Italy, 2003, pp.173-176. 

[12] M. Lupone, “Musica Elettronica” in Acustica 
Musicale e architettonica, a cura di S. Cingolani, R. 
Spagnolo, UTET, Torino, Italy, 2005, pp.526-586. 

[13] L. Seno, “Nuova liuteria: caratterizzazione acusto-
vibrazionale dei Planofoni®”, in Proceedings of 
Annual Meeting of the Acoustical Engineering 
Society. Como, Italy, 2005. 

[14] S. Lanzalone, “Suoni Scolpiti e Sculture Sonore: 
alcuni esempi di installazioni d’arte elettroacustica”, 
in Proceedings of XVII CIM-Colloquio di 
Informatica Musicale, Venezia, Italy, 2008, pp.149-
156. 

[15] S. Lanzalone, “The ‘suspended clarinet’ with the 
‘uncaused sound’. Description of a renewed musical 
instrument”, in Proceedings of 8th International 
Conference on NIME-New Interfaces for Musical 
Expression, Casa Paganini-InfoMus Lab, Genova, 
Italy, 2008, pp.273-276. 

[16] S. Lanzalone, “Clavecin électrique. Studio e 
realizzazione dell'opera”, in Proceedings of XIX 
CIM-Colloquio di Informatica Musicale. Trieste, 
Italy, 2012, pp. 104-111. 

[17] M. Lupone, L. Seno: “Gran Cassa and the adaptive 
instrument Feed-Drum”. Proceedings of Rencontre 
Musicale Pluridisciplinaires. Lyon, France, 2006, pp 
27-36. 

[18] W. Cianciusi, L. Seno: “Feed-Drum e SkinAct: 
l’ultima frontiera dello strumento aumentato”. 
Proceedings of XIX CIM - Colloquio di Informatica 
Musicale. Trieste, Italy, 2012, pp.72-78. 

[19] M. Lupone, S. Lanzalone, L. Seno: “New 
advancement of the research on the augmented wind 
instruments: WindBack and ResoFlute”. Proceedings 
of EAW - Electroacoustic Winds 2015. Aveiro, 
Portugal, 2015, pp.156-163. 

[20] L. Russolo, L’Arte dei Rumori, Milano, Italy, 1916. 
[21] G. De Simone, Accessi all’opera di Giuseppe Chiari, 

in “Konsequenz”, XIII, n. 13-14 new series, Liguori 
Editions, Naples, Italy, 2006, pp. 98-108. 

 
 



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

131

GENERATING MUSICAL CONTINUATIONS WITH REPETITION

Sebastian VELEZ DE VILLA(sebastian.velezdevilla@epfl.ch)1,
Andrew MCLEOD(andrew.mcleod@epfl.ch)(0000-0003-2700-2076)1, and
Martin ROHRMEIER(martin.rohrmeier@epfl.ch)1

1Digital and Cognitive Musicology Lab, Digital Humanities Institute, École Polytechnique Fédérale de Lausanne,
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ABSTRACT

Repetitions play a central role in music, be they repeated
themes, harmonies or rhythmic repetitions. They can dif-
fer in many ways: vertically, by shifting notes up or down
in pitch, time-dilated, by slowing or accelerating them, or
just slightly different, for example with ornamentation or
removed notes. This work focuses on explicitly generat-
ing continuations with patterns given a musical excerpt.
We compare two different ways of finding such repetitions,
and the found patterns are used to help generate music that
is more musically well-formed than a pattern-agnostic ap-
proach. Quantitative results show an improvement in per-
formance for both of our algorithms over a pattern-agnostic
baseline, with the more sophisticated algorithm exhibiting
the most promising results. Qualitatively, it still lacks some
creativity, as the model only creates patterns or notes that
already exist in the given excerpt, which is particularly an
issue for pieces that do not exhibit a large amount of repe-
tition.

1. INTRODUCTION

This paper focuses on monophonic music generation, and
in particular on generating music with repetition. Repe-
tition is a fundamental component of musical form [1, 2],
from classical music to modern-day pop. Cognitively, it is
a major component of a listener’s experience with a piece
of music, where the prediction and recognition of repeated
themes and motives—even (and in some cases in particu-
lar) for non-exact repetitions—can lead directly to the en-
joyment of the listening experience [3, 4]. Therefore, the
inclusion of repetition must form an essential component
in any music generation system.

The evaluation of generated music is an extremely sub-
jective and difficult task [5]. Therefore, we concentrate
on the first subtask of the MIREX Patterns for Prediction
(PP) task 1 , whose goal is to develop algorithms that take
a short excerpt (a prime) of a piece of music and produce a
continuation: some notes that will follow the prime. This

1 https://www.music-ir.org/mirex/wiki/2019:
Patterns_for_Prediction

Copyright: c○ 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

allows us to explore music generation with repetition, and
has a well-defined quantitative evaluation metric (though
we also perform a qualitative evaluation of our results).

The main challenge for our approach is to develop a ro-
bust way to find patterns with variation in music. By “ro-
bust”, we mean an algorithm that can find repeated se-
quences that would be considered very similar by human
listeners: it could be a repeated theme played at a different
pitch or tempo, one with pitch or rhythmic variations, or
one with added or removed notes. This task is not trivial,
even for humans, as the perception of such patterns can be
very subjective: even annotators do not have perfect agree-
ment with each other [6].

For a computer, finding such repeated patterns efficiently
is even more difficult. It is important to note that hierar-
chical models of musical form have indeed shown the abil-
ity to capture some longer-term, overarching properties of
repetition in music, for example in the task of splitting a
piece into sections [7]. However, this is quite a different
task than detecting the specific local repetitions in which
we are interested, and can rely on more global structures
such as the harmonic texture of a piece.

A naive approach to finding local repetitions is to com-
pare all subsets of the short excerpt with the whole set, and
count how many times each one of them appears in the
prime. This solution works for exact matches, but is slow,
and doesn’t work when the patterns are not exact. It is of-
ten the case that themes, or important parts or even sections
of the music, are repeated, but those themes commonly un-
dergo variation, transformation or thematic-motivic work
throughout a piece. Thus, while the ability to find exact
repeats in music is a necessary component for our system,
it is not a sufficient way to ensure that all repeated pat-
terns are found, so we use a more sophisticated approach.
In other words, while finding perfect matches is feasible,
such patterns are not sufficient for generating music.

Once these repeated patterns are found in our given
prime, a continuation must be generated. In recent years,
many deep learning approaches have been applied to the
task of music generation (e.g., [8–11]). However, such
models have a couple of drawbacks for our purposes. For
one, we want our model to be adaptable in order to gen-
erate music that is strongly informed locally by the given
prime. One potential solution for this would be to com-
bine a long-term model (which is trained on a large cor-
pus of music to learn general rules of tonality and form)
with a short-term model (which learns the local structure
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Pitch class C D E F G
C 0.25 0.5 0.25 0 0
D 0 0 1.0 0 0
E 0.5 0 0 0.5 0
F 0 0 0 0 1.0
G 0 0 1.0 0 0

Table 1: Transition matrix of Figure 1.

specific to a single musical piece). This approach been
used by statistical models of music (e.g., [12, 13]); how-
ever, it is more difficult to apply this to large networks
given the large amounts of training data they are trained on
initially and their large parameter count in comparison to
such a short prime. Furthermore, given the relatively short
length of the continuations required by our chosen task,
it is unclear whether such a long-term model would even
help. Secondly, with such large black-box-type models,
it is difficult to ensure an explicit generation of repeated
patterns, as is feasible with simpler alternatives (although
some work has been done in this direction, with the goal
of enforcing local structural constraints on symbolic music
generation based on a template piece [14]).

Therefore, in this work we instead concentrate on sta-
tistical approaches to music generation. Specifically, we
take existing algorithms for detecting patterns with varia-
tions [15, 16], and investigate the results of applying them
(with only minor changes) to the task of music generation
using a single-order Markov model. Our approaches per-
form well against the task’s simple baseline, described in
section 2, but can still lack creativity in some cases, partic-
ularly when the prime is not very repetitive.

2. RELATED WORK

In [17], the authors discuss how a computer can generate
music using statistics. The basic idea uses Markov chains,
i.e., a succession of states, where each state only depends
on the previous one. A simple music generation algorithm
can be extended from that idea. For example, in [18], a
Markov model is trained on a large corpus of pieces and
then used to generate a continuation of an input excerpt
(similar to our task). However, this model draws from pre-
learned patterns from its training corpus, rather than pat-
terns taken from the prime directly, as we wish to do.

Consider the simple melody in Figure 1 (the first 4 bars
of “Frère Jacques”) as an example. Take each pitch class
as a state.

To calculate the transition probabilities for each state, a
possible algorithm could be formulated in the following
way: create a transition matrix, and for each pitch, count
how many times a note of that pitch is followed by notes
of other (or the same) pitches, and divide by the number of
times that pitch appears (disregarding the last note which,
by definition, doesn’t have a next state). This generates
the transition matrix shown in Table 1, which should be
read line then column. For example, “D is followed by E
with probability 1.0”. If the excerpt in Figure 1 is taken
as a prime, this table could then be used to generate the

continuation by taking the last state (here, “G”), and suc-
cessively drawing the next note from the distribution in the
corresponding row in the table. (A possible output for a
4-note continuation would be “E C E F”.) This simple gen-
eration algorithm can thus only generate states that appear
in the prime sequence (i.e., the input), and can only gen-
erate transitions that already exist (e.g., we can never have
a C followed by a G, and we can never have a B at all).
There is therefore only a very limited notion of creativity
or musical structure in this case, only a generation of rep-
etitions of what already exists. To a human listener, most
of the outputs from this algorithm sound relatively simple.
However, it is fast, and can run in 𝒪(𝑛+𝑘), where 𝑛 is the
length of the sequence, and 𝑘 is the number of generated
states.

In the previous example, the Markov model was used to
generate only pitches, but it can also be extended for dura-
tions, or pairs of pitches and durations by simply defining
the state space differently. In this work, we compare our
system against a baseline Markov model trained to gener-
ate sequences of (pitch, inter-onset-interval) pairs (i.e., the
state space of the model consists of such tuples) [17]. This
model is also used as a baseline for the Mirex PP task 2 .

2.1 Pattern Detection

In order to improve the basic model of [17], the authors
propose a solution based on pattern discovery and pattern
inheritance, where a pattern is defined as a set of notes
which is repeated, shifted, or time-dilated in the piece. For
example, in Figure 1, one pattern would be “C D E C”,
since it is repeated twice.

The most basic method for pattern discovery is a naive
string-based approach which finds only exact repetitions.
Many more sophisticated methods exist, none of which is
clearly the best in all cases, and they are often designed
for very different goals. For example, recent overview of
the highly related task of symbolic melodic similarity (in
which systems measure the similarity between two musi-
cal excerpts), can be found in [19]. In [20], pattern detec-
tion was used to perform melodic segmentation by search-
ing for patterns in pattern occurrences. Since they are de-
signed with specific downstream tasks in mind, the above
approaches tend to be more complex and less transparent
than basic pattern detection algorithms. We therefore draw
instead from the basic pattern detection literature, leaving
more sophisticated approaches for finding different types
of patterns for future work. More thorough discussions on
some of these methods (in various contexts) can be found
in, e.g., [6, 21–23].

We choose to use a pattern-detection algorithm based on
SIA [15] 3 , since it was simple to implement, adapt, and
investigate for our purposes. We describe SIA and its in-
tegration into our generation process in the following sec-
tion.

2 https://glitch.com/@tomthecollins/
wi-mir-2020-workshop

3 Although SIA is well-adapted for polyphonic textures, we use it here
on monophonic input since it works well, is not slow (given the lengths of
our primes), and will allow us to more easily adapt to polyphonic music
in future work.
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Figure 1. The first 4 bars of “Frère Jacques”.

3. DESIGN AND IMPLEMENTATION

3.1 Input format

Our pattern-informed music generation algorithms take as
input monophonic sequences of midi notes, which are tu-
ples of pitch (represented as MIDI note number), onset, du-
ration and velocity attributes. Before the detection of pat-
terns and generation, each prime is transformed so that it
does not include rests, making both more straightforward.
The pitches and onsets remain unchanged, only the dura-
tions are updated, so that each note ends when the next
note begins. When generating the next state, the starting
time of each note is set to the offset time of the previous
note.

3.2 Pattern detection

In order to find such patterns, we decided to follow two
approaches.

1. A string-based approach, which finds exact patterns.

2. A translation-based approach, which finds exact
patterns, as well as vertically shifted patterns.

Consider the sequence “1 2 3 4 2 3 4 5” consisting of
eight states. The string-based solution would only find the
pattern “2 3 4”, whereas the translation-based algorithm
would find the pattern “1 2 3 4”, knowing that it is shifted
up by one to obtain “2 3 4 5”.

3.2.1 String-based pattern recognition

In this case, the notes of the prime are transformed into a
list of (pitch, duration) tuples, and the state-space of the
Markov model consists of such tuples. The algorithm then
uses a string-based pattern matching approach, and finds
only exact patterns, defined as a sequence of these (pitch,
duration) tuples which appears at least twice in the prime.
A pattern detected by this algorithm for Figure 1 would be
the first four notes.

3.2.2 Translation-based pattern recognition

As opposed to the string-based approach, this algorithm
first transforms the notes of the prime into a list of (pitch,
onset) tuples. Then, it uses translation vectors to find
the maximum translatable pattern: that is, a sequence of
notes that can be shifted either vertically (in pitch) or hor-
izontally (in onset time) in the score to find a matching
sequence. As opposed to the string-based approach, this
method uses onset instead of duration, which is needed to
calculate the translation vectors, described below. This al-
gorithm is based on SIA [15], with the difference that we

consider only contiguous patterns, which helps for the gen-
eration process. We instead leave non-contiguous pattern-
based generation for future work.

To make things simple, we will detail this process step by
step, again using the simple example of “Frère Jacques”
(Figure 1). For each note, we first calculate its translation
vector with respect to all following notes in the sequence.
Specifically, let 𝑛𝑖 and 𝑛𝑗 be 𝑖th and 𝑗th notes of the prime,
where 𝑖 < 𝑗. Then the translation vector of 𝑛𝑖 to 𝑛𝑗 is
calculated as in Equation 1, where the pitch is represented
by its MIDI note number:(︂

𝑛𝑗 .𝑜𝑛𝑠𝑒𝑡− 𝑛𝑖.𝑜𝑛𝑠𝑒𝑡
𝑛𝑗 .𝑝𝑖𝑡𝑐ℎ− 𝑛𝑖.𝑝𝑖𝑡𝑐ℎ

)︂
(1)

Considering the first two bars of “Frère Jacques,” This
results in the table shown in Table 2. (Durations are mea-
sured in whole notes here, but any other representation
would be equivalent, as long as it is consistent through-
out a prime.) Here, the table should be read starting with
columns and then rows (e.g., the first note (0.0, 72) can
be transformed into the second note (0.25, 74) by adding
the translation vector (0.25, 2). Then for each translation
vector that appears at least twice in the table (signified by
colors), we create a sequence of those notes which have
this vector in their column. Sorting the translation vectors
by the length of the resulting sequence of notes results in:

∙
(︂
0.25
2

)︂
:
(︂
0.0
72

)︂
,
(︂
0.25
74

)︂
,
(︂
1.0
72

)︂
and

(︂
1.25
74

)︂
.

∙
(︂
1.0
0

)︂
:
(︂
0.0
72

)︂
,
(︂
0.25
74

)︂
,
(︂
0.5
76

)︂
and

(︂
0.75
72

)︂
.

∙
(︂
0.5
4

)︂
:
(︂
0.0
72

)︂
and

(︂
1.0
72

)︂
.

∙ . . .

∙
(︂
1.25
2

)︂
:
(︂
0.0
72

)︂
and

(︂
0.25
74

)︂
.

Each of these sequences is a potential repeated pattern.
They are filtered to keep only those sequences which con-
tain only contiguous notes, like the second one in the enu-
meration above (shown in purple in the table), and unlike
the first one (in red). This filtering eliminates any “split”
patterns whose beginning and end each repeats, but whose
middle changes. We also remove any patterns whose rep-
etition contains any notes from its original occurrence.
Starting from the top of this sorted list, a pattern is valid
when no notes of that pattern have appeared in a previous
valid pattern.
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(Onset, pitch) (0.0, 72) (0.25, 74) (0.5, 76) (0.75,72) (1.0, 72) (1.25, 74) (1.5, 76) (1.75, 72)
(0.0, 72) - - - - - - - -
(0.25, 74) (0.25, 2) - - - - - - -
(0.5, 76) (0.5, 4) (0.25, 2) - - - - - -
(0.75, 72) (0.75, 0) (0.5, -2) (0.25, -4) - - - - -
(1.0, 72) (1.0, 0) (0.75, -2) (0.5, -4) (0.25, 0) - - - -
(1.25, 74) (1.25, 2) (1.0, 0) (0.75, -2) (0.5, 2) (0.25, 2) - - -
(1.5, 76) (1.5, 4) (1.25, 2) (1.0, 0) (0.75, 4) (0.5, 4) (0.25, 2) - -
(1.75, 72) (1.75, 0) (1.5, -2) (1.25, -4) (1.0, 0) (0.75, 0) (0.5, -2) (0.25, -4) -

Table 2: Translation vectors of the first two bars of Figure 1. Colors signify identical translation vectors (potential patterns),
and uncoloured, non-empty cells are unique. The pitches are indicated by their MIDI note number.

So, in this example, the first four notes (corresponding to
the columns of the purple translation vectors in the table)
can be shifted by four beats to obtain the last four notes
(corresponding to the rows of the purple vectors in the ta-
ble), and are saved as a valid pattern.

3.3 Special cases

For both the string-based and translation-based algorithms,
when a note is not part of any larger pattern, it is consid-
ered as a pattern itself, making it easier for the generation.
In the case where the last pattern of the prime is unique,
the probabilities for the next pattern are set to the unigram
probability of each pattern appearing in the prime, regard-
less of position.

3.4 Generation

Once the patterns are found, both algorithms work in the
same way: they transform the sequence of notes into a se-
quence of patterns, and apply a first-order Markov model
on this transformed sequence to generate, not a continua-
tion of notes, but rather a continuation of patterns. Then,
we translate this sequence of patterns back into a sequence
of midi notes: a list of tuples with pitch, onset, duration
and velocity (which we always set to 100).

3.5 Smoothing

These algorithms as presented can only produce transitions
that already exist in the given prime. In order to inject
additional creativity into the generation, we apply a form
of additive smoothing as follows. First, we produce the
transition matrix over the patterns found in the prime (as
shown in Table 1 for pitches). Then, each probability is
multiplied by some number 𝛼 < 1, thus removing some
probability mass from the transitions found in the prime.
We then distribute the remaining 1 − 𝛼 probability mass
among the states, proportional to the normalised histogram
(the unigram probability of each state; shown in Table 3 for
“Frère Jacques”). In our experiments, we set 𝛼 to 0.9.

This approach ensures that states that often appear in the
prime also appear more often than others in the genera-
tion, but would still create transitions that don’t exist in the
prime, resulting in some “creativity”. With this smooth-
ing, the transition matrix shown in Table 1 is changed as in
Table 4.

C D E F G
0.2857 0.1429 0.2857 0.1429 0.1429

Table 3: The normalised histogram (unigram probabilities)
of the pitches of Figure 1.

Pitch class C D E F G
C 0.25357 0.46429 0.25357 0.01429 0.01429
D 0.02857 0.01429 0.92857 0.01429 0.01429
E 0.47857 0.01429 0.02857 0.46429 0.01429
F 0.02857 0.01429 0.02857 0.01429 0.91429
G 0.02857 0.01429 0.92857 0.01429 0.01429

Table 4: Transition matrix of Figure 1 with additive
smoothing (𝛼 = 0.9).

4. EVALUATION

4.1 Baseline Methods

We compare against two different baseline methods, nei-
ther of which uses any sort of pattern detection or explicit
repetition generation. The first, Baseline, is based on the
model described in [17], and is also used as a baseline in
the MIREX PP task. It is a first-order Markov model which
is trained on and outputs (inter-onset-interval, pitch) tu-
ples. The second, Simple, outputs the combination of two
first-order Markov models: one which outputs the pitch of
each note and a second which outputs the inter-onset inter-
val (IOI) for each.

4.2 Metrics

For a quantitative evaluation, we apply the two metrics also
used in the MIREX PP task: cardinality score and pitch
score. 4

4.2.1 Cardinality score

The cardinality score (CS) is defined as:

CS(P,Q) = max
𝑡∈T

|{𝑞 ∀ 𝑞 ∈ Q | (𝑞 + 𝑡) ∈ P}| (2)

Here, P and Q sets of (onset, pitch) tuples for the true and
generated continuations, respectively, and T is the set of
all possible translation vectors that make a note from Q

4 The code used for evaluation is available at https://github.
com/BeritJanssen/PatternsForPrediction.
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overlap a note from P, formally defined as:

T = {𝑝− 𝑞 ∀ 𝑝 ∈ P, 𝑞 ∈ Q} (3)

In other words, a higher score reflects how similar two con-
tinuation are in their general shape, ignoring shifts in time
and pitch. Using this score, recall and precision can be
calculated as in Equations 4 and 5 (note that we subtract
1 from each numerator and denominator since at least one
note is guaranteed to overlap), and F1 is calculated as their
harmonic mean as usual. Intuitively, recall is the propor-
tion of the continuation which has been correctly gener-
ated, and precision is the proportion of the generation that
matches the continuation.

𝑅𝑒𝑐𝑎𝑙𝑙 =
CS(P,Q)− 1

|P| − 1
(4)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
CS(P,Q)− 1

|Q| − 1
(5)

The cardinality scores are also plotted as a function of
beats after the prime’s final onset position, where each CS
value considers only notes from the true continuation up
to that position. So, if a generation contains a contour that
matches the beginning of the true continuation, but not the
end (as might be expected), that generation’s CS will be
higher for smaller onset values (after some possible initial
values of 0 corresponding to positions before the 2nd gen-
erated note). The CS at onset 10 corresponds to the overall
cardinality score with respect to 10 beats after the final note
from the prime, and thus represents the best indicator of a
generation’s over quality in this regard.

4.2.2 Pitch score

One issue with the cardinality score is that it is pitch in-
variant: if the generated continuation is equal to the true
continuation but shifted vertically, it would get a perfect
score of 1, since the whole sequence of notes can be trans-
lated into the true continuation with only one translation
vector. Pitch score is used to solve this problem. It is the
magnitude of the overlap between normalised histograms
of the true and generated continuations (an example of a
normalised histogram is given in Table 3). This process is
repeated disregarding octaves (i.e., taking each pitch mod-
ulo 12).

4.3 Data

The dataset used for evaluation is composed of two parts:
the prime, from which a continuation will be generated,
and the true continuation, which will be compared with
the outputs of the different generation systems. Specifi-
cally, we use the large monophonic dataset prepared for
the MIREX PP task, which consists of excerpts taken from
the Lakh MIDI dataset [24].

4.4 Quantitative Results

Each system’s CS with respect to onset position are plotted
in Figure 2. We can first observe that the simple first-order

Model mean median std
Baseline [17] 0.542 0.555 0.211
Simple 0.544 0.556 0.206
String-based 0.553 0.565 0.220
Translation-based 0.574 0.588 0.218

Table 5: Pitch scores.

Model mean median std
Baseline [17] 0.616 0.635 0.188
Simple 0.618 0.633 0.185
String-based 0.627 0.650 0.196
Translation-based 0.647 0.670 0.192

Table 6: Modulo 12 pitch scores.

Markov model performs poorly, which is somewhat ex-
pected. The next best model appears to be the baseline, and
both of our systems with pattern recognition achieve an im-
provement in precision, recall, and F1, with the translation-
based system performing the best. Our systems see the
greatest improvement in terms of recall, which suggests
that they output more notes of the correct general shape.
Our systems also avoid the sharp decrease in performance
of the baseline system over the first few beats, instead see-
ing a slow decrease across the duration of the continuation.
This makes sense conceptually, because instead of gener-
ating one note at a time, our systems generate one pattern
at a time. Thus, they are typically fewer steps along in
the generation process after any given duration (each step
holds a potential for the generation to go off track).

Table 5 shows each system’s pitch scores (both with and
without octave equivalence) in violin plots, and the exact
values are given in Tables 5 and 6. We can observe that
the systems are quite similar. However, the translation-
based system again achieves the best results, though only
marginally in this case. The scores for all systems are
only slightly above 0.5, which shows that the majority of
generated notes are of the correct pitch, but there are still
many incorrect notes from this perspective. Of these er-
rors, fewer than 10% are simple octave errors (this can be
measured by the difference between the values in Tables 5
and 6).

4.5 Examples

For a more in-depth comparison of the performance of our
approaches to pattern-based generation, we now present
an in-depth analysis of the translation-based, string-based,
and simple (no pattern) outputs for two example primes. In
all figures in this section, the string-based and translation-
based patterns are annotated with red and green brackets,
respectively.

The first example is a prime from our test dataset, shown
in Figure 4. From the red and green annotations, it is clear
that the translation-based pattern detection algorithm has
found longer patterns on average than the string-based one.
In particular, there are many more single-note “patterns”
for the string-based algorithm. The true continuation, as
well as the continuation generated by each system, are
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Figure 2. Cardinality scores for our proposed systems (Transition-based and String-based) as well as the simple Markov
model and the baseline. The x-axis represents onset position in the true continuation, measured in quarter notes.

Figure 3. Pitch scores for our three models and the base-
line.

shown in Figure 6 (note that the continuations are sampled
from distributions, so will change each time). We can ob-
serve that the generation without pattern recognition is the
least similar to the true continuation. The string-based gen-
eration is better: it has the correct rhythm, and even nearly
the correct pitch contour for the first half (though notes are
shifted up by both minor and major thirds). However, the
translation-based generation matches the true continuation
exactly.

Clearly, the translation-based approach performs quite
well when repetition is present in the prime. However, that
is also its drawback: its generations heavily depend on the
structure of the prime: if the prime is not repetitive, it will
not be able to rely on such pattern generations to produce,
and the generation could be poor.

The example prime shown in Figure 5 (the “Castle in the
sky” theme, composed by Joe Hisaishi) is one such case.
Notice how many small patterns are found by both meth-
ods, and how short each one is. The generations (shown
in Figure 7) reflect this: only very short patterns can be
generated, and none of the generations match the true con-
tinuation very well. The string-based generation is slightly
better in terms of rhythm, at least matching the dotted-half
note, quarter note rhythm in bars two and four, as well
as the position of the dotted-quarter notes in bars one and
three. In terms of pitch, none of the generations perform
very well, although they produce a reasonable set of notes.

So, it can be seen that the translation-based method pro-

duces the most accurate generations for repetitive primes,
but falls back to around the performance of the less sophis-
ticated systems for primes without much repetition.

5. CONCLUSION

In this work, we presented two novel systems for generat-
ing music with explicit repetition, based on a given prime.
The systems generally work by first detecting repeated pat-
terns in the prime, and using these to inform the genera-
tion process with a simple Markov model. We show that
a more flexible, translation-based pattern detection algo-
rithm is able to capture more sophisticated forms of repeti-
tion, which improves its generations. Overall, this pattern-
based approach works well when the prime is somewhat
repetitive; however, it can struggle otherwise.

This reliance on patterns is another potential drawback
of our system in that it has no mechanism to make small
changes to the found patterns. The creativity involved in
making small changes to repeated patterns throughout a
piece of music is very important to such repetition, and our
system currently lacks this ability. Future work could try to
improve this in two ways. First, during pattern detection,
the algorithm could be adapted to find such patterns with
variations, explicitly noting the types of variations seen
in the prime. Then, during generation, the model could
explicitly add some of these or other variations into the
generated patterns. This would allow the system to pro-
duce more creative generations, while still ensuring that
it has some repetitive structure. The evaluation of music
generation is a very difficult problem, and in future work,
we could also include a subjective evaluation involving a
group of experts, especially when using primes that do not
show repeated patterns (since these generations can be the
most varied).

In this work, we concentrated on monophonic music, but
similar algorithms for polyphonic music can also be devel-
oped in a few ways. The simplest is to apply a voice sepa-
ration model (e.g., [25]) as a preprocessing step, then pro-
ducing one generation per voice. Another option is to en-
large the state-space of the Markov model ton include com-
binations of notes, although this adds a significant amount
of complication to the process.
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Figure 4. MIDI sample taken from the MIREX 2019: Patterns for prediction dataset. Red and green brackets show the
patterns found by the string-based and translation-based algorithms, respectively.

Figure 5. “Castle in the sky” theme, composed by Joe Hisaishi. In red, the patterns found by the string-based approach, in
green, the ones found by the translation-based algorithm.

(a) True continuation.

(b) No pattern recognition.

(c) String-based pattern recognition (patterns in red brackets).

(d) Translation-based pattern recognition (patterns in green brackets).

Figure 6. Generated and true continuations of the prime
shown in Figure 4. Exact onset timing has been quantized
to the nearest 16th note.

(a) True continuation.

(b) No pattern recognition.

(c) String-based pattern recognition (patterns in red brackets).

(d) Translation-based pattern recognition (patterns in green brackets).

Figure 7. Generated and true continuations of the prime
shown in Figure 5. Exact onset timing has been quantized
to the nearest 16th note.
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The code for this work is available online 5 .
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ABSTRACT

This paper presents a modular software designed for auto-
matic recognition of Soundpainting query. Soundpainting
is a musical practice and a sign language used for real-time
composition with an orchestra. A series of signs is ges-
tured by the soundpainter creating a “sentence” describ-
ing a musical idea that they want the orchestra to per-
form. We propose an open-source tool, for Max/MSP,
able to perform every task for a computer to be part of
a Soundpainting scene: motion tracking, gesture recogni-
tion, query parsing and music generation. This tool is cre-
ated in a modular way so that it can be easily modified to fit
the needs of the user, for instance, changing the type of in-
puts for the motion tracking or adapting the Soundpainting
grammar. We describe the global architecture, the differ-
ent components of this tool, and the currently implemented
methods for each of these components. We then show ex-
amples of use for this tool, from the learning of a new sign
to a performance with several virtual instruments.

1. INTRODUCTION

Soundpainting (SP) is a sign language developed in
1974 by the New York composer and saxophonist Wal-
ter Thompson for real-time composition with his orchestra
[1]. Although the language was originally used for com-
posing with musicians, it has extended to multiple artis-
tic disciplines such as dance, theatre or visual arts and is
now used worldwide by a variety of artists in diverse con-
texts and configurations. SP is not originally a language
designed for working with electronic devices and comput-
ers. It is often reported that their use in SP is made difficult
by the high reactivity requested by the soundpainter to the
set of performers that forms the orchestra. However, digital
tools have been used since the second half of the 20th cen-
tury in new forms of compositional processes and aesthet-
ics of music [2–4]. Modern methods of Human-Machine
Interaction for learning and performing in real-time [5, 6]
enables the exploration of new artistic materials with new
dynamics of creativity [7, 8].

Automatic gesture recognition is an important topic of

Copyright: © 2021 Parmentier et al. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

Human-Machine Interaction aiming at interpreting human
gestures using cameras and/or motion sensors, providing
2D or 3D information. Machine learning techniques are
used in order to recognise and analyse the gestures, usu-
ally focusing either on full-body gesture recognition or
hand gesture recognition. Automatic gesture recognition is
used for many applications, such as medical diagnosis [9],
surgery analysis [10, 11], emotion recognition [12], sign
language recognition [13], etc.

Automatic gesture recognition has also been used in
many applications for computer music [14]. For instance,
Fernández et al. [15] use Kinect camera, controller gloves
and sound mapping for audiovisual performances inspired
by percussionists movement; Dalmazzo et al. [16] use a
Myo armband to detect arms and fingers movement for a
pedagogical tool checking the bowing and fingering of a
violinist; Cavdir et al. [17] present an interface with hand
gesture recognition and haptic feedback with movement
inspired by sign language to create musical performances
that can be experienced both by people who are hard of
hearing and by those who are not; Chandran et al. [18] uses
a camera and openCV to detect facial expressions to con-
trol virtual instruments; Van Nort et al. [19, 20] proposes
a gesture database, in order to analyse and map sonic and
kinetic actions happening during performances according
to their gestural meaning, etc.

In the last few years, automatic gesture recognition for
SP started gathering some steam. Pellegrini et al. [21] pro-
posed a proof of concept with the recognition of a few SP
gestures using Kinect input classified with Hidden Markov
Models. However, at the time, they only discussed the
possibility of SP annotations and other use cases of the
recognition system theoretically without proposing a con-
crete prototype for it. More recently, Gómez Jáuregui et
al. [22] used SP gesture recognition for the generation of
electronic music. They use a Kinect and decision tree clas-
sifier to recognise 9 different gestures. However, the ges-
tures are considered individually and not as part of a syn-
tactic phrase. SP gesture recognition has also been used
outside of the scope of music in order to control a swarm
of drones [23].

In this paper, we propose a new tool for Soundpainting
Query Recognition (SPQR) with two main aspects in mind.
First, the software we propose is complete, ie. it performs
every necessary task for SPQR (cf. Figure 2) motion track-
ing, real-time classification of gesture, query parsing and
music generation, and can be used by anyone with a com-
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Figure 1. Example of a Soundpainting query using the Who? What? How? When? syntax (illustration from [1]).

puter and a webcam. Second, the software is built in a
modular way: every component is independent, enabling
an advanced user to easily change them, for instance mod-
ifying the motion censors or replacing the classification
method.

The rest of the paper is structured as follows. In section
2, we introduce and discuss the key elements of SP related
to our project. Then, in section 3, we describe the architec-
ture and the different components of our SPQR software.
Then in section 4, we discuss some aspects of performance
and provide demonstrations for the use of the software. Fi-
nally, in section 5 we discuss the use of this tool in the SP
sphere and propose some perspectives for the future of this
project.

2. ELEMENTS OF SOUNDPAINTING

Soundpainting is a sign language used by a (or in some
cases, several) composer, called soundpainter, as a real-
time communication system with performers of an orches-
tra. The language is organised in “modes” of interaction
between the soundpainters and the performers, each one
having its own grammar and dictionary of signs. The most
common mode (“default mode”) uses a syntax that is com-
monly simplified as “Who” –indicating which perform-
ers should respond to the request–, “What” –what content
should they perform–, “How” –the shape of the content–
and “When” –when the request should be executed–. Fig.
1 shows an example of a SP phrase using this syntax. In
response, the performers do not sign but rather provide
artistic contents that build up the composition. The sound-
painter can then sign in reaction or not to the performers’
responses shaping the artistic material while it is being
played to the audience. In the rest of the article, we call
“query” a SP phrase. This is a bit of a play on word be-
tween the computer science definition that the software has
to deal with, and the human language definition, since in
the philosophy of SP, the soundpainter only requests things
from performers without any guarantee on the performer’s
responses. ”The Soundpainter composes with what hap-
pens in the moment, whether expected or not.”

Most of the basic signs of SP involve only a combination
of dynamic gesture, e.g. arms and hands movements and
of static postures made by the soundpainter, facing the per-
formers. For instance, in the SP workbook [1] the sign for
“Whole-group” (see Fig. 1) is described as the following
posture: “Hold both arms over your head creating a cir-
cle with fingertips barely touching”, and the sign for long-

tone, is described as the following gesture: “Holding your
hands a little out in front of your body, pinch the thumb
and index finger of both hand together and pull them apart
along a horizontal plane”. However, it is to note that the
time and space span for each gesture and posture may vary.

Among the most common SP signs are the “multi-
disciplinary” signs. These signs such as “minimalism” or
“long tone” can be interpreted in several disciplines (mu-
sic, dance, acting, visual arts...). Even though the concept
they refer to usually come from one discipline only, their
interpretation in SP has been extended to the other ones by
creating relevant analogies for each one. It results in a rich
and powerful language that stimulates the creativity of the
composer and performers using it.

The full grammar of SP is not yet fully described and
involves many other syntactic categories that are learned
during practice, therefore, for the rest of this article, we are
only considering the “default” mode for which the syntax
is established and described in details in [1].

3. SOFTWARE ARCHITECTURE

SPQR is built with several independent layers, emulating
the different structural levels of SP, from the creation of
signs to the parsing of its grammar and music generation.
We have identified five layers:

• input management, computing features from dif-
ferent input systems (webcam, gloves, etc.),

• sign and dictionary management, defining and
storing the SP gestures and postures,

• real-time classification, performing SP sign recog-
nition,

• parsing and request-forming automata, creating a
query out of a series of signs,

• orchestra simulation, performing music according
to the query.

An illustration of these components and their interactions
is given in Figure 2.

Each layer was conceived as a specific function that the
user should easily be able to identify and interpret. Inside
each layer are different processes and objects that the user
interacts superficially with from the interface of the pro-
gram.

At the interface level, all layers are implemented in-
side Max/MSP. The user can see the whole patcher in
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Figure 2. Schematic overview of the different modules and
their interactions in SPQR. Blue components come inte-
grally or partially from other works while white compo-
nents have been designed during this project.

the main window and is also able to access specific func-
tionalities of each layer by using tabs. At the process-
ing level, Max/MSP itself has three different threads that
it uses for processing the data passing through its com-
piled objects. For these threads, Max guarantees the syn-
chronicity/ordering of events. However, Max also inter-
prets Node.js code that is processed in external threads
asynchronously to Max internal threads.

In this part, we describe the different components imple-
mented in the current version of this software, but each
module could be easily replaced by an experienced user.

3.1 Input management

The role of the motion tracking layer is to compute a set
of motion features from the movement of the user. There
exist several motion tracking systems with different tech-
nologies that can be used to model the human body from
the position of characteristic points. These points can then
be transformed into features of a classifier to identify ges-
tural signs. In SP, some body parts such as the hands are

used much more frequently to sign than others, therefore
they require more precise tracking than the latter to classify
amongst the signs. However, all motion tracking systems
available have a finite range of operation, i.e. they can only
track motion at a certain scale (just like the human cog-
nition system). We integrated two models to respectively
track signs from the full-body and from the hands.

For these scales, we use respectively PoseNet [24] –an
open-source computer-vision model that can be used to
estimate the pose of a person in an image or video by
estimating where key body joints are in 2D space– and
HandPose [25] –it’s equivalent for modelling the hand–.
For PoseNet, the available features are the position coor-
dinate for ears, eyes, shoulder, elbows, wrists, hips, knees
and ankles with the nose considered as a fixed point. For
HandPose, the available features are the position coordi-
nate of every finger tip and knuckles with the centre of the
palm considered as a fixed point. For our experiments, we
only used the positions of elbows and wrists for PoseNet,
and the positions of every fingertip as well as the second
knuckle for the index and middles fingers.

Their performances on modern CPUs and GPUs allow
them to run in real-time using a webcam or alternative
low-latency video input devices, making them usable by
anyone without needing special hardware. We use the
TensorFlow version of these tools which are ported into
Max/MSP using a Node.js server. Therefore, the patch pro-
vides a simple user interface (cf. Figure 3). PoseNet and
HandPose allow the user to choose different models and
internal parameters that will affect its performance, such
as the architecture of the model (MobileNet or ResNet),
the input resolution of the video, the size or the depths of
the model, etc. With these settings, the user can adapt the
model to its hardware easily to get the best performance.

The different inputs can be attributed to the different
models using the input manager. We opted for a modu-
lar approach with a design that allows the user to add its
own inputs and models in from the Max patcher. Because
inputs have different data rates and dimensions, it is in gen-
eral not possible to route more than one input to a single
model. If two inputs are compatible (typically with simi-
lar data rates) the user simply can create a new input and
merge the two original ones.

3.2 Signs and dictionary management

Once the inputs and models are defined in the program, the
user can start recording signs and building its sign dictio-
naries for each model. Users can either create their own
signs or use pre-recorded signs, that would have been cre-
ated or recorded by other users. A sign can be defined by
two properties: its name or its category, in analogy with
the syntactic model of SP (identifier, content, etc.) These
properties are sufficient to allow the program to parse the
sign, i.e. to construct a meaningful request from the tem-
poral flow of signs.

In order for the sign to effectively be identified, two steps
are required after the sign has been defined: record train-
ing examples and program the virtual instrument itself to
interpret the sign. While the recording of training exam-
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Figure 3. User interface for PoseNet in the Max/MSP
patch. The left part shows the input from a webcam with
the PoseNet key body joints. The right part shows the dif-
ferent coordinate for each key body joints. The user can
select here which features to take into consideration in the
system.

ples is an automated process that simply involves pushing
one button, the programming of the virtual instrument or
device that the sign should control is outside the scope of
the program.

The user can choose to either define one sign at a time and
record one or several training examples for it, then saving
the training data and adding another sign, or directly de-
fine a list of signs and recording all of them in the same
session. Each recording takes place in a different buffer
of the Multiple Buffer (MuBu) objects (one Mubu object
per model) [26] and each active input data is saved into a
different track. The recordings can then be saved to build
a dictionary of MuBus corresponding to different signs. It
is also possible to load pre-recorded signs by dragging and
dropping data files in the dedicated zone.

3.3 Real-time classification

For the system to be able to “recognise” the signs, we de-
cided to focus on lightweight, interpretable models that can
be trained fast and identify the signs that are performed in
real-time. In our case, the identification is a simple clas-
sification process, in which we ask the classifier to predict
the “class” of the motion sequence performed among a set
of classes that have been previously learned by the model
–the SP signs.

After a few experiments with the gesture follower from
MuBu based on Hierarchical Hidden Markov Models, we
decided to use the external software Wekinator [27] per-
forming better by offering a very efficient Dynamic Time
Warping implementation based on the FastDTW library
[28] with additional improvements for real-time perfor-
mance and several internal parameters for its DTW model.
Wekinator is integrated into Max through communication
with the Open Sound Control (OSC) protocol. Although
the user must launch Wekinator separately and perform
basic operations on its GUI, the most important parts of
Wekinator can be controlled remotely via OSC, allowing
Max to automatise certain operations, such as its training

process.
Once the model is running, Max receives in real-time the

set of DTW distances from the real-time sequence to each
recorded sign sequence. By finding the minimal value in
that set and comparing this value to a confidence threshold,
we can identify when a sign is being performed in real-
time.

3.4 Parsing and request-forming automata

From the models introduced in the previous section, we
can recognise individual signs, forming a sequence in time,
just like words form a phrase in oral languages. The next
step is therefore to implement the grammar of SP with a
parsing mechanism that would then allow us to create re-
quests or commands to each device that acts as an individ-
ual performer in the system. To that purpose, we imple-
mented an automaton inside Max using Node.js. A visual-
isation of the automaton is provided inside the patch for a
clear description of the SP grammar and also for more ex-
perienced users to have direct feedback on their grammat-
ical implementation, for instance when adapting the gram-
mar to their own purpose (cf Figure 4).

The automaton that we implemented corresponds to the
grammar for the “default mode” of SP explained in section
2 (the “Who–What–How–When” syntax). The automaton
allows us to represent such a sequence and understand each
sign as a particular function in the query. It also recognises
“wrong” signs and allows for feedback for the user about
the correctness of their query. Details about the grammar
of SP and its implementation can be found in [29].

Once parsed, the query is structured by collecting each
sign during the state transitions and assembling them into
several hierarchical objects. The query is then converted in
OSC format that can be used to communicate with a virtual
performer.

3.5 Orchestra simulation

From the OSC commands created by the automaton, there
is an unlimited panel of tools and ways to create an orches-
tra of virtual performers, using DAWs, OSSIA [30], etc. In
order to provide a complete usable tool in Max/MSP, we
decided to use bach [31]. bach implements both classical
music notation and proportional music notation, with sup-
port for accidentals of arbitrary resolution, rhythmic trees
and grace notes, polymetric notation, MusicXML, MIDI
files, etc. The orchestra simulation with bach is imple-
mented in a different patcher than the recognition tool and
receives the commands from the automata with OSC. We
decided to build fixed contents into the bach.roll and
bach.score objects that allow the user to place notes
into a score, just like any score editing program. These
objects are then connected to virtual instruments through
Midi.

In more general approaches, the recognition program can
be connected to a variety of devices that interpret OSC. In
our case, the companion program works as follows: each
instrument is simulated by a vst that can receive midi notes.
The midi notes are sent from the reading of bach.score
and bach.roll objects that each corresponds to a given
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Figure 4. Finite-state automaton representing the grammar for the “default mode” of Soundpainting. The graph shows the
different states of the automaton and the possible transitions between them.

musical content of a given instrument and that the user can
write and edit just like a normal score. When an OSC
command is received from SPQR, a simple regexp rout-
ing allow the command to be sent to a given type of mu-
sical content (for instance “long tone”) of a given instru-
ment (for instance “percussions”). If several long tones are
implemented for a single instrument, one is chosen ran-
domly when the command “start” is received. By default,
a medium tempo and volume is chosen. But if the com-
mands “tempo” or “volume” followed by a value are re-
ceived, the bach.roll and bach.score objects are
set to change their values. Therefore, the tempi and vol-
umes of the different instruments can be adjusted in real-
time. Once a “stop” command is received, the values of
tempo and volume are set back to their default values. This
implementation allows us to predefined a set of possible
musical elements with Bach objects that are then chosen
randomly in the play. Future approaches could rather rely
on probabilistic generation models and models of interac-
tion between the different instruments [32].

4. PERFORMANCE AND DEMONSTRATION

The Soundpainting Query Recognition tool is fully avail-
able under GPLv3 licence on its Github repository 1 . De-
tailed informations about the installation process of this
SPQR tool can be found on the Github repository as well
as in [29].

After installation, even though the number of layers is
high, the end-user only manipulates high-level elements on
the program: buttons and text elements. Being released by
default with webcam inputs, it is easy for the user to run
it on a personal computer without any setup on the input
part. As for now, we only provide the companion patcher
that runs the basic orchestra simulation with bach objects.
However, the setup of the devices that are controlled at the
input and output of SPQR can be modified and added by
an experimented users.

The tool was tested using a relatively high-end home
computer with 16GB of RAM, an i7-8750H processor and

1 https://github.com/arthur-parmentier/
soundpainting-signs-gestures-recognition

an Nvidia 1060 GTX as a dedicated GPU. For PoseNet,
we used the parameters for ResNet50 at quantbytes = 1
and input size = 350, achieving 15 FPS. For Wekinator,
we set the default max sequence length to 30, achieving
again 15 FPS, which has proven to be more than enough
for SPQR. It is to note that PoseNet is very sensitive to
light conditions and contrast. Although it is difficult to
describe the perfect environment in those terms, the user
should pay attention to both camera settings (luminosity or
ISO, contrast, saturation profiles, etc) and the position of
the lights in the configuration to ensure that the models can
work with the best accuracy. A rather uniform background
will probably result in good recognition when in high con-
trast with clothes and skin colour. For our tests, we used
two cameras (computer webcam and phone camera) run-
ning in parallel. The computer camera is then routed to
the full-body model with PoseNet and the phone camera
to the model for the hands with HandPose. In general, the
choice of the inputs (number, type...) is left to the user
and will greatly influence the performance of the recogni-
tion. In our case, we worked with a computer camera for
simplicity of usage. However, one could reach higher per-
formance and better gesture discrimination with gloves or
full body suit 3D tracking systems for instance.

We also released a series of videos, showing the different
aspects of this work accessible at http://deguernel.
discordia.fr/spqr/. The first video explains the
gesture and query recognition task using PoseNet, Wek-
inator DTW, and the SP automaton. We demonstrate the
training part of the model using several gestures that are
repeated very few times. We compare then the perfor-
mance of MuBu’s gesture follower using Hierarchical Hid-
den Markov Models and of Wekinator, using DTW, for the
classification task, and finally, show how the gesture recog-
nition is used to navigate the SP automaton to form a SP
query. The second video shows how to use two cameras
(here a webcam and a phone camera) to model both full-
body and hand gestures simultaneously with PoseNet and
HandPose. Finally, the third video shows a full demonstra-
tion of SPQR for music generation using bach as a virtual
orchestra.
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5. DISCUSSION

From the point of view of the soundpainter, the recogni-
tion is an exploratory and creative instrument that can also
push for new ways of signing and thinking SP as a di-
rect relation to the instrument (or device) itself. Learning
this sign language with a band is not offered to everyone
and most orchestras are interested in practising with ex-
perimented soundpainters only. In practice, most sound-
painters first learn the language as performers before sign-
ing themselves, such that they have already internalised
most of the language and compositional propositions be-
fore endorsing the “role” of soundpainter as a composer.

Feedback is one of the most important aspects of learn-
ing. One will for instance learn how to correct himself
from errors when he will be able to perceive those as such
and understand what the cause of the error is. Even though
in the SP design, nothing is considered a mistake on the
side of the performer who interprets the sign, the sound-
painter can make syntactic mistakes. In a learning tool im-
plementing a grammar, it is important to let the user know
why a particular sentence is wrong or what did the pro-
gram recognize that is not intended. In our SPQR tool,
the user can already receive these types of feedback from
the automaton, which on top of outputting its actual state
and how the request is created also provides error messages
that indicate if an unexpected or illegal sign has been ob-
served. For instance, if the user signs “rest of the group,
long tone, whole group, minimalism, play”, the automaton
will output an error message when receiving “whole group,
minimalism”, stating that “rest of the group” has already
been requested as a content previously in the sentence and
that the request of a new content is ambiguous.

Another type of feedback is the ability to hear the con-
tents that are produced by the program and how they react
to the different requests, even when the user is making mis-
takes or the program does not recognize the intended signs.
Feedback is one form of incentive to explore more of the
tool and learn with it. They can be classified into two cat-
egories: external or internal to the program. Some artists
are already interested in using the recognition tool in their
own installations: they have external incentives. However,
some users may not be familiar with digital tools nor with
SP and will not take to create something of their own if
they are not pushed to it by the program’s mechanics that
form its internal incentives. Typically, games are good ex-
amples of programs with a lot of internal incentives. They
have gamified features, such as a score, elements of com-
petition or collaboration, rewards, etc., which push the user
to explore more of the game and performing better at it.
For future work, there is probably some potential to be
explored with SPQR for the implementation of gamified
elements or feedback through interactive designs and vi-
sualisations. Moreover, we also plan to reach testers to
make a more collaborative and musician-oriented develop-
ment plan and to assess the performances of SPQR more
quantitatively. Finally, we also plan to release a compiled
version of the system that will simply run as an executable
file, simplifying the installation process a lot.
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ABSTRACT

We present an approach to the problem of real-time gener-
ation of music, driven by the affective state of the user, esti-
mated from their electroencephalogram (EEG). This work
is aimed at exploring strategies for real-time music gen-
eration applications using sensor data. Applications can
range from responsive music for x-reality to art installa-
tions, and music generation as feedback in pedagogical
contexts. We developed a Brain-Computer Interface in the
open-source platform OpenViBE. It manages communica-
tion with the EEG device and computes the relevant fea-
tures. A benchmark dataset is used to evaluate the perfor-
mance of supervised learning methods on the binary clas-
sification task of valence and arousal. We also assessed
the performance using a reduced number of electrodes and
frequency-bands, in order to address the problems of lower
budgets and noisy environments. Then, we address the
requirements for a real-time music generation model and
propose a modification to Magenta’s MusicVAE, introduc-
ing a parameter for controlling inter-batch memory. In the
end, we discuss possible strategies to map desired music
features to a model’s native input features. We present a
Probabilistic Graphical Model to model the mapping from
valence/arousal to MusicVAE’s latent variables. We also
address dataset dimensionality problems proposing three
probabilistic solutions.

1. INTRODUCTION

Interest and curiosity towards exploiting the EEG to con-
trol sound and music with one’s own brain have always
been strong in the sound and music community. It was not
until 1973 that EEG gained currency as a means for setting
a direct communication between brains and computers [1],
and it was almost 20 years later that the first BCI success-
fully allowed the users to control the cursor on a computer
screen. But the first reported use of EEG in music is “Mu-
sic for Solo Performer” by Alvin Lucier (1965) [2]. He
had met researcher Edmond Dewan who asked Lucier if he
would be interested in using his equipment to detect alpha
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waves for a piece of music. Alpha waves have frequen-
cies around 8-13 Hz, and would not be audible as audio:
so he thought of them as rhythms, thus suitable to create a
piece for percussion, by amplifying the alpha bandwidth to
drive loudspeakers placed on top of drums membranes [3].
Subsequently, other pioneers of EEG musical applications,
such as Richard Teitelbaum, David Rosemboom and Roger
Lafosse, exploited brainwaves and other biological signals
(e.g. the ECG) to control sound synthesisers, as in the ex-
perimental piece “Spacecraft” by Richard Teitelbaum, pre-
sented at Musica Elettronica Viva in 1967 [4]. In recent
years, interest has grown around so-called Brain-Computer
Music Interfaces [5] and general BCIs because of the in-
creasing affordability of reliable EEG equipment.

The chief concern of this work is to present a system
for generating music that reflects the users’ affective state,
which is estimated from their EEG. We also propose solu-
tions to some practical problems of real BCI systems. Our
system is composed of four main modules. Each module is
discussed in its own section and sections follow the design
order, rather than the data-flow order.

• Brain-Computer Interface (Sec. 3): the EEG hard-
ware and software for acquisition and preprocessing

• EEG Affect Recognition (Sec. 2): the model of va-
lence and arousal correlates of an EEG signal

• Musical Affect Model (Sec. 5): the generative model
of musical features conditioned on affective states

• Music Generator (Sec. 4): the model for generating
music conditionally to a set of musical features

2. EEG AFFECT RECOGNITION

The EEG Affect Recognition module is the subsystem that
is responsible for associating an affective label to the elec-
trical activity of the brain. Affect denotes the mental coun-
terpart of bodily sensation and affective features, such as
valence and arousal, capture what a given instance of expe-
rience feels like [6]. Valence refers to the feeling of plea-
sure or displeasure; arousal refers to a feeling of activa-
tion or sleepiness. It is worth remarking that in the litera-
ture concerning the computational modelling of emotions,
the term “affect” is often used interchangeably with that of
“emotion” but they should not be confused; emotions are
constructed from affect, emotional events being specific in-
stances of affect that are linked to the immediate situation
and involve intentions to act [6]. Indeed, the system pre-
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sented here deals with affect. However, in what follows,
markedly when discussing related work, we will occasion-
ally adopt such convention for the sake of simplicity.

2.1 Related Work

There are several works that address EEG emotion recog-
nition. The DEAP dataset [7] is a popular dataset used
as a benchmark for this task. It is a dataset collect-
ing EEG and physiological signals recorded from 32 sub-
jects over 40 trials per subject. The authors also pre-
sented some approaches to the emotion recognition task.
They used a Gaussian Naive Bayes classifier trained on
band-power features. They report a Leave-One-Out Cross-
Validation (LOOCV) 𝐹1 score of 0.56 for valence and 0.58
for arousal. Jatupaiboon et al. [8] assessed the problem of
real-time valence estimation. They used SVM with power-
spectral features for the binary classification of valence.
Their work is not directly comparable to the DEAP paper
because they use their own dataset, but they show some
very important points. First, the average performance
of subject-independent models is significantly lower than
subject-dependent models (0.65 against 0.75 accuracy).
Second, by using only the pair of channels T7 and T8, the
performance achieved is comparable to that attained by us-
ing all the 14 channels (0.73 accuracy). Menezes et al.
exploited the DEAP dataset as a benchmark for emotion
recognition in virtual environments [9]. They evaluated
band-power features, temporal statistics and the Higher Or-
der Crossing (HOC) features [10] via SVM and Random
Forest. They found that band-powers and their statistics
performed similarly while the HOC were less predictive.

2.2 Approach

2.2.1 Features

We chose band-powers as features for several reasons: they
are the most common features used in EEG emotion recog-
nition; they have a good predictive power; they can be
computed efficiently and online; they have been shown
to have neurobiological significance [11, 12] in describing
the brain activity. For consistency, we adopted the same
band definitions as in the DEAP paper: theta (4 to 8 Hz),
slow alpha (8 to 10 Hz), alpha (8 to 12 Hz), beta (12 to
30 Hz), gamma (over 30 Hz). We compute the logarithm
of the RMS of the signal for each band and channel. Then,
we also compute the difference of each band-power for 14
pairs of symmetric electrodes.

2.2.2 Evaluation Protocol

We divided the 32 subjects randomly into a training set
and a test set (60:40). For each subject, every model is
evaluated via LOOCV. We will refer to the LOOCV scores
on the training subjects as the validation scores and to
the LOOCV scores on the test subjects as the test scores.
Comparison between validation scores is performed with
related samples tests. The paired-sample T-test [13] for
normally distributed samples and the Wilcoxon signed-
rank test [14] otherwise. Comparison between valida-
tion scores and test scores is performed with an indepen-

Valence Arousal
Model mean std mean std
Majority 0.315 0.138 0.310 0.163
SVM (rbf) 0.395 0.133 0.340 0.156
Ratio 0.472 0.062 0.485 0.074
Naive Bayes 0.620 0.095 0.535 0.100
LDA 0.609 0.079 0.560 0.106
SVM (linear) 0.590 0.093 0.579 0.078
SVM (poly 7) 0.626 0.114 0.557 0.115
Test 0.622 0.092 0.550 0.089

Table 1. Validation 𝐹1 scores for different models and test
scores for the best-scoring model (SVM with polynomial
kernel of seventh degree) for binary classification of va-
lence and arousal in ascending order of average score. Sub-
optimal polynomial SVMs are omitted.

dent samples test, (independent-samples T-test if normal or
Wilcoxon rank-sum otherwise). Normality is checked via
the Shapiro-Wilk test [15]. We computed validation scores
for common machine learning approaches from the BCI
literature: Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis [16] (QDA), and Support Vector
Machine [17] (SVM). We used QDA with diagonal co-
variance: this can be called Gaussian Naive Bayes (as in
the DEAP dataset paper). As to SVM, we adopted linear,
polynomial and RBF kernels. Two “dummy” classifiers
were used as reference: one that always predicts the ma-
jority class (Majority) and another that predicts at random
with a probability determined by the label ratio (Ratio).

2.2.3 Feature Sets

Performance on the full feature set is summarized in Tab. 1.
Overall, the results on arousal match the ones in the DEAP
dataset paper, but not for valence: we obtained 0.62 accu-
racy against their 0.56 (this could be due to the slightly
different feature set). The best-scoring model (on aver-
age and on valence) is the SVM with a 7th degree poly-
nomial kernel. Linear SVM performs better on arousal.
Rbf-kernel SVM performs worse than the dummy Ratio
predictor. The performance of SVM (7th degree polyno-
mial kernel) is significantly different from the dummy pre-
dictors and rbf-kernel SVM (𝑝 ≤ 0.01), but not from other
models (𝑝 > 0.1). Test scores are not significantly differ-
ent from validation.

In a real-time BCI setting, it would be impractical to use
an EEG headset with 32 channels, as it would require a
very long setup time. The minimal set of channels to be
able to use information about band power asymmetry is
2. The brain activity is known to correlate with valence
if measured on T7-T8 [8]. Also, activity at CP5-CP6 [7]
correlates with arousal. Because of our hardware, we are
interested in the specific case of a feature set built us-
ing 6 channels. Thus, we evaluated two different setups,
adding two pairs of electrodes to either one of the two
pairs T7-T8 and CP5-CP6. We wanted one pair at the
front of the brain and one at the back, to diversify the in-
formation: the pairs FC5-FC6 (frontal-central) and PO3-
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6c T7-T8 CP5-CP6 T7-T8 (α+β) CP5-CP6 (α+β)
Valence Arousal Valence Arousal Valence Arousal Valence Arousal

Model mean std mean std mean std mean std mean std mean std mean std mean std
LDA 0.512 0.066 0.538 0.113 0.563 0.085 0.522 0.084 0.532 0.074 0.539 0.091 0.550 0.070 0.562 0.104
NB 0.597 0.128 0.525 0.098 0.622 0.093 0.531 0.080 0.589 0.118 0.522 0.104 0.603 0.093 0.549 0.086
SVM-L 0.611 0.117 0.553 0.115 0.615 0.101 0.557 0.079 0.592 0.123 0.518 0.096 0.616 0.083 0.530 0.093
SVM-P 0.606 0.118 0.537 0.111 0.609 0.097 0.550 0.114 0.559 0.106 0.575 0.114 0.556 0.092 0.528 0.095

Table 2. Validation 𝐹1 scores for different models on the 6-channels feature sets: using the T7-T8 as central channels or
CP5-CP6, and using all frequencies or just alpha and beta bands. Mean and standard deviation of the 𝐹1 scores are reported
for binary classification of valence and arousal.

2c T7-T8 CP5-CP6 T7-T8 (α+β) CP5-CP6 (α+β)
Valence Arousal Valence Arousal Valence Arousal Valence Arousal

Model mean std mean std mean std mean std mean std mean std mean std mean std
LDA 0.601 0.125 0.503 0.128 0.612 0.060 0.555 0.092 0.587 0.113 0.487 0.092 0.617 0.087 0.514 0.099
NB 0.584 0.131 0.509 0.105 0.610 0.071 0.529 0.094 0.561 0.137 0.487 0.078 0.593 0.092 0.544 0.087
SVM-L 0.619 0.136 0.494 0.150 0.640 0.072 0.535 0.104 0.578 0.171 0.435 0.073 0.571 0.122 0.485 0.123
SVM-P 0.650 0.070 0.515 0.086 0.602 0.101 0.538 0.090 0.577 0.119 0.529 0.119 0.561 0.114 0.512 0.105

Table 3. Validation 𝐹1 scores for different models on the 2-channels feature sets: using the T7-T8 channels or CP5-CP6,
and using all frequencies or just alpha and beta bands. Mean and standard deviation of the 𝐹1 scores are reported for binary
classification of valence and arousal.

PO4 (parieto-occipital) show correlations with affective la-
bels [7]. We evaluated performance on two 6-channels fea-
ture sets: FC5, FC6, PO3, PO4 with T7-T8 or with CP5-
CP6. In real-world operation, low-frequency components
can be subject to noise from muscle movement. Also,
high-frequency components can be affected by power-line
interference (50 Hz or 60 Hz). Hence, we also assessed
the performance of the models trained only on the central
frequency bands (slow alpha, alpha and beta). Validation
scores on 6-channel feature sets are summarized in Tab. 2
for all four configurations: two channel choices, both with
all frequency bands or only with central frequency bands
(α+β). We also assessed the performance on 2-channels
feature sets, using T7-T8 or CP5-CP6, exploiting all fre-
quency bands or just the central bands (Tab. 3).

2.3 Results

Using 6 channels, 𝐹1-scores for valence classification are
very similar to the ones obtained with the full feature set.
Scores on arousal slightly decreased. Using all frequency
bands, the best model on average is the Linear SVM (0.62
on valence and 0.56 on arousal). Using only the central
bands, the best model on average is Naive Bayes (0.60 on
valence and 0.55 on arousal). In almost every case, per-
formance is better using CP5-CP6. Employing 2 channels
with all frequency bands, 𝐹1-scores are still very similar
to the previous ones. However, the two best validation
scores on valence (Polynomial SVM with T7-T8 and Lin-
ear SVM with CP5-CP6) are significantly different from
the test scores: the test score for Linear SVM is 0.54
(𝑝 < 0.05). Thus, we consider LDA as the best model
(0.61 on valence and 0.56 on arousal), since it is consistent
across the two partitions. We observed that performance
on arousal using T7-T8 is not significantly different from

the dummy predictor (Ratio). We surmise that T7-T8 is
not a sufficient configuration for arousal classification, in
contrast to its use for valence classification (as in previ-
ous literature [8]). Using 2 channels and only the central
bands, none of the models is significantly better than the
dummy predictors for arousal classification (all 𝑝 < 0.05).
Valence classification is still possible, but the validation
score of LDA with CP5-CP6 (0.62) is significantly differ-
ent from the test score: 0.52 (𝑝 < 0.01). So, we consider
Naive Bayes as the best model, with an 𝐹1-score of 0.59.

Based on these observations, we determined three differ-
ent setups to address different requirements: FC5-FC6-
CP5-CP6-PO3-PO4 (α+β) for robust features, CP5-CP6
for minimal hardware and CP5-CP6 (α+β) for robust fea-
tures and minimal hardware, but for valence only.

3. BRAIN-COMPUTER INTERFACE

The Brain-Computer Interface module is the system that
allows for sensing the brain activity of the user and ex-
tracting the relevant features.

3.1 Related Work

Brain-Computer Interfaces for music are becoming more
and more popular. BCIs are often categorized as “passive”
(using arbitrary brain activity without the purpose of vol-
untary control), “reactive” (using brain activity arising in
reaction to external stimulation), and “active” (using brain
activity that is consciously controlled by the user, inde-
pendently from external events) [18]. A popular technique
for reactive BCIs is based on steady state visually evoked
potentials (SSVEP). It consists in presenting images on
screen that flicker at different rates, and detecting electri-
cal potentials on the visual cortex to determine which ob-
ject the user is watching. SSVEP-BCIs have been used for
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Figure 1. The Band-powers DEAP metabox. This metabox
selects one channel (named Channel name) out of the
multi-channel signal and computes its band-powers.

music writing, music navigation [19], and sonic expres-
sion [20]. A common approach to active BCIs is motor
imagery. It consists in detecting patterns correlated to the
imagination of motor activity [21] (𝜇 rhythms). MI-BCIs
are becoming popular for video game control [22]. Passive
BCIs are often exploited in affective computing, e.g. for
monitoring attention, stress and affective states [23].

3.2 Approach

We used the g.tec g.Sahara active dry EEG electrode sys-
tem headset. We developed a feature extraction software
for the BCI in OpenViBE, a cross-platform open-source
environment [24]. It is headset-independent, because the
OpenViBE acquisition server handles incoming signals.
Thus, it can be used with any EEG headset, provided that
the drivers are available. The OpenViBE designer is a vi-
sual programming environment. An executable is called a
scenario and its components boxes. A scenario can be used
within another scenario as a metabox.

3.2.1 Feature Extraction

For each channel, we compute the band-powers. We de-
fined the band-power of a frequency band as the mean-
square of the band-passed signal (see Sec. 2.2.1). We de-
fined the metabox Power to compute the power of a sig-
nal over overlapping temporal windows. Then, we devel-
oped the metabox Band-powers DEAP, that selects one
channel and splits it into 5 different bands using a time-
domain filterbank. It uses the Power metabox to com-
pute the band-powers. The band-power signals are re-
arranged into a single multi-channel signal and renamed.
The metabox Band-Power Features instantiates a Band-
powers DEAP metabox for each channel to extract its
band-powers and rearranges the band-power signals into
a single multi-channel signal.

3.2.2 Data Transmission

After computing the band-power features, we need to be
send them to the EEG affect recognition process. We use

the Open Sound Control (OSC) [25] network protocol for
this. Due to the great interest of the sound and music com-
munity in BCIs, OSC has also become a common protocol
for BCIs and some companies that develop BCIs provide
OSC utilities, such as Emotiv’s Mind Your OSCs. Open-
ViBE also has a rudimentary OSC client box. Each feature
is sent on a different OSC method. The address pattern is
/eeg/<channel>/<band>.

4. ONLINE MUSIC GENERATION

The Online Music Generation module is the system that
generates music in real-time. We want to be able to control
it with parameters that can change over time. We propose a
transfer-learning approach for generating music via affec-
tive parameters.

4.1 Related Work

The recent developments in deep learning enabled new ap-
proaches that are now the state-of-the art of music gen-
eration. Deep learning for music mainly exploits ad-
vancements in natural language modelling. Especially,
the introduction of attention-based Recurrent Neural Net-
works [26] (RNN) allowed for longer time-scale coher-
ence than before. The Magenta project by Google Brain
has developed several deep learning models for computa-
tional creativity. Melody RNN [27] employs an attention-
based LSTM (Long Short-Term Memory, a type of RNN)
for generating melodies. To improve long-term structure,
they developed a hierarchical RNN decoder for an autoen-
coder called MusicVAE [28]. The latest architecture in
language modelling is the transformer [29], a deep neural
network that does not use recurrence, but relies entirely on
attention, such as OpenAI’s GPT-2 [30] and GPT-3 [31].
Magenta’s Music Transformer [32] is a transformer that
employs relative self-attention for music generation. Ope-
nAI’s MuseNet [33] is based on their GPT-2 and is a large-
scale transformer for symbolic generation that supports up
to 10 different instruments. On the other hand, their Juke-
box [34] generates raw musical audio of fully arranged
compositions with singing voice. It can be conditioned
on either artist, genre or lyrics. The main drawback of
deep learning is the amount of data required for training:
as an example, Music Transformer has been trained with
10 000 hours of piano music retrieved from YouTube and
converted from audio to MIDI by another neural network,
Onsets and Frames [35].

4.2 Modified MusicVAE

We chose MusicVAE for real-time music generation. One
reason is that pre-trained checkpoints are available for
download. Also, operations in its latent space have se-
mantic effects on the output (e.g. interpolation in the latent
space results in the semantic interpolation of the MIDI con-
tent). Finally, it supports multi-instrument pieces. A pre-
trained checkpoint is available for use with trios (drums,
bass and melody). We propose a small modification that
does not require re-training for real-time parameter mod-
ification. MusicVAE is a variational auto-encoder (VAE)
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Figure 2. Top layer of the restructured decoder RNN for online music generation. The final state of the LSTM is interpolated
with the new state to obtain a new initial state that is in-between the two. This results in a transition between the two parts.

composed of a deep Bidirectional LSTM (BLSTM) proba-
bilistic encoder and a hierarchical LSTM probabilistic de-
coder. The encoder encodes an entire input MIDI into one
single latent vector. It can only be executed batch because
of its bidirectionality (the output at any time step depends
both from past and future inputs). The decoder decodes a
latent vector into any length of musical content. It can be
executed in real-time because it is monodirectional. Also,
memory cost does not increase with time because the out-
put depends only on the current state of the network. The
drawback of MusicVAE for our intended application is that
the decoder doesn’t allow any input for transitioning to a
different part without starting over. Thus, we restructured
the network for sequentially generating music with smooth
transitions. The first layer of the network is visualized in
Fig. 2. When sampling conditionally on a new encoding
𝑧𝑡+1, we compute the corresponding new initial state for
the RNN using the same fully-connected layer as the origi-
nal network. We then compute the new state for the LSTM
as a convex combination of that output and the final state
from the previous execution of the LSTM. We introduce a
memory coefficient 𝛼 ∈ [0, 1]. Defining 𝑓𝑡 the final state
after decoding 𝑧𝑡 and 𝑑(𝑧𝑡) the result of applying the dense
layer to 𝑧𝑡, the new initial state will be

𝑠𝑡+1 := 𝛼 · 𝑓𝑡 + (1− 𝛼) · 𝑑(𝑧𝑡+1). (1)

Setting 𝛼 = 0 results in independent samples (the network
forgets the previous state), whilst setting 𝛼 = 1 the net-
work ignores new inputs. Setting the memory to an in-
between value allows for adjusting the trade-off between
coherence (𝛼 → 1) and change (𝛼 → 0). We implemented
this modification in Python by extending Magenta’s own
class for MusicVAE pre-trained models and overriding the
definition of the decoding operation.

4.3 Multiprocess System

Decoding a MIDI section from MusicVAE is not a fast op-
eration in a musical context. It can take several seconds on
a laptop using a CPU. We developed a dual-process system
to overcome this problem. The two processes involved are
a MIDI sequencer client and a MusicVAE server. Since
they are local processes, we handle their communication
with pipes. We implemented the MIDI sequencer using
the Python bindings for FluidSynth [36]. The sequencer is

never blocked waiting for a request of a MIDI sequence.
Instead, every time the client callback is called, if there
is a pending request, the MIDI is read from the pipe and
scheduled for the synthesizer. Then, a new MIDI sequence
is requested from the client.

5. MUSICAL AFFECT MODEL

The module named Musical Affect Model is the subsystem
that maps musical features to affective labels. Here, musi-
cal features are encoding vectors in the MusicVAE latent
space (see Sec. 4) and an affective state is a pair of binary
labels for valence and arousal (see Sec. 2).

5.1 Related Work

Affect correlates of music features have always been a sub-
ject of great interest for musicologists, although they are
not as often computationally exploited for music genera-
tion. Williams et al. propose a taxonomy for what they
refer to as Affective Algorithmic Composition (AAC) sys-
tems [37]. AAC systems can be compositional if they gen-
erate music (e.g. Robertson et al. [38]) or performative if
they execute a musical piece in a way that reflects the target
emotion (such as RaPScoM [39]). Briefly, they are genera-
tive if they write new music or transformative if they mod-
ify a given input, such as a music production system [40].
They can be real-time or in batch: real-time systems are
adaptive if they can adjust their output during execution,
as our modified MusicVAE (see Sec. 4.2). Williams et
al. later presented an AAC system that targeted affective
states by means of lookup table of musical features com-
piled from literature review [41]. They specify a discrete
mapping from the affective-state space to the set of musical
features, then a neural network outputs MIDI. Kirke and
Miranda developed an AAC system for communicating the
affective state detected from an EEG signal [42]. Valence
is computed as the difference of logarithmic alpha-band
energy between left and right frontal regions of the brain.
Arousal is computed as the negative of the sum of such log-
arithmic alpha-band energies. Binary valence and arousal
are used to transform a pre-written musical score by chang-
ing key, pitch and tempo. Galvanic skin response (GSR) is
another biological signal that is known to correlate with
affective states and Daly et al. developed a system where
GSR serves as input for affective music generation [43].
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Figure 3. Probabilistic Graphical Models discussed in text.
A PGM is a directed graph where nodes represent random
variables and arcs stand for conditional probabilities. Hid-
den variables are in white and observed variables are in
grey. Annotations on top of each variable denote the type
of its conditional distribution (Beta, Bernoulli, Wishart,
Normal or T). The PGM (a) is simplified in a graph only
including observed variables (b). PPCA introduces a new
hidden variable 𝐻: PPCA can be performed on the entire
dataset (c) or for each class (d). See text for details.

5.2 Approach

We developed a directed Probabilistic Graphical Model
(PGM) to map affective labels to MusicVAE encodings.

5.2.1 Dataset

The MIREX-like mood dataset is a dataset for multimodal
music emotion recognition [44]. It collects 903 audio sam-
ples, 193 of which with lyrics and MIDI. Affective tags are
adjectives, grouped in 5 clusters. First, we preprocessed
the dataset to get the MusicVAE encodings from the MIDI
files: 151 of the 193 MIDI files were compatible with the
MusicVAE trio model. We used a dataset containing the
“Norms of valence, arousal, and dominance for 13 915 En-
glish lemmas” [45] for converting adjectives to valence and
arousal values. We observed that the 5 pre-defined clusters
did not map to clusters in the valence-arousal 2-D space.
We partitioned the samples into four classes by binarizing
valence and arousal, median values being the thresholds.

5.2.2 Model

We used a directed PGM to model the interdependency
of the different variables. As a consequence of Music-
VAE’s ELBO loss function, the prior distribution of the la-
tent codes 𝑍 is a standard multivariate Normal distribution
(MVN) [28]. Therefore, we model the conditional distribu-
tion of 𝑍 given an affective state (𝑎, 𝑣) as a MVN, as well.
The mean and precision parameters given each affective
state (𝜇𝑎,𝑣,Λ𝑎,𝑣) are unknown. The joint posterior distri-
bution of the unknown mean and precision parameters of
a MVN is a Normal-Wishart distribution. However, they
are never observed and we are not interested in inferring
them. So, we can directly model the distribution of latent
codes given an affective state as a multivariate Student’s
T distribution: this is the distribution of the samples of a
MVN whose mean and the precision are Normal-Wishart
distributed. Valence and arousal only assume binary val-

ues, so, we model them as Bernoulli variables. The mean
parameters (𝑝𝑎 and 𝑝𝑣) are unknown. The posterior distri-
bution of the mean of a Bernoulli variable is a Beta distri-
bution. As previously, their inference is not of interest. The
distribution of a Bernoulli variable whose mean is Beta dis-
tributed is still a Bernoulli distribution. The full PGM and
its simplified version are visualized in Fig. 3a and Fig. 3b.

5.2.3 Dimensionality Reduction

The dimensionality of the latent space is much larger than
the available data points. The MusicVAE trio model has
512 latent variables and only 151 points are in the dataset:
when partitioned into 4 classes, it amounts to an average of
38 points per class. This is not sufficient for inferring the
parameters of the multivariate Student’s T distribution be-
cause the sample covariance matrix is singular. We present
three approaches for overcoming this problem.

We can make a Naive Bayes assumption, imposing all
features to be independent from each other given the class.
Often Naive Bayes is applied in contexts where the inde-
pendence assumption is not supported [46]. In our case, it
could be partially motivated by the fact that the prior distri-
bution of the encodings is a standard MVN, for which the
assumption holds. We applied Naive Bayes to our graphi-
cal model by setting to zero all non-diagonal values of the
sample covariance matrix.

We can use probabilistic PCA (PPCA) [47] to map our
samples to a lower-dimensional space. There are two pos-
sible ways of applying PPCA to our graph. We can use
a class-independent PPCA to map all the latent codes to
a lower-dimensional space, where we can estimate the pa-
rameters of the class-wise T distributions. The resulting
PGM is visualized in Fig. 3c. Alternatively, we can use
PPCA as the model of the distribution of the latent codes
of each class. In this setting, each affective state corre-
sponds to different values for the PPCA parameters. The
corresponding BBN is shown in Fig. 3d. 1

6. CONCLUSIONS

We have presented a pipeline for generating affectively-
driven music using the EEG. Main results so far achieved
can be recapped as follows. We have shown that a re-
duced number of EEG channels can still be effective for
the binary classification of valence and arousal, resulting in
cheaper and more practical BCIs. We have also developed
an online feature extraction algorithm using the OpenViBE
platform. This software is cross-platform and headset in-
dependent. We used the OSC protocol for the communi-
cation with the affect classification module. We discussed
the requirements for an online music generation algorithm
and made a modification to a pre-trained neural autoen-
coder (MusicVAE). This modification allows control over
the latent codes when generating music, so that the output
MIDI is the result of a trajectory in the latent space, instead
of a single static code. Finally, we proposed a probabilistic
model for mapping affective labels to music features, in the

1 Examples generated with a class-dependent PPCA (6 principal com-
ponents) are publicly available at https://chromaticisobar.
github.io/ListenToYourMindsHeArt
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form of MusicVAE latent codes. Thee different probabilis-
tic solutions are presented for dimensionality problems.

In the future, we plan to make a thorough investigation in
the relationship between the number of EEG channels and
the affect classification performance. Also, we plan to col-
lect a dataset of affectively labelled MIDI to evaluate the
dimensionality reduction models we exploited when map-
ping affective labels to music features.
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ABSTRACT 
The class Fb1_ODE, included in the miSCellaneous_lib 
quark extension library [1] of SuperCollider (SC, [2, 3]), 
enables the audible integration of ordinary (systems of) 
differential equations (ODEs) with initial values in 
realtime. The prefix 'Fb1' refers to the class Fb1 for single 
sample feedback and feedforward, on which it depends [4]. 
Consequently, the numerical integration of ODE systems 
with a step width of one sample is possible with arbitrary 
block sizes of SC's audio engine. Fb1_ODE opens the pos-
sibility for immediate audio experiments with models from 
physics, electrical engineering, population dynamics, 
chemistry, etc., preferably those with oscillatory respec-
tively quasi-oscillatory solutions or chaotic features. De-
signing new ODEs from scratch or altering respectively 
disturbing systems can also be interesting regarding the 
sounding results. Wrappers of Fb1_ODE include well-
known systems like Van der Pol, Duffing, Hopf, Mass-
Spring-Damper, and Lorenz; users can interactively add 
other systems with the class Fb1_ODEdef. The modula-
tion of ODE parameters, system time, and the feeding of 
additional audio signals into ODE systems are, amongst 
others, further options for unorthodox synthesis with dif-
ferential equations. 

1. INTRODUCTION 
We regard systems of the form 

 Y’(t) = F(t, Y(t))                               (1) 

in the domain of real numbers where Y and F can be vec-
tor-valued functions and the restriction of an initial value 
condition  

Y(t0) = y0                                    (2) 
 
In a physical interpretation, t is the system time. 

1.1 Why using ODEs for audio synthesis? 

That is a legitimate question, not at least because of some 
counterarguments. There are numerical hurdles, calcula-
tions often become CPU-demanding, and the usage of ar-
bitrary ODE models in many fields of science and technol-
ogy is no direct argument for their application in sound and 
music – besides from the ongoing research in acoustic and 
physical models [5]. However, an outweighing argument 
for comprehensive ODEs also comes from the fact that 
they can work as a generic description system for wave-
forms: many ODE solutions cannot be expressed in an an-
alytical form. This consideration leads to the assumption 
that ODEs can act as a key to a land of unknown and intri-
guing possibilities in sound synthesis. The growing signif-
icance – one might even say: popularity – of non-linear 
dynamical systems has certainly supported this view. How 
to choose from these possibilities in artistic regard is a cru-
cial question that needs practical exploration – a general-
purpose tool as the presented one aims to provide quick 
feedback. 

The power of ODEs as a description system already 
shows up by this trivial example. The second-order differ-
ential equation  

y’’(t) = -y(t)                                (3)  

is – by the substitution 

w(t) = y'(t)                                 (4) 

– reduced to the first-order ODE system 

y'(t) = w(t)                                 (5) 
 w'(t) = -y(t)                                    ( 

With the initial values y(0) = 0 and w(0) = 1, the system 
has the solution 

 y(t) = sin(t)                                (6) 
 w(t) = cos(t)                                   ( 

The initial equation (3) is, obviously, much more com-
pact than the representations of sine and cosine as infinite 
series derived from Taylor expansion. On the other hand, 
using numerical ODE integration for producing a sine 
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wave doesn't make much sense except a proof of concept. 
However, there exist many ODE systems with brief defi-
nitions that can generate rich and evolving spectra.  

Researchers have made several suggestions to use ODEs 
for audio synthesis and processing. The approaches par-
tially origin from the world of analog circuits (Slater [6]: 
Ueda, a variant of the Duffing oscillator, Choi [7] and 
Rodet [8]: Chua circuit). Jacobs [9] uses the FitzHugh-
Naguamo model of which Van Der Pol is a particular case. 
See Falaize and Hélie for stable simulations of analog au-
dio circuits from electronic schematics [10]. State space 
models aim to represent analog systems by input, output 
and state variables as parts of ODE systems (e.g., [11, 12]). 
Wave digital filters are an attempt to digitize analog cir-
cuits by ODEs and traveling-wave components [13].  

SC's main class library already includes the famous and 
widely used Lorenz model. The implementation via 
Fb1_ODE additionally allows the feeding of external input 
into the system, an experimental feature of ODE synthesis 
also recommended by Stefanakis, Abel, and Bergner [14, 
pp. 53–55, 57]. 

1.2 Numerical integration of ODEs  

There exist many integration techniques, which serve well 
in typical engineering applications. However, there is a 
specific demand with the audification of ODEs: oscilla-
tions should be kept stable over a relatively long period – 
or put in other words, we need many oscillations to get an 
audible signal for a significant amount of time. It is likely 
to encounter drifts in the long run with arbitrary integration 
methods. E.g., already in the case of a simple harmonic 
oscillator, a 3rd order Runge-Kutta scheme can fail (Figure 
5). For several oscillators, there exist specific integration 
schemes (Duffing: Bilbao [5, p. 75–77], Van der Pol: 
[15]). More general, so-called symplectic procedures have 
gained attention [16]. Roughly spoken, they preserve vol-
ume in a geometric sense and are often well suited for ODE 
audification. See the chapter on integration in David 
Pirrò's dissertation [17, pp. 135–146]. David Pirrò has im-
plemented the symmetric symplectic "rattle" integration in 
his optimized ODE compiler Henri, Fb1_ODE uses this 
scheme as default [18, 19, 20]. Implicit integration tech-
niques are also used widely in audio applications [21]. For 
implementational reasons – especially the interactive add-
ing of schemes – preference has been given to the explicit 
methods, from which several are built-in at choice (see 
2.5). 

2. IMPLEMENTATION IN SC 

2.1 Definition of ODEs and usage as unit generators 

The user interface for the most general purposes mainly 
consists of two classes in the SC language (the SC client): 
Fb1_ODEdef and Fb1_ODE. After defining an ODE with 
Fb1_ODEdef – by providing the function F of (1) as an SC 
Function – it is ready for synthesis usage with Fb1_ODE. 
The latter is a so-called pseudo-UGen (pseudo unit gener-
ator), a compound UGen structure comparable to macros 
in other languages. Under the hood, Fb1_ODE merges the 

selected numerical procedure, applied to F, into a UGen 
graph. That ensures integration on a per-sample base when 
employing the compiled synthdef (instrument) on the SC 
server (the audio engine). It also holds for a server block 
size greater than 1 by involving the single sample feedback 
pseudo-UGen Fb1 [4]. Figure 1, as a proof of concept, 
shows the code for producing a sine wave by using the har-
monic oscillator system. 

 
Figure 1. Sine wave by ODE integration 

 
More interesting, basic systems like the harmonic oscil-

lator or exponential decay can be the starting point for ex-
perimental variations. It’s a promising strategy to gradu-
ally drift away from a base case, e.g., define the system 

y’(t) = w(t)                                (7)  
w’(t) = -y(t) (1 + k w(t))                         (  

With k = 0, it equals the harmonic oscillator, greater val-
ues produce a brass-like sound. 

 

 
Figure 2. Blurred harmonic oscillator. 

2.2 Wrapper classes 

The library provides dedicated pseudo-UGen classes for 
the well-known systems Van der Pol, Duffing, Hopf, Lo-
renz, and Mass-Spring-Damper (MSD). The latter satisfies 
the second-order differential equation  

m y’’(t) = -k y(t) - c y’(t) + F(t)                (8)  

whereby m denotes the mass, c the dampen factor, k the 
spring stiffness, and F(t) the externally applied force. Like 
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the harmonic oscillator, one can transform it into a system 
of two first-order equations whose solutions describe po-
sition and velocity. The code example in Figure 3 uses the 
oscillation, which converges to an end position, for fre-
quency modulation. The audible result is a timbral devel-
opment to a sine with a fixed frequency. Note that, by de-
fault, Fb1_ODE and the wrapper classes apply a DC 
leaker, which, in this case, is disabled. 

 

 
Figure 3. Mass-Spring-Damper (MSD) used for FM. 

 
See the help files of the classes Fb1_VanDerPol, 

Fb1_Duffing, Fb1_Hopf, Fb1_Lorenz, and Fb1_MSD for 
further examples. The adaptive variants Fb1_HopfA and 
Fb1_HopfAFDC can preserve the frequency of an external 
force after its stopping. That provides an unusual synthesis 
option. The classes implement the techniques described in 
[22] and [23], which are generic ways to make ODE sys-
tems adaptive. 

2.3 Models from various fields 

ODE models occur in many fields like physics (eminently 
mechanics), electrical engineering, population dynamics, 
and even chemistry. They can be interesting audio engines 
themselves or act as a starting point for further explora-
tions. For an overview, see the SIAM publication Explor-
ing ODEs [24] with an experimental approach in the 
graphic domain and many links and examples. Also, it’s 
worth being aware that ODEs of one type can occur in dif-
ferent forms. The decision for a particular parameter set 
can have a vast impact on audio usability. Ultimately, pa-
rameter spaces demand a practical investigation. 
Fb1_ODE’s help file contains examples from mechanics 
(driven pendulum, reduced two-body problem, Ex. 8a/b) 
and population dynamics (Lotka-Volterra and Hastings-
Powell, Ex. 9a/b). 

2.4 Modulations 

It's possible to modulate systems parameters and the time 
scaling factor at audio rate – the latter can also get negative 
values. The example of Figure 4 varies that of Figure 3 by 
modulations of external force, mass, and time scaling 
(tMul argument). The specific choice preserves the devel-
opment of the previous example – in general, it is easy to 
make systems unstable by operations of such kind. While 
the changing mass might still have a physical plausibility, 
the use of changing and even negative time steps is finally 

destroying a correct integration, though still possibly use-
ful as a synthesis option. 

 
Figure 4. MSD with modulations, used for FM. 

2.5 Integration methods 

While the use of symplectic integration procedures has ad-
vantages for the cited reasons, Fb1_ODE supports other 
families of integration methods like Euler, Prediction-
Evaluation-Correction (PEC), Runge-Kutta, Adams-Bash-
forth, and Adams-Bashforth-Moulton as well. As an ad-
vanced feature, more integration methods can be added in-
teractively with the class Fb1_ODEintdef. In some cases, 
alternative integration methods can lead to timbral varia-
tions. Quite often, though, they lead to blowups or decays, 
where stable oscillations should occur. Figure 5 shows an 
example with a 3rd order Runge-Kutta integration of the 
harmonic oscillator, which leads to decay after a few sec-
onds. 

 
 

Figure 5. Failing integration with 3rd order Runge-Kutta. 
 

The symplectic “rattle” procedure has another ad-
vantage: it offers the option to improve accuracy by the 
iterated division of step sizes. To employ these variants, 
pass the SC Symbol ‘sym’ with one of the suffixes 2, 4, 6, 
8, 12, 16, 32, 64 on Fb1_ODE’s intType argument (default 
‘sym4’). 

2.6 Handling unstable systems 

It is possible to insert an additional function, which applies 
to every array of samples that is the intermediate result – 
and next input – of the numerical integration procedure. 
Consequently, the correct integration of the ODE is out of 
scope. The option still has its value: limiting functions can 
prevent systems from blowing up. Let us regard this para-
phrase on the Mass-Spring-Damper model: 

m y’’(t) = -k y(t) - c y’(t) + F(t) + y(t) y’(t)       (9)  
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The use of this ODE in similar ways as in the examples 
from Figures 3-4 leads to a derail by infinite numbers after 
few seconds. However, the system remains inside practical 
bounds with a limiting operator like clip2 (Figure 6). 

 
Figure 6. MSD with disturbance, used for FM. 

2.7 Further options and settings 

Initial values – the system state y0 at time t0: y(t0) = y0 – 
are essential for an ODE solution. The user can pass them 
on Fb1_ODE with the corresponding arguments t0 and y0. 
In many cases – like Mass-Spring-Damper with constant 
external force – a change of the start time does not have a 
consequence: the resulting waveform is the same, whereas 
the initial system values (position and velocity) have a sig-
nificant impact. 

Fb1_ODE can also return additional information in sep-
arate channels. By default, it returns the solution func-
tion(s) of the ODE system. Optionally, it can also output 
the differential and the time – which is not necessarily lin-
ear, as there might be a time modulation. The correspond-
ing arguments are withDiffChannels and withTimeChan-
nel. See the Fb1_ODE help file examples 6a and 6b. 

Fb1_ODEdef allows for amplitude scaling factors. Usu-
ally, they default to 1, but certain ODEs, like Lorenz, pro-
duce a very high amplitude level with standard parameters. 
Therefore, it makes sense to scale their output down by de-
fault. However, with Fb1_ODE's withOutScale argument, 
the default scaling can be disabled (Fb1_ODE help file ex-
amples 7).  

As many system solutions produce an unwanted DC 
offset, a DC leaker applies by default. The user can disable 
the option with Fb1_ODE's leakDC argument. 

One of Fb1_ODE's basic arguments is tMul for time 
scaling. As in Figure 1, it can determine the resulting fre-
quency (alternatively, the user might define the multipli-
cation in the system definition with Fb1_ODEdef). It is 
important to note that numerical integration in the audio 
rate case is always performed on a per-sample base – even 
if the block size is larger than 1 – only the unit of the sys-
tem time is varied. However, scaling is restricted to numer-
ical accuracy limits: with extreme tMul values or numeri-
cally sensitive equations, you might encounter blowups or 

situations where the resulting frequency does not linearly 
relate to the scaling. Besides, Fb1_ODE can alternatively 
run at control rate (Fb1_ODE.kr), which helps to save 
CPU-load if the current block size is larger than 1. 

2.8 Workflow recommendations, troubleshooting 

The direct definition of the ODE systems in the language 
is a convenience that comes with the price of a possibly 
large number of unit generators involved. That does not 
necessarily mean a high CPU-load of the audio engine but 
leads to a higher compile-time. The user might want to ex-
tend SC's server resources before booting, e.g., set a higher 
number of unit generators with the server option num-
WireBufs. For a smooth workflow, I would recommend 
taking a reduced blockSize (e.g., 1, 2, 4, 8, 16) while ex-
perimenting because compile-time is shorter. But after fix-
ing the design of a SynthDef, it might pay going back to a 
blockSize value of 32 or 64 for runtime efficiency, even 
more if many control rate unit generators are involved. 

Especially with custom-designed ODEs, the usage of 
Fb1_ODE is – inherently – highly experimental. I strongly 
recommend being careful with amplitudes! Sudden 
blowups might result from the mathematical characteris-
tics of the ODE systems. They might also stem from pa-
rameter adjustments – on which ODEs can react with ex-
treme sensitivity – or from numerical accumulation ef-
fects. As a precautionary measure, users can employ SC's 
limiting/distorting operators (tanh, clip, softclip, dis-
tort) with the compose option (2.6) or external limiting, 
e.g., with the quarks JITLibExtensions (MasterFX) or 
SafetyNet. 

The numerical integration procedure supposes well-de-
fined ODE systems. The Fb1_ODE framework doesn't 
perform any checks concerning the principal existence and 
uniqueness of an ODE solution. 

3. CONCLUSIONS 
The SC class extension Fb1_ODE enables the audification 
of ordinary systems of differential equations with initial 
values in realtime. ODEs serve as a generic description 
system for waveforms, which one often cannot define by 
(explicit) mathematical means. Synthesis experiments 
have proven to be promising with well-known ODE sys-
tems from many scientific fields, as well as with custom-
designed ODEs. Options for the modulation of ODE pa-
rameters and system time – and the integration mechanism 
itself – blur the model concept, though, also widen the field 
of sonic exploration. 
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ABSTRACT

Generative Adversarial Networks (GANs) currently
achieve the state-of-the-art sound synthesis quality for
pitched musical instruments using a 2-channel spectro-
gram representation consisting of log magnitude and
instantaneous frequency (the "IFSpectrogram"). Many
other synthesis systems use representations derived from
the magnitude spectra, and then depend on a backend
component to invert the output magnitude spectrograms
that generally result in audible artefacts associated with
the inversion process. However, for signals that have
closely-spaced frequency components such as non-pitched
and other noisy sounds, training the GAN on the 2-channel
IFSpectrogram representation offers no advantage over the
magnitude spectra based representations. In this paper, we
propose that training GANs on single-channel magnitude
spectra, and using the Phase Gradient Heap Integration
(PGHI) inversion algorithm is a better comprehensive ap-
proach for audio synthesis modeling of diverse signals that
include pitched, non-pitched, and dynamically complex
sounds. We show that this method produces higher-quality
output for wideband and noisy sounds, such as pops and
chirps, compared to using the IFSpectrogram. Further-
more, the sound quality for pitched sounds is comparable
to using the IFSpectrogram, even while using a simpler
representation with half the memory requirements.

1. INTRODUCTION

In recent years, GANs have achieved the state-of-the-art
performance in neural audio synthesis, specifically for
pitched musical instrument sounds [1, 2]. Engel et al. [1]
showed that a progressively growing GAN [3] can out-
perform strong WaveNet [4] and WaveGAN [5] baselines
in the task of conditional musical instrument audio gen-
eration achieving comparable audio synthesis quality and
faster generation time. Nistal et al. [2] further showed that
a 2-channel input representation consisting of the magni-
tude and the instantaneous frequency (IF) of the Short-
Time Fourier Transform (STFT) achieves the best syn-
thesis results in this framework compared to other kinds

Copyright: c○ 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the
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of representations, such as Mel spectrogram, MFCC, and
Constant-Q Transform. The derivative of unwrapped phase
of a signal with respect to time is equal to the angular
difference between the frame stride and signal periodic-
ity, and is commonly referred to as the instantaneous fre-
quency (IF). Estimation of IF provides comprehensive in-
formation about the phase of the signal when the audio is
pitched, i.e. has components that are clearly separated in
frequency. Thus, a magnitude spectrogram combined with
the estimated IF results in high-quality reconstruction of
the signal for pitched signals such as musical instruments.
In broadband and noisy short duration signals, components
are not separated in frequency, and neighboring frequency
bins have complex and highly interdependent amplitude
and phase relationships that are necessary for reconstruc-
tion and the representation is very sensitive to IF estimation
errors.

DrumGAN [6] extended the work in [2] to various drum
sounds, however the authors have notably not used the
IF spectrogram that produce state-of-the-art quality for
pitched sounds, but instead, use spectrograms of the real
and imaginary parts from the STFT directly. They also use
a set of perceptually correlated features more appropriate
than pitch for conditioning the percussion sounds in the
target data set.

Průša et al. [7] proposed a non-iterative phase recon-
struction algorithm called Phase Gradient Heap Integration
(PGHI) that uses the mathematical relationship between
the magnitude of Gaussian windowed STFT and the phase
derivatives in time and frequency of the Fourier trans-
form to reconstruct the phase using only the magnitude
spectrogram. Marafioti et al. [8] compared three differ-
ent GAN architectures, and showed that for a dataset con-
sisting of spoken digits and piano music, the architecture
using PGHI produced audio of objectively and perceptu-
ally higher quality than the other representations they com-
pared based on an aggregate set of different signal types.
A direct comparison with GanSynth [1] which was being
published at about the same time was also not included in
their study.

In this paper, we study and compare the state-of-the-art
GanSynth with magnitude spectrogram+IF audio represen-
tation and reconstruction method and the PGHI method of
representation and reconstruction for a systematically or-
ganized collection of audio textures such as pitched musi-
cal instruments, noisy pops, and chirps, spanning a range
from pitched steady-state to broadband signals. We show
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that the PGHI method of reconstruction from GAN esti-
mates is more robust for synthetic spectrograms and esti-
mation errors for different kinds of input signals than the
state-of-the-art magnitude+IF representation. This study
contributes to the development of general and efficient rep-
resentations for training GANs for complex audio texture
synthesis.

2. AUDIO TEXTURES AND REPRESENTATIONS

2.1 Audio Representations and Inversion Techniques

Many algorithms learn to estimate the magnitude spectro-
gram and then use iterative methods such as Griffin-Lim
[9] to estimate the phase and reconstruct the time domain
signal. However, these traditional methods of phase esti-
mation and reconstruction are known to have perceptible
artifacts in the reconstructed signal. Estimation of phase
is difficult and prone to errors in part because artificial or
manipulated images may not produce a real-valued time
domain signal when inverted.

Another way of representing phase is with instantaneous
frequency. The estimate of magnitude spectrogram and IF
in frequency domain can be used to reconstruct a time do-
main signal by computing the unwrapped phase from the
cumulative sum of IF across time axis, and computing an
inverse Fourier transform. The state-of-the-art GANSynth
framework [1,2] estimates this 2-channel audio representa-
tion, i.e. log magnitude and IF, or IFSpectrogram. Engel et
al. hypothesized and showed that synthesized audio qual-
ity from the IFSpectrogram is robust to estimation errors
for the NSynth dataset of pitched musical instrument au-
dio while noting the importance of choosing analysis win-
dow sizes large enough to be primarily sensitive to a single
frequency component. However, to the best of our knowl-
edge, IFSpectrogram method has not been tested and com-
pared to other representations for non-pitched and noisy
sounds.

We observe that whether converting pitched instrument
or noisy transient audio into IFSpectrogram representation,
that resynthesizing produces a high quality audio output
for both the kinds of sounds. However, if we add a small
Gaussian noise to the IF channel (to simulate estimation
error in IF) and then resynthesize, the perceptual quality of
the pitched sounds is not affected as much as the quality of
the noisy pop sounds. Audio examples of this simulation
are presented in the companion website 1 . This indicates
that IFSpectrogram method may not be robust to manip-
ulated and synthetic spectrograms or estimation errors for
non-pitched and noisy sounds.

For a signal composed of sinusoidal components with
constant frequencies, the phase grows linearly in time for
all the frequency channels that have energy in the spec-
trogram. For these frequency channels, the IF is constant
and the local group delay (STFT phase derivative with re-
spect to frequency) is zero. However, in case of an im-
pulse train, the situation is reverse to that of sinusoidal
components, wherein the phase derivative with respect to

1 https://animatedsound.com/amt/listening_tes
t_samples/#simulation

frequency axis will have more information than the IF as
there is energy across almost all the frequency channels in
the spectrogram, but the change of phase with respect to
time exists only around the impulse events, and otherwise
it is zero. Furthermore, for signals that have fast moving or
closely spaced frequency components, IF does not capture
the variability in the frequency direction.

The Phase Gradient Heap Integration (PGHI) method [7]
is a non-iterative phase estimation method that exploits the
mathematical relationship between the time and frequency
derivatives of log magnitude spectrogram with the phase
gradients in frequency and time axes respectively. To pro-
vide a brief summary here, Průša et al. [7] proved math-
ematically and experimentally that the derivative of phase
along frequency axis 𝜑𝜔(𝑚,𝑛) and, the derivative of phase
along time axis 𝜑𝑡(𝑚,𝑛) can be estimated solely from the
time and frequency derivatives of log-magnitude of STFT
(slog𝑡, slog𝜔) respectively computed with a Gaussian win-
dow, as [10, 11],

𝜑𝜔(𝑚,𝑛) =
−𝛾

2𝑎𝑀
(slog𝑡(𝑚,𝑛))

𝜑𝑡(𝑚,𝑛) =
𝑎𝑀

2𝛾
(slog𝜔(𝑚,𝑛)) + 2𝜋𝑎𝑚/𝑀

(1)

where, 𝑀 is the number of frequency channels, 𝑎 is the
hop size, and 𝛾 is the time-frequency ratio of Gaussian
window, which is recommended to be 𝑎𝑀/𝐿, 𝐿 being the
length of the input signal in samples. Although the the-
ory behind the non-iterative method of phase reconstruc-
tion from the STFT magnitude holds for Gaussian contin-
uous window, Prusa et al [7] showed that the algorithm
works well for a discretised truncated Gaussian window,
however with the Gaussian approximation of other win-
dows such as Hann and Hamming windows, they found
significant signal degradation. Therefore in this work, we
have used the truncated Gaussian window function. Re-
dundancy between frames should be such that there is suf-
ficient dependency between the values of the STFT to fa-
cilitate magnitude-only reconstruction. The recommended
redundancy is 𝑀/𝑎 ≥ 4 [8].

This method also implements a numerical integration of
these phase gradients such that integration is first per-
formed along the prominent contours of the spectrogram in
order to reduce accumulation of the error, and so on. This
heap integration method to estimate phase from the phase
gradients helped to make the synthesis robust to estimation
errors and noise [7, 10].

In this work, our goal is to investigate the quality of audio
produced by a progressive GAN trained on a single channel
log magnitude spectrogram and using PGHI for inversion
of the estimated spectrogram to time domain signal and
compare it to using the two-channel IFSpectrogram repre-
sentation, for wideband, noisy, non-pitched or fast chang-
ing signals, as well as pitched instrument signals. With
this framework, we propose a general approach for audio
synthesis using the state-of-the-art GAN that works for a
variety of different sounds.
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2.2 Audio Textures

Audio synthesis finds practical applications in creative
sound design for music, film, and gaming, where creators
are looking for sound effects suited to specific scenar-
ios. Research in this field aims to learn a compact latent
space of audio such that adjustments to these latent vari-
ables would help the creator search through a known space
of sounds (eg. water drops and footsteps), parametrically
control (eg. rate of water dripping) as well as explore new
sounds in the spaces in between the known sounds [5].

Building upon generative adversarial image synthesis
techniques, researchers exploring GAN techniques for
neural audio synthesis have made significant progress in
building frameworks for conditional as well as uncondi-
tional synthesis of a wide range of musical instrument tim-
bres [1, 2]. These models are trained on NSynth dataset
[12] that consists of notes from musical instruments across
a range pitches, timbres, and volumes. Conditioning on
pitch allows the network to learn natural timbre variation
while providing musical control of notes for synthesis. The
NSynth dataset provides a comprehensive representation
of pitched sounds comprised primarily of well-separated
harmonics. There has been some work on audio texture
modeling for synthesis [13–15] including deep learning
approaches [16], but audio textures have received consid-
erably less attention than traditional musical sounds and
speech.

Sound textures [13, 17] have more timbral variation in-
cluding wideband or noisy components, such as footsteps
or motors, and a wide range of temporal structure not found
in pitched instruments. Furthermore, there can be very
fast-varying frequency components and pitches in sounds
such as water dripping, and chirps. Thus we examine the
performance of controlled audio synthesis techniques on
trained networks using three types of sounds - pitched in-
struments, noise burst pops, and frequency sweep chirps,
as shown in Figure 1. In this work, we conduct experi-
ments on pitched musical instruments and carefully con-
trolled synthetic non-pitched and dynamic textures. More
complex and natural textures are left for future study.

2.3 Conditional GAN architecture for audio synthesis

Parametrically controllable audio synthesis has also been
an active field of research in recent years. Hsu et al. [18]
used hierarchical variational autoencoders (VAEs) for con-
ditional or controlled speech generation. Similarly, Luo et
al. [19] learn separate latent distributions using VAEs to
control the pitch and timbre of musical instrument sounds.
Engel et al. [12] conditioned a WaveNet-style autoregres-
sive model to generate musical sounds, as well as inter-
polate between sounds to generate new sounds. The cur-
rent state-of-the-art performance in conditional synthesis
of audio is the GANSynth architecture [1] which intro-
duces a progressively growing Wasserstein GAN for con-
trolled music synthesis and is based on the IFSpectrogram
representation [2]. Thus, we adopt this architecture with
IFSpectrogram representation as our baseline.

3. EXPERIMENTAL DETAILS

3.1 Audio Datasets

3.1.1 Pitched Musical Instruments

We make use of the NSynth dataset [12], that consists of
approximately 300,000 single-note audios played by more
than 1,000 different instruments. It contains labels for
pitch, velocity, instrument type, acoustic qualities (acous-
tic or electronic), and more, although, for this particular
work, we only make use of the pitch information as the
conditional parameter. We use the same subset of this
dataset as was used by Nistal et al. [2]. It contains acoustic
instruments from the brass, flutes, guitars, keyboards, and
mallets families, and the audio samples are trimmed from 4
to 1 seconds and only consider samples with a MIDI pitch
range from 44 to 70 (103.83 - 466.16 Hz). This yields a
subset of approximately 22,000 audio files with balanced
instrument class distribution.

3.1.2 Noisy Pops

On the other end of the spectrum of sounds we tested are
pops. A pop is a burst of noise filtered by a bandpass fil-
ter. We generated the pop textures with three parameters
- rate (number of events per seconds), irregularity in the
temporal distribution (using a Gaussian distribution around
each evenly-spaced time value), and the center frequency
of the bandpass filter. Rate ranges from 2 to 16 pops per
second, center frequency ranges from 440 to 880 Hz (cor-
responding to midi pitch values 69 to 81), and irregularity
described by a Gaussian distribution with a standard de-
viation ranging from 0.04 to 0.4. We generate 21 values
for each of these three parameters, and five one-second
long audio clips of each combination, resulting in a total
of 46,305 (21 × 21 × 21 × 5) audio files.

3.1.3 Chirps

In between the quality of the pitched sounds with rel-
atively steady frequency components and the noisy pop
sounds with sharp broadband transients are chirps. A chirp
is a signal in which the frequency increases or decreases
quickly with time. The chirps were generated with two
frequency components space by an octave, and were con-
trolled with 5 parameters - irregularity in time (like the
pops), chirp rate (2 to 16 chirps per second, 9 samples),
frequency sweep range in octaves indicating steepness of
chirp ([-3. -1, 1, 3] where negative is descending and posi-
tive is ascending), event duration i.e. duration of each chirp
in seconds (5 linearly spaced samples in [.02, .2]), and cen-
ter frequency (9 linearly space samples in musical pitch
space between 440 and 880 Hz). We generate 5 varia-
tions of each parameter (different due to the statistical dis-
tribution of events in time) resulting in a total of 40,500
(5 × 9 × 4 × 5 × 9 × 5) audio files of 1 second each.

3.2 GAN architecture

We used the progressively growing Wasserstein GAN ar-
chitecture [1, 2] which consists of a generator G and a dis-
criminator D, where the input to G is a random vector 𝑧
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(a) Pitched Instrument (Piano) (b) Pops (c) Chirps

Figure 1. Examples of (a) a pitch instrument (piano), (b) Noise burst or pops, and (c) Frequency sweeps or chirps, with
their respective audio waveform (top row), log magnitude spectrogram (middle row), and instantaneous frequency of un-
wrapped phase (bottom row) plots. The audio examples presented are 1 second long at 16 kHz sampling rate. Spectrogram
computation is with window size 512 and hop size 128 samples.

with 128 components from a spherical Gaussian distribu-
tion along with a one-hot conditional vector 𝑐𝑖𝑛. Separate
models were trained for each data set with the only differ-
ence being the dimension of the one-hot pitch vector (27,
13, and 9 for NSynth, pops, and chirps, resp.) For each
dataset, we train two models as shown in Figure 2. Model
A uses a 2-channel audio representation consisting of the
log magnitude spectrogram and IF (Figure 2(a)) computed
from Short Time Fourier Transform (STFT) with Hanning
window, and Model B uses a single-channel log magni-
tude of Gabor transform (i.e. STFT with Gaussian win-
dow) audio representation (Figure 2(b)). During gener-
ation, Model A’s estimated IFSpectrogram is inverted to
a real time domain signal using Librosa’s inverse STFT
which uses Griffin-Lim iterative algorithm for synthesis
initialized by the estimated phase from IF. For model B,
we use phase gradient heap integration (PGHI) [7] 2 for
reconstruction of the audio signal from the log magnitude.
It reconstructs the phase only for the positive frequency co-
efficients and enforces conjugate symmetry to the negative
frequency coefficients in order to guarantee a real-valued
time domain signal.

The generator’s architecture consists of a Format block
and a stack of Scale blocks. The Format block turns the
1D input vector 𝑧 + one-hot conditional 𝑐𝑖𝑛, with 128 +
x dimensions (where x could be 27, 13, or 9) into a 4D
convolutional input consisting of [batch size, 128, 𝑤0, ℎ0],
where 𝑤0 and ℎ0 are the sizes of each dimension at the

2 https://github.com/andimarafioti/tifresi

(a)

(b)

Figure 2. GAN block diagram with (a) IF, and (b) PGHI.
𝑧𝑛𝑜𝑖𝑠𝑒 is the 128 dimensional latent vector, 𝑐𝑖𝑛 is the con-
ditional parameter one-hot vector. G is the generator, D is
the discriminator.
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input of the scale block.
The scale blocks are a stack of convolutional and box-up-

sampling blocks that transform the convolutional input to
the generated output signal progressively in 5 stages. The
discriminator D is composed of convolutional and down
sampling blocks, mirroring the configuration of the gener-
ator. D estimates the Wasserstein distance between the real
and generated distributions. For more details, please refer
to [2] 3 . Our code that implements the GAN architecture
with IF as well as PGHI methods (an extended version of
Nistal et al.’s code) is available here 4 .

3.2.1 Training

Training is divided into 5 stages, wherein each stage a new
layer, generating a higher-resolution output, is added to
the existing stack, which is the essence of the progressive-
GAN [1, 3]. The gradual blending in of the new layers
with a blending parameter alpha ensures minimum possi-
ble perturbation effects as well as stable training. We train
all the models for 1.2M iterations on batches of 8 samples:
200k iterations in each of the first three phases and 300k in
the last two. Adam optimization method is employed.

We tried multiple FFT sizes 512, 1024, and 2048 to com-
pute the time-frequency representations, that correspond to
window sizes of 32 ms, 64 ms, and 128 ms respectively
for a signal sampled at 16 kHz. For transient sounds, a
window size with higher time resolution is needed, i.e. a
shorter window and indeed we empirically found that FFT
size of 512 serves well for both the transient pop sounds
and the steady pitched sounds. Therefore, in the experi-
ments presented in this paper, we use FFT size of 512. We
tested the effect of redundancy between frames in recon-
struction, thus we trained two models, with hop sizes 64
and 128, i.e. 87.5% and 75% overlap between consecutive
frames. We train two types of models IF and PGHI, for
three kinds of audio textures, NSynth, pop, and chirp, for
each of the two hop sizes. All of the models took about 2.5
to 3 days to train on an Nvidia Tesla V100-32GB GPU.

3.3 Evaluation Metrics

Evaluation of generative models is challenging, especially
when the goal is to generate perceptually realistic audio
that may not be exactly same as any real audio in the
dataset. Previously, the inception score has been used as
the objective measure that evaluates the performance of
a model for a classification task such as pitch or instru-
ment inception score [1, 2]. However, in this work, we are
comparing signal representations and synthesis techniques,
while the GAN architecture remains the same. Since the
variety of sounds with respect to classification is not ex-
pected to change. Indeed, Nistal et al [2] noted that incep-
tion models are not robust to the particular artifacts of the
representations they were comparing, and therefore, it is
not a very reliable measure of the overall generation qual-
ity.

3 https://github.com/SonyCSLParis/Comparing-Re
presentations-for-Audio-Synthesis-using-GANs

4 https://github.com/lonce/sonyGanFork

Marafioti et al. [8] developed an interesting consistency
measure that estimates how close a magnitude spectrogram
is to the frequency transform of a real audio signal. How-
ever, it is not obvious how it could be used to compare
representations that include explicit phase representations.
Also, the perceptual quality of the generated audio signal
depends on other factors as well. For example, a real-
valued time domain signal of poor perceptual quality will
have a perfectly consistent magnitude spectrogram.

In this work, we performed listening tests for subjectively
evaluating the quality of the generated sounds, as well as
computed Fréchet Audio Distance (FAD) [20] as the ob-
jective evaluation metric.

3.3.1 Human Evaluation

To construct stimuli for listening experiments, three points
in the latent space are randomly chosen to generate three
audio signals of 1 second each per pitch class per trained
model, which were then stitched together with a 0.5 sec-
ond silence before each of the 3 segments) resulting in a
4.5 seconds duration audio clips that were presented in the
listening test. This provided variability within each clip so
that the listeners focus on the sound quality of the clips and
not on the instrument type or the rate of pops and chirps.
For reference, a similar set of audio clips was prepared
from the original or real audio data set as well.

The listening test was conducted by recruiting twenty
participants via Amazon’s Mechanical Turk (AMT) web-
site. In each assessment task, the participants were asked to
listen first to the reference, then to the two synthesized au-
dio clips, randomly ordered, and then to select the one they
felt was the closest in sound quality to the reference clip, or
if they were similar. Our task instructions were simplified
for the participants and included text like "Although the
synthetic clips may sound quite different from the original,
you will need to select a clip whose sound quality is most
similar to the sound quality of the original". The two audio
clips belonged to either IF or PGHI reconstruction tech-
niques for a hop size of 64 or 128 for each comparison.
Only same type of sounds were compared, i.e. NSynth_IF
to NSynth_PGHI, pop_IF to pop_PGHI etc. Moreover, the
two clips being compared had the same pitch or center fre-
quency. 20 random pitches from the NSynth dataset, 13
pitches from pops, and 9 pitches from chirps were selected
to build a sample size of 84 comparison trials (42 com-
parisons each for hop 64 and 128 reconstructions respec-
tively) and overall 1,680 ratings were collected. The tri-
als were loaded into AMT in a random sequence and were
completed by participants within 2 hours. The participants
were compensated at the rate of US$ 0.02 per comparison
trial.

3.3.2 Fréchet Audio Distance

The Frechet Audio Distance (FAD) [20] 5 is the distance
between the statistics (mean and covariance) of real and
fake data computed from an embedding layer of the pre-
trained VGGish model. The embedding layer is considered

5 https://github.com/google-research/google-re
search/tree/master/frechet_audio_distance
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to be a continuous multivariate Gaussian, where the mean
and covariance are estimated for real and fake data, and the
FAD between these is calculated as:

𝐹𝐴𝐷 = ||𝜇𝑟 − 𝜇𝑔||2 + 𝑡𝑟(Σ𝑟 + Σ𝑔 − 2
√︀

Σ𝑟Σ𝑔) (2)

where 𝜇𝑟,Σ𝑟 and 𝜇𝑔,Σ𝑔 are the mean and covariances of
real and fake probability distributions, respectively. Lower
FAD means smaller distances between synthetic and real
data distributions. The VGGish model is trained on 8M
Youtube music videos with 3K classes. The FAD metric
has been tested successfully specifically for the purpose
of reference-free evaluation metric for enhancement algo-
rithms. FAD performs well in terms of robustness against
noise, computational efficiency, and consistency with hu-
man judgments, and has been used by Nistal et al. [2]. FAD
has been found to have a high correlation (0.52) with hu-
man perceptual judgment compared to other measures such
as signal-to-distortion ratio, cosine distance or magnitude-
L2 distance [20].

4. RESULTS AND DISCUSSION

Qualitatively it is observed that with the IF method, the
sharp transients of the pop sounds get smeared in time,
whereas PGHI method produces clear and sharp transients.
This temporal smearing effect is also observed in the short
duration chirps generated from the IF method. This smear-
ing effect arises from the inability of IF to provide robust
information about phase when the signal contains closely
spaced wideband frequency components. For NSynth data,
however, the two methods sounded approximately equal in
quality. Examples of the synthesised audio presented for
listening tests are here 6 , and visual analysis of the gener-
ated spectrograms are provided here 7 .

Figure 3 (a) and (b) show results from the listening test
for reconstructions using hop sizes 64 and 128 respectively.
For both hop sizes, participants rated PGHI reconstructions
to be significantly better than IF for pop sounds, where they
rated in favour of PGHI 80.79% and 73.15% for hop sizes
128 and 64 respectively. This result clearly shows that
PGHI with GAN produces perceptually higher quality au-
dio for noisy signals. For chirp sounds, participants rated
PGHI somewhat better than IF. But for NSynth pitched in-
strument sounds, PGHI and IF are similarly rated for both
hop lengths. Furthermore, we observe that hop size 64
shows a clearer distinction in preference between IF and
PGHI for nsynth and chirp sounds, than hop size 128. This
indicates that a higher redundancy in the spectrogram rep-
resentation may help in better reconstruction with PGHI
method than IF method. However, comparison between
the two hop sizes for the same method has shown mixed
responses for the different datasets, which means that re-
dundancy of more than 4 may not have a significant impact
on the reconstructed audio quality of one method.This sys-
tematic study suggests that PGHI with GAN produces au-
dio quality perceived as roughly equal to the state-of-the-

6 https://animatedsound.com/amt/listening_tes
t_samples/#examples

7 https://animatedsound.com/amt/listening_tes
t_samples/#analysis

art IF method for pitched sounds, but significantly higher
as the complexity of the signal increases.
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Figure 3. Results from listening tests for comparing IF
and PGHI reconstructions from GAN using hop lengths of
(a) 64 and (b) 128 respectively. Across both hop lengths,
PGHI reconstructions of noise bursts or pops were rated
to be significantly better than IF. For chirps, PGHI recon-
structions were rated to be slightly better than IF and for
pitched instruments PGHI reconstructions were rated al-
most similar to IF.

To evaluate objectively, we computed the FAD metric, as
shown in Table 1. We observe that PGHI method generated
audio that consistently shows a smaller distance from ref-
erence audio compared to that generated from IF method,
although unlike the perceptual ratings, the two representa-
tions are closer for chirps than the other two signal types.
While this objective measure is broadly in line with the
higher ratings for the PGHI method, the systematic dis-
agreement between the user and objective measures across
pitched and chirp sounds demonstrate that there is more
work to be done to find an objective measure that corre-
lates with human judgements of quality.

The performance of the system, given all other settings
are the same (training steps, architecture, etc), is better
using the PGHI method than the IFSpectrogram method.
Convergence during learning, especially in stage 5 of the
progressive GAN differed between the two representations
depending on the signal. The IF method representation
converged better for NSynth, while PGHI representation
converged slightly better for the other signals. However,
in all cases, the quality of the synthesised audio was better
(Figure 3) using the PGHI method.

5. CONCLUSIONS

We present a general method of audio synthesis using
GAN that produces high quality audio output for a wide va-
riety of sounds, pitched instruments as well as non-pitched
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Audio Texture Hop Size IF PGHI
Pitched Instruments 128 1.500 1.001
Pitched Instruments 64 1.583 0.924
Pops 128 1.783 0.305
Pops 64 1.866 0.295
Chirps 128 1.395 1.031
Chirps 64 1.269 0.747

Table 1. FAD results of different GAN models with IF
and PGHI. A lower FAD means smaller distances between
synthetic and real data distributions.

and noisy pop and chirp sounds. We show that IFSpec-
trogram representation that currently produces the state-
of-the-art performance with GAN for pitched instruments
is not a robust representation for non-pitched and noisy
sounds. Moreover, through subjective and objective mea-
sures, we show that integrating the PGHI representation
and reconstruction technique in the GAN framework pro-
vides a reasonable solution to this problem, as it generates
better audio quality for noisy pops and chirps than when
using the IFSpectrogram method, and produces similar au-
dio quality for pitched instruments. Audio examples gen-
erated from our experiments are available here 8 , and our
code implementation is available here 9 .

A potential direction of improvement of the PGHI tech-
nique is to use the phase estimates from PGHI as a warm-
start for other iterative phase reconstruction algorithms
such as LeGLA, as shown by Prusa et al. [7]. Another
possibility is to include different explicit representations
of phase information in training that might outperform
magnitude-only reconstruction with PGHI. Marafioti [8]
used a representation with frequency derivatives for train-
ing which did not perform as well as the magnitude PGHI
reconstruction method, but indicates the potential that this
direction has to offer.

The method of training a GAN as a data-driven approach
to designing parametrically controlled synthesizers holds
a lot of promise for creative applications such sound de-
sign and music. A signal-independent representation for
training the networks is an important step towards the uni-
versality and usability of this approach.
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[7] Z. Průša, P. Balazs, and P. L. Søndergaard, “A nonitera-
tive method for reconstruction of phase from stft mag-
nitude,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 25, no. 5, pp. 1154–
1164, 2017.

[8] A. Marafioti, N. Perraudin, N. Holighaus, and P. Ma-
jdak, “Adversarial generation of time-frequency fea-
tures with application in audio synthesis,” in Interna-
tional Conference on Machine Learning. PMLR,
2019, pp. 4352–4362.

[9] D. Griffin and J. Lim, “Signal estimation from modi-
fied short-time fourier transform,” IEEE Transactions
on acoustics, speech, and signal processing, vol. 32,
no. 2, pp. 236–243, 1984.
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CONSTRAINED DIFFERENTIAL EQUATIONS AS COMPLEX SOUND
GENERATORS

Dario SANFILIPPO1

1Independent, Catania, Italy

ABSTRACT

This paper presents investigations for complex sound gen-
eration based on modified classic chaotic differential equa-
tions. The modification consists of a constraining struc-
ture, a cascaded saturating nonlinearity and DC-blocker
unit within the recursive paths of the differential equations.
The new configuration allows for the exploration of these
equations in unstable regions, increasing the parameters
ranges allowed and extending sonic possibilities. Further-
more, the configuration implements a low-level competing
mechanism between positive and negative feedback rela-
tions that forces oscillation and enhances complex varia-
tions both at timbral and formal time scales. The result-
ing systems exhibit phase spaces with nontrivial trajecto-
ries and show potential for computer music and, partic-
ularly, applications requiring some degree of autonomy.
The sound generators are implemented in the Faust pro-
gramming language and are published on Github under the
GNU GPL v3.0 license.

1. INTRODUCTION

Differential equations exhibiting chaotic behaviours have
been studied for over a century and have found applica-
tions in several fields ranging from biology and chemistry
to electronics and mechanics. The Lotka-Volterra equa-
tions are a system of two differential equations conceived
in the 1910s and used to this day to model biological sys-
tems, particularly predator-prey interactions and dynam-
ics [1]. The Duffing equation is a second-order differential
equation and was initially investigated in the late 1910s to
render the behaviour of particular damped oscillators [2].
In the 1920s, Balthasar van der Pol discovered a differ-
ential equation for a type of stable oscillator connected to
behaviours in electrical circuits applying vacuum tubes [3].
The Lorenz system is a system of three differential equa-
tions developed in the 1960s as a mathematical model for
atmospheric convection; the system later became one of
the most iconic models displaying deterministic chaos [4].
Later, in the 1970s, Otto Rössler designed a chaotic at-
tractor initially intended to behave similarly to the Lorenz
attractor that was later found to be related to equilibrium
in chemical reactions [5]. The Chua’s circuit, developed

Copyright: © 2021 the Authors. This is an open-access article distributed un-
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in the 1980s, is an electrical circuit exhibiting chaotic be-
haviours that can be modelled through a system of three
differential equations and that became famous for its sim-
plicity of construction [6]. Also in the 1980s, Hindmarsh
and Rose produced a system of three differential equations
to model neuronal activity [7]. Lastly, in the 1990s, René
Thomas developed a system of three differential equations
that could be used to model a particle’s motion in a 3D
lattice of forces [8].

Early examples of the application of chaotic systems for
music date back to the late 1990s with Di Scipio’s work on
iterated nonlinear functions [9,10]. There, Di Scipio inves-
tigates difference equations based on the sine map model
for the generation of spectrally rich synthetic sounds and
dynamical behaviours and simulations of auditory envi-
ronmental events. In the 2000s, we have investigations by
Bilotta et al., where the Chua oscillator is explored exten-
sively for musical and artistic applications [11, 12]. More
recent works on musical applications of chaotic systems
can be found in [13] and [14]. Mudd, in particular, de-
velops a form of modified Duffing equation where the dy-
namics of the system is guided through a band-pass filter
bank; the equation and the filters are coupled through an
added outer feedback loop. Finally, a survey of feedback-
based music describing several approaches that can all be
grouped within the realm of nonlinear iterated functions is
available in [15].

Since Bilotta et al. and Mudd have carried out research
on Chua’s circuit and Duffing equation, in the next sec-
tion, we will focus on the remaining differential equations
mentioned earlier: Lotka-Volterra, van der Pol, Lorenz,
Rössler, Hindmarsh-Rose, and Thomas.

2. COMPLEX SOUND GENERATORS

This section will discuss the implementation of complex
sound generators based on modified chaotic differential
equations, and we will present results to show their mu-
sical potential.

Considering first-order differential equations, we can ob-
tain a generalisation of the modified systems discussed
here. Let 𝑦 be a vector of functions, let 𝑥 be an input vec-
tor, let 𝐹 be a vector of functions of 𝑦 and 𝑥; let 𝐶 be
a vector of constraining functions. Written in differential
form with respect to time, we have that:

𝜕𝑦(𝑡)

𝜕𝑡
= 𝐶(𝐹 (𝑥(𝑡), 𝑦(𝑡))) (1)
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where

𝐶(𝑧) = 𝐵(𝑙 · 𝑆(𝑧/𝑙)) (2)

with 𝐵 and 𝑆 being, respectively, vectors of first-order
DC-blockers and saturating nonlinearities with arbitrary
saturation threshold piloted by the parameter 𝑙. The sat-
uration threshold becomes a key parameter for the inter-
action with the oscillators, while the overall output can be
normalised to unity peak amplitudes for digital audio by
merely dividing by 𝑙. While several types of bounded sat-
urators are available [16], here, we will focus on the well-
known hyperbolic tangent function. Note that the input
vector can be used to set the system’s initial conditions or
as continuous perturbation through signals. In fact, these
systems can also be deployed as nonlinear distortion units
when operating under non-self-oscillating conditions.

The working concept for the constraining function is in-
herent to the nature of the differential equations studied
here. Firstly, tendencies towards fixed-point attractors [17]
will be counteracted by the DC-blockers, which will result
in self-oscillating behaviours due to mutually compensat-
ing mechanisms. Secondly, tendencies towards unbounded
exponential growth will be turned into fixed-points by
the saturating functions, which will subsequently be con-
trasted by the DC-blocker, favouring self-oscillation and
evolutions at timbral and formal time scales. The resulting
modified systems are structurally stable for any parameters
values and can be explored through a larger state variable
space. Visual phase space analysis [18, 19] shows novel
and enhanced complex behaviours. Note that while the
DC-blockers have a fixed cut-off of ten Hz for the exam-
ples below, their frequency, when using sub-audio cut-off
values, can be a key parameter for formal-level variations.
In particular, the parameter sets the responsiveness for the
fixed-point counterbalancing mechanism.

The differential equations and their respective discre-
tised models will be shown later. The implementation
of the generators in the Faust 1 language is available
on http://github.com/dariosanfilippo. Au-
dio examples are available on http://soundcloud.
com/dario-sanfilippo.

2.1 Remarks on nonlinearities and aliasing distortion

Aliasing distortion is a common problem in digital au-
dio, and it can significantly compromise the quality of
computer-generated sound and music. For example, sev-
eral techniques have been developed to overcome issues
related to aliasing in digital oscillators of classic analogue
waveforms [20–22]. Processing audio signals through non-
linearities, too, can result in high aliasing distortion de-
pending on the nature of the process. Particularly for sat-
urators such as the hyperbolic tangent function, we have
the generation of odd harmonics given by the odd symme-
try of the function, while their strength is proportional to

1 http://faust.grame.fr

the amplitude of the input signal. A standard technique to
counterbalance aliasing distortion, in general, is oversam-
pling, while more efficient techniques based on antideriva-
tives have been explicitly developed for nonlinear process-
ing [23–25].

Unlike aliasing distortion in digital oscillators or satura-
tors used in feedforward configurations, aliasing distortion
in recursive systems such as those discussed here acquires
a systemic role within global behaviours and has proven to
be worthy of exploration for musical purposes. Nonethe-
less, applications of antialiasing techniques will be investi-
gated in the future to realise more accurate approximations
of the models in this paper. The author already operates
these systems at 192 kHz sample-rate to reduce distortion
– a low-order oversampling ratio achievable on most hard-
ware devices when oversampling is not available via soft-
ware.

2.2 Discrete models

For the discretisation of continuous-time systems, we will
rely on the Euler method for first-order approximation
[26]. For simplicity, the discrete equations will only in-
clude approximations of the continuous differential equa-
tions and omit the input signals and the constraining func-
tions showed in (1) and implemented in the Faust code.
Note that to clarify the discretisation, the dimensions of the
systems were named after the original differential equa-
tions rather than following the general formula (1). The
numerical simulations below are in double-precision; the
parameters were chosen according to trial-and-error pro-
cesses.

2.2.1 Lotka-Volterra

The Lotka-Volterra system consists of two differential
equations with four parameters. The equations model
biological systems and interaction dynamics between
predator-prey couples. The four parameters, assumed to be
positive real values, govern critical aspects of a biological
system such as the population growth of preys and preda-
tors and the degree of interaction between the two:

𝜕𝑥

𝜕𝑡
= 𝛼𝑥− 𝛽𝑥𝑦

𝜕𝑦

𝜕𝑡
= 𝛿𝑥𝑦 − 𝛾𝑦

. (3)

The discrete model approximation is given by:

𝑥[𝑛] = 𝑥[𝑛− 1] + 𝜕𝑡(𝛼𝑥[𝑛− 1]− 𝛽𝑥[𝑛− 1]𝑦[𝑛− 1])

𝑦[𝑛] = 𝑦[𝑛− 1] + 𝜕𝑡(𝛿𝑥[𝑛− 1]𝑦[𝑛− 1]− 𝛾𝑦[𝑛− 1])
(4)

where 𝜕𝑡 is the integration step.
Stability analysis and characteristics of Lotka-Volterra

systems have been investigated largely. A notable publica-
tion describing global behaviours can be found in [27]. Be-
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low, we can see the output of the modified Lotka-Volterra
equations using parameters in unstable regions. Specifi-
cally, the parameters for this example are: 𝛼 = 4, 𝛽 = 1,
𝛿 = 2, and 𝛾 = 1, with the initial conditions set to 1
for both equations. The saturation threshold is 30, and the
integration step, 𝜕𝑡, is .1. In the non-modified equations,
these parameters would result in an unbounded exponential
growth that would exceed representability in floating-point
double-precision after a few iterations.
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Figure 1. Modified Lotka-Volterra system outputs and
phase space with 𝑥0 = 1, 𝑦0 = 1, 𝛼 = 4, 𝛽 = 1, 𝛿 = 2,
𝛾 = 1, 𝑙 = 30, and 𝜕𝑡 = .1.

2.2.2 Van der Pol

The van der Pol system is a second-order differential equa-
tion describing a non-conservative oscillator with single
nonlinear damping parameter. Dutch engineer Balthasar
van der Pol discovered the system in the 1920s and found
out that, under specific conditions, the oscillator would ex-
hibit chaotic behaviours. The differential equation for the
oscillator is:

𝜕2𝑥

𝜕𝑡2
− 𝜇(1− 𝑥2)

𝜕𝑥

𝜕𝑡
+ 𝑥 = 0 , (5)

where 𝜇 > 0 represents the strength of the nonlinearity.
Using Liénard’s transformation [28]

𝑦 = 𝑥− 𝑥3

3
− 𝜕𝑥

𝜕𝑡

1

𝜇
, (6)

we can rewrite the Van der Pol second-order equation as
a two-dimensional, first-order system as follows:

𝜕𝑥

𝜕𝑡
= 𝜇

(︂
𝑥− 𝑥3

3
− 𝑦

)︂
𝜕𝑦

𝜕𝑡
=
𝑥

𝜇

. (7)

The discrete model for the Van der Pol oscillator is then:

𝑥[𝑛] = 𝑥[𝑛− 1]+

𝜕𝑡

(︂
𝜇

(︂
𝑥[𝑛− 1]− 𝑥3[𝑛− 1]

3
− 𝑦[𝑛− 1]

)︂)︂

𝑦[𝑛] = 𝑦[𝑛− 1] + 𝜕𝑡

(︂
𝑥[𝑛− 1]

𝜇

)︂ .

(8)

In figure 2, we can see the response the system with con-
stant input signals equal to 1, 𝑙 = 1.5733, 𝜕𝑡 = .904001,
and 𝜇 = .664.
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Figure 2. Modified Van der Pol system outputs and phase
space with constant input signals equal to 1, 𝑙 = 1.5733,
𝜕𝑡 = .904001, and 𝜇 = .664.

2.2.3 Lorenz

The Lorenz system is one of the most influential models for
deterministic chaos. It was initially developed in the 1960s
by Edward Lorenz as a simplified model for atmospheric
convection. The model is a first-order system of three dif-
ferential equations relating convection to horizontal and
vertical temperature variations [29]. The parameters 𝜎,
𝜌, and 𝛽 govern the relationships between the quantities.
Lorenz initially chose the values 𝜎 = 10, 𝜌 = 8/3, and
𝛽 = 28, a parameters region displaying chaotic behaviours
and producing the popular butterfly-like phase space. The
system is given by:

𝜕𝑥

𝜕𝑡
= 𝜎(𝑦 − 𝑥)

𝜕𝑦

𝜕𝑡
= 𝑥(𝜌− 𝑧)− 𝑦

𝜕𝑧

𝜕𝑡
= 𝑥𝑦 − 𝛽𝑧

. (9)
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The discrete model is given by:

𝑥[𝑛] = 𝑥[𝑛− 1] + 𝜕𝑡(𝜎(𝑦[𝑛− 1]− 𝑥[𝑛− 1]))

𝑦[𝑛] = 𝑦[𝑛− 1]+

𝜕𝑡(𝑥[𝑛− 1](𝜌− 𝑧[𝑛− 1])− 𝑦[𝑛− 1])

𝑧[𝑛] = 𝑧[𝑛− 1] + 𝜕𝑡(𝑥[𝑛− 1]𝑦[𝑛− 1]− 𝛽𝑧[𝑛− 1])

.

(10)

Dynamical behaviours of the Lorenz system are often in-
vestigated by keeping 𝜎 and 𝜌 fixed to the values originally
proposed by Lorenz while varying 𝛽 in a range between 0
and 30 [30]. In the example showed in figures 3 and 4, we
can see chaotic behaviours with 𝜎 = 10, 𝜌 = 2.67, and
𝛽 = −10. The integration step, 𝜕𝑡, is set to 0.022001, and
the saturation limit is 𝑙 = 143.810806.
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Figure 3. Modified Lorenz system impulse response out-
puts with 𝜎 = 10, 𝜌 = 2.67, and 𝛽 = −10. The integra-
tion step, 𝜕𝑡, is set to 0.022001, and the saturation limit is
𝑙 = 143.810806.

2.2.4 Rössler

The Rössler system was developed in the 1970s as a sim-
plified model for continuous chaos with similar properties
to those of the Lorenz system. Based on the Poincaré-
Bendixson theorem for which a three-dimensional mani-
fold is a minimum requirement for chaos, Rössler devel-
oped a first-order system of three differential equations
with three parameters and minimal nonlinearity inspired
by the geometry of relaxation-type systems [31]:

𝜕𝑥

𝜕𝑡
= −𝑦 − 𝑧

𝜕𝑦

𝜕𝑡
= 𝑥+ 𝑎𝑦

𝜕𝑧

𝜕𝑡
= 𝑏𝑥− 𝑐𝑧 + 𝑥𝑧

. (11)
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Figure 4. Modified Lorenz system impulse response phase
space with 𝜎 = 10, 𝜌 = 2.67, and 𝛽 = −10. The integra-
tion step, 𝜕𝑡, is set to 0.022001, and the saturation limit is
𝑙 = 143.810806.

An example of chaotic behaviour is with the parameters
𝑎 = 0.38, 𝑏 = 0.3, and 𝑐 = 4.820. The discrete model is
given by:

𝑥[𝑛] = 𝑥[𝑛− 1] + 𝜕𝑡(−𝑦[𝑛− 1]− 𝑧[𝑛− 1])

𝑦[𝑛] = 𝑦[𝑛− 1] + 𝜕𝑡(𝑥[𝑛− 1] + 𝑎𝑦[𝑛− 1])

𝑧[𝑛] = 𝑧[𝑛− 1]+

𝜕𝑡(𝑏𝑥[𝑛− 1]− 𝑐𝑧[𝑛− 1] + 𝑥[𝑛− 1]𝑧[𝑛− 1])

.

(12)

In figures 5 and 6, we can see chaotic behaviours of the
modified system through its outputs and phase space for
𝑎 = 0.776, 𝑏 = 2.524, 𝑐 = 13.98, 𝜕𝑡 = 2.075001, and
𝑙 = 21.2554.

2.2.5 Hindmarsh-Rose

The Hindmarsh-Rose system was developed in the 1980s
as a model describing neuronal activity to study the be-
haviours of the membrane potential. Real neurons ex-
hibit various behaviours ranging from quiescence to reg-
ular and irregular spiking-bursting outputs, and analysis of
the model has shown that it can reproduce such behaviours
correctly [32]. The model consists of three first-order dif-
ferential equations and has eight parameters in total:

𝜕𝑥

𝜕𝑡
= 𝑦 + 𝜑(𝑥)− 𝑧 + 𝐼

𝜕𝑦

𝜕𝑡
= 𝜓(𝑥)− 𝑦

𝜕𝑧

𝜕𝑡
= 𝑟(𝑠(𝑥− 𝑥𝑅)− 𝑧)

(13)
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Figure 5. Modified Rössler system outputs for 𝑎 = 0.776,
𝑏 = 2.524, 𝑐 = 13.98, 𝜕𝑡 = 2.075001, and 𝑙 = 21.2554.
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Figure 6. Modified Rössler system phase space for 𝑎 =
0.776, 𝑏 = 2.524, 𝑐 = 13.98, 𝜕𝑡 = 2.075001, and 𝑙 =
21.2554.

where

𝜑(𝑥) = −𝑎𝑥3 + 𝑏𝑥2

𝜓(𝑥) = 𝑐− 𝑑𝑥2
. (14)

The discrete equations are:

𝑥[𝑛] = 𝑥[𝑛− 1]+

𝜕𝑡(𝑦[𝑛− 1] + 𝜑(𝑥[𝑛− 1])− 𝑧[𝑛− 1] + 𝐼)

𝑦[𝑛] = 𝑦[𝑛− 1] + 𝜕𝑡(𝜓(𝑥[𝑛− 1])− 𝑦[𝑛− 1])

𝑧[𝑛] = 𝑧[𝑛− 1] + 𝜕𝑡(𝑟(𝑠(𝑥[𝑛− 1]− 𝑥𝑅)− 𝑧[𝑛− 1]))

.

(15)

The neuronal model is often analysed by keeping some
of the parameters fixed while varying the remaining ones.
In [33], we have 𝑎 = 1, 𝑏 = 3, 𝑐 = −3, 𝑑 = 5, 𝑠 = 4,
and 𝐼 = 5. In [34], instead, we have 𝑎 = 1, 𝑏 = 3,
𝑐 = 1, 𝑑 = 5, 𝑠 = 4, and 𝑥𝑅 = 8/5, where chaotic re-
gions are characterised in terms of Lyapunov analysis with
positive peaks in the Lyapunov exponent being detected
for 𝑟 = .0021 and 𝐼 ≈ 3.295. In the examples of the
modified Hindmarsh-Rose system, we will choose differ-
ent parameters to show chaotic behaviours in alternative
regions. In figures 7 and 8, we can see the outputs and
phase space of the modified Hindmarsh-Rose model with
𝑎 = 1, 𝑏 = −5.864, 𝑐 = −20, 𝑑 = −5.656, 𝑟 = −.192,
𝑠 = 3.104, 𝐼 = −6.836, and 𝑥𝑅 = 8.792, with 𝑙 = 5.3989
and 𝜕𝑡 = .299001.
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Figure 7. Modified Hindmarsh-Rose system phase space
with 𝑎 = 1, 𝑏 = −5.864, 𝑐 = −20, 𝑑 = −5.656, 𝑟 =
−.192, 𝑠 = 3.104, 𝐼 = −6.836, and 𝑥𝑅 = 8.792, with
𝑙 = 5.3989 and 𝜕𝑡 = .299001.
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Figure 8. Modified Hindmarsh-Rose system phase space
with 𝑎 = 1, 𝑏 = −5.864, 𝑐 = −20, 𝑑 = −5.656, 𝑟 =
−.192, 𝑠 = 3.104, 𝐼 = −6.836, and 𝑥𝑅 = 8.792, with
𝑙 = 5.3989 and 𝜕𝑡 = .299001.



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

172

2.2.6 Thomas

The Thomas system was developed in the late 1990s by
René Thomas. It is a relatively simple three-dimensional
first-order differential equation with one parameter repre-
senting damped particles moving in a 3D lattive of forces
[35]. The system is defined by the following equations:

𝜕𝑥

𝜕𝑡
= sin(𝑦)− 𝑏𝑥

𝜕𝑦

𝜕𝑡
= sin(𝑧)− 𝑏𝑦

𝜕𝑧

𝜕𝑡
= sin(𝑥)− 𝑏𝑧

. (16)

The discrete model is given by:

𝑥[𝑛] = 𝑥[𝑛− 1] + 𝜕𝑡(sin(𝑦[𝑛− 1])− 𝑏𝑥[𝑛− 1])

𝑦[𝑛] = 𝑦[𝑛− 1] + 𝜕𝑡(sin(𝑧[𝑛− 1])− 𝑏𝑦[𝑛− 1])

𝑧[𝑛] = 𝑧[𝑛− 1] + 𝜕𝑡(sin(𝑥[𝑛− 1])− 𝑏𝑧[𝑛− 1])

.

(17)

In figures 9 and 10, we can see low-level and high-level
complex oscillations with 𝑏 = .008, 𝑙 = 5.3989, and 𝜕𝑡 =
.841001.
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Figure 9. Modified Thomas system outputs with 𝑏 = .008,
𝑙 = 5.3989, and 𝜕𝑡 = .841001.

3. CONCLUSION

In this paper, we have discussed the investigation of mod-
ified differential equations to generate complex audio sig-
nals for musical applications. While the original differ-
ential equations studied here provided complex behaviours
for specific configurations of the parameters, those systems
only allowed for a limited state variable exploration due to
possible stability issues. The modified equations proposed
here deploy a constraining mechanism based on cascaded

x[n]

0.4
0.2

0.0
0.2

0.4

y[n]

0.4
0.2

0.0
0.2

0.4

z[n]

0.4

0.2

0.0

0.2

0.4

Phase space

Figure 10. Modified Thomas system phase space with 𝑏 =
.008, 𝑙 = 5.3989, and 𝜕𝑡 = .841001.

saturating nonlinearities and DC-blocking units that make
the systems structurally stable and produce output signals
in ranges suitable for digital audio applications. Most im-
portantly, the constraining mechanism provides a low-level
configuration establishing an interplay between positive
and negative feedback relations, which results in nontrivial
dynamical behaviours at timbral and formal time scales.
The modified systems can be explored through a larger
state variable for novel and enhanced complex sound gen-
eration and can be deployed in computer music environ-
ments in general and, more specifically, human-machine
interaction performances requiring agency and autonomy
as discussed in [36, 37].

Future works include applying higher-order methods for
the solution of differential equations [38] and antialiased
nonlinearities as discussed in 2.1 for a better approxima-
tion of the models, and advanced adaptation techniques for
time-variant generators with increased complexity follow-
ing [39–41]. Taking advantage of the implementation that
allows for input signals to be used as external perturbation,
the individual systems can be combined into networks of
interacting components to explore emergent behaviours re-
sulting from their synergy.

Finally, an extension of this work will be an analytical
examination and comparison between the classic chaotic
differential equations and the proposed modified systems.
By means of Lyapunov exponent analysis [42], it will be
possible to determine the effects of the constraining infras-
tructures concerning the sensitivity to initial conditions of
the systems, while phase space analysis using musically-
relevant dimensions such loudness, spectral centroid, and
noisiness can provide a tool for the comparison of higher-
level complexity in the original and modified systems.
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ABSTRACT

Neural audio synthesis is an actively researched topic, hav-
ing yielded a wide range of techniques that leverages ma-
chine learning architectures. Google Magenta elaborated a
novel approach called Differential Digital Signal Processing
(DDSP) that incorporates deep neural networks with pre-
conditioned digital signal processing techniques, reaching
state-of-the-art results especially in timbre transfer appli-
cations. However, most of these techniques, including the
DDSP, are generally not applicable in real-time constraints,
making them ineligible in a musical workflow. In this pa-
per, we present a real-time implementation of the DDSP
library embedded in a virtual synthesizer as a plug-in that
can be used in a Digital Audio Workstation. We focused
on timbre transfer from learned representations of real in-
struments to arbitrary sound inputs as well as controlling
these models by MIDI. Furthermore, we developed a GUI
for intuitive high-level controls which can be used for post-
processing and manipulating the parameters estimated by
the neural network. We have conducted a user experience
test with seven participants online. The results indicated
that our users found the interface appealing, easy to under-
stand, and worth exploring further. At the same time, we
have identified issues in the timbre transfer quality, in some
components we did not implement, and in installation and
distribution of our plugin. The next iteration of our design
will address these issues.

1. INTRODUCTION

Sound synthesizers have been widely used in music pro-
duction since the late 50s. Because of their inner complex-
ity, many musicians and producers polish presets’ parame-
ters until they reach the desired sound. This procedure is
time-consuming and sometimes results in failed attempts to
achieve a desired sound.

Much research has been done in the area of automating the
generation of these sounds through the aid of machine learn-
ing and neural networks. Common approaches included
directly generating the waveform in the time domain [1]
or predicting synthesis parameters based on hand-picked
analysis features [2]. In their 2020 paper on Differentiable

Copyright: © 2021 the Authors. This is an open-access article distributed under the
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Digital Signal Processing (DDSP) [3], Engel et al. pro-
posed a novel approach to neural audio synthesis. Rather
than generating signals directly in the time or frequency do-
main, DDSP offers a complete end-to-end toolbox consist-
ing of a synthesizer based on Spectral Modeling Synthesis
(SMS) [4], and an autoencoder neural network architec-
ture that takes care of both extracting analysis features and
predicting synthesis parameters.

The authors of the DDSP paper released a public demon-
stration of ”tone transfer” 1 , allowing the user to upload
their own recordings, select from a list of models trained on
various instruments and ”transfer” their recorded melodies
to the sound of a trumpet, a violin etc. Based on these,
we implemented the DDSP back-end as a virtual instru-
ment playable in real-time. Figure 1 shows the GUI of our
synthesizer.

This paper documents the background, our requirement-
driven design and implementation approach, including
model components and training, the GUI design, and user
experience evaluation. The structure of this paper follows
these main topics in order.

Besides our contribution to the real-time neural audio syn-
thesis and its user experience evaluation, we release our real-
time MATLAB and JUCE implementations at https://
github.com/SMC704/juce-ddsp and https://
github.com/SMC704/matlab-ddsp, respectively.
We also provide a demonstration video at https://
share.descript.com/view/hXAZLCPJNqm.

Figure 1. Our real-time DDSP Synthesizer GUI.

1 https://sites.research.google/tonetransfer, last
accessed on 2020-11-30
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2. BACKGROUND

In addition to the DDSP paper [3], our work is inspired
by the commercially produced additive synthesizer called
Razor by Native Instruments [5]. Razor’s core consists of
a powerful additive synthesizer and features various modu-
lation options for manipulating the sound output. What is
especially interesting about Razor is that every modulation
option (e.g. filters, stereo imaging, reverbs and delays) is ac-
tually modulating individual partial harmonics (non-integer
multiples of the fundamental frequency) in the additive
synthesis engine. Furthermore, Razor enables musicians
and producers to intuitively control partials via different pa-
rameters while relying on a visual representation of partial
manipulation. We therefore focused on the harmonic and
the stochastic components of the DDSP.

2.1 Harmonic Oscillator / Additive Synthesizer

The additive synthesizer is the main core of the whole syn-
thesis and is responsible for generating all the harmonic
components of the reconstructed sound. The output is char-
acterized by the sum of several harmonic integer multiples
of the fundamental frequency 𝑓0:

𝑓𝑘(𝑛) = 𝑘 · 𝑓0(𝑛). (1)

In order to generate the harmonics, we can implement 𝑘
oscillators in the discrete time:

𝑥(𝑛) =

𝐾∑︁
𝑘=1

𝐴𝑘(𝑛) · sin(𝜑𝑘(𝑛)), (2)

where 𝐴𝑘(𝑛) is the time-varying amplitude of the 𝑘𝑡ℎ si-
nusoidal component and 𝜑𝑘(𝑛) is its instantaneous phase.
𝜑𝑘(𝑛) is obtained by integrating the instantaneous fre-
quency 𝑓𝑘(𝑛) [3]:

𝜑𝑘(𝑛) = 2𝜋

𝑛∑︁
𝑚=0

𝑓𝑘(𝑚) + 𝜑0,𝑘. (3)

The only two parameters necessary to control the synthe-
sizer are the frequency 𝑓0(𝑛) and the harmonic amplitudes
𝐴𝑘(𝑛). These are retrieved directly from the input sound
using the encoder contained in the autoencoder network.
As reported in [3], the network outputs are scaled and nor-
malized to fall within an interpretable value range for the
synthesizer.

2.2 Filtered Noise, Subtractive Synthesizer, and Reverb

The subtractive synthesis is used to recreate the non-
harmonic part of natural sounds. The parameters necessary
to obtain a frequency-domain transfer function of a linear
time-variant finite impulse response (LTV-FIR) filter are
retrieved from the neural network in frames that are subsets
of the input signal. The corresponding impulse responses
(IRs) are calculated and a windowing function is applied.
The windowed IRs are then convolved with white noise
via transformation to and multiplication in the frequency
domain. Another LTV-FIR filter acts as a reverberator, per-
forming esentially a convolution reverb in the frequency
domain.

2.3 Research question & design requirements

Based on this background we have formulated the follow-
ing research question: How can we develop a playable
software instrument, based on the DDSP library, that would:
a) allow customization of model-estimated synth param-
eters through top-level macro controls, b) enable exist-
ing workflow-integration in Digital Audio Workstations
(DAWs), and c) facilitate a simple approach for beginners
without limiting usability for expert music producers?

Based on this research question, we have identified five
user-objectives [6], matched them with a solution, and refor-
mulated them as design requirements that address the fol-
lowing functionality: building a playable real-time software-
instrument plugin that supports different composition tech-
niques by having audio and MIDI input modes. The in-
strument must include at least four models which serve the
purpose of estimating synthesizer parameters to output a
desired sound. Finally, the instrument must include graphi-
cal user interface components providing intuitive controls
for the manipulation of synthesizer and effect parameters.
The design requirements are documented on Table 1.

3. DESIGN & IMPLEMENTATION

3.1 Architecture overview

To meet our criteria of creating a real-time software in-
strument, we decided to build the plugin in C++ using
the JUCE application framework 2 . With JUCE, we had a
multi-platform supported audio plugin template that was
handling MIDI and audio inputs and outputs. This allowed
us to mainly focus on the audio processing and GUI.

Creating a real-time implementation of the non-real-time
DDSP library posed some immediate challenges. To ana-
lyze and understand these challenges we decided to start
by doing a direct translation of the additive and subtrac-
tive synthesizers from the DDSP library into MATLAB.
The synthesizers could then be changed into real-time im-
plementations and tested. In order to use our MATLAB
implementation in the JUCE framework, we used inbuilt
MATLAB tools to generate C++ code.

We transformed the autoencoder models pretrained by
Google into models that could be used to estimate synthe-
sizer parameters directly from our plugin’s user input.

A general overview of this architecture can be seen in fig-
ure 2. The following sections will discuss each component
in more detail.

3.1.1 Synth in MATLAB

MATLAB’s environment and visualization tools gave us
access to quick prototyping and testing. This allowed us to
do the implementation over multiple iterations. We tested
our synthesizers’ compatibility with the predicted parame-
ters from the DDSP models by invoking the encoders and
decoders in isolation through MATLAB’s Python interface.

At first we implemented the non-real-time synthesis al-
gorithms of the DDSP library. Then the synthesizers were
changed to real-time, i.e., synthesizing a single frame at

2 https://juce.com/, last accessed on 2020-12-15
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# User Obj. Solution Design Requirement
1 Provide a new playable instrument for

unique sound generation and inspiration
Real-time implementation Must work in real-time as a playable soft-

ware instrument.
2 Conveniently integrate into existing work-

flows
Plugin format application Must be implemented as a software plu-

gin.
3 Adapt to different composition methods Allow line and MIDI input Must allow switching between Line and

MIDI input.
4 Easy fast unique sound generation Choose models for sound generation Must implement at least four pre-trained

models.
5 Convenient customizability of sounds Tweakable parameters that effects the au-

dio output
Must include GUI components for intu-
itive manipulation of synth and effects
parameters.

Table 1. Documentation of Design Requirements

Figure 2. Schematic overview of the project architecture.

a time. Using the MATLAB Audio Test Bench, we could
then test the functionality of the synthesizer components
and parameters with real-time audio and varying sample
rate and buffer size. The last iterations consisted of op-
timizing the code with the constraints of real-time audio
processing on CPUs.

3.1.2 MATLAB to C++

Using the MATLAB coder tool 3 we were able to generate
C++ functions from the MATLAB code. For the simplest
integration between the generated C++ functions and the
JUCE plugin we chose to limit the function inputs and
outputs to built-in and derived C++ data types. This re-
quired our MATLAB functions to have fixed-sized inputs
and outputs. We decided on a maximum input/output size
of 4096 double-precision floating point numbers, this being
the maximum buffer size the plugin could handle.

A helper file was created to ensure code consistency, al-
lowing the user and MATLAB coder to verify the functions
with different inputs. Having this setup made it easy to
go back to the MATLAB code and generate updated C++
functions without breaking the JUCE plugin.

3.1.3 TensorFlow in C++

Running the DDSP TensorFlow implementation in a real-
time audio application is a heavy computational challenge.
Moving from TensorFlow in Python to the TensorFlow C

3 https://se.mathworks.com/products/
matlab-coder.html, last accessed on 2020-12-15

API 4 allowed us to integrate the models into the C++ code-
base. By moving the TensorFlow computations to a separate
thread, we load the models, set the inputs, run the parame-
ter estimation and save the outputs, without experiencing
buffer underruns in the main audio processing thread.

3.1.4 Input signals

The DDSP autoencoder needs the input values fundamental
frequency (𝑓0) and loudness. Since we allow both MIDI and
line-in audio, two separate implementations are needed to
calculate these values, which were first created in MATLAB.
In the C++ implementation we chose the YIN pitch tracking
algorithm [7] from the C library Aubio [8], since it yielded
more precise results.

3.2 Training models

DDSP autoencoders are trained to reconstruct waveforms
with minimal perceptual loss. Similarity of the raw wave-
form however is not a good indicator for perceptual similar-
ity, which is why the DDSP library makes use of multi-scale
spectral loss [3]. The total reconstruction loss is the sum of
multiple spectral losses, i.e., the difference of the magnitude
spectrograms, over various time scales. Moreover, the linear
magnitude losses are sensitive to the peaks, whereas loga-
rithmic magnitude losses are sensitive to the quiet regions
of the signals. Therefore, the sum of losses 𝐿 =

∑︀
𝑖 𝐿𝑖 in

DDSP are calucated in six different frame sizes by

𝐿𝑖 = ||𝑆𝑖 − 𝑆𝑖||1 + ||𝑙𝑜𝑔(𝑆𝑖)− 𝑙𝑜𝑔(𝑆𝑖)||1. (4)
4 https://www.tensorflow.org/install/lang_c, last

accessed on 2020-12-15
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3.2.1 Pre-trained models

Next to the tone transfer website mentioned in the intro-
duction, the authors of the DDSP paper also published a
Jupyter Notebook Demo on Google Colab called timbre
transfer. 5 We accessed the available checkpoint files for
violin, flute, tenor saxophone and trumpet from this note-
book for our real-time implementation of the timbre transfer.
However, we were not immediately able to use them in the
JUCE plugin. The DDSP models are trained using Ten-
sorFlow’s eager execution mode, while the TensorFlow C
API is constructed around graph mode. Additionally, since
we required the models to be controllable by MIDI input,
we needed direct access to the decoder part of the model
instead of supplying audio to the encoder.

The convert models.py script from the Python
folder of the plugin code repository deals with these require-
ments by loading the eager model from the downloaded
checkpoint file, constructing a graph-based model only con-
taining the decoder and then copying all weights from the
old model to the new one. The resulting checkpoint now
contains a graph that can be loaded by the TensorFlow C
API.

3.2.2 Custom models

In order to make use of the DDSP training library and
extend the synthesizer with additional models, we created
four custom models trained on:

• Bass sounds of the Moog One, Moog Minimoog and
Moog Minitaur synthesizers

• Studio recordings of Middle Eastern instruments, the
Hammered Dulcimer and Santoor

• Studio recordings of a Handpan (also known as Hang
Drum)

• Nature field recordings of birds chirping

For training we used the official DDSP (version 0.14.0)
Jupyter notebook on Google Colab called train autoen-
coder 6 which allows training on a Google Cloud GPU
using own data. According to the recommendations of the
DDSP authors given in the notebook, trained models per-
form best using recordings of a single, monophonic sound
source, in one acoustic environment, in .wav or .mp3 format
with a total duration of 10 to 20 minutes. Since the DDSP
Autoencoder is conditioned on the loudness 𝐴 and the fun-
damental frequency 𝑓0, i.e., the model learns to associate
different synthesizer configurations to specific value pairs
of (𝐴, 𝑓0), training on multiple instruments, acoustic envi-
ronments or polyphonic sounds prevents the autoencoder
to learn a unified representation. Although the recordings
listed above are less conform with these training guidelines,
we chose them to challenge the DDSP autoencoder, explor-
ing limitations and opportunities in a musical context by
deliberately bending the recommended usage.

5 https://colab.research.google.com/github/
magenta/ddsp/blob/master/ddsp/colab/demos/
timbre_transfer.ipynb, last accessed on 2020-12-15

6 https://colab.research.google.com/github/
magenta/ddsp/blob/master/ddsp/colab/demos/train_
autoencoder.ipynb, last accessed on 2020-12-15

The training process is performed as follows. The first
step is comprised of data generation and pre-processing of
the training data. The raw audio is split into short parts of a
few seconds, each analyzed on the specified features, i.e.,
the fundamental frequency and loudness, and finally saved
in the TensorFlow TFRecord format. The fundamental
frequency is thereby estimated by using the state-of-the-art
pitch tracking technique, called CREPE by Kim et al. [9]
that applies a deep convolutional neural network on time-
domain audio.

The second step is the actual training, using a Python
based configuration framework for dependency injection
by Google, called Gin 7 . In this way, all available training
hyperparameters can be defined in a gin config file that
is passed to the training function. The training process
does not include any optimization techniques, such as a
hyperparameter search or early stopping, the authors just
recommend in the code documentation to train for 5,000 to
30,000 steps until a spectral loss of about 4.5-5 is reached
for an optimal learning representation without overfitting.

The third and last step was a short evaluation based on
resynthesis. Here, a training sample was randomly picked,
passed through the autoencoder, and checked if it was per-
fectly reconstructed based on the learned features.

We successfully conducted training of all four models and
validated their performance in the previously mentioned
timbre transfer demo. While validation using the DDSP
library went smoothly and showed musically interesting
results, we ran into issues during inference using the Ten-
sorFlow C API within our plugin. We monitored a much
higher loudness of the custom models compared to the
pre-trained models, resulting in a distorted, clipping sound.
Furthermore, we detected a constant harmonic distribution
independent of the incoming pitch and loudness while the
pre-trained models adapt harmonics and frequency response
according to these inputs. The overall experience with the
training script provided by the DDSP authors is that it works
without problems for standard parameters, but as soon as
own hyperparameters within the gin framework are chosen,
a lot of side-effects appear. For the mentioned reasons, inte-
grating and possibly adapting the custom-trained models to
make them work in the DDSP synthesizer will be a part of
future work.

3.2.3 Real-time implementation of the models

The original DDSP implementation synthesizes several
frames before processing them into one output. Reading
through the DDSP code base, we experienced the number
of frames (time steps) to be defined by the size of the input
audio and a hop size defined by constants in the gin config
file of the selected pre-trained model.

For our real-time implementation we wanted to calculate
one frame with a size of the input buffer each time the buffer
is ready. Given the static nature of our TensorFlow model
implementation we were not able to change the number of
time steps on the run. Therefore, we set the number of time
steps to one. Each run of the TensorFlow model would then

7 https://github.com/google/gin-config, last accessed
on 2020-12-15
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return a set of values for one time step, independent of the
buffer size.

3.3 Additive synthesizer

The implementation of the additive synthesizer can be found
in the additive.m MATLAB code file. During the de-
velopment of the DDSP synthesizer we went from a re-
implementation of the DDSP equivalent to an adapted real-
time optimized version with additional parameters for high-
level control. While the original DDSP library provides
two different implementations of the additive synthesis, the
harmonic and sinusoidal approach, this work focuses on
the harmonic synthesis that models a signal by adding only
integer multiples of the fundamental frequency.

In the following, the initial implementation as well as the
main modifications in its final state are clarified. As already
explained in 2.1, the additive synthesizer models audio us-
ing a bank of harmonic sinusoidal oscillators. The synthesis
algorithm takes amplitudes, harmonic distribution and fun-
damental frequencies for a specified number of frames as
input and computes the sample-wise audio signal as output.
The harmonic distribution provides frame-wise amplitudes
of the harmonics. The additive synthesis as implemented in
the DDSP library is performed in two main steps: 1) Trans-
lation of neural network outputs to the parameter space
of the synthesizer controls, and 2) Computing the output
signal from synthesizer controls.

For 1), the amplitudes were scaled and the harmonic distri-
bution was scaled, bandlimited (i.e., removing the harmon-
ics that exceed Nyquist frequency) and normalized, while
the fundamental frequencies remained unchanged. After
retrieving valid synthesizer controls in step 1), the harmonic
synthesis is performed. Since the DDSP approach works
frame-based while the output needs to be delivered sample-
based, the synthesizer controls need to be upsampled. This
is done by linearly interpolating the frequency envelopes
and windowing the amplitude envelopes by using 50% over-
lapping Hann windows. Having calculated all controls on a
sample basis, the signal can be synthesized by accumulative
summation of the corresponding phases, i.e., adding the
calculated sinusoids together, sample by sample.

The following changes were made to optimize the algo-
rithm for a real-time application and to add additional high-
level control for the synthesis.

• Since the frame-based calculation was computation-
ally too heavy, we adapted the code so that the input
is always one frame (equivalent to the buffer size)
and all computations are sample-based. Therefore,
no resampling or windowing is needed.

• Each time the function is called, the phases of all har-
monics are saved and returned along with the signal
and added as offset in the next call to avoid artifacts
caused by phase jumps.

• In order to be able to optionally introduce non-
harmonic partials to the signal, a stretch parameter
was added that transforms the distance between the
integer multiples while maintaining the fundamental

frequency. An additional shift parameter adds the
functionality to modify the fundamental frequency
from one octave below to one octave above the cur-
rent pitch in a continuous scale.

3.4 Subtractive synthesizer

This component is responsible for the non-harmonic parts
of instrument sounds, such as the audible non-pitched
flow of air that accompanies the harmonic part of a flute
sound. Our implementation, which can be found in the
subtractive.m MATLAB code file, generates a frame
of random noise and then filters it according to a given
frequency response.

The function’s parameters are the frame length (number
of samples), noise color (see below) and the frequency
response, which is given as a vector of 𝑁 magnitudes
𝑚0, . . . ,𝑚𝑁−1, where 𝑚0 corresponds to the DC com-
ponent and 𝑚𝑖 to frequency 𝑓nyquist/(𝑁 − 𝑖) with 𝑓nyquist =
𝑓𝑠/2 and samplerate 𝑓𝑠.

While we started with a direct re-implementation of the
DDSP FilteredNoise approach described in 2.2, we made
the following adaptations over the course of the project:

• Simplified filtering: The DDSP synthesizer pro-
cesses multiple frames at once. For real-time im-
plementation, we removed the step of calculating
the impulse response for each frame and applying a
windowing function. Instead, we simply perform a
Fourier transform on the generated noise and multi-
ply the result with the filter magnitude response that
the model predicted for the single current frame.

• Noise color: We provide functionality to shape the
frequency distribution of the generated noise. Noise
color generally refers to the frequency 𝑓 being em-
phasized proportionally to 1/𝑓𝛼 for some exponent
𝛼 [10]. 𝛼 < 1 results in higher frequencies becoming
more prominent, while 𝛼 > 1 increases the energy
of the lower frequencies. Uniform white noise is
achieved by setting 𝛼 = 1.

3.5 Graphical User Interface

After the development of all the features of our synthe-
sizer, we focused our attention on designing an interface
with high-level controls for the additive and the subtractive
synthesis, the reverb, the modulation and the models. Our
process started from a list of all the parameters we wanted
to manipulate. We also looked for some inspiration from
well-known VST synthesizers, comparing them in terms of
usability and trying to understand what their best interac-
tion features were. Later we organized the controls of our
synthesizer in different modules and displayed them in a
rectangular interface, trying to find a layout that was pleas-
ant but also respectful of the instrument’s architecture logic.
In table 2, we list all the controls for each module of our
synthesizer. Because of the particular choice of a graphic
control for the harmonics’ amplitude, the team opted for a
spectrogram representing the output of our plugin. In this
way, the user is able to clearly see which harmonics are
being played.
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Module Feature controls
Input selector MIDI/line selector

Models
selector

Violin
Flute
Saxophone
Trumpet
Moog Bass (not included)
Dulcimer (not included)
Handpan (not included)
Chirps (not included)

Additive
synthesis

Graphic harmonics editor
𝑓0 shift
Harmonics stretching
Global amplitude

Subtractive
synthesis

Noise color
Global amplitude

Modulation
Modulation rate
Delay control
Amount

Reverb
Dry/wet mix
Size
Glow

Output Master gain
Spectrogram Clear visualization of the output

Table 2. List of GUI’s features

Once we defined the layout and the parameters that we
wanted to control, we moved to the software development
in JUCE. In order to customize the appearance of knobs, we
used the ”Custom LookandFeel” objects while we designed
ad hoc images for the buttons and background texture using
a vector graphics software. Figure 1 previously presented
the GUI of our synthesizer.

3.6 Plugin setup

The synthesizer ended up being built as a standalone exe-
cutable and a DAW plugin using Steinberg’s VST3 format.

Using JUCE’s AudioProcessorValueTreeState
class we are exposing the different controllable parameters
to the DAW, allowing control and automation of the plugin.
Using this class we will also be able to easily store and read
plugin states, enabling generation of presets, though this
has not been implemented yet.

The synthesizer is configured to load the models from a
given path with subfolders containing the individual models,
as well as configuration files containing key-value pairs
such as number of harmonics and scaling values.

4. EVALUATION

In order to understand the strengths and weaknesses of our
product to improve it, we designed an evaluation strategy
for both User Experience (UX) and sound output. Our tar-
get users are musicians and music producers. Accordingly,
we shared a release of our VST plugin with selected sound
engineers, musicians and producers to collect opinions and

user insights. Moreover, we designed two different ques-
tionnaires and asked participants to evaluate the UX and
the sound accuracy of our software. The DDSP Synthe-
sizer as well as the two questionnaires have been distributed
online and the participants received an email with all the
indications to properly conduct the test.

In the following, we mainly describe the UX evaluation,
including our approach, desired outcome, survey design
and results.

4.1 User Experience Evaluation

4.1.1 Approach

The aim of this evaluation was to collect feedback about the
user interface from people with experience on synthesizers
and music production. One of the goals of our project was
to design a simple and efficient interface able to control
several parameters with a single gesture without giving
up functionality in the pursuit of simplicity. After a trial
period where the participants had the chance to familiarize
themselves with the software, we asked them to complete a
survey.

4.1.2 Survey structure

We designed the survey with different sections to group the
questions by theme. We included an experiment in order
to ask each participant to load and perform some changes
to a model and export the result in an audio file. In this
way, we ensured that every participant had at least used and
interacted with the plugin for a while. Moreover we are
able to compare each audio export to understand if some of
the instructions were not clear or if the UX itself was not
effective.

Four usage questions have been asked to collect informa-
tion about the user’s DAW and for how much time they
used the plugin. In the next sections we asked the par-
ticipants to report their experience during the experiment
and evaluate the user interface rating 9 different statements
with a Likert-scale, a widely used bipolar symmetric scal-
ing method in questionnaires. In this way, users were able
to express their agreement/disagreement related to each
sentence. Furthermore, we asked 4 open questions to let
the participants express their opinion about the overall UX.
Finally we added 8 questions to locate demographics and
musical-related personal experiences. Table 3 summarizes
the content of each section.

# Section Content
1 Introduction Aim of the question-

naire
2 Experiment Task instructions
3 Usage 4 mixed questions
4 UX evaluation 9 Likert scale evalua-

tions
5 UX experience 4 open questions
5 Demographics 8 mixed questions

Table 3. Content of the UX survey
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4.1.3 Expected results

Considering that the software was still under development,
we were expecting reports about compatibility issues with
different DAWs as well as some stability problems. More-
over, because of the VST’s instability in the first release, it
is possible that some users will not be able to conduct the
small experiment that requires the plugin to be embedded in
a DAW track. Considering the whole interface, one of the
main points of our design requirements was the simplicity
and thus our hope is to facilitate the user’s interaction. Even
if the number of participants is limited, we expect that the
users will approximately identify 75% of the UX issues
accordingly to Nielsen’s model [11].

4.1.4 Results

We received seven answers. Five participants identified as
males, one female and one preferred not to say. The age
average is 28.57 years (STD 8.42). Six of them declared
that sound production is their hobby while one said music
production is related to their job. The mean experience in
the music production field is 7.43 years (STD 4.87). Six
users do not have experience with machine learning VST
plugins and only one of them does not know if she/he ever
used one. Each user spent an average of 23.57 minutes
using our synthesizer (STD 17.74). We suppose that some
mistake has been made reporting the usage time for at least
one user. In table 4 we report the number of user tests per
different software environment.

# users Environment
3 Reaper
2 Ableton Live
1 Cubase
1 Standalone version

Table 4. List of used DAWs in the evaluation.

In general, the experiment has been rated a medium diffi-
cult task with a mean rating of 3.43 in a scale from 1 to 5
being 1 ”easy to accomplish” and 5 ”hard to accomplish”.
In figure 3 we summarize the answers obtained from the
questions with an associated Likert scale. The users were
asked to rate each sentence from 1 to 5 with 1 correspond-
ing to ”strongly disagree” and 5 to ”strongly agree”. We
can observe that the graphical user interface has been really
appreciated with a 4.43 mean value while the interface’s
controls seem not to let the participants easily reach the
wanted results. The other statements reported in the Likert
section obtained a medium rating between 3 and 3.86 which
might mean that the GUI is in general appreciated.

As expected, some of the participants encountered difficul-
ties in the installation procedure of the VST3 plugin in both
Windows and macOS environments while the standalone
version seems to be more stable. Furthermore, three users
reported an unsatisfactory audio result related to the presets
obtained from models. Here we report part of one of the
feedback: ”[...] It’s possible to get some cool sounds but the
default sound when you just start it is not so nice.”. On the
other hand, the audio input feature was appreciated: ”[...]

I think the audio input feature has a lot of potential and
I caught myself experimenting with this a lot and loosing
track of time.”. Two participants reported that the possible
interaction with the interface for the additive synthesizer
was not immediate to spot and they realized its features after
a while. For this reason they suggest a graphical indication
to guide the user to the interaction with the harmonic sliders.
A significant outcome is the unexpected audio results that
participants reported. Even though they described output
sounds as ”awkward”, they highlighted the new creative
way of producing unexpected sounds, finding the whole
synthesizer experience engaging.

4.2 Real-time timbre transfer

Running DDSP decoder models in a real-time plugin is
computationally feasible. As the demonstration 8 shows,
the plugin does not exceed 20% CPU load on an AMD
Ryzen 7 with a clock speed of 2.9 GHz. Similar results
were measured on a MacBook Pro 2013, with a 2GHz Core
i7 processor.

We found the quality of the timbre transfer in our real-time
implementation below that of the demonstrations published
by the Magenta team. Our converted models preserve some
characteristics of the original ones, such as wind noises
in the flute model, but do not accurately reproduce the
timbre overall. We confirmed that on the level of a single
frame, our models produce the same output as their original
counterparts; will investigate and improve the quality in the
future. Additionally, we would like to further investigate
why we were unable to perform the timbre transfer with
models that we trained both within the framework provided
by Magenta, and within custom environments.

4.3 Distribution as a VST3 plugin

When it came to distributing our project to users, we encoun-
tered some difficulties in packaging the required libraries
and model files together with the generated VST3 plugin.
Some of the DAWs that users tested on, like Ableton or
Reaper, did not recognize the plugin or experienced stabil-
ity issues during its usage. Although the core functionality
could still be accessed via the standalone application gener-
ated by JUCE, the project was designed first and foremost
as a plugin. Functionality like handling of external audio
sources and wet/dry mixing was expected to be handled by
the host DAW. Users who had to resort to the standalone
when their DAW did not recognize or stably run the plugin
reported those features as missing.

Thus, we would like to improve the distribution process
in the future, ensuring that the project can be seamlessly
installed as a plugin in multiple DAWs on Windows and
macOS.

5. CONCLUSION

In this paper, we presented an approach to integrate the
DDSP library into a real-time plugin and standalone ap-
plication using the JUCE framework. We succeeded in

8 https://share.descript.com/view/hXAZLCPJNqm
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Figure 3. User experience evaluation - Likert scale

implementing a synthesizer playable based on pure user
input. While we were generally able to use the output from
pre-trained models to control the DDSP backend, further
research is needed to match the sound quality of these real-
time models to that of the offline timbre transfer examples
provided by the DDSP authors.

A recently released realtime reimplementation of DDSP
in PyTorch 9 provides a possibly more seamless way of
interfacing with DDSP models in C++ that proved com-
patible with our plugin and JUCE. Extending that API to
allow the user some control over the synthesis parameters
seems a promising avenue to improve the sound quality of
our timbre transfer.

6. REFERENCES

[1] C. Donahue, J. McAuley, and M. Puckette, “Adversarial
Audio Synthesis,” arXiv:1802.04208 [cs], Feb. 2019,
arXiv: 1802.04208. [Online]. Available: http:
//arxiv.org/abs/1802.04208

[2] M. Blaauw and J. Bonada, “A neural parametric singing
synthesizer modeling timbre and expression from natu-
ral songs,” Applied Sciences, vol. 7, p. 1313, 2017.

[3] J. Engel, L. Hantrakul, C. Gu, and A. Roberts, “DDSP:
Differentiable Digital Signal Processing,” International
Conference on Learning Representations, 2020.

[4] X. Serra and J. O. Smith, “Spectral modeling synthesis.
A sound analysis/synthesis system based on a determin-
istic plus stochastic decomposition,” Computer Music
Journal, vol. 14, no. 4, pp. 12–24, 1990.

[5] Native-Instruments, “Razor,” 2011. [Online]. Avail-
able: https://www.native-instruments.com/en/products/
komplete/synths/razor/

9 https://github.com/acids-ircam/ddsp_pytorch

[6] D. Pandey, U. Suman, and A. Ramani, “An effective
requirement engineering process model for software
development and requirements management,” in 2010
International Conference on Advances in Recent Tech-
nologies in Communication and Computing, 2010, pp.
287 – 291.
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ABSTRACT

Machine learning based singing voice models require large
datasets and lengthy training times. In this work we present
a lightweight architecture, based on the Differentiable Dig-
ital Signal Processing (DDSP) library, that is able to output
song-like utterances conditioned only on pitch and ampli-
tude, after twelve hours of training using small datasets
of unprocessed audio. The results are promising, as both
the melody and the singer’s voice are recognizable. In
addition, we explore the unused latent-𝑧 vector in DDSP
to improve the lyrics. Furthermore, we present two zero-
configuration tools to train new models, including our ex-
perimental models. Our results indicate that the latent-𝑧
improves both the identification of the singer as well as the
comprehension of the lyrics.

1. INTRODUCTION

Human voice is one of the oldest musical instruments [1].
Before the Deep Learning era [2], high-quality singing
synthesis was carried out either by the spectral models [3],
based on perception, or the physical models [4], based on
production and articulation. Combining the spectral mod-
els with deep learning, the Differentiable Digital Signal
Processing [5] (DDSP) library by Google’s Magenta team
became a powerful toolkit for audio-related machine learn-
ing. The first published examples of DDSP were focused
on timbre transfer from monophonic instruments.

In this paper we present the DDSP architecture and apply
it to a more complex, expressive instrument: the human
voice. We check the suitability of the DDSP for singing
voice synthesis. By constructing small size databases, ex-
perimenting with the model parameters and configurations,
and by training the resulting models only for about twelve
hours, we obtain singing-like outputs, which clearly re-
semble to original singers / speakers. However, the lyrics
are incomprehensible because we don’t have a language
model. When we condition the model on the MFCC of the
original audio, the results improve, promising intelligibil-
ity. Our contribution also enhances the documentation of
the library and provides two zero-configuration notebooks
for experimentation.

This paper is organized as follows. In Sec 2, we introduce
the context of neural singing synthesis. Next we provide a
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detailed look at the DDSP architecture for timbre transfer.
In Sec. 4, we introduce our experiments together with the
data sets and model configurations, and the improved re-
sults we have obtained by adding the latent-𝑧 vector. In the
next section, we discuss our observations. We finally draw
our conclusions and indicate areas of further research.

2. BACKGROUND

In neural singing synthesis, the Deep Neural Network
(DNN) receives a list of pitches and the lyrics as input,
and outputs a signal modeling a specific voice. It is a prob-
lem closely related to the speech synthesis, however more
challenging because of more diverse sets of pitches and
intensities, different vowel durations, and other attributes
specific to singing.

Gómez et al. [6] revised many data-driven deep learning
models for singing synthesis. A thoughtful remark in that
paper is that the black-box characteristics of deep learn-
ing models make it very difficult to gain knowledge re-
lated to the acoustics and expressiveness of singing. Even
if deep learning techniques are general and can learn from
almost any arbitrary corpus, it is necessary to advocate for
explainable models to break the black-box paradigm.

The DDSP library is a set of tools released by Google’s
Magenta team. DDSP is set to bring explainability and
modularity in neural audio synthesis [5]. The idea behind
DDSP is ”to combine the interpretable structure of clas-
sical DSP elements (such as filters, oscillators, reverbera-
tion, envelopes...) with the expressivity of deep learning.” 1

To avoid a common misunderstanding, DDSP is not an ar-
chitecture per se, but a set of signal-processing tools that
can be incorporated into modern automatic differentiation
software. Many examples of DDSP relate to singing input,
therefore we provide an overview in this section.

Several papers extended the DDSP specifically for speech
and singing synthesis [7–9]. In [7], the model is condi-
tioned on the phoneme level using an Automatic Speech
Recognition (ASR) system to extract the phonemes of
the training set and use them as additional conditioning
data. In [8], the authors synthesize spoken speech us-
ing the DDSP architecture with a model conditioned on
mel-spectrograms, instead of using raw audio. The loss
function is also adapted to use mel-spectrograms trying to
mimic the way human perception works. In [9], the authors
propose using MIDI data modified by an LSTM network,
to obtain continuous pitch and loudness contours that will
be fed into the DDSP architecture.

1 https://magenta.tensorflow.org/ddsp
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Figure 1. Timbre transfer architecture used in this work.
Adapted from [5].

2.1 DDSP Overview

Phase alignment poses a problem when generating audio
in deep learning; that problem is present when frames are
used, either in the time- or the frequency-domain. An au-
toregressive model does not present this problem, but in-
stead is harder to train due to the amount of data needed,
and due to the interplay between audio perception, wave
shape and loss. In fact, two wave shapes with very differ-
ent losses can be perceived as sounding exactly the same.

One possible solution is the use of audio oscillators or
vocoders that perform analysis and synthesis. In analy-
sis, interpretable parameters such as f0 or loudness are
extracted, and in synthesis the generative algorithm uses
these parameters to construct the synthetic sound. DDSP
disentangles them by a series of classical Digital Signal
Processing (DSP) modules as feed-forward functions al-
lowing, efficient implementation on GPUs.

3. DDSP AND TIMBRE TRANSFER

The architecture used in this work is based on the
”solo instrument” setup proposed for timbre transfer in [5]
and shown in Fig 1. The network is presented an audio file.
f0 and loudness are extracted and fed to the decoder, which
produces the parameters for a harmonic synthesizer and for
a subtractive synthesizer. The audio from both synthesiz-
ers is combined and presented as the final output. During
the training phase, the loss is computed using different res-
olution spectrograms from the original and the resulting
signal. In the following, we describe the modules used.

The encoder transforms the incoming audio into latent
vectors, in this case, two interpretable features: the funda-
mental frequency and the perceived loudness of the mono-
phonic input audio. The DDSP library does not require a
specific method to generate the f0 and loudness vector, but
expects arrays of float values, sampled at 250 Hz.

f0 can be generated synthetically, but the DDSP library
includes examples using CREPE [10] and DDSP-inv [11].
The f0 latent vector is fed directly to the additive syn-
thesizer. This allows to disentangle the fundamental fre-
quency and facilitates the model to respond to frequencies
unseen during the training.

Loudness can also be generated synthetically, but the
DDSP library includes a utility function to compute the
perceptual loudness of the audio, applying A-weighting
curves to the power spectrogram.

The decoder (Figure 2, top) is an RNN that receives the
latent vectors (f0 and loudness) and outputs the control pa-
rameters required by the synthesizers: the amplitudes of
the harmonics, and the transfer function for the FIR filter.
The RNN is fairly generic, as the DDSP authors empha-
size that the quality of the results comes from the DDSP
modules, not from the complexity of the neural network.

The latent vectors are preprocessed by a Multilayer Per-
ceptron (MLP) (Fig. 2, bottom), which comprises a block
of three layers (Dense, Normalization and ReLU layers) re-
peated three times. The output of the MLP is connected to
a 512-cell GRU layer which is connected to a second MLP
with the same structure and finally passed to two dense lay-
ers that will provide the parameters for the synthesizers.

Figure 2. Decoder architecture (top) and MLP structure
(bottom). Adapted from [5].

To synthesize audio, the DDSP library uses Spectral
Modelling Synthesis (SMS), a technique proposed by
Serra and Smith [3], where the sound is modeled as two
components: an additive or harmonic synthesizer, where a
series of sinusoids is combined, and a subtractive synthe-
sizer where the residual component is modeled as filtered
noise. The DDSP library implements a differentiable ver-
sion of the SMS, with an additional constraint: all the fre-
quencies are integer multiples of f0. The expressiveness
of this technique is a consequence of the high number of
parameters needed. With the default configuration (60 har-
monics, 65 noise magnitudes and 1 amplitude), sampled at
250Hz, 1 second of audio yields (60+65+1)*250 = 31,500
dimensions vs 16,000 audio samples.

The additive (harmonic) synthesizer models the har-
monic part of the signal 𝑥(𝑛) as a sum of 𝐾 sinusoids,
with amplitudes 𝐴𝑘(𝑛) and instantaneous phases 𝜑𝑘(𝑛).

𝑥(𝑛) =
𝐾∑︁

𝑘=1

𝐴𝑘(𝑛) sin(𝜑𝑘(𝑛)). (1)

We can further expand 𝐴𝑘(𝑛) into a global amplitude 𝐴(𝑛)
and a normalized distribution 𝑐(𝑛) of amplitudes for the
harmonic components, so that 𝐴𝑘(𝑛) = 𝐴(𝑛)𝑐𝑘(𝑛). Then
Equation (1) can be rewritten as

𝑥(𝑛) = 𝐴(𝑛)
𝐾∑︁

𝑘=1

𝑐𝑘(𝑛) sin(𝜑𝑘(𝑛)), (2)
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The instantaneous phase is described as

𝜑𝑘(𝑛) = 2𝜋
𝑛∑︁

𝑚=0

𝑘𝑓0(𝑚) + 𝜑0,𝑘 (3)

where 𝜑0,𝑘 is the initial phase for the harmonic 𝑘.
To reconstruct the additive signal at audio sample rate,

f0 is upsampled using bilinear interpolation, and the am-
plitude and harmonic distribution are smoothed using an
overlapping Hamming window centered on each frame.

The subtractive synthesizer models the residual com-
ponent, the difference between the original signal and the
signal from the additive synthesizer. If we assume that the
residual component is stochastic, it can be modeled as fil-
tered white noise, using a time-varying filter. The filter is
applied in the frequency-domain, to avoid phase distortion.
For every frame 𝑙, the network outputs 𝐻𝑙, the frequency-
domain transfer function of the FIR filter. The convolution
is applied as a multiplication in the frequency-domain (Eq.
4), and then an Inverse Discrete Fourier Transform (IDFT)
is applied to recover the filtered signal (Eq. 5):

𝑌𝑙 = 𝐻𝑙𝐷𝐹𝑇 (𝑥𝑙), (4)
𝑦𝑙 = 𝐼𝐷𝐹𝑇 (𝑌𝑙). (5)

Training the autoencoder means finding a set of param-
eters for the synthesizers that minimize the reconstruction
loss i.e., minimize the difference between the output and
input signals. A sample-wise loss measure is not recom-
mended, as two similar waveforms can be perceived as
having a very different sound. The spectral loss 𝐿 –the
difference between the spectrograms of the input (𝑆) and
output (𝑆) signals– is perceptually better, but there is a
compromise between time and frequency.

To solve this problem, a multi-scale spectral loss is de-
fined. Instead of using a single pair of spectrograms (𝑆, 𝑆),
the loss is defined as the sum of different spectral losses
𝐿𝑖 where 𝑖 is the FFT size. Moreover, the linear magni-
tude losses are sensitive to the peaks, whereas logarithmic
magnitude losses are sensitive to the quiet regions of the
signals. Therefore the loss is defined as 𝐿 =

∑︀
𝑖 𝐿𝑖, with

𝑖 ∈ (2048, 1024, 512, 256, 128, 64), where

𝐿𝑖 = ||𝑆𝑖 − 𝑆𝑖||1 + ||𝑙𝑜𝑔(𝑆𝑖)− 𝑙𝑜𝑔(𝑆𝑖)||1 (6)

4. EXPERIMENTS AND RESULTS

Our first experiment 2 is a simple test to check if the system
is correctly set up. The second experiment tries to deter-
mine if the model is able to learn single from single- and
multiple-voice datasets. The third experiment explores the
effect of training the model using the same dataset, with
different sets of parameters for the spectral synthesizer.
The last experiment introduces a encoded representation
of the Mel Frequency Cepstrum Coefficients. Tables 1, 2
and 3 describe the datasets we used.

2 Our notebooks and configuration files are available at https://
github.com/juanalonso/DDSP-singing-experiments.
Example results (audio and spectrograms) are at https://
juanalonso.github.io/DDSP-singing-experiments/.

Name Speaker / Singer Gender Type Language
alba Alba Female Spoken Spa
mrallsop Scott Allsop Male Spoken Eng
eva Eva Páez Female Sung Eng, Spa
belen Belén Chanes Female Sung Spa
servando Servando Carballar Male Sung Spa
voices2 belen + eva Female Sung Eng, Spa
voices3 belen + eva + servando Mixed Sung Eng, Spa
felipe vi King Felipe VI Male Spoken Spa

Table 1. Dataset metadata.

Name Source
alba Scrapped from https://albalearning.com/
mrallsop Scrapped from https://tinyurl.com/mrallsop
eva Provided by singer
belen Provided by singer
servando Provided by singer
voices2 Provided by singers
voices3 Provided by singers
felipe vi Scrapped from https://tinyurl.com/felipe-vi

Table 2. Dataset sources.

To test the model, we used a fragment of ’Over the rain-
bow’ as sung by Lamtharn (Hanoi) Hantrakul as the origi-
nal audio presented to the model. This melody is also used
in the DDSP [5] examples.

4.1 Pre-evaluation

A quick test of the system has been carried out to reproduce
the timbre transfer experiments while checking the validity
of our setup. In this test we have used the same material as
in the original paper 3 , generating the dataset and training
the model for 30k steps using the standard configuration
file solo instrument.gin (60 sine waves, 65 noise
magnitudes, reverb and batch size of 16).

The estimated f0 is transposed up two octaves, to better
match the pitch range of the violin, and the loudness is at-
tenuated 20dB. Two reconstructions are produced, the first
one with no additional information, and the second one us-
ing masking and statistical amplitude adjustment. These
reconstructions are shown in Fig. 3.

3 Movements II, III, IV, VI and VIII from the Bach Violin Partita no.1
BWM 1002, as played by John Garner at https://musopen.org/
music/13574-violin-partita-no-1-bwv-1002/

Figure 3. Over the rainbow as sung by Lamtharn (Hanoi)
Hantrakul (top) and reconstructed by our version of the vi-
olin model (+2oct, -20dB), using no statistical information
(middle) and with statistical information (bottom).
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Name Avg. pitch Duration Active audio
alba 53.76 1:24:29 0:53:28
mrallsop 48.42 0:25:41 0:23:51
eva 64.10 0:18:34 0:16:23
belen 62.39 0:10:16 0:06:24
servando 55.08 0:11:02 0:08:31
voices2 63.59 0:28:50 0:22:47
voices3 61.75 0:39:52 0:31:17
felipe vi 50.93 0:13:32 0:08:35

Table 3. Audio properties of the datasets. Active audio is
the duration after removing parts of the original file where
audio is lower than -52dB for more than 200ms. This is
only a reference value and it is not used for training.

The violin model works as expected. The resulting audio
is equivalent to the audio produced by the original model,
which is trained for 20k extra steps with a batch size of 32.

4.2 Different datasets trained on the same parameters

4.2.1 Single voice model

To generate the models for singing voices, we are using
seven datasets (see Table 1), obtained from speakers and
singers, both male and female, in different languages. No
audio source separation software is used. The datasets eva,
belen and servando are raw vocal tracks recorded by pro-
fessional singers and have been kindly provided by the per-
formers upon request of the authors. These tracks were not
specifically recorded for this work, they were previously
recorded for existing and upcoming music records. Two
additional datasets have been created by combining the au-
dio files from the eva and belen datasets (voices2) and the
eva, belen and servando datasets (voices3). The rest of the
datasets (mrallsop, alba and felipe vi) has been scrapped
form the web. Files longer than five minutes have been
split into three to four-minute chunks. Other than that, the
original audio has not been transformed in any way, keep-
ing all the original characteristics: silences, different vol-
ume levels, background noise, etc.

The models are trained for 40k steps each, using the
notebook 01 train. Each model has been trained us-
ing singing.gin, a modified version of the standard
configuration file. The losses after training (Fig. 4, top)
are all in the range [4.987, 5.437] as recommended in [5].
There are no significant differences between the losses in
the spoken and sung datasets. The servando model, whose

Name Gender Type Loss
servando male sung lyrics 6.984
belen female sung lyrics 5.114
eva female sung lyrics 4.987
mrallsop male spoken speech 5.437
alba female spoken speech 5.142
voices2 female sung lyrics 5.415
voices3 mixed sung lyrics 6.143

Table 4. List of datasets used for training the model and
loss value after 40k steps.

loss is considerably higher, is an exception. The only ap-
parent difference with the rest of datasets is that servando’s
source audio is hard-clipped / compressed at 0dB, with a
smaller dynamic range than the other voices, which present
a wider range of amplitudes and compression values.

The output is generated by executing notebook 02 run.
The pitch shift is chosen manually by comparing the mean
MIDI pitch of the dataset with the mean MIDI pitch of the
melody. The loudness shift is handpicked after comparing
different settings. The threshold and quiet parameters are
adjusted manually depending on how much noise bleeds
into the silent parts of the original audio. The values cho-
sen for each example are shown in the audio web page.

4.2.2 Multiple voices model

The model voices2 combines the source audio from belen
and eva, both female singers. It is trained for 40k steps.
The loss, after training is 5.415, higher than the loss of
both of the datasets (belen=5.114, eva=4.987), as shown
in Fig. 4, bottom. This result is expected, as we are train-
ing the model with the same number of steps as the single
voice models but, in this case, the model needs to learn
two different timbres, with different loudness and slightly
different MIDI mean pitches (belen=62.39, eva=64.10).

When the model is used, the resulting audio is a combi-
nation of the individual voices. Depending on the f0 and
loudness, the model outputs a succession of fragments by
the original singers. The transition is smooth: only one
voice is perceived at a concrete frame.

The model voices3 combines the source audio from be-
len, eva and servando. It is trained for 40k steps: the model
must learn three timbres, and one of them is more differ-
ent from the other two (servando, loss=6.984, MIDI mean
pitch=55.08) The peculiarities of the servando dataset pe-
nalize the training, and thus the model presents a higher
loss than voices2.

Fig. 4, bottom, shows that the loss of voices3 (6.143) is
lower than the loss of the servando model (6.984). We at-
tribute this effect to an imbalanced dataset: the duration
of servando’s source audio is 11 minutes and 02 seconds,
whereas belen’s and eva’s source audio combined is 28
minutes and 50 seconds.

In this experiment, the voice mixing capabilities of the
model are more pronounced than in the previous experi-
ment. The mean MIDI pitch of the example song is 51.30.
Considering that the mean MIDI pitches of the servando,
belen and eva datasets on Table 4 are, respectively 55.08,
62.39 and 64.10, we can expect that when rendering the
audio, the model will generate a mix of the nearest-pitched
voices. This is the case: when using the example frag-
ment without transposing, the resulting melody is a mix
of servando’s and belen’s voice. If the example fragment
is transposed an octave higher (MIDI pitch of 63.30) the
resulting melody is a mix of belen’s and eva’s voice. To
demonstrate this effect, six examples have been uploaded
to the audio page, using different sets of preprocessing pa-
rameters.
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(a) Five independent datasets: dotted lines represent speech datasets.

(b) Hybrid dataset, with voices2 and voices3.

Figure 4. Spectral loss for the different datasets

Use statistics Yes
Mask threshold 1

Quiet 20
Autotune 0

Octave shift +1
Loudness shift -10dB

Table 5. f0 and loudness preprocessing parameters.

4.3 Single dataset, different spectral parameters

In this experiment, we want to understand how the param-
eters of the spectral synthesizer affect the learning process
and the results. We will be using the eva dataset –since its
model has the lowest loss after training– to train the model
using a range of spectral configurations.

We chose three values for the harmonic component (20,
60 and 100 sinusoidal waves). 60 is the default value pro-
vided in the configuration files. 100 is the maximum value
a model can be trained without getting out of memory er-
rors, and 20 is the symmetrical lower bound (60− (100−
60)). For the noise component we chose 10, 35 and 65
noise magnitudes, 65 being the default value.

Nine models are generated, one for each combination of
harmonic components and noise magnitudes. Each model
is trained for 20k steps, using the same configuration file
we used in the previous sections (singing.gin). f0 and
loudness are preprocessed using the handpicked parame-
ters from Section 4.2.1 and shown in Table 5.

As can be observed in Fig. 5, to decrease the spectral
loss, the amount of noise magnitudes is more relevant than

the number of harmonic components. Perceptually, more
models and tests are needed. On an informal test where
three users with no musical training were presented pairs
of the snippet ’way up high’ (seconds 7 to 11 in the origi-
nal audio) rendered with different parameters, there was no
agreement on which ”sounded better”. The only exception
was snippet h:20 n:10, where the subjects remarked it was
the worst sounding of the pair. All subjects commented on
listening fatigue due to being exposed to the same melody.

Observing the spectrograms of the reconstructions in
Fig. 6, the examples with the lowest number of noise mag-
nitudes (𝑛 = 10) show the model trying to reconstruct the
high frequency noise with the harmonic model (faint sinu-
soids in the spectrograms).

4.4 Adding the latent-z

For our last experiment, we expand the singing.gin
configuration (Fig. 7) to include a time-varying encoding
of the Mel Frequency Cepstral Coefficients (MFCC) to un-
derstand how this additional encoding affects the model’s
output. This representation is specially well suited for
the human voice, as it mimics the non-linearity of hu-
man sound perception and helps model the timbre [12].
The MFCC are encoded using a normalization layer and a
512-unit GRU, reducing the dimensionality from 30 coeffi-
cients to a 16-dimensional latent vector, at 125 frames per
second and then upsampled to 250 frames, to match the
sampling rate of the f0 and loudness vectors. To decode
this vector, the same MLP architecture shown in Fig. 2,
bottom, is used, and concatenated with the preprocessed f0
and loudness vectors.
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Figure 5. Total (spectral) loss for the eva dataset, using different parameters for the spectral synthesizer. h is the number of
harmonic components; n is the number of noise magnitudes.

Figure 6. Spectrogram of the original audio (’way up
high’, seconds 7-11). left column, and spectrograms of the
model’s output with different spectral parameters.

Figure 7. Timbre transfer architecture with latent-𝑧.
Adapted from [5].

To generate the z models, we used the belen and mrall-
sop datasets and a new dataset, felipe vi, extracted from
Felipe VI’s, King of Spain, 2020 Christmas speech (male
spoken voice, Spanish) As with the previous datasets, fe-
lipe vi is used ”as is”, without any kind of preprocessing.
A new configuration file (singing z.gin) is also used,
and it is available at the GitHub repository. This configu-
ration file inherits all the values from singing.gin and
includes the z encoder.

The models are trained for 25k steps. As shown in Figure
8, with the additional encoding, the loss function increases
(from 5.310 to 6.322 in the case of the belen dataset and
from 5.634 to 8.011 in the mrallsop dataset) This is an ex-
pected behavior, as the model now needs to fit additional
parameters. The loss value for the felipe vi z model is low
enough (5.514) to be in the range of the non-z models.

5. RESULTS AND DISCUSSION

The architecture proposed in [5] is powerful enough to per-
form timbre transfer and to produce surprising results even
if the dataset is small (10-15 minutes of audio). The train-
ing, using the Colab environment, is fast and it works out
of the box, with the GPU infrastructure ready. All the re-
quired libraries (CREPE, TensorFlow, Apache Beam. etc.)
are available without version conflicts.

In singing voice synthesis, we challenged the model
(small datasets, unprocessed audio, etc.), but the quality
of the results surprised us. Of course, in no way the output
of the model is going to be mistaken for a human, but the
model’s ability to produce such good results with no ad-
ditional conditioning is very promising and opens several
avenues for exploration, research and creative usage.

With the addition of the z-encoder, the quality of pro-
duced audio is increased, becoming almost intelligible.
The right vowels start appearing, and the babbling effect
is reduced substantially. The resulting timbre is halfway
between the instrument timbre and the original timbre.

This architecture makes very difficult to estimate the per-
formance of a model. As we have noticed, the training
loss of the servando model is quite high, compared with
the rest, but when analyzing the dataset, nothing stands
out as the cause of this value. Similar datasets (speaking,
male voice) such as felipe vi z and mrallsop z present very
different losses (5.514 versus 8.011 respectively), but the
quality of the resulting audio is comparable.

5.1 Problems

5.1.1 Babbling and stuttering

We are forcing the model to recreate sung lyrics. The
model needs to learn the timbre of the voice, how to ex-
trapolate previously unheard pitches and the flow of the
language. The current architecture manages to extract the
timbre and to correlate f0 and loudness with sounds, but
it lacks the ability to learn the sequences of phonemes
that constitute speech. Even with more comprehensive
datasets, where all the possible combinations of phonemes
and pitches could be present, without additional condition-
ing (phonetic, text, etc.) the model will try to make up what
to say, and the produced audio will be just a better-quality
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Figure 8. Spectral loss for the three z models. The dotted lines are included for reference, and represent loss function for
the two related non-z models.

version of this stuttering and nonsensical babbling.
During the development of this work, the audio has been

presented to several listeners who knew the original singers
(belen, servando) and they all found the results unsettling,
due to this kind of babbling. They recognized the speaker,
but the babbling and stuttering were compared to listen-
ing to a person having suffered a stroke that impaired the
language centers of the brain.

5.1.2 Silence

If the dataset does not include silences (for example, the
dataset used to train the violin model) the resulting model
has difficulties trying to recreate them and will resort to
generate some very low notes. This can be mitigated by
adding some transitions to and from silence and by fine
tuning the preprocessing parameters, which right now it
is a manual process dependent on the input audio and the
model. The datasets used in this work do not present this
problem, since the original material includes pauses and
therefore, the network can recreate possible silences.

The example on the audio page shows this phenomenon
particularly well. On the one hand, the original audio, a
staccato synthesizer riff, is played as legato. On the other
hand, the silence that occurs at seconds 3 and 9 is reinter-
preted as a pair of low-pitched tones. Even tweaking the
preprocessing parameters, we can mitigate the low tones,
but not suppress them.

5.1.3 Pitch artifacts

The accuracy of the output pitches depends on the f0 es-
timation. If the estimation made by the CREPE model is
wrong, the output will include wrong notes. We have de-
tected several cases where CREPE estimates a very high
pitch with high confidence, so the preprocessor cannot
mask it. In those cases, the resulting audio will include
a squeal, a quick glissando to the estimated high pitch.

To avoid this, we can substitute CREPE for another algo-
rithm, or use a symbolic notation, such as MIDI, to gener-
ate the f0 vector. In that case, we risk having a monotonous
voice, and we would need to add some modulation (e.g.,
amplitude or frequency modulation) to make it more natu-
ral sounding.

5.1.4 DDSP maturity

Although the possibilities of these libraries are immense,
exploring them is a challenging task for two major reasons.
The first one is the lack of information about the most com-
plex processes, how some of its modules work and how to
modify the workflow to add new functionalities. Despite
open-sourcing the code in GitHub, the tutorials and demos
barely scratch the surface. The second problem is that, be-
cause the libraries are still under active development, some
of the updates are missing information about the release
changes and are not as stable as expected. These, however
are expected in any open source library.

6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The DDSP library opens up a lot of possibilities for audio
synthesis. The work presented here allows us to get a better
understanding on how the DDSP library works, especially
when used for timbre transfer. It achieves two goals:

1. Test the validity of the DDSP architecture to gen-
erate a singing voice. The tests carried out on
the architecture have used unfavorable data (no pre-
processing, background noises, small datasets, etc.),
and even so, the network could generate audio sim-
ilar to the human voice, with enough features to be
recognized as belonging to a specific singer.

2. Create an easy-to-use environment to facilitate
model training and timbre transfer to end users.
The notebooks provided will help the SMC commu-
nity to ease the learning curve of this architecture
and get familiar with the advantages and nuisances
of the library. Since the GitHub repository includes
some of the models used in this work, curious users
can just interact with them, without needing to create
their own datasets. Also, as per today (March 2021)
our models are compatible with the ones made avail-
able by Google (flute, violin...) so they can be used
interchangeably.
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6.2 Future Work

In order to create a more refined model which is capable
of synthesizing much realistic utterances with lyrics repli-
cation (and thus avoiding the gibberish / stuttering effect)
additional work must be done in the following areas:
Conditioning: As noted in Section 5.1.1, the phonetic out-
put is made up by the model, without any reference to real
speech. The current architecture does not condition the
output in any other data than pitch and loudness, missing
additional information present in sung lyrics. To get the
nuances of human singing and model the lyrics, we need
to include additional conditioning on the language level,
for example, the phonetic conditioning proposed in [7].
Use representations more suitable to voice synthesis:
The default architecture proposed in the DDSP is generic,
designed for monophonic musical instruments. Using mel-
spectrograms as proposed in [8], instead of using raw au-
dio or by postprocessing the harmonic and the noise com-
ponents of the transformed audio to balance the voiced and
unvoiced parts of the speech [7], results could be improved.
Use synthesizers more suitable to voice modeling: As
stated previously, by using Spectral Modelling Synthesis,
we get a very expressive synthesizer at the expense of pro-
ducing twice as much data per second as the sampled au-
dio. However, other synthesizers can provide a more com-
pact representation, resulting in a smaller model which will
be faster to train and run. The authors are currently work-
ing on implementing both an AM and a 2-operator FM
differentiable synthesizer. These simple synthesizers will
provide us a better understanding of the capabilities and
nuances of a differentiable synth, its performance, how to
integrate them in the existing toolchain, and how to modify
the model architecture to fit different synthesizers.
Preprocessing of f0: Even if the model is able to transfer
the timbre perfectly, following the ”Garbage in, garbage
out” concept, the quality of the output will be affected by
the quality of the latent vectors. If the pitch estimation is
not accurate, the resulting audio will present pitch artifacts.
A quick solution can be to extract f0 from MIDI. While
the resulting f0 is going to be precise, it is going to lack
expressiveness. Solutions as the one proposed in [9] can
add expressiveness to the MIDI data.
Explore the creative possibilities of the model: The cre-
ative possibilities offered by the DDSP architecture are
immense, either with low fidelity, glitchy results as ex-
plored in this work, or with more realistic results by ap-
plying additional conditioning. Some of the possibilities
are pitch- and time-shifting, lyric translation, voice mor-
phing, change of singing style (e.g., to and from opera,
pop, blues), tremolo and vibrato removal or addition, to
name just a few. Working with clean data and synthesizing
singing in different (or fictional) languages would be also
interesting for the future.
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synthesis approach for making expressive and control-
lable neural music synthesizers,” in 2020 AI Music
Creativity Conference, 2020.

[10] J. W. Kim, J. Salamon, P. Li, and J. P. Bello, “Crepe:
A convolutional representation for pitch estimation,”
in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018,
pp. 161–165.

[11] J. Engel, R. Swavely, L. H. Hantrakul, A. Roberts,
and C. Hawthorne, “Self-supervised pitch detec-
tion with inverse audio synthesis,” in International
Conference on Machine Learning, Self-supervised Au-
dio and Speech Workshop, 2020. [Online]. Available:
https://openreview.net/forum?id=RlVTYWhsky7

[12] J. I. Godino-Llorente, P. Gomez-Vilda, and M. Blanco-
Velasco, “Dimensionality reduction of a pathological
voice quality assessment system based on gaussian
mixture models and short-term cepstral parameters,”
IEEE transactions on biomedical engineering, vol. 53,
no. 10, pp. 1943–1953, 2006.



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

191

EXPLORING MODALITY-AGNOSTIC REPRESENTATIONS FOR MUSIC
CLASSIFICATION

Ho-Hsiang WU1, Magdalena FUENTES1,2, and Juan P. BELLO1,2

1Music and Audio Research Laboratory, New York University, New York, NY USA
2Center for Urban Science and Progress, New York University, New York, NY USA

ABSTRACT

Music information is often conveyed or recorded across
multiple data modalities including but not limited to au-
dio, images, text and scores. However, music information
retrieval research has almost exclusively focused on sin-
gle modality recognition, requiring development of sepa-
rate models for each modality. Some multi-modal works
require multiple coexisting modalities given to the model
as inputs, constraining the use of these models to the few
cases where data from all modalities are available. To the
best of our knowledge, no existing model has the ability to
take inputs from varying modalities, e.g. images or sounds,
and classify them into unified music categories. We ex-
plore the use of cross-modal retrieval as a pretext task to
learn modality-agnostic representations, which can then be
used as inputs to classifiers that are independent of modal-
ity. We select instrument classification as an example task
for our study as both visual and audio components provide
relevant semantic information. We train music instrument
classifiers that can take both images or sounds as input, and
perform comparably to sound-only or image-only classi-
fiers. Furthermore, we explore the case when there is lim-
ited labeled data for a given modality, and the impact in
performance by using labeled data from other modalities.
We are able to achieve almost 70% of best performing sys-
tem in a zero-shot setting. We provide a detailed analysis
of experimental results to understand the potential and lim-
itations of the approach, and discuss future steps towards
modality-agnostic classifiers.

1. INTRODUCTION

Musical objects and concepts appear in different hetero-
geneous data modalities, including but not limited to au-
dio, images, text and scores, where sonic, visual and tac-
tile modalities contribute to the overall experience. How-
ever, most music information retrieval (MIR) research has
largely focused on developing systems that interact with a
single modality, requiring development of separate mod-
els for audio, image or text, and over simplifying the mu-
sical modeling. There are approaches that exploit mul-
tiple modalities [1–4], but existing multi-modal systems
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in the context of MIR require coexisting modalities as in-
puts [5–10], which is a big constrain for their deployment
since it limits the scope of systems to only work when the
modality they have been design for is at hand.

In a context of rapidly increasing availability of infor-
mation in all forms (video, audio, text, etc) it is desirable
that models are able to overcome this single-modality lim-
itation and can interact with information in any common
form, for instance, a system able to classify musical instru-
ments by the way they look and sound. To the best of our
knowledge, no existing model in the context of MIR can
be used if one of those modalities is missing (e.g. if it was
trained with audio and text, can not be used in a dataset
with only audio).

Based on recent work [11] we hypothesize that modality-
agnostic systems can be developed by learning joint rep-
resentations from different modalities when they represent
the same concepts. If the embedding of an image of a gui-
tar and the sound of a guitar are similar to each other (i.e.
grouped closely in the embedding space) but different from
those of a piano, we can build classification systems that
would work with either image or audio. This would allow
to train models in settings where there is big amounts of
data from one modality but not from the other, but still be
able to work in both cases.

This type of approach, often called translation since it
implies "translating" one modality to another (e.g. be-
ing able to retrieve an image with a description of it) has
received renewed attention recently given the combined
efforts of the computer vision and natural language pro-
cessing communities, and has been gaining more interests
in the MIR community [12–18]. Recently, it has been
proposed to learn translated representations using self-
supervision [11] which is very promising since it doesn’t
rely on human-annotated data, but has the drawback of re-
quiring millions pairs of raw data to train embedding mod-
els from scratch. We propose an intermediate solution, to
use pre-trained embeddings and only learn the translation
between them in a self-supervised manner, as a way of re-
laxing the amount of computation time and data needed for
training the system.

In this paper, we take the first steps towards modality-
agnostic music classification. We focus on the problem of
classifying musical instruments using audio and/or image.
We investigate the use of pre-trained audio and image em-
beddings in combination with training translation models
to obtain a joint representation, in a self-supervised set-
ting. We use the learned representations to train modality-
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agnostic classifiers in a supervised manner, and we inves-
tigate the performance of the classifier compared to its
single-modality counterpart in different scenarios, includ-
ing one with varying amount of data available from ei-
ther modality. Our implementation is available in https:
//github.com/hohsiangwu/crossmodal.

2. METHOD

Our method is summarized in Figure 1. It consists of three
different stages: 1) First, we select a set of pre-trained
embeddings from both audio and image, and translate or
project the pre-trained embeddings into a common space,
either by training a translation model, or simply using prin-
cipal component analysis (PCA) to convert both embed-
dings to the same dimension; 2) We then conduct a study
to find the best combination by comparing configuration
performances in cross-modal retrieval; and 3) We use the
resulting joint embeddings to train a classifier in a super-
vised setting and study the performance of the different
configurations (i.e. translation vs. PCA vs. single modal-
ity) with different amount of data from each modality. We
explain the different stages of the method in the following.

TranslationPre-trained
Audio Encoder

Guitar
Piano
Voice

...

Classifier

PCAPre-trained
Image Encoder

Cross-modal 
Retrieval

Figure 1. Method overview. The pre-trained audio and
image embeddings are projected to a joint space by ei-
ther the translation model or PCA, and the obtained em-
beddings are used to train the classifier in the downstream
task: musical instrument classification. Cross-modal re-
trieval is used to select best configuration of pre-trained
embeddings.

2.1 Pre-trained Image and Audio Embeddings

We select a set of state-of-the-art embeddings for both
image and audio. For image embeddings, we use two
pre-trained embedding models provided by keras library 1 ,
trained using the ImageNet [19] dataset on a classification
task. In particular, we use VGG Net [20] and ResNet [21].
These are both deep convolutional neural networks based
architectures. We refer to [20, 21] for further details. For
both models, we remove the last layer and apply average
pooling to get the final image embeddings.

We also use pre-trained models to obtain the audio em-
beddings, particularly VGGish [22] , and YamNet. Finally,
we use the open source implementation of OpenL3 2 [4]
trained with music data from AudioSet [23] to obtain an-
other pair of image and audio embeddings.

1 https://keras.io/api/applications/
2 https://github.com/marl/openl3

Embedding model # Parameters Output dimension
OpenL3 (Image) 4.7M 8192

VGG16 15M 512
ResNet50 23.6M 2048

OpenL3 (Audio) 9M 6144
VGGish 62M 128
YamNet 3.2M 1024

Table 1. Overview of pre-trained image and audio embed-
ding models.

In Table 1 we summarize the characteristics of each
image and audio embedding model. Pre-trained VGG
and ResNet image embeddings, VGGish and YamNet au-
dio embeddings are trained on classification tasks, while
OpenL3 is trained with audio-visual correspondence with-
out labeled data.

To select the best combination, we evaluate how good
the different pairs of embeddings blend together in a com-
mon space using a translation model. To quantify the suc-
cess of this translation, we perform cross-modal retrieval
(i.e. retrieve the image of an instrument using it’s respec-
tive sound and vice versa) as further explained in Section
3.3. Our reasoning behind this is that for the modality-
agnostic classifier to be successful, the embeddings should
be very close to each other in the joint embedding space,
and so they should be accurate in a cross-modal retrieval
task when retrieving examples by distance. We select the
best performing pair of audio and image embeddings and
use it for the following stages.

2.2 Translation and Dimensional Reduction

We explore two ways of relating the audio and image em-
beddings: translation and a simple dimensional matching
with PCA. For translation, in the self-supervised learning
literature, various metric learning losses are used to learn
a shared embedding space [24–26]. In particular, the Con-
trastive loss [27, 28] works well empirically with a care-
ful selection of negative samples. It aims to minimize the
distance of a given sample to positive examples (i.e. sam-
ples semantically related) while increasing the distance to
negative examples concurrently. For the translation layer,
we implement a 2 layer multi-layer perceptron (MLP) net-
work, with pre-trained image and audio embeddings as
inputs and train using contrastive loss, with cosine dis-
tance. We train the translation model using sample pairs
from both modalities without labels, in particular we use
the Musical Instruments AudioSet subset, as explained in
Section 3. The output dimension is 128 for all of our em-
beddings.

As baseline, we apply PCA to each pre-trained embed-
ding model to reduce their dimension to 128, and we train
a single-modality classifier as well as a multi-modality
classifier with such embeddings. The idea is to under-
stand whether a simple solution is enough to build a
modality-agnostic classification system, where the classi-
fier is mainly responsible for the work of translating the
modalities and learning the mapping to the labels.
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2.3 Classification

We work with random forest classifiers. We train multi-
modal (MM) classifiers either with translation (MMT) or
PCA (MMP) and single-modality (SM) classifiers using
dimension-reduced embeddings from audio (SMA) or im-
age (SMI). We study how translation affects performance
in scenarios with different amount of data used to train the
classifiers. We do so by training the MMT and MMP with
data from one modality and testing in the other, which we
call target modality. We incorporate data from the target
modality to the training of the classifiers by batches and
see the impact in performance.

3. EXPERIMENTAL DESIGN

3.1 Dataset

Subset Stage # Samples
Translation Train translation 130k

Cross-modal Evaluate translation 10k

Classification Train classifier 16.2k
Evaluate classifier 1.8k

Table 2. Overview of subsets used for training and evalua-
tion.

We use non-overlapping subsets of AudioSet [23] for
the cross-modal experiments, the training of the transla-
tion model and the classifier. AudioSet is a multi-modal
dataset containing YouTube videos with weak audio labels
for a diverse set of real-world situations. We follow [11]
and [4] by getting samples labeled at least with a descen-
dant of "Musical instrument", "Singing" and "Tools". We
then carefully split the dataset into three subsets, one for
evaluating the pre-trained embedding combinations and se-
lect the best pair, another for training the translation model,
and the last one for the downstream musical instrument
classification task. From all qualified videos, we sample 1
second audio and one video frame as image within the sec-
ond period. The assumption is that image and audio from
roughly the same timestamp contain highly related seman-
tic content. For evaluating the cross-modal retrieval exper-
iments, we use a total 10k image/audio pairs. We call this
subset the cross-modal-subset. We use 130k pairs to train
the translation model, which is roughly half the amount of
data used to train end-to-end models in [11]. We call this
the translation-subset as shown in Table 2.

For the classification task, we carefully curated samples
from 18 classes. Our categories include mapping from
"Violin, fiddle" to "violin", "Choir" to "voice" and both
"Drum" and "Drum kit" to "drums", and the remaining are
"accordion", "banjo", "cello", "clarinet", "flute", "guitar",
"mandolin", "organ", "piano", "saxophone", "synthesizer",
"trombone", "trumpet", "ukulele", "cymbals". We manu-
ally audited the quality of the test set removing irrelevant
samples (e.g. those labeled by piano but with image of
an album cover with no piano on it) until we had 1,000
samples per instrument. Having a balanced dataset for the
training of the classifier is important to prevent issues at

this stage interfering with the assessment of the embed-
dings performance. We formulate the classification prob-
lem as a multi-class problem, where samples labeled only
once from the above categories are selected. The result
classification-subset consists of a balanced dataset with
16200 training samples and 1800 testing samples (10%
split). We call it the classification-subset.

3.2 Model implementation

For ResNet and VGG image embeddings, we use the pre-
process function provided from keras to normalize the
pixel values. And we follow the pre- and post-processing
steps of VGGish and YamNet 3 . For training the transla-
tion model, we do not use labels. Instead we randomly
sample batches of size 4096 from translation-subset, ex-
tract pre-trained embeddings from both modalities, train a
2 layer MLP with both input dimensions as original pre-
trained embeddings, 256 middle dimension, and 128 out-
put dimension, implemented with PyTorch 4 . We use pairs
of both modalities sampled from the same clip as positive
examples, and other samples in the same batch as negative
examples, with margin value as 1.0. We optimize using
Adam optimizer with learning rate as 0.001, and we apply
early stopping criteria on validation loss with patience as
5 epochs. For cross-modal retrieval, we take the outputs
of translation model with corresponding pre-trained em-
beddings of the 10k image/audio pairs from cross-modal-
subset, and use all embeddings from one modality as
queries to fetch top 30 closest embeddings from another
modality. For training the classification model, we use a
random forest classifier from scikit-learn 5 , with maximum
depth set to 32, and 100 estimators.

3.3 Evaluation metrics

For the evaluation of the cross-modal retrieval results we
follow the setup from [11]. We use normalized discounted
cumulative gain (NDCG) score considering 30 elements.
This score is a measure of ranking quality between 0 and
1 (from low to high quality), which assesses the gain of an
element based on a relevance score and its position in the
result list. Following [11], we use the relevance 𝑟 = 𝐶−𝑑,
where 𝑑 is the distance in the taxonomy graph between two
labels in the AudioSet ontology, 𝐶 = 21 being the max-
imum distance. As the AudioSet ontology is defined, the
top labels (e.g. "Music", "Musical instrument", "Tools",
"Singing") are included in computing the relevance, which
make most of the example relevant since most of them con-
vey one of those labels. 6 Therefore, we removed those top
labels while computing the NDCG. We report the results of
audio-to-image and image-to-audio retrieval.

For the evaluation of the classification results we use
the macro F-measure or F1 score. Finally to assess the
structural properties of the embedding spaces generated
by the translation or the PCA projections we compute

3 https://github.com/tensorflow/models/tree/
master/research/audioset

4 https://pytorch.org/
5 https://scikit-learn.org/
6 See https://research.google.com/audioset/

ontology/index.html for further details.
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Figure 2. Cross-modal retrieval results with NDCG scores on the x-axis. On the y-axis we have different combinations of
audio, image pre-trained embeddings used to train the translation model. The red dotted line is a random baseline, and the
blue dotted line is OpenL3 (512 dimensions) for both image and audio without translation. We show cross-modal retrieval
results of audio to image (left), and image to audio (right).

inter-cluster distances from the clusters of the different
instrument classes and modality pairs before classifica-
tion. For that, we take the test split of the classification-
subset, compute average (centroids) of all the projected
embeddings (PCA or translated) with the same modality
and same instrument labels, and then compute pair-wise
distance among modality/instrument clusters as the inter-
cluster distance.

4. RESULTS AND DISCUSSIONS

4.1 What combination of pre-trained embeddings?

In this experiment we would like to determine which is
the best audio-visual embeddings combination. We will
have to simultaneously answer whether we are able to learn
meaningful joint-embeddings from this data using transla-
tion, or if translation of pre-trained embeddings does not
work at all.

To do so, we take all combination of audio and image
embeddings and train the translation model with them, ob-
taining a total of nine separated translation models, i.e.
nine mappings to joint embedding spaces. We then eval-
uate them using cross-modal retrieval in the cross-modal-
subset explained in Section 3.1. The NDCG scores of dif-
ferent configurations are depicted in Figure 2, where both
audio to image, and image to audio are shown. Following
the ideas in [11], we use two baselines: random (red dotted
line in Figure 2) which means randomly ordering the em-
beddings and get the first 30, and the OpenL3 (blue dotted
line) image and audio embeddings both with 512 dimen-
sion 7 , used for retrieval directly without translation.

The first observation is that the relative difference in
NDCG scores between the baselines and our best perform-
ing model are comparable to those shown in [11], which
is promising because it means that the translation model
is effectively learning to relate the embeddings. Also un-
like the systems in [11] which were trained from scratch,

7 Note that the OpenL3 implementation allows for multiple output di-
mensions, and we choose 512 here for both embeddings to be comparable.

we obtained our joint embedding by translating pre-trained
embeddings, and obtained competitive results. The ran-
dom baseline performs better than OpenL3 for audio to im-
age retrieval, which is consistent with the results reported
in [11].

We observe a big gap in performance in all combina-
tions that include the OpenL3 image embedding, which
can be partially explained by the fact that VGG and ResNet
greatly outperform that embedding in image classification
downstream tasks, and thus more expressive embeddings
would be better candidates for translation.

Overall, the combination of YamNet and ResNet per-
forms the best across all configurations. We checked that is
the case for the classification performance as well, there-
fore, we discuss only YamNet and ResNet results in the
rest of the experiments.

4.2 How does translation affect performance?

We want to understand how translation affects the perfor-
mance of a classifier in comparison to its multi-modal non-
translated and single-modality counterparts. For that we
compare their performance in the classification task, by
training the classifier using embeddings from one modality
and testing with embeddings from the other, and by adding
batches of the training modality with balanced number of
instrument classes by bits. We use the classification-subset
for this experiment. The results of this process are shown
in Figure 3, where the macro F1 scores are reported for a
test set of only images (left) and only audio (right).
No data from target modality. First, we discuss the re-
sults in the 0 point of the x-axis, corresponding to the per-
formance of the classifiers without any data from the tar-
get modality (e.g. when testing in image, only training
the MM classifiers with audio). We see a similar and ex-
pected behaviour in both modalities: the MMP classifier
is guessing some classes right (very little), probably ex-
ploiting some unintended relations between YamNet and
ResNet embeddings after PCA, and the MMT classifier
clearly outperforms the others, being able to achieve al-
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Figure 3. Instrument classification results in different modalities: image (left) and audio (right). The orange dashed line is
a SM classifier trained and tested with same modality, image (I) or audio (A). Blue (translated) and red (PCA) boxes are
MM classifiers trained with data from different modality to the test set, with the x-axis indicating the number of samples
from the target modality mixed-in in during training (e.g. when testing on image, MMT and MMP are trained with audio,
and image data is mixed in by bits).

most 70% of the best performance already. This confirms
what we saw from the cross-modal retrieval examples, that
the translation is doing a meaningful mapping, and further
this allows to learn from one modality and test in another
in a zero-shot fashion.

Adding data from target modality. However, for an ideal
translation, image and audio embeddings would be inter-
changeable. That means that the performance of MMT
without seeing any embedding from the target modality
or after seeing all of them should be the same (since no
new data would be added to the classifier). And so, the
blue curve we see in Figure 3 with a small slope should
flat at the maximum performance independently of the test
data we add in. The fact that the performance of MMT in-
creases by adding this data is showing that the translation
failed in combining some meaningful information. And
this makes the MMT classifier’s performance to fall be-
hind when all the data from both modalities are available
(point 16000 in the x-axis of Figure 3).

Observing the performance of MMP, we also see that
with the right amount of data and without translation, the
classifier is able to learn the mapping between embeddings
and classify the instruments correctly. This is an inter-
esting result since it implies that for specific tasks with
available labeled data from both (or multiple) modalities,
it is enough to train a classifier to learn to deal with differ-
ent modalities all together and be able to work with what-
ever modality is available at inference time with almost the
same performance than a classifier fully dedicated to one
modality.

4.3 What is translation doing?

We want to understand what is happening during transla-
tion that the MMT classifier is struggling to keep up with
the others when enough data from both modalities is avail-
able, and why it does not reach best performance starting
from the zero-shot setting. We compare the structure of
the non-translated and translated embeddings before feed-
ing them into the classifier. In particular we measure the
distance between the cluster centroids of the different clus-
ters of classes in each setting. Figure 4 shows the pair-
wise distance for the different modalities and instrument
classes. On the left we see the non-translated embeddings
sorted by modality, and on the right we see translated em-
beddings sorted by instrument class. The two figures show
that the embedding spaces are indeed different, and that
the translation is structuring and bringing together the au-
dio and image embeddings of the same class (shown as
small 2x2 squares on the diagonal), i.e. grouping the em-
beddings by concepts. This makes sense and explains why
the translation works in the zero-shot setting, and is inter-
esting considering that the translation layer is trained in an
unsupervised manner.

However, there are noticeable small distance square
blocks in both images: the one in the left on the top left,
shows that the audio embeddings are closer to each other,
which is an artifact of YamNet embeddings. This is not
what happens with the ResNet embeddings, which after the
PCA projection are sometimes closer to other image em-
beddings but also sometimes closer to audio embeddings.
An exception to this are the image embeddings for voice,
cymbals and synthesizer, which are very different from all
the other embeddings.

The other big block where embeddings are grouped to-
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Figure 4. Pair-wise distance of inter-cluster centroid for modality and instrument classes. On the left we have PCA sorted
first by modality. On the right we have translated sorted first by instrument class. Note: This is results of classification-
subset but before training the classifier.

gether, in the right image of Figure 4, shows that the trans-
lation is bringing together some classes (e.g. accordian,
clarinet, flute, organ, saxophone, etc.) that should not be
blend together, and the overall distances in the translated
embedding space are smaller than in the non-translated
one. Observing the class distribution of the data used for
training the translation model in Figure 6 (note the labels
were not use in the training, only here for the analysis),
we observe it is skewed and the classes with fewer number
of instances correlate with most of the confused ones in the
translated embeddings. We think that this is probably caus-
ing the classification performance of MMT to drop with
respect to MMP and SM. The exception is voice, which
we speculate has to do with an effect from the ResNet em-
bedding which is very different from all other embeddings
and we suspect that helped the translated cluster to be suf-
ficiently different as well.

To see the correlation between our observations in the
embedding space and the classification performance, we
look at the per instrument F1 and confusion matrices of
the MMT classifier, using all data from both modalities as
shown in Figure 5. In each figure we show the per instru-
ment F1 on the left, and the confusion matrix of MMT on
the right. Looking at the per instrument F1 on the left, we
can also observe the correlations between less performant
instrument classes with smaller distances in Figure 4 and
number of fewer samples in Figure 6. Looking at the con-
fusion matrix of MMT on the right, we see that there are
common mistakes of cymbal vs drum (both modalities),
trombone vs trumpet (both modalities), guitar vs mandolin
(mostly image), and organ vs piano (mostly image), which
make sense because of the acoustic or visual similarity of
those instruments in each modality. We observe a similar
trend in the confusions made by the MMP classifier, but in
a lesser extent (which explains the better performance).

To sum up, we believe that the bias of label distribution
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Figure 5. Classification results: training with all data using
both modalities and testing in audio (top) and image (bot-
tom). Per instrument F1 on the left, confusion matrix on
the right.

in the data we used for training translation is the main
cause of the performance drop in classification, and this
is a trade-off of self-supervised learning without using the
labels. We plan to explore in the future unsupervised meth-
ods for sample selection to balance the training set used
for the translation model, such as determinant point pro-
cesses [29].
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5. CONCLUSIONS AND FUTURE WORK

In this work we propose and investigate modality-agnostic
representations for music classification. We first present a
study on different combinations of pre-trained audio and
image embeddings to determine the best configuration to
obtain modality-agnostic representations via cross-modal
evaluation. We then use this representation to train instru-
ment classifiers, comparing with non-translated and single-
modality baselines. We show promising results as well
as interesting potential applications using data from one
modality to train and another modality to test with reason-
able performance (almost 70% of best performing system
in a zero-shot setting). We also investigate how biases in
the training data used for the translation affect the classifi-
cation performance.

For future work, we are interested in exploring sampling
methods [30,31] that could help balance the training set to
obtain a more unbiased translation model, which from our
analysis could lead to better performance. Also, we are
interested in exploring the joint training of the translation
and classification models, instead of the sequential method
proposed in this paper. Furthermore, we think that explor-
ing novel loss functions specifically for multi-modal data
will also be an interesting direction as most of the current
contrastive methods are applied to single modality. This
work presented first steps and analysis towards the use of
modality-agnostic representations in music, which we con-
sider to be a promising idea in the context of MIR since it
allows the use of data from different datasets and modali-
ties in a flexible way, relaxing concerns about data scarcity
and other data-availability related issues.
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ABSTRACT

Predominant instrument recognition in polyphonic mu-
sic is addressed using the score-level fusion of two vi-
sual representations, namely, Mel-spectrogram and mod-
gdgram. Modgdgram, a visual representation is obtained
by stacking modified group delay functions of consecu-
tive frames successively. Convolutional neural networks
(CNN) with an attention mechanism, learn the distinc-
tive local characteristics and classify the instrument to the
group where it belongs. The proposed system is system-
atically evaluated using the IRMAS dataset with eleven
classes. We train the network using fixed-length single-
labeled audio excerpts and estimate the predominant in-
struments from variable-length audio recordings. A wave
generative adversarial network (WaveGAN) architecture is
also employed to generate audio files for data augmenta-
tion. The proposed system reports a micro and macro F1
score of 0.65 and 0.60, respectively, which is 20.37% and
27.66% higher than those obtained by the state-of-the-art
Han model. The experiments demonstrate the potential
of CNN with attention mechanism on Mel-spectro/modgd-
gram fusion framework for the task of predominant instru-
ment recognition.

1. INTRODUCTION

Predominant instrument recognition refers to the problem
where the prominent instrument is identified from a mix-
ture of instruments being played together [1]. The au-
ditory scene produced by a musical composition can be
regarded as a multi-source environment, where different
sound sources are played at various pitches and loudness,
and even the spatial position of a given sound source may
vary with respect to time [2]. In polyphonic music, the
interference of simultaneously occurring sounds makes in-
strument recognition harder. Automatic identification of
lead instrument is important since it helps to enhance
fundamental music information retrieval (MIR) tasks like
source separation [2] auto-tagging [3], and automatic mu-
sic transcription [4].

Han et al. [1] employed the Mel-spectrogram-CNN ap-
proach for predominant instrument recognition in poly-
phonic music using an aggregation strategy over sliding

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

windows. Pons et al. [5] analyzed the architecture of Han
et al. in order to formulate an efficient design strategy to
capture the relevant information about timbre. Both ap-
proaches were trained and validated by the IRMAS dataset
of polyphonic music excerpts. Detecting the activity of
music instruments using a deep neural network (DNN)
through a temporal max-pooling aggregation is addressed
in [6]. The paper [7] employed an attention mechanism
and multiple-instance learning (MIL) framework to ad-
dress the challenge of weakly labeled instrument recogni-
tion in the OpenMIC dataset. Dongyan Yu et al. [8] em-
ployed a network with an auxiliary classification scheme to
learn the instrument categories through multitasking learn-
ing. Gomez et al. [9] investigated the role of two source
separation algorithms as pre-processing steps to improve
the performance in the context of predominant instrument
detection tasks. It was found that both source separa-
tion and transfer learning could significantly improve the
recognition performance, especially for a small dataset
composed of highly similar musical instruments. In [10],
the Hilbert-Huang transform (HHT) is employed to map
one-dimensional audio data into two-dimensional matrix
format, followed by CNN to learn the affluent and effec-
tive features for the task. In [11] an ensemble of VGG-
like CNN classifiers, trained on non-augmented, pitch-
synchronized, tempo-synchronized, and genre-similar ex-
cerpts of IRMAS for the proposed task. The modified
group delay feature (MODGDF) has already been pro-
posed for pitched musical instrument recognition in an iso-
lated environment [12] and polyphonic predominant in-
strument recognition [13]. Bosch et al. improved the al-
gorithm proposed in [2] with source separation in a pre-
processing step [14]. While the commonly applied mel
frequency cepstral coefficients (MFCC) feature is capable
of modeling the resonances introduced by the filter of the
instrument body, it neglects the spectral characteristics of
the vibrating source, which also play its role in human per-
ception of musical sounds and genre classification [15].
Incorporating phase information is an effective attempt to
preserve this neglected component. It has already been
established in the literature that the modified group delay
function emphasizes peaks in spectra well [16]. The idea
of including modgdgram, GAN-based data augmentation
strategy, and CNN with multi-head attention are the main
contributions of the proposed scheme.

The rest of the paper is organized as follows. Section
2 gives an overview of the proposed model. The model
architecture is described in Section 3. The performance
evaluation is described in Section 4, followed by results in
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Figure 1. Block diagram of the proposed method of predominant instrument recognition.

Section 5. The paper is concluded in Section 6.

2. SYSTEM DESCRIPTION

The block diagram of the proposed method of predom-
inant instrument recognition is illustrated in Figure 1.
In the proposed model, CNN with multi-head attention
is used to learn the distinctive characteristics from Mel-
spectro/modgd-gram to identify the leading instrument in
polyphonic context. As a part of data augmentation, addi-
tional training files are generated using WaveGAN. During
the testing phase, the probability value at the output nodes
of the trained model is treated as the score correspond-
ing to the input test file. The input audio file is classified
to the node which gives the maximum score during test-
ing. In the fusion framework, the individual scores of Mel-
spectro/modgd-gram experiments are fused at the score-
level to make a decision. The fusion score 𝑆𝑓 , is obtained
by,

𝑆𝑓 = 𝛽𝑆𝑠𝑝𝑒𝑐𝑡𝑟𝑜 + (1− 𝛽)𝑆𝑚𝑜𝑑𝑔𝑑 (1)

where 𝑆𝑠𝑝𝑒𝑐𝑡𝑟𝑜, 𝑆𝑚𝑜𝑑𝑔𝑑, 𝛽 are the Mel-spectrogram score,
modgdgram score and weighting constant, respectively. 𝛽
= 0.5 is chosen empirically in our experiment. The per-
formance of the proposed system is compared with that of
Han’s model and a DNN framework. Feature extraction is
described in the following subsections.

2.1 Mel-spectrogram

Mel-spectrogram is widely used in recent music process-
ing applications [17, 18]. Mel-spectrogram approximates
how the human auditory system works and can be seen as
the spectrogram smoothed, with high precision in the low
frequencies and low precision in the high frequencies [19].

It is computed with a frame size of 50 ms and a hop size of
10 ms with 128 bins for the given task.

2.2 Modified group delay functions and Modgdgram

Group delay features are being employed in numerous
speech and music processing applications [16,20–22]. The
group delay function is defined as the negative derivative
of the unwrapped Fourier transform phase with respect to
frequency. Modified group delay functions (MODGD),
𝜏𝑚(𝑒𝑗𝜔) are obtained by,

𝜏𝑚(𝑒𝑗𝜔) = (
𝜏𝑐(𝑒

𝑗𝜔)

|𝜏𝑐(𝑒𝑗𝜔)|
)(|𝜏𝑐(𝑒𝑗𝜔)|)𝑎, (2)

where,

𝜏𝑐(𝑒
𝑗𝜔) =

𝑋𝑅(𝑒
𝑗𝜔)𝑌𝑅(𝑒

𝑗𝜔) + 𝑌𝐼(𝑒
𝑗𝜔)𝑋𝐼(𝑒

𝑗𝜔)

|𝑆(𝑒𝑗𝜔)|2𝑏
. (3)

The subscripts 𝑅 and 𝐼 denote the real and imaginary
parts, respectively. 𝑋(𝑒𝑗𝜔), 𝑌 (𝑒𝑗𝜔) and 𝑆(𝑒𝑗𝜔) are the
Fourier transforms of signal, 𝑥[𝑛], n.𝑥[𝑛] (signal multi-
plied with index), and the cepstrally smoothed version of
𝑋(𝑒𝑗𝜔), respectively. 𝑎 and 𝑏 (0 < 𝑎, 𝑏 ≤ 1 ) are intro-
duced to control the dynamic range of MODGD [16]. Mod-
gdgram is the visual representation of MODGD with time
and frequency in the horizontal and vertical axis, respec-
tively. The amplitude of the group delay function at a par-
ticular time is represented by the intensity or color in the
third dimension. Modgdgrams are computed with a frame
size of 50 ms and hop size of 10 ms using 𝑎 and 𝑏 values
of 0.9 and 0.5 respectively.
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3. MODEL ARCHITECTURE

3.1 Fusion without attention

First, we designed a three-layer CNN to encode the Mel-
spectrogram or modgdgram images. Filters of sizes 32, 64,
and 192 are used in the convolutional layers. Each con-
volutional layer is followed by 2x2 max-pooling. ReLU
is used as the activation in the hidden layer and the same
padding is employed to maintain the spatial resolution. We
used filters with a very small 2×2 receptive field, with a
fixed stride size of 1. For implementing fusion without at-
tention, we flattened the last convolutional layer followed
by fully connected layers. 20% of training data is used
for tuning the hyperparameters during training. Softmax is
used as the activation function for the output layer with 11
outputs. The number of parameters learned by the baseline
model is 1830315 parameters.

3.2 Attention model

Multi-head attention is employed after three convolutional
layers. It expands the model’s ability to focus on different
positions of Mel-spectrogram/modgdgram. For construct-
ing the attention the principle behind is to create smaller
linear representations of the same block by splitting the
content of a block into query vectors(𝑞), key vectors(𝑘),
and value vectors(𝑣). Using key and query vectors we can
create weights for the value vectors that will be used to
create the output vector. In the paper [23], such attention
blocks are used to encode and decode the sentences. The
various parameters chosen are shown in Table 1.

N 𝑙 𝑑 ℎ 𝑑𝑣 𝑑𝑜𝑢𝑡 𝑑𝑘

6 6*6 = 36 64*3 = 192 8 8*3 = 24 32 36

Table 1. Various hyperparameters (top row) and its values
(bottom row) selected for attention model.

where N represents the number of encoders or decoders
present in the self-attention layer, 𝑙 is the number of blocks
in the feature map the convolutional network made, 𝑑 is
the dimension of block, 𝑑𝑣 is the dimension of linear space
the input to be projected, 𝑑𝑜𝑢𝑡 is the output of the block
after applying attention and ℎ is the number of heads or
number of projections for each block. 𝑑𝑘 is the dimension
of the query vector. 𝑞1, 𝑘1, 𝑣1 are the query, key and value
vectors of input and 𝑞2, 𝑘2, 𝑣2 are the ℎ projections with
size 𝑑𝑣 of the 𝑞1, 𝑘1, 𝑣1 vectors. Then each query vector is
multiplied with each key vector to get the softmax predic-
tions over ℎ value vectors. The outputs from all 8 attention
heads are concatenated to form a single output vector be-
fore passing it through the feed-forward network. After the
attention layer, a normalization layer is also added to in-
crease the speed of convergence. It makes the tensor have
a standard normal distribution, at the same time it acts as
another smaller attention by deleting some dimensions of
the vector that are not important. The norm layer is fol-
lowed by flattened layers. The network is trained using
adam optimizer with a learning rate of 0.001. The network
learns the model with 473163 parameters which are ap-

proximately 4 times smaller than the baseline model with-
out attention. The model summary of the proposed method
of CNN with multi-head attention is shown in Table 2.

Input size Description
1x28x28 Modgdgram /Mel-spectrogram
32x28x28 2x2 Convolution, 32filters
32x14x14 2x2 Max-pooling
64x13x13 2x2 Convolution, 64 filters
64x7x7 2x2 Max-pooling
192x6x6 2x2 Convolution, 192 filters
192x36 Reshape
32x36 Multi-head attention
32x6x6 Reshape
32x6x6 Normalization layer
1152 Flattened and fully connected
256 Dense
11 Softmax

Table 2. Proposed CNN architecture with multi-head at-
tention.

4. PERFORMANCE EVALUATION

4.1 Dataset

IRMAS dataset [2], comprising eleven classes, is used
for the evaluation. The classes include cello (Cel), clar-
inet (Cla), flute (Flu), acoustic guitar (Gac), electric guitar
(Gel), organ (Org), piano (Pia), saxophone (Sax), trum-
pet (Tru), violin (Vio) and human singing voice (Voice).
The training data consists of 6705 audio files with excerpts
of 3 s from more than 2000 distinct recordings. Since the
dataset consists of testing audio samples with multiple pre-
dominant instruments as labels, we have considered all the
audio files with a single predominant instrument (single la-
bel) during the testing phase.

4.2 Data augmentation using WaveGAN

GAN has been successfully applied to a variety of prob-
lems in image generation [24] and style transfer [25].
WaveGAN v2 is used here to generate polyphonic files
with the leading instrument required for training. Wave-
GAN is similar to DCGAN, which is used for Mel-
spectrogram generation, in various music processing ap-
plications. The transposed convolution operation of DC-
GAN is modified to widen its receptive field in WaveGAN.
Specifically, longer one-dimensional filters of length 25 are
used instead of two-dimensional filters of size 5x5 and are
upsampled by a factor of 4 instead of 2 at each layer. The
discriminator is also modified similarly, using length 25
filters in one dimension [26]. The output dimensionality of
WaveGAN v2 is 65536 samples (corresponding to 4.01 s of
audio at 16 kHz). For the generator, the input is a random
noise uniformly distributed between -1 and 1. For training,
the WaveGAN optimizes WGAN-GP using Adam for both
generator and discriminator. A constant learning rate of
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Figure 2. Visual representation of an audio excerpt with acoustic guitar as leading, Mel-spectrogram of original and WaveGAN-
generated (Upper pane left and right). Modgdgram of original and WaveGAN-generated (Lower pane left and right).

0.0001 is used with 𝛽1 = 0.5 and 𝛽2 = 0.9. WaveGAN is
trained for 2000 epochs on the three sec audio files of each
class to generate similar audio files based on a similarity
metric (𝑠) [27] with a criteria 𝑠 > 0.1. A total of 6585 au-
dio files with cello (625), clarinet (482), flute (433), acous-
tic guitar (594), electric guitar (732), organ (657), piano
(698), saxophone (597), trumpet (521), violin (526) and
voice (720) are generated.

The quality of generated files is evaluated using a per-
ception test. It is conducted with ten listeners to as-
sess the quality of generated files for 275 files cover-
ing all classes. Listeners are asked to grade the quality
by choosing one among the five opinion grades varying
from poor to excellent quality (scores, 1 to 5). A mean
opinion score of 3.64 is obtained. This value is compa-
rable to the mos score obtained in [26] and [28] using
WaveGAN. The generated files are denoted by 𝑇𝑟𝑎𝑖𝑛𝑔

and training files available in the corpus are denoted by
𝑇𝑟𝑎𝑖𝑛𝑑. Mel-spectrogram and modgdgram of natural and
generated audio files for acoustic guitar are shown in Fig-
ure 2. The experiment details and a few audio files can be
accessed at https://sites.google.com/view/audiosamples-
2020/home/instrument

4.3 Experimental set-up

The experiment is progressed in three phases namely Mel-
spectrogram-based, modgdgram-based, and score-level
fusion-based. 1305 polyphonic files comprising eleven
classes with a single label are used for the testing phase.
The performance of the proposed method is compared with
that of Han’s model [1]. As different from our approach,
they used a sliding window to perform short-time analysis,
and sigmoid outputs were aggregated by taking class-wise

average. After normalization, the candidate with maxi-
mum probability is assumed to be the most predominant
instrument. Han’s baseline model is implemented for the
given experiment with 1 s slice length for performance
comparison 1

A DNN framework on musical texture features (MTF)
is also experimented with to examine the performance
of deep learning methodology on handcrafted features.
MTF includes MFCC (13 dim), spectral centroid, spectral
bandwidth, root mean square energy, spectral roll-off, and
chroma STFT. The features are computed with a frame size
of 40 ms and a hop size of 10 ms using Librosa framework
2 . DNN consists of seven layers, with increasing units
from 8 to 512. ReLU has been chosen for hidden layers
and softmax for the output layer. The network is trained
for 500 epochs using Adam optimizer with a learning rate
of 0.001.

Since the number of annotations for each class was not
equal, we computed precision, recall, and F1 measures for
both the micro and the macro averages. For the micro
averages, we calculated the metrics globally, thus giving
more weight to the instrument with a higher number of ap-
pearances. On the other hand, we calculated the metrics
for each label and found their unweighted average for the
macro averages. Overall accuracy is also used as a metric
for performance evaluation. ‘

5. RESULTS AND ANALYSIS
The overall performance of different phases of the ex-
periment is tabulated in Table 3. Fusion with Attention
(Fusion-Attn) network achieved micro and macro F1 mea-

1 https://github.com/Veleslavia/EUSIPCO2017
2 https://librosa.org/doc/latest/tutorial.html
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SL.No Class MTF-DNN Han’s Model Mel-spectrogram-Attn Modgdgram-Attn Fusion-Attn

P R F1 P R F1 P R F1 P R F1 P R F1

1 Cello 0.54 0.59 0.56 0.55 0.44 0.49 0.48 0.70 0.57 0.09 0.15 0.12 0.79 0.67 0.73

2 Clarinet 0.15 0.40 0.22 0.23 0.64 0.33 0.74 0.68 0.71 0.10 0.28 0.15 0.54 0.80 0.65

3 Flute 0.17 0.21 0.19 0.54 0.54 0.54 0.66 0.60 0.63 0.21 0.16 0.18 0.68 0.72 0.70

4 Acoustic guitar 0.59 0.39 0.47 0.62 0.51 0.56 0.61 0.44 0.51 0.61 0.38 0.47 0.66 0.57 0.61

5 Electric guitar 0.56 0.46 0.51 0.57 0.51 0.54 0.53 0.64 0.58 0.49 0.47 0.48 0.66 0.68 0.67

6 Organ 0.22 0.45 0.29 0.20 0.42 0.27 0.26 0.69 0.38 0.12 0.18 0.14 0.30 0.62 0.40

7 Piano 0.70 0.36 0.47 0.72 0.58 0.64 0.68 0.66 0.67 0.64 0.55 0.59 0.73 0.71 0.72

8 Saxophone 0.03 0.40 0.06 0.13 0.60 0.21 0.10 0.70 0.18 0.03 0.20 0.05 0.18 0.70 0.29

9 Trumpet 0.14 0.57 0.23 0.30 0.86 0.44 0.86 0.43 0.57 0.19 0.36 0.24 0.59 0.71 0.65

10 Violin 0.24 0.53 0.33 0.43 0.58 0.49 0.85 0.31 0.45 0.38 0.45 0.42 0.56 0.51 0.53

11 Voice 0.55 0.34 0.43 0.69 0.55 0.61 0.74 0.47 0.57 0.68 0.54 0.60 0.78 0.61 0.68

Macro 0.35 0.43 0.34 0.45 0.57 0.47 0.59 0.57 0.53 0.32 0.34 0.31 0.59 0.66 0.60

Micro 0.39 0.39 0.39 0.54 0.54 0.54 0.56 0.56 0.56 0.43 0.43 0.43 0.65 0.65 0.65

Table 3. Precision (P), recall (R), and F1 score for the experiments with data augmentation.

Figure 3. Visualisation of feature maps of convolutional layers and attention. The upper pane represents the feature maps for Mel-
spectrogram inputs and the lower pane represents the feature maps for modgdgram inputs.

sures of 0.65 and 0.60, respectively. The State-of-the-
art Han model reports micro F1 and macro F1 scores of
0.54 and 0.47, respectively. Micro F1 and macro F1 are
20.37% and 27.66% higher than those obtained for the
baseline model. Modgdgram added complementary infor-
mation to the spectrogram approach. Conventionally, the
spectrum-related features used in instrument recognition
take into account merely the magnitude information. How-
ever, there is often additional information concealed in
the phase, which could be beneficial for recognition [12].
Han’s model and the proposed Mel-spectrogram approach
show similar performance with better performance for the
proposed architectural choice. It is worth noting that mod-
gdgram itself outperforms the MTF-DNN methodology.
It reveals the importance of phase information in musical
processing tasks.

5.1 Effect of attention

Attention mechanisms have become an integral part of
compelling sequence modeling and transduction models
since these models show superior quality while being more
parallelizable and requiring significantly less time to train.
[23]. It is applied to a variety of speech and music pro-
cessing applications like speech emotion recognition [29],
music instrument recognition [7], music generation [30]
etc. For polytimbral music instrument recognition atten-
tion model focus on specific time segments in the audio
relevant to each instrument label. The ability of the atten-
tion model to weigh relevant and suppress irrelevant pre-
dictions for each instrument leads to better classification
accuracy [7]. Compared to self-attention the multi-head
attention gives the attention layer multiple representation
subspaces, and as the image passes through different heads
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Sl.No Model Micro Macro
P R F1 P R F1

1 Fusion-without Attn (𝑇𝑟𝑎𝑖𝑛𝑑 + 𝑇𝑟𝑎𝑖𝑛𝑔) 0.54 0.54 0.54 0.46 0.58 0.48
2 Fusion-Attn (𝑇𝑟𝑎𝑖𝑛𝑑) 0.57 0.57 0.57 0.53 0.63 0.54
3 Fusion-Attn (𝑇𝑟𝑎𝑖𝑛𝑑 + 𝑇𝑟𝑎𝑖𝑛𝑔). 0.65 0.65 0.65 0.59 0.66 0.60

Table 4. Performance comparison of the models with and without data augmentation.

Sl.No Model Micro Macro
P R F1 P R F1

1 Bosch et al. [14] 0.50 0.50 0.50 0.41 0.45 0.43
2 Han et al./1446k [1] 0.65 0.56 0.60 0.54 0.51 0.50
3 Single-layer/62k [5] 0.61 0.52 0.56 0.52 0.48 0.48
4 Multi-layer/743k [5] 0.65 0.54 0.59 0.55 0.52 0.52
5 Fusion-Attn (𝑇𝑟𝑎𝑖𝑛𝑑 + 𝑇𝑟𝑎𝑖𝑛𝑔)/473k 0.63 0.63 0.63 0.51 0.55 0.52

Table 5. Performance comparison for IRMAS dataset.

predictions about the predominant instruments are more re-
fined than employing single head self-attention. Another
important point is that it requires very few trainable param-
eters to learn the model, which helps to reach convergence
faster than the models employing CNN alone. The signif-
icance of attention in the proposed model can be analyzed
from Table 4. Fusion without Attention reports micro and
macro F1 scores of 0.54 and 0.48 respectively. Fusion with
Attention reports micro and macro F1 scores of 0.65 and
0.60, respectively, with an improvement of 20.37% and
25% higher than that obtained by Fusion without Atten-
tion.

Visualization of the feature maps extracted from the first
two convolutional layers and attention layer is shown in
Figure 3. It is created with 8 feature maps as subplots. The
feature maps close to the input detect small or fine-grained
detail, whereas attention layer feature maps capture more
general and refined features for predominant instrument
recognition.

5.2 Effect of data augmentation

For deep learning, the number of training examples is crit-
ical for the performance compared to the case of using
hand-crafted features because it aims to learn a feature
from the low-level input data [1]. The significance of data
augmentation in the proposed model can be analyzed from
Table 4. Fusion-Attn without data augmentation (𝑇𝑟𝑎𝑖𝑛𝑑)
reports micro and macro F1 score of 0.57 and 0.54 re-
spectively. Fusion-Attn (𝑇𝑟𝑎𝑖𝑛𝑑 + 𝑇𝑟𝑎𝑖𝑛𝑔) reports micro
and macro F1 score of 0.65 and 0.60, respectively, with
improvement of 14.03% and 11.11% higher than that ob-
tained by Fusion (𝑇𝑟𝑎𝑖𝑛𝑑).

5.3 Multiple predominant instrument recognition

The IRMAS dataset contains testing files of variable length
and has multiple predominant instruments. For our ini-
tial work, we considered only the variable-length poly-

phonic testing files with a single predominant instrument.
The same experiment is repeated for multiple predominant
instrument recognition using the entire 2874 testing files
available in the corpus. For that, we trained our networks
using fixed-length excerpts containing a single predomi-
nant instrument and estimated an arbitrary number of in-
struments from variable-length audio files having multiple
predominant instruments.

The standard metrics for various algorithms on the IR-
MAS corpus are reported in Table 5. The number of
trainable parameters is also indicated. Bosch et al. [14]
algorithm used typical hand-made timbral audio features
with their frame-wise mean and variance statistics to train
SVMs with source separation technique called flexible
audio source separation framework (FASST) in a pre-
processing step. The state-of-the-art Han model [1] re-
ports micro and macro F1 score of 0.60 and 0.50 re-
spectively. Han et al. [1] developed a deep CNN for
instrument recognition based on Mel-spectrogram inputs.
Pons et al. [5] customized the architecture of Han et
al. and introduced two models, namely, single-layer and
multi-layer approaches. They used the same aggregation
strategy as that of Han’s model by averaging the soft-
max predictions and finding the candidates with a thresh-
old of 0.2. As different from the existing approaches,
we estimated the predominant instrument using the entire
Mel-spectrogram without sliding or aggregation analysis.
As our Mel-spectrogram/modgdgram inputs pass through
multiple heads the presence of predominant instruments is
refined from the simultaneously occurring partials. Our
Fusion approach reports a micro and macro F1 score of
0.63 and 0.52, which is a 5 % and 4 % increase from Han’s
model. Also, our proposed method shows better micro
and macro recall than the existing techniques. Our pro-
posed method reports a micro and macro recall of 0.63
and 0.55, which is an 12.5 % and 7.84 % increase from
Han’s model. It reveals the importance of the attention
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mechanism in predicting multiple instruments. A signif-
icant improvement is also observed over the method pro-
posed in [14]. Also, the fusion network reports better re-
sults with very less trainable parameters, compared to ex-
isting techniques. In [7], the usage of an attention layer
was shown to improve classification results in the Open-
MIC dataset, when applied to a set of Mel-spectrogram
features extracted from a pre-trained VGG net. While the
work [7] focusses on Mel-spectrogram, we experimented
with the effect of phase information along with magnitude
information. The experimental results in the paper show
the potential of Mel-spectrogram and modgdgram on rec-
ognizing predominant instruments in a polyphonic envi-
ronment with multi-head attention.

6. CONCLUSIONS

We presented an Attention-based predominant instrument
recognition system using Mel-spectro/modgd-gram in-
puts. CNN with multi-head attention is used to capture
the instrument-specific characteristics and then do fur-
ther classification. The proposed method is evaluated us-
ing the IRMAS dataset. Data augmentation is also per-
formed using WaveGAN. The fusion framework outper-
forms the latest model proposed by Han et al. The re-
sults show the potential of score-level fusion of magni-
tude and phase-based approaches and the attention mecha-
nism empowers the network to focus on specific regions of
Mel-spectrogram/modgdgram in predominant instrument
recognition in polyphonic music.
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ABSTRACT

Music shuffling is a common feature, available in most au-
dio players and music streaming platforms. The goal of
this function is to let songs be played in random, or con-
strained random, order. The results obtained by in-use
shuffling algorithms can be unsatisfactory due to several
factors including: the variability of user expectations to
what constitutes a “successful” playlist, the common bias
of being unable to recognize true randomness, and the ten-
dency of humans to find nonexistent patterns in random
structures. In this paper, a new shuffling algorithm called
Ruffle is presented. Ruffle lets the user decide which as-
pects of the music library have to be actually shuffled, and
which features should remain unchanged between consec-
utive extractions. First, an online survey was conducted to
collect users’ feedback about the characteristics used for
shuffling. It is worth noting that, in general, the algorithm
could address any metadata and/or audio extracted feature.
Then, in order to test the algorithm on personal playlists, a
Web version based on Spotify API has been released. For
this reason, a second survey is marking an ongoing effort
placed on validating the effectiveness of the algorithm by
collecting users’ feedback, and measuring the level of user
satisfaction.

1. INTRODUCTION

The shuffle feature of a music player is a well known func-
tion that lets the user listen to each song of the personal
catalog in a pseudo-random order. In [1] the shuffle mode
is defined as “a control that paradoxically involves a renun-
ciation of control on the part of the user”.

People may use such a function for many reasons, includ-
ing the reduction of boredom in listening, the need to keep
the attention alive, the search for “serendipity” [2], etc. For
a general overview of shuffle in music, see [3, 4].

As shown in [5], humans are hardly capable not only
of identifying, but also of generating random sequences
of numbers. This is mainly due to two phenomena: i)

Copyright: © 2021 the Authors. This is an open-access article distributed un-
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the gambler fallacy [6], that consists in thinking that, in
a memory-less random draw, previous drawings have an
influence on the actual ones, and ii) the clustering illusion
[7], that consists in erroneously considering small clusters
of samples from random distributions to be non-random.

An ambiguity when talking about the randomness of a
playlist in natural language is whether to compute the or-
der of the songs with or without regard of their metadata.
In the latter case, music pieces can be seen as completely
different objects drawn at random, even if they may share
some common values for metadata; in the former case,
the expected behavior is to travel the song space with the
longest possible path, such that the distance of each con-
secutive song is maximized with respect to some proper-
ties. This can be seen as an interesting variant of the Trav-
elling Salesman Problem, which is, in turn, a special case
of the Longest Path Problem.

In order to manage the complex and multifaceted prob-
lem of how to shuffle songs in a playlist, a new algo-
rithm, called Ruffle, has been developed. Ruffle generates
a pseudo-random sequence that matches the user’s prefer-
ences about what must be shuffled, and to what extent. It
does so by exploiting the gambler fallacy to present the
problem to the users, which makes their choices, that in
turn (together with what has been previously drawn) will
affect the probability of the remaining songs in the list to
be drawn for the next play.

The rest of the paper is organized as follows: Section
2 provides the state of the art about industry standards
and commercial applications integrating a shuffle func-
tion; Section 3 presents a survey designed to understand
user preferences about playlist shuffling, also discussing
the collected results in order to guide the design of a new
approach; Section 4 focuses on Ruffle, a user controllable
shuffle algorithm; Section 5 provides an early assessment
of Ruffle, presenting a web-based implementation that in-
terfaces with Spotify API, and the outcomes of a survey
where participants tested its functionalities in an actual
scenario; finally, Section 6 draws the conclusions.

2. STATE OF THE ART

Before presenting the state of the art, it is worth remark-
ing the distinction between a shuffle function and a music
recommendation system. A shuffle algorithm simply re-
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orders a given list of songs already available in the user’s
collection. This operation can also be performed by taking
into account some preferences about the desired outcome,
but no user data out of the scope of a listening session is
involved. Conversely, a recommendation (or suggestion)
system aims at proposing content that is not necessarily
already in the user’s collection [8]. Moreover, this task
is typically accomplished by modeling user’s preferences
and making inferences about musical tastes based on long-
term behaviors. Some algorithms may combine the two
approaches, e.g. by changing the shuffle strategy based on
user’s actions such as song skips, implicitly interpreted as a
manifestation of dislike towards a particular genre or artist.
For the sake of clarity, this paper deals with the shuffle
problem only, without making any inference.

A number of algorithmic approaches can be used to pro-
duce a randomly shuffled sequence of elements in a list.

The Fisher-Yates shuffle, whose original form dates back
to 1938, represents a way for generating a random permu-
tation of a finite sequence. The algorithm puts all the el-
ements into an unordered set, i.e. a container that stores
unique elements in no particular order, and establishes the
next element in the sequence by randomly drawing one of
them from the set until no elements remain. The algo-
rithm produces an unbiased permutation, i.e. every permu-
tation is equally likely. First described in [9] and originally
conceived as a pencil-and-paper method, its computer im-
plementation was documented in [10] and later published
in [11]. A critical issue of the algorithm is that one of its
steps requires to pick a random number, but only a high-
quality unbiased random number source can guarantee un-
biased results. The Fisher-Yates algorithm is at the base of
the implementation proposed in [12].

The application domain represented by a music collec-
tion introduces some additional requirements. In fact, sin-
gle music pieces often share some characteristics with oth-
ers, and a good shuffle algorithm could try to maximize
the distance considering also such similarities. For exam-
ple, multiple songs in a dataset could be authored and/or
performed by the same artist(s), could belong to the same
genre, could share the same ensemble, etc.

This problem has been addressed in [13], where a form
of balanced shuffle is proposed. The idea is to merge pre-
shuffled playlists, each one made of pieces belonging to
the same group, where a group contains elements sharing
similar properties as it regards a given dimension. For the
sake of clarity, let the chosen dimension be the genre: a
group contains all classical pieces, another group all jazz
pieces, and so on; each sub-playlist is shuffled; finally, a
merge-and-mix operation is conducted to transform pre-
shuffled sub-playlists into a single playlist.

Singh et al. [14] proposed a form of predictive shuffling
that can provide automated dynamic-based shuffling ac-
cording to the user’s preferences by taking into account
various parameters (e.g. genre, artist, play duration and re-
lease date) and selecting the next song accordingly.

An original approach described in the literature is so-
called responsive shuffling [15], that benefits from tempo-
ral, spatial, and mental context awareness. Based on inter-

active soundscape concepts and wearable-computing tech-
nologies, this work proposes context-driven playlist shuf-
fling for music listening in mobility.

Concerning documented shuffle functions in commer-
cially-available services, Spotify 1 initially started from
the Fisher-Yates algorithm, then evaluated the balanced
shuffle described above, and finally moved to a method
which is claimed to be inspired by image dithering [16].

Pandora 2 implements different forms of shuffle depend-
ing on user’s privileges: premium subscribers have more
flexibility with their shuffle options and can shuffle songs
as well as the content on playlists or stations. The set of
music features that can be considered comes from Pan-
dora’s Music Genome Project, an effort to “capture the
essence of music at the most fundamental level” [17] em-
ploying over 450 attributes, called genes, to describe songs
and a complex algorithm to organize them.

Although some of the shuffling algorithms mentioned
above implement advanced features (such as considering
a subset of metadata to vary or, conversely, to keep fixed
among consecutive draws), such a mechanism is usually
hidden from the user, with little to no room for controls, so
the results may not match personal preferences.

3. TUNING TO LISTENERS’ PREFERENCES

3.1 Survey design

In order to understand in detail users preferences and
desiderata about the shuffle listening experience, an online
survey was carried out.

The survey is made of three parts. The first part col-
lects general information about the user such as the average
daily listening time, the preferred player/platform, how of-
ten a shuffle function is used when organizing a playlist,
and the level of satisfaction with the shuffle behavior.

The second part consists of an open question inviting
users to reflect on which, according to their opinion, should
be the aspects used in constraining a shuffle algorithm (e.g.
preserving the same tempo, or genre), and what constitutes
a “successful” playlist.

Finally, users are requested to express their preferences
regarding specific parameters: 1. genre, 2. artist, 3. album,
4. BPM, 5. language, 6. publication date, 7. instrumental/-
song, and 8. allowing repetitions.

Further comments are allowed as free text in the last page
before submission. Surveys have been conducted in Italian
and they are here translated to English.

3.2 Survey results and discussion

3.2.1 Users overview

In total, 84 answers were collected from Italian users. The
subjects are 56% males, 42% females, and 2% not speci-
fied; 64% were 17-24 years old, 13% in the range 25-30,
15% in range 31-50, and 8% > 50.

Listening habits: 11% listens to less than 1 hour of mu-
sic per day, 44% listens to 1-2 hours, 24% 2-3 h, and 21%

1 https://www.spotify.com
2 https://www.pandora.com
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more than 3 h. Most used listening platforms are Spotify,
Youtube, and personal libraries, in particular the preferred
combinations were Spotify+Youtube 37%, Spotify only
23%, Youtube only 6%, and Spotify+Youtube+Personal
5%; the remaining 29% uses a variety of combination of
the above services and others, such as, in preference order,
Amazon Music, Apple Music, Google Play Music, Deezer,
TIDAL, web or analog radio, Bandcamp.

About the use of the shuffle function, 29% rarely uses it,
18% sometimes, and 53% frequently. 24% are not satis-
fied by the shuffle function, 43% are neither satisfied nor
unsatisfied, and 33% are satisfied.

Use of shuffle correlates weakly with age (spearman
𝑅 = 0.3, 𝑝 < 0.005), in particular almost all subjects with
age > 50 rarely uses shuffle, while subjects with age < 50
present more heterogeneous behavior.

3.2.2 Open question about shuffling

Concerning the open question, the 84 participants provided
a number of different comments. A manual clustering re-
vealed three wide categories: 3

• Randomness (21 comments);
• Music properties (48 comments);
• Suggestion systems (28 comments).

The comments regarding randomness may be summa-
rized by the following 4 sentences:

R1 All available songs should be shuffled as randomly
as possible, without distinctions (7 comments);

R2 A song should not be re-played until all songs have
been played (5 comments);

R3 Shuffle should produce very different sequences
across listening sessions (8 comments);

R4 Shuffle outcome should be stored in case the listener
is interested in navigating the playlist (1 comment).

In regard to R1, Fisher-Yates should be the preferred
choice, unfortunately none of the 7 users really meant it,
since when asked whether a feature may be kept constant
or variable across plays, or whether the feature must be
irrelevant, almost all answered the artist and album must
vary, the genre must stay constant, and they left only BPM,
language, and publication year as actually random. This is
no surprise, since it has already been discussed how hu-
mans, on average, have no precise insight on how random-
ness behaves.

Even if R2 may seem obvious, when explicitly asked
about this aspect, not all subjects agreed (more on this in
Sec. 3.2.3).

Note that R3 may seem to suggest something differ-
ent from the equiprobability of the sequences that make
Fisher-Yates an adequate algorithm, nevertheless, if we in-
terpret this as an extension of the previous one (i.e. “A song

3 Number of comments may add up to more than number of partic-
ipants, since many participants provided multiple comments; moreover,
also the expanded views of the clusters may add up to more than the total
cluster comments count, since some comments are two-folded, e.g. com-
ment “Artist and genre may stay constant” expresses an interest both in
the “artist” and “genre” metadata, and the fact that the shuffle may pro-
duce coherent outcomes accordingly.

should not be re-played until all songs have been played,
even across different sessions”), then Fisher-Yates is still a
valid approach.

The behavior described in R4 is usually implemented
in modern platforms as “user history”, or directly by de-
sign when the shuffle function works offline, and returns a
playlist instead of one-by-one songs.

The comments regarding music properties may be sum-
marized by the following 6 sentences:

M1 Shuffle should be aware of music properties (48
comments). In particular, the following were cited:
Genre (19 mentions); Artist (10 mentions); Generic
“properties” (9 mentions); BPM (4 mentions); Mood
(3 mentions); Album (2 mentions); Key (2 men-
tions); Release year (1 mention); Song duration (1
mention); Instruments (1 mention); Timbre (1 men-
tion).

M2 All proposed songs should be strictly coherent in
terms of one or more properties (17 comments). In
particular, it was specified in 3 comments that a user-
selected song should set the baseline;

M3 Some incoherence can be tolerated in order to avoid
monotony (4 comments);

M4 Changes of music properties should be gradual (8
comments);

M5 Consecutive songs should be very different in terms
of one or more properties (4 comments);

M6 It should be possible to choose between “coherent”
and “incoherent” behavior (2 comments).

Properties frequently cited in M1 confirm the validity of
the items selected for the multiple choices version of the
question (see Sec.3.2.3), except for the mood, which was
not considered. The 9 mentions of some “generic prop-
erty” may be implemented by adding audio features as well
as metadata in the algorithm, nevertheless, not all players
support this level of detail. It should be noted that some
of these sentences are in contrast with each other (e.g. M2
and M5), thus a good shuffling feature should be tunable,
as suggested in M6. Finally, M4 implies that it is worth
considering the introduction of some sort of “memory” in
the shuffle algorithm.

The comments regarding recommendation systems may
be summarized by the following 6 sentences:

S1 Priority should be given to frequently listened songs
(5 comments);

S2 Some inference about musical taste is expected (9
comments);

S3 Some music discovery algorithm is expected (4 com-
ments);

S4 Song skipping should be considered in future draw
(7 comments);
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Figure 1: Hypothetical preferences expressed by subjects.

S5 Context information (such as current time and ge-
olocation) should be considered (2 comments);

S6 The algorithm should teach something to the user (1
comment).

Sentences like S1-3 and S5 will be ignored, since they
must rely on user information and recommendation algo-
rithms.

The feature described in S4 is somehow borderline be-
tween shuffling and suggestion, it may be worth consid-
ering it in future works, and let this work focus on pure
shuffling.

S6 is also related to a recommendation algorithm, nev-
ertheless it provides a hint toward a shuffle algorithm that
lets you pick a path in the songs feature space. Yet another
feature that can be explored in the future.

3.2.3 Multiple-choice questions about shuffling

As a first question, subjects were asked to tell, for each
metadata (genre, artist, album, BPM, language, and re-
lease year) if that should remain constant among plays, if
it should vary, or if should be irrelevant. Figure 1 shows
an overview of the answers. The sum of “constant” and
“variable” preferences has been interpreted as a score of
the wish to have control over it. All metadata received a
score greater or equal to 50%, except for language, which
is slightly less than 50%.

In more detail, 49 unique combinations of answers were
given: 31 combinations were selected only once, 11 com-
binations appeared twice, and only the remaining 7 combi-
nations were selected three or more times (these are visible
in Table 1). This considerable variability, with some fre-
quent choices, is two-folded: on one side the presence of
frequent choices can suggest that some template behavior
for shuffle algorithms may be useful, but on the other side,
to meet the needs of most users, a fine tuning mechanism
seems desirable.

To further investigate if a pattern is present when tolerat-
ing some small differences in the answers, answers to this
question were clustered using linkage hierarchical cluster-
ing method. Specifically, the hamming distance was se-
lected to compute distances between pairs of answers, and
weighted average distance was used as linkage. The tree

was cut so to retain most of the groupings of Table 1 with-
out creating neither many small clusters nor large heteroge-
neous clusters. The resulting cluster’s medioids are visible
in Table 2.

Clustering revealed that most of the answers appearing
only once can be considered very similar to the frequently
given combinations, especially 1,2, and 7. The only new
cluster (8) can be considered as a truly random version of
2, and one answer (with ID 9) resulted to be so different
from the others to be considered the only true outlier.

In conclusion, 92% of the answers can be traced back to
the 7 most populated clusters, and in particular clusters 1
and 2 captures almost half the total preferences.

Regarding the possibility to influence the shuffling algo-
rithm by limiting the reproduction of vocal or instrumental
tracks, 75% of users agreed.

On the possibility of repeating the same song twice in
the same listening session, 79% of answers were negative,
15% and 5% of users considered it acceptable only after a
long time or even after a short time, respectively, and the
remaining 1% considered this feature to be irrelevant.

3.3 Lessons learnt

The survey highlighted a set of desiderata for the shuffling
algorithm, which can be synthesized as follows:

D1 Songs should not be replayed until the whole song
list has been played;

D2 Available properties such as metadata and audio fea-
tures should be considered;

D3 A tuning mechanism between constant and variable
behavior should be provided;

D4 The system is supposed to have a short-term memory
to ease gradual changes in properties;

D5 There should be the ability to seed the algorithm by
picking a reference song.

Answering D1 and D5 is trivial, while D2 and D3 are at
the core of Ruffle. D4 has been implemented by introduc-
ing a memory parameter 𝛽 which acts on the responsive-
ness of the system.

4. THE RUFFLE ALGORITHM

The rationale behind Ruffle is to update after each draw
the probability of other songs to be drawn, according to
songs properties and user settings. In particular, a similar-
ity 𝛿 between the drawn song and the remaining ones is
calculated for each considered property, and a probability
weight is associated to the songs, which is either directly
or inversely proportional to 𝛿 based on user decision.

4.1 Variables

Let 𝑥𝑁 be a set of 𝑁 songs:

𝑥𝑁 = {𝑥1, 𝑥2, · · · , 𝑥𝑛 | 0 < 𝑛 ≤ 𝑁} ; (1)
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ID Genre Artist Album BPM Lang. Year Count Mnemonic
1 V V V V V V 8 Forced randomness
2 C V V I I I 6 Genre exploration
3 I I I I I I 4 True randomness
4 V V V I I I 4 Enhanced randomness
5 C V V V C I 3 Cultural niche
6 V V V V I V 3 Tolerant randomness
7 V V V C I C 3 Memorabilia DJ

Table 1: Most selected combinations. Some mnemonic names are given (V: Variable; C: Constant; I: Irrelevant).

ID Genre Artist Album BPM Lang. Year Count Mnemonic
1 V V V V V V 19 Forced randomness
2 C V V I I I 21 Genre exploration
3 I I I I I I 7 True randomness
4 V V V I I I 9 Enhanced randomness
5* C V I V C I 6 Refined cultural niche
6 V V V V I V 5 Tolerant randomness
7 V V V C I C 11 Memorabilia DJ
8 C I I I I I 5 Genre strolling
9 C I V C I V 1 Genre DJ

Table 2: Cluster’s medioids. Some mnemonic names are given (V: Variable; C: Constant; I: Irrelevant).

let 𝑐𝐿 be an execution queue of 𝐿 ≤ 𝑁 songs, initially
empty:

𝑐𝐿 = {𝑐1, 𝑐2, · · · , 𝑐𝑙 | 0 ≤ 𝑙 ≤ 𝐿} ; (2)

let 𝑥′
𝑅 be a subset of 𝑥𝑁 , composed of 𝑅 ≤ 𝑁 remaining

songs, initialized as 𝑥′
𝑅 ≡ 𝑥𝑁 :

𝑥′
𝑅 ⊂ 𝑥𝑁 ; (3)

let 𝑥𝛥 be the last song inserted in the queue, such that

𝑥𝛥 ∈ 𝑥𝑁 & 𝑥𝛥 /∈ 𝑥′
𝑅 & 0 < 𝛥 ≤ 𝑁 . (4)

let 𝑎𝑛𝑀 be a set of 𝑀 attributes associated to a song 𝑥𝑛 ∈
𝑥𝑁 :

𝑎𝑛𝑀 = {𝑎𝑛,1, 𝑎𝑛,2, · · · , 𝑎𝑛,𝑚 | 0 < 𝑚 ≤ 𝑀} ; (5)

let 𝑠𝑀 be a set of 𝑀 user-controllable settings, such that
each setting 𝑠𝑚 ∝ 𝑃 (𝑎𝑛,𝑚 ≡ 𝑎𝛥,𝑚):

𝑠𝑀 = {𝑠1, 𝑠2, · · · , 𝑠𝑛 | 0 < 𝑚 ≤ 𝑀 & 0 ≤ 𝑠𝑛 ≤ 1} .
(6)

each setting is meant to be set to 0 in order to force vari-
ation of the corresponding attribute between two consec-
utive draws, and 1 to force the attribute not to change. A
value of 0.5 emulates random variations of the attribute.

Finally, let 0 ≤ 𝛽 ≤ 1 be a memory coefficient of the
system, indicating to what extent previous draws will in-
fluence the next ones; 𝛽 = 0 will only consider the com-
parison between 𝑥𝛥 and the examined song, while 𝛽 > 0
will also consider the previous results, with the limit case
of 𝛽 = 1, where the comparison is made only with the first
song extracted.

4.2 Similarity function

Since all attributes have different nature and units, it is not
possible to rely on a single similarity function. Songs at-
tributes can be categorical or scalar values: for example,
author and album title are categorical, while BPM, year,
and audio features are scalar. In both scenarios, similarity

is expected to be either 0 or 1. Specifically, in the former
case similarity can be expressed as:

𝑎× 𝑏 :=

{︃
0 , if 𝑎 ̸= 𝑏

1 , if 𝑎 = 𝑏
. (7)

In the latter case, scalar values are compared in order to
obtain a continuous distance measure, then the discrete
similarity value is computed by considering a distance
threshold (whose value depends on the attribute type) and
setting similarity to 0 if the continuous distance is above
the threshold, and to 1 otherwise.

4.3 Weighting function

At each draw, each song 𝑥𝑛 ∈ 𝑥𝑁 is paired to a probabilis-
tic weight 𝑝𝑛, so to have a set 𝑝𝑁 of values computed as:

𝑝𝑛 =

{︃
0 , if 𝑥𝑛 /∈ 𝑥′

𝑅

𝛽 · 𝑝𝑛 + (1− 𝛽) · 𝜏𝑛 , otherwise
(8)

with

𝜏𝑛 =
∏︀𝑀

𝑚=1(2 · |𝑠𝑚 + 𝛿𝑛,𝑚 − 1|+ 𝜖),

𝛿𝑛,𝑚 = 𝑎𝑛,𝑚 × 𝑎𝛥,𝑚.
(9)

Here 𝛿𝑛,𝑚 represent the similarity between 𝑥𝑛 and 𝑥𝛥

along the 𝑚th attribute, while 𝜏𝑛 can be interpreted as fol-
lows.

The most important part in the definition of 𝜏𝑛 is
the argument of the product, as it dictates how the at-
tribute 𝑎𝑛 influences the probabilistic weight; the term
|𝑠𝑚 + 𝛿𝑛,𝑚 − 1| takes the same value of the similarity
𝛿𝑛,𝑚 if the corresponding setting value is 𝑠𝑚 = 1; it be-
comes 1− 𝛿𝑛,𝑚 when 𝑠𝑚 = 0; and it converges to 0.5 re-
gardless of the similarity value as 𝑠𝑚 approaches 0.5. The
additive term 0 < 𝜖 ≪ 1 is a very small value needed to
avoid all-zeros in 𝑝𝑁 , while the multiplication factor of 2
has been introduced in order to produce a neutral contribu-
tion for 𝑠𝑚 = 0.5 and an amplification when needed.

Finally, note that the update of 𝑝𝑛 in Eq. (8) is based on
the previous value of 𝑝𝑛, with the 𝛽 parameter acting as a
weight influencing the responsiveness of the change.
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Description Shape Color Output
Random 0.5 0.5
Alternate 0.0 0.5
Sort 1.0 0.5
Interleave 0.0 1.0
Mix 0.0 0.0
Group 1.0 1.0

Table 3: Example of different settings, with 6 colored
shapes. 𝛽 is not considered to simplify the understanding
of the base behavior.

4.4 Algorithm and discussion

s e t 𝑥𝛥 = ( manual o r random c h o i c e )
s e t 𝑐𝐿 = ∅
remove 𝑥𝛥 from 𝑥′

𝑅

whi le 𝑥′
𝑅 ̸= ∅ && |𝑥′

𝑅| < 𝐿 :
compute 𝑝𝑁

draw 𝑥𝛼 from 𝑥𝑁 a c c o r d i n g t o 𝑝𝑁 ;
add 𝑥𝛼 t o 𝑐𝐿 ;
remove 𝑥𝛼 from 𝑥′

𝑅 ;
s e t 𝑥𝛥 = 𝑥𝛼 .

To picture the possible results of this algorithm, consider
the case in which Ruffle is used to shuffle colored geo-
metric shapes, where the available attributes are color and
shape. Starting with a set of 6 elements (3 squares and 3
triangles, forming 3 pairs of colors) the outcomes depicted
in Table 3 are possible.

One known drawback of this approach is that all songs
that do not manage to fit in the shuffled stream will con-
centrate at the end of the playlist. This can be resolved by
communicating to the user that no more songs are com-
pliant with the settings once the maximum of remaining
weights falls under a certain threshold, or can be ignored if
the user wants to play the available library completely.

Another possible drawback is that low values of the prod-
uct terms in 𝜏𝑛 (i.e. close to 0) have a stronger influence
when multiplied together than high values (i.e. close to 2).
Future implementations will consider a logarithmic type of
function for the computation of 𝜏 and will assess if it can
actually improve the outcomes.

A future evolution could be the generalization of the
weight function to non-binary similarity values, in order to
take advantage of the continuous nature of scalar attributes
and provide more sensitivity to the algorithm.

Finally, a deterministic version of Ruffle is possible,
if the draw in the while loop is done by looking for
argmax𝑛(𝑝𝑁 ), nevertheless this case is out of the scope
of this paper.

4.5 Possible optimizations

In Eq. (8), and in the pseudo-code above, the computation
of 𝑝𝑁 is carried out on all 𝑥𝑁 songs just for the sake of
clarity, of course the computation of 𝑝𝑁 can be restricted
only to those songs in 𝑥′

𝑅, without loss in generality.
Beside this, note that since the present work focuses on

the validation of the algorithm in its original form, no

heuristic optimizations were implemented. Nevertheless
some suggestions are provided in the remainder of this sec-
tion.

Since Eq. (8) is computed 𝑁2+𝑁/2 times, the complexity
of the algorithm ends up to be 𝒪(𝑁2). Of course this is
not ideal for large music libraries.

In case of 𝛽 = 1 (i.e. only the first song is considered),
there is no need to compute weights more than once, thus
reducing the complexity to 𝒪(𝑁).

Aside from this special case, other improvements may
be implemented by storing lookup tables for categorical
features such as genre, artist, album etc. even if this does
not strictly reduce complexity.

An interesting heuristic may amount to initially shuffle
the list with Fisher-Yates, then compute the weights only
until a song’s weight exceeds a certain threshold. The
threshold can be computed as slightly less than the max-
imum weight possible, which is the product of all 𝑠𝑀 ,
in that case the song is picked for next play. If no song
reaches the threshold, weights are ready for a regular draw.
This heuristic is not ideal for low values of 𝛽, since in this
case weights are not guaranteed to be up to date.

An alternative to the previous heuristic (assuming that
𝛽 ≪ 1) is to shuffle the list with Fisher-Yates, then com-
pute the weights only for a fixed number of songs follow-
ing the one played, and limit the draw in this sliding win-
dow.

Finally, consider that real time is not a constraint of the
algorithm, since weights can be updated while the user is
listening to the song.

5. ASSESSMENT

To assess the validity of Ruffle as a usable shuffling algo-
rithm, it has been implemented as a tool to shuffle Spotify
playlists, in order to let users evaluate the algorithm before
answering a survey.

5.1 Implementation

The tool is based on the Spotify Web API, and is imple-
mented using the vue.js 4 framework. After logging in to
their Spotify account, users are able to see the list of their
saved tracks, together with a section devoted to load single
playlists’ content. Using the Web API, for every track the
system retrieves 18 properties: 1. track title, 2. artists, 3. al-
bum title, 4. genres (associated to artists), 5. release year,
6. duration, 7. key, 8. mode, 9. time signature, 10. acous-
ticness, 11. danceability, 12. energy, 13. instrumentalness,
14. liveness, 15. loudness, 16. speechiness, 17. valence,
and 18. tempo. Users can see the values of these properties
in the track details. The properties are automatically com-
puted by Spotify, and there is no control or direct knowl-
edge over the algorithms that are implemented for this task.

A sidebar is used to change the settings, i.e. the 𝛽 and
the 𝑠𝑚 values, with a set of sliders; a number of presets
are available, representing the 5 most selected clusters of
Table 2, together with 2 configurations never chosen in pre-
vious tests.

4 https://vuejs.org/
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After choosing a preset or manually adjusting single val-
ues, users can run the Ruffle algorithm, obtaining a re-
ordering in the list of tracks.

The re-ordered tracks can be also saved in a new playlist.

5.2 Evaluation survey

The survey is composed of 4 main parts: a briefing sec-
tion, containing information about Ruffle, and instructions
on how to use the implemented Spotify Playlist Shuffler.
Please note that it was explicitly asked to focus the atten-
tion to the shuffling outcomes rather than the usability of
the prototype, since the latter is not the focus of the paper.

The second part repeats some of the questions of the first
survey aimed at describing the sampled population, i.e.
sex, age, average daily music listening time, usage of shuf-
fle function and satisfaction about the currently used shuf-
fle.

The third part focuses on general impressions on the Ruf-
fle algorithm, asking questions about the usefulness of: the
available properties, the algorithm itself beside available
properties, and the 𝛽 parameter. Users were also asked to
evaluate how much they liked Ruffle, and if they would use
it if implemented in a music player.

In the last part users were asked to evaluate how fre-
quently they would use each of the presets present in the
prototype (note that the “true randomness” preset can be
considered as a baseline, since it is equivalent to Fisher-
Yates), they were also asked to enter the preferred settings
they experienced, and if they would likely change settings
frequently, use a finite (small) set of presets, or just use a
“set and forget” approach. Finally they were asked to enter
free comments if they had any.

The last two parts were aiming at validating what has
been observed in Section 3 and evaluating the acceptance
of the Ruffle algorithm.

5.3 Results

In total 23 users were tested. This survey and the one de-
scribed in Section 3 have been administered to two differ-
ent populations, nevertheless, the distributions of answers
to the first section were substantially similar.

The algorithm itself (beside available properties) has
been marked as useful 17 times, not useful 1 time, and
neither useful nor useless 5 times. Similarly the Beta pa-
rameter has been marked as useful 17 times, not useful 1
time, and neither useful nor useless 5 times. Furthermore,
19 users liked Ruffle (versus 1 that did not liked the algo-
rithm, and 3 which were neutral about it), and 22 over 23
said they would use it in real applications, thus demonstrat-
ing that Ruffle is indeed a desirable feature. The properties
marked as useful are reported in Table 4, together with the
number of votes received.

Properties such as theme (intended as “Christmas songs”
etc.), instruments, mood, and language were manually in-
serted by subjects.

This not only provides a detailed view of what has been
observed in Section 3, but also refines results in a real
world scenario, since answers to the preliminary test were
given in an hypothetical scenario. In particular it can be

Attribute Votes Attribute Votes
Artists 18 Loudness 5
Genres 14 Mode 5
Danceability 13 Time Signature 3
Energy 13 Valence 3
Instrumentalness 13 Duration 2
Album Title 9 Language 2
Release Year 9 Liveness 2
Tempo 7 Instruments 1
Speechiness 6 Mood 1
Acousticness 5 Theme 1
Key 5

Table 4: Properties marked as useful by Ruffle users.
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Figure 3: Composition of reported custom presets (for 𝛽
only, blue ≈ 1, yellow ≈ 0.5, red ≈ 0).

seen which audio features are more interesting for users,
sometimes even more than metadata.

As reported in Figure 2, the most cited configurations of
Table 2, when selected by users, revealed to be perceived
slightly differently from the expectations. In particular,
only “Genre Exploration” clearly outperformed the 2 pre-
sets expected to be disliked, which indeed were.

From another perspective, Figure 3 shows how the pre-
ferred settings are distributed. This picture highlights how
the expressed preferences differed from the “Genre Explo-
ration” preset. This seems to contrast with the outcome of
the previous question, but it is worth stressing that the pre-
sented presets were working only on 5 principal metadata
(Genre, Artist, Album, BPM, and Release Year), while the
manual settings were those made available by Spotify and
previously listed. This may suggest that, in case of very
basic settings, “Genre Exploration” is the most useful ap-
proach; nevertheless, when the possibility to finely tune
preferences is offered to the user, system customization is
a very appreciated feature.

Unfortunately, since the reporting of a preferred personal
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setup was optional, only 12 answers were collected, not
enough to perform a clustering. Nevertheless, it is interest-
ing to see that all answers were unique, reporting different
combinations of preferences.

Concerning the preferred style of settings, the need of
only one preset to be “set and forget” has been chosen 5
times, the need for fine tuning each session has been cho-
sen 5 times, and the need for a finite set of custom presets
13 times, thus being the most desirable scenario.

Among free user comments, it is worth mentioning the
request to be able to select the first song for the playlist.
This aspect, already considered in the discussed version of
Ruffle, will be soon implemented in the online prototype,
too.

Other remarks concerned control values: between 0 and
0.5, they have been perceived as not very useful, and diffi-
cult to discern, while they become more significant in the
upper part of the scale. In this case, an exponential pa-
rameter control may solve the issue: the lower part would
be compressed in less space, leaving the upper part more
sensitive to changes. In terms of GUI, if the parameter is
interpreted as the “amount of homogeneity”, a slider in the
upper bound position recalls steadiness, while randomness
is expected to be closer to the lower bound (with the mid
position being considered a midpoint between randomness
and steadiness).

6. CONCLUSIONS AND FUTURE WORKS

This paper presented a novel algorithm to shuffle music
playlists by giving the user the possibility to configure the
dimensions to consider in the calculation of pieces simi-
larity. On each dimension, feature values can be ignored
(thus not influencing the process), be distanced as much as
possible, or conversely act as piece aggregators.

In order to let the reader test the algorithm, a solution
publicly available via web has been released. Such a
framework, working on Spotify personal playlists, is avail-
able at http://ruffle.lim.di.unimi.it/.

Concerning future work, we are planning to perform a
fine tuning of the formulas employed for scalar values such
as year, tempo, etc. Besides, we aim to implement some
features that may improve user’s experience, such as the
possibility to set the size of the generated playlist (e.g., a
shuffled list made of 𝑛 songs or lasting 𝑚 minutes).
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ABSTRACT

While there are currently various approaches that define
and adapt the conditions in which the user experiences
content or service for several music and audio-related ap-
plications including entertainment, communication, audio
documents preservation/restoration, we are missing world-
wide accepted standards that enable data exchange and in-
teroperability based on common interfaces for such ap-
plications. The Moving Picture, Audio and Data Cod-
ing by Artificial Intelligence (MPAI) is an international
non-profit organization whose mission is to develop such
standards. Relying on Artificial Intelligence (AI), MPAI
creates a workflow of AI Modules (AIM) that are inter-
changeable and upgradable without necessarily changing
the logic of the application. A specific area of work,
MPAI Context-based Audio Enhancement (MPAI-CAE),
is showing tremendous possibilities for the Sound and Mu-
sic Computing (SMC) community. MPAI-CAE applies
context information to the input content to deliver the au-
dio output via the most appropriate protocol. Three MPAI-
CAE case studies particularly relevant for the SMC com-
munity will be presented in this paper: Audio record-
ing preservation (ARP), a use case that covers the whole
“philologically informed” archival process of an audio
document, from the active sound documents preservation
to the access to digitized files; Audio-on-the-go (AOG),
which aims to improve safety and listening quality for sit-
uations in which the users are in motion in different en-
vironments; and Emotion-enhanced speech (EES), a use
case that implements a user-friendly system control inter-
face that generates speech with various levels of emotions.

1. INTRODUCTION

Global-scope standardization projects not only offer an in-
dication of the development of an industry but also al-
low for the partitioning of complex systems into compo-
nents that can be provided by different sources. This, for
example, was the case of media standards in the 1990’s.
While different companies developed prototypes, the inter-
national MPEG standard [1–3] was the catalyst that started
a revolution in audio and media consumption. Similarly,

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

MPAI is an international body with the mission to develop
standards for data coding that have AI as its core technol-
ogy. By data coding we mean the transformation of data
preserving the semantic aspects that are important to a spe-
cific application.

Officially constituted on Wednesday 30 September 2020,
MPAI has already produced a considerable body of work.
After a Call for Technologies (CfT) for the general AI
Framework (MPAI-AIF), MPAI established a Develop-
ment Committee (MPAI-AIF DC) that is selecting tech-
nologies and is currently in the standard development
phase (see also Section 2). The goal of the MPAI-AIF
standard (see also Section 2 and Figure 1) is to enable
the creation and automation of mixed Machine Learning
(ML), AI, and legacy data processing modules (collec-
tively AIMs) and to define their use as part of inference
workflows. Innovations in AI have led to implementations
that can now be found in a wide range of application ar-
eas including Speech, Audio, and Image Processing and
Recognition. MPAI aims to identify and define interfaces
to such implementations to make them usable across as
many domains as possible.

MPAI-CAE defines the use of AI to improve the user
experience for several audio and music-related applica-
tions including entertainment, communication, teleconfer-
encing, gaming, post-production, restoration, etc. The cur-
rently available solutions, which adapt to various condi-
tions in order to improve the ultimate user’s experience,
tend to be vertically integrated. Therefore it is difficult to
re-use possibly valuable AI-based components for differ-
ent applications and different platforms. MPAI-CAE in-
tends to define interfaces between distinct stages (AIMs)
to promote the development of horizontal markets of com-
peting solutions tapping into and further promoting AI in-
novation. Adopting AIMs that are reusable, updatable
and extensible, MPAI-CAE intends to define standards
for AIM interfaces (i.e., input and output format) but is
silent as to the AIM internals. Therefore, the performance
of AIMs can continuously improve by incorporating new
technologies. The performance evaluation process is under
development in a separate standardization thread involving
all the MPAI standards and it will be discussed in further
work.

The potential impact on the SMC community is huge.
MPAI-CAE will allow researchers to carry out sophisti-
cated optimizations that enable a superior user experience.
Such optimizations can then be implemented in AIMs by
third party providers. Manufacturers and service providers
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Figure 1. AI Framework schema.

can subsequently adopt these optimized AIMs in their
products and services. In general, MPAI operates based
on an open international collaboration of interested parties
who support the MPAI mission and the means to accom-
plish it. The use cases described in this paper will help
illustrate the core of the MPAI-CAE effort.

The remainder of the manuscript is organized as follows.
Section 2 reviews the basic structure of the MPAI process,
whereas Section 3 offers a detailed description of three
MPAI-CAE use cases particularly relevant for the SMC
community (ARP, Section 3.1; AOG, Section 3.2; and EES
Section 3.3). Section 4 concludes the paper.

2. STRUCTURE

The overall structure of MPAI relies on MPAI-AIF. The
smallest units are the AIMs which are computational mod-
ules trained for specific tasks by exploiting AI, ML, and
legacy data processing and that can be implemented in
hardware, software and mixed hardware/software. MPAI
does not define the internal behavior of the AIMs, never-
theless clearly specifies the syntax and semantics of the in-
terfaces. AIMs operate in the standard AI framework and
exchange data in specified formats. For this reason, AIMs
are replaceable, re-usable and upgradable without chang-
ing the logic of the application, fostering the continuous
improvement of the AI technology. Different AIMs can be
seamlessly interconnected as in the examples provided in
the next Sections.

The framework can create, compose, execute, and update
multi-vendor AIMs. As can be seen in Figure 1, the Frame-
work is composed by six main components: (a) Manage-
ment and Control manages and controls the AIMs; (b) Ex-
ecution is the environment in which combinations of AIMs
operate; (c) AIMs, already described; (d) Communication
is the basic infrastructure used to connect possibly remote
Components and AIMs; (e) Storage encompasses tradi-
tional storage; (f) Access represents the access to static or
slowly changing data that are required by the application.

The standardization process of MPAI follows an ap-
proach based on seven stages. The initial stage (stage 0)
concerns the gathering of interest in developing use cases
related to a specific topic. As the use cases are not part of
the normative standard, they can be augmented later in the
process. The information collected in the stage 0 is formal-

ized in the 1𝑠𝑡 stage. In this stage, the use cases are char-
acterized and a detailed work plan is delineated. The 2𝑛𝑑

stage consists in the definition of the functional require-
ments for a specific work area. The 3𝑟𝑑 stage finalizes the
commercial requirements, specifically the development of
the framework license. The 4𝑡ℎ stage formalizes the CfT
while the 5𝑡ℎ promotes the development of the standard.
During the 6𝑡ℎ and last stage the standard is approved and
published. As of today (March 14, 2021), MPAI-AIF is in
the 5𝑡ℎ stage, while the MPAI-CAE project is in the 4𝑡ℎ

stage.
From the bottom-up approach described above, a wide

variety of high-tech schemes related to current hot topics
in AI are developed. In this context, MPAI-CAE is one
of the most promising areas of work. Three of the main
MPAI-CAE use cases will be described in the next section.

3. USE CASES

3.1 Audio Recording Preservation (ARP)

MPAI-CAE covers several different SMC areas. The ARP
use case represents an important example in the preserva-
tion of open-reel analog audio tapes. As shown in Figure
2, the input of this use case is the audio of a digitized tape
and the video of that tape flowing on the magnetic head of
the tape recording as described in [4].

The first module is the Audio Enhancer. This is an op-
tional module consisting of a “denoiser” (in a broad sense).
This stage compensates for eventual errors caused by mis-
aligned recording equipment and/or for tape hiss caused by
the imperfections introduced by aging (see Storm’s Type
B, that defines a historically faithful level of reproduc-

Figure 2. Audio Recording Preservation workflow.



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

217

Figure 3. Audio-on-the-go workflow.

tion [5]).
The video input is analyzed by an AI algorithm for de-

tecting irregularities (splices, damages, marking, etc.) on
the tape such as [4]. This module could interact with the
external Tape Irregularity Knowledge Base (KB). Its out-
put consists of frames of the irregularities extracted from
the video, their related ID, and the timestamp related to
the irregularity. The video of the tape also includes a low
quality audio that can be used to synchronize the high qual-
ity audio stream with the video itself. Relevant audio ex-
cerpts corresponding to the detected irregularities can be
extracted and analyzed by the Audio Analyzer module.

Single frames concerning irregularities and the corre-
sponding audio excerpts are then analyzed by the Musico-
logical classifier 1 that aims to select and describe relevant
irregularities. The resulting description and images will be
part of the preservation master file created by the Packager
module. Therefore the preservation master file, composed
by audio, video, metadata as indicated in [6], will be pro-
vided as output.

In addition, an alternative output is provided. It consists
of the digitized tape audio that could be used for accessing
the audio content without using the preservation master.

3.2 Audio-on-the-go (AOG)

MPAI-CAE Audio-On-The-Go is a use case that aims to
improve safety and listening quality in various situations
in which users are on the move, like in a car, with a bike,
running and so on. For example while biking in the mid-
dle of city traffic, the user should enjoy a satisfactory lis-
tening experience without losing contact with the acous-
tic surroundings. There will be sounds which are not rel-
evant for safety (like wind noise) and sounds which are
(like the horn of a car or incoming traffic), and therefore
such sounds shall be selected and presented to the user
only if relevant for safety [7]. This is achieved thanks to
the microphones available in earphones and earbuds cap-
turing the signals from the environment, the relevant envi-
ronment sounds (i.e., the horn of a car) are then selectively
recognized. In addition, the sound rendition is adapted
to the acoustic environment, providing an enhanced au-
dio experience (e.g., performing dynamic signal equaliza-
tion) and allowing a more energy efficient operation re-
sulting in an improved battery life. In this use case, the
goal is achieved by using a series of AIMs. The first AIM

1 The use of the term “musicological classifier” was selected because
it specifically identifies a classification of interest for musicologists.

Figure 4. Emotion enhanced speech (EES) workflow.

(Environmental Sound Separation) is fed with Microphone
sound which captures the surrounding environment noise,
together with according geometry information (which de-
scribes number, positioning and configuration of the mi-
crophone or the array of microphones). The sounds are
then categorized following prescriptions of a Sound Cate-
gorization Knowledge Base (queried by the corresponding
AIM), resulting in a sounds array and their categorization.
Sound samples might eventually be compressed to allow
a cloud-processing procedure. The Environmental Sound
Processing AIM, after fetching a list of relevant sounds
from a KB, will trim sounds not relevant for the user in the
specific moment and feed them to the next AIM, Dynamic
Signal Equalization. This AIM fetches the User Hearing
Profile from a Knowledge Base and equalizes dynamically
the sound taking into account the user’s specific hearing
deviations. Finally, the resulting sound is delivered to the
output via the most appropriate the Delivery method, such
as Bluetooth 5.0 or any compatible protocol.

3.3 Emotion enhanced speech (EES)

Speech carries information not only about the lexical con-
tent, but also about a variety of other aspects such as age,
gender, signature, and emotional state of the speaker, and
this is an acknowledged issue. Speech synthesis is evolv-
ing towards supporting these aspects. There are many
cases where a speech without emotion needs to be con-
verted to a speech carrying an emotion, possibly with
grades of a particular emotion. This is the case, for in-
stance, of a human-machine dialogue where the message
conveyed by the machine is more effective if it carries an
emotion properly related to the emotion detected in the
human speaker. MPAI-CAE EES use case aims to stan-
dardize a natural communication by virtual agents, and
thus improve the quality of human-machine interaction,
by making it closer to a human-human interaction (e.g.,
[8,9]). By means of EES anyone can realize a user-friendly
system control interface that lets users generate speech
with various — continuous and real-time — expressive-
ness control levels.

The MPAI-CAE EES can be implemented as in figure
4, using data processing technology or artificial intelligent
technology, where a neural network incorporates the Emo-
tion Knowledge Base information.

The inputs are: a neutral (without specific emotion)
speech, synthesized or recorded; a text file with the anno-
tation of which basic emotion [10,11] to insert (and where)
into the speech signal.
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The Speech feature analyzer extracts the speech features,
queries the Emotion KB and obtains Emotion descriptors
(a subset of speech features modified accordingly to the
particular emotion). Alternatively, Emotion descriptors are
produced by an embedded neural network.

Emotion Knowledge Base exposes an interface that al-
lows Speech feature analyzer to query a KB of speech fea-
tures extracted from recordings of different speakers read-
ing/reciting the same corpus of texts, with the standard set
of basic emotions and without emotion, for different lan-
guages and genders. A set of acoustic cues are used to
compare the voice quality characteristics of the speech sig-
nals on a voice corpus in which different emotions are re-
produced. The psychoacoustic parameters of emotions in
speech can be separated into two groups [12]: prosodic
(rhythm, speed of speech, intonation and intensity) and
vocal frequency-related parameters (timbre, fundamental
tracking, position of the formants and distribution of the
spectral energy).

Emotion inserter inserts a particular emotional vocal tim-
bre, e.g., anger, disgust, fear, happiness, sadness, and sur-
prise into a neutral (emotion-less) synthesized voice. It
also changes the strength of an emotion (from neutral
speech) in a gradual fashion.

4. CONCLUSIONS

A group of highly motivated experts in different fields has
gathered within the MPAI community (https://mpai.
community/organisation/) to develop use cases
aggregated in areas where the MPAI standards can have
a big impact. Thanks to the efforts of many, MPAI has
reached several important milestones. For example, MPAI-
AIF has already reached the standard development stage
and multiple areas, including MPAI-CAE, have open call
for technologies.

This paper presented three use cases of MPAI-CAE
that are of particular interest to the SMC community.
Other MPAI areas of work include Multi-modal conver-
sation, AI-Enhanced traditional video coding, integrative
AI-based analysis of multi-source genomic/sensor experi-
ments, Compression and understanding of financial data,
and Server-based predictive distributed multiplayer online
gaming.

MPAI has introduced a number of innovative approaches
in both the technologies that address specific industries and
also in the development of licensing guidelines. MPAI
is planning to develop for each standard a “framework li-
cence” to overcome the ambiguities of the Fair, Reasonable
and Non-Discriminatory (FRAND) model. Such frame-
work licenses are already available for MPAI-AIF, MPAI-
MMC and MPAI-CAE.

Moreover, MPAI pledges to address ethical questions
raised by its technical work and is in the process of defin-
ing different procedures in this area.
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ABSTRACT

Recent experiments have demonstrated that the words
Takete and Maluma, as well as Kiki and Bouba, once heard
stimulate a cross-modal response in humans that goes be-
yond visual associations, and in particular affects the tra-
jectory of human motion patterns. Inspired by such ex-
periments, in a binary (Takete/Maluma) response test we
presented to sixteen individuals a random sequence of ei-
ther sonic or silent videos reproducing a smooth and a
notched ball rolling down along a rounded or zig-zagged
path. Bayesian estimation revealed a credible effect of
the zig-zagged path in participants choosing Takete, and
an equally strong effect of the notched ball. On the other
hand, the silent videos had a negative effect on subjects’
probability of choosing Takete. This means that in absence
of auditory feedback, subjects tend to choose Maluma
compared to similar situations with sound. Though ex-
ploratory, such a result suggests that the auditory modality
may have significantly biased the decision toward Takete
when our participants were exposed to the audio-visual
event. If supported by more extensive tests, this experi-
ment would emphasize the importance of sound in the cog-
nition of audio-visual events eliciting sense of sharpness in
humans.

1. INTRODUCTION

In 1929, Wolfgang Köhler asked a group of Spanish speak-
ers to make an association between the words Takete or
Maluma and the images of two shapes, one jagged and the
other rounded, like those in Figure 1.

His results showed a significant preference of the speak-
ers for associating Takete with the jagged, and Maluma
with the rounded shape. The experiment has been repeated
by several psychologists using different pairs of words,
in particular Kiki and Bouba, as well as involving speak-
ers from different languages and levels of literacy. Apart
from some specific exceptions reported for a population
of Papua New Guinea, these experiments have all shown
a general tendency of speakers, including young children
aged 2.5 years old [1], to map rounded shapes on words
containing the vowels “o” and “u”, and, conversely, jagged
shapes on words containing “e” and “i”.

Copyright: c○ 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

Figure 1. Images similar to those used by Köhler in his
experiment.

Taken together, these results provide evidence of a pow-
erful cross-modal effect, linking visual shapes to sounds
of words. The presence of this effect in pre-literate chil-
dren suggests the existence of active connections among
contiguous cortical areas, making possible for humans to
link characteristic geometrical shape contours to similar
geometries assumed by the speaker’s lips. According to
Ramachandran and Hubbard [2] such connections exist
before language, hence they represent a general invariant
speeding up and constraining its development.

This research embraced other sensory modalities in more
recent decades, investigating associations that are not dom-
inated by vision. Spence and colleagues investigated ef-
fects of taste [3, 4]: by asking subjects to associate food
and liquids to Kiki/Bouba, they concluded that counter-
intuitive branding and packaging may be detrimental to the
success of a food product. Similar effects were found for
odors [5]. A stronger input to our work, however, comes
from experiments that involved motion patterns. Indepen-
dently of each other, in 2016 Shinohara et al. and Kop-
pensteiner et al. presented an experiment linking gestures
to Takete/Maluma by using animated human figures [6, 7].
Earlier in 2013, Fontana had experimented on the same
link by guiding the dominant hand of blindfolded partici-
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pants along rounded or jagged trajectories by means of a
robotic arm, hence excluding vision completely from the
tests [8]. Together, these experiments shed further light on
the human ability to associate words to sensations involv-
ing motion. Further considerations about this ability and its
relationships with previously memorized mental imageries
were pointed out by Fryer et al. while testing haptic-word
associations made by blind individuals [9], and then redis-
cussed by Graven & Desebrock [10].

Sensation of motion becomes unavoidable if an exper-
iment is designed involving auditory stimuli. Familiar
sounds in fact are almost inevitably linked to dynamic
events, in which motion is inherently implied. However,
the association between words and auditory stimuli is a
fragile concept by definition. As words encode sounds, an
experiment of this kind should first provide evidence that
the association between an auditory stimulus and the sound
of a word is not merely onomatopoeic. Probably due to this
issue, that puts the own concept of association under dis-
cussion, experiments linking auditory feedback to words
are apparently absent in the literature. However, two ideas
convinced us to proceed along this uneven path:

∙ if the sound of our words of interest is a consequence
of onomatopoeia [2], then auditory stimuli should
be chosen among familiar sounds that do not imply
the words Takete/Maluma or Kiki/Bouba via an ev-
ident onomatopoeic link, as e.g. a tik-tok or mum-
bling sound would suggest;

∙ if auditory feedback is able to define a genuine, that
is, not onomatopoeic association with such words,
then the effect can be controlled by removing sound
from a multi-sensory stimulus in which this feed-
back is superimposed as part of a multi-modal event
presentation.

Moved by such ideas, we designed an experiment in
which participants had to classify a ball rolling down as
Takete or Maluma. Two audio-visual components were
present in each stimulus: the ball surface and the path
trajectory. The surface was either smooth or notched;
the trajectory was either rounded or zig-zagged. In what
follows, the smooth/round conditions are marked with
M (Maluma), and the notched/zig-zagged conditions are
marked with T (Takete) according to their respective hy-
pothesized association. Holding such two visible differ-
ences, the corresponding rolling sounds of the two balls
and the collision sounds they did against the side walls
while traversing the respective paths were different as
well.

2. METHOD

With all laboratories at the university being inaccessible to
students and guests due to the covid pandemic, the exper-
iment took place in a quiet room at one of the Authors’
home.

Figure 2. Balls (above) and paths (below) used in the ex-
periment.

2.1 Participants

Sixteen participants (8 female and 8 male, ages M=40.6,
sd=17.6 years), all reporting normal sight and hearing vol-
unteered for the experiment. Two of them reported previ-
ous knowlwedge of the Köhler experiment.

2.2 Setup and stimuli

Two balls were made of white play dough covered with
vinyl glue (Figure 2, above), both having an external di-
ameter of about 6 cm and a weight of about 250 g. In
parallel, two paths were prepared on a plywood base sized
1×0.5×0.15 m (Figure 2, below), again using play dough
covered with vinyl glue for the side walls delimiting the
paths. Once such paths were refined so as to provide an
approximately identical time to reach the bottom, the side
walls were secured to the base with permanent glue and
the setup was painted. A contrast between dark still and
bright moving objects was created, similar to the scenario
that Shinohara et al. had presented to their participants [6].

The two balls were video- and audio-recorded while they
rolled down along both paths, once being left free to roll by
one Author who wore a dark cloth. Four short sonic videos
hence were recorded, three times each. Each video, then,
was duplicated by removing the soundtrack. Twenty-four
stimuli, twelve sonic and twelve silent videos, were finally
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made available for the tests. 1

2.3 Procedure

While sitting in front of a PC equipped also with speakers,
each participant was asked to attend some videos of what
was told to be a simple passtime game popular in Polinesia.
Two different versions were told to exist about this game,
Takete or Maluma as they were called by locals, and par-
ticipants had to label each video accordingly when it was
finished, by verbally reporting their choice to the experi-
menter; alternatively they could see it again, by pressing
the space bar of the PC keyboard. Once a decision was
made, they attended the next video.

The videos were included in a randomly balanced se-
quence of trials, for a total of 2 balls {T, M} × 2 paths
{T, M} × 2 modality {V, AV} × 3 repetitions = 24 trials.
Each session lasted about 10 minutes. At the end of it, each
participant left comments to the experimenter in particular
including information about his or her previous knowledge
of this experiment.

3. RESULTS

Results are presented in Figure 3. Inspecting the raw data,
it seems that incongruent combinations of ball and path
(M-T or T-M) lead to relatively even distributions of Takete
and Maluma responses – however, in favor of Takete in
audio-video conditions (AV) and in favor of Maluma in the
video only conditions (V). In congruent ball-path combina-
tions M-M and T-T, responses are biased toward Maluma
and Takete respectively, as expected. Yet again, Takete
responses are generally favored in the AV conditions and
Maluma in the V conditions, so much so that with T ball
and T path, responses based on video only (V) approach
random.

Statistical analysis was carried out by logistic regression
as explained below. The model coefficients were estimated
by Bayesian methods using the R program and the brms
package [11–13].

The Takete/Maluma response, a binary-outcome depen-
dent variable, was mapped to values 𝑘 = 0 (Maluma re-
sponse) and 𝑘 = 1 (Takete response). Such an outcome
follows the Bernoulli distribution, taking value 1 with un-
known probability 𝑝 and value 0 with probability 1− 𝑝:

𝑓(𝑘; 𝑝) =

{︂
𝑝 if 𝑘 = 1

1− 𝑝 if 𝑘 = 0
(1)

The unknown probability 𝑝 of a Takete outcome was pre-
dicted by a logistic regression model given by

log
𝑝

1− 𝑝
= 𝛽0 +

𝑚∑︁
𝑖=1

𝛽𝑖 · 𝑥𝑖, (2)

where 𝑚 = 3 is the number of predictors, 𝑥𝑖 are the predic-
tors (path, ball, and modality; the effect of repetition was
not modeled), 𝛽0 is the intercept, and 𝛽𝑖 are the regression
coefficients estimated by the model.

1 The videos are available at https://doi.org/10.5281/
zenodo.4770168.
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Figure 3. Results. y-axis = response counts (M: Maluma;
T: Takete) for both modalities (AV: audio-video; V: video)
in each factor combination (ballM: smooth ball; ballT:
notched ball; pathM: rounded path; pathT: zig-zagged
path).

Figure 4 presents the parameter estimates and their 95%
Credible Intervals from the posterior distribution, pro-
duced by Markov chain Monte Carlo (MCMC) draws.
These logit-transformed values 2 cannot be interpreted in
terms of probabilities; however, a 95% CI either entirely
above or below zero indicates a credible non-zero positive
or negative effect on 𝑝, respectively. Hence, Takete path
and Takete ball both have an equally strong positive effect.
In contrast, video without audio produces credibly more
often a Maluma response than video and audio combined.
The conditional effects, transformed back to probabilities,
are presented in Figure 5.

4. DISCUSSION

This explorative experiment demonstrated that the event
of a ball rolling on a surface can be perceived as Takete
or Maluma depending on both smoothness of the ball and
shape of the trajectory. Our statistical model was additive;
modeling the ball-path interaction would require a larger
dataset. In a larger experiment, measurement of decision
times should also be informative, given that decisions tend
to take longer under increasing uncertainty [14, 15]. This
could help in investigating, whether either the ball or the

2 The logit function maps values from 𝑝 ∈ [0, 1] to 𝑥 ∈ [−∞,∞]
according to 𝑥 = log( 𝑝

1−𝑝
); the inverse mapping is given by the logistic

function 𝑝 = 1
1+𝑒−𝑥
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Figure 4. Parameter estimates from the posterior distribu-
tion of the Bayesian model.

trajectory is a dominant feature in the rolling event. In the
present model, their effects were approximately equal.

Interestingly, a Takete response was more probable in
presence of sound. As the audio and video signals were
always congruent, we should expect responses at least in
the congruent ball-path conditions (T-T and M-M) to be
overwhelmingly in favor of Takete and Maluma, respec-
tively. In both cases however, we see the bias towards
Takete when sound is present and towards Maluma in the
silent videos. Although our statistical model does not al-
low very refined conclusions, the raw data suggests that
sound is crucial for making non-random decisions in the T-
T condition (bottom-right panel in Figure 3). It is of course
possible that these specific trajectories or balls happened to
produce acoustic cues that were perceived as Takete and vi-
sual cues that were perceived as Maluma; using a pseudo-
random variety of both might reduce the bias.

Humans (as well as great apes, to some extent) show vi-
sual preference for curved objects [16, 17]. In this experi-
ment, most trials contained a curved path or a smooth ball,
or both. This might explain part of the Maluma bias in
the silent videos, if participants’ decisions were guided by
higher attention to the pleasant curved components. Audi-
tory information, in contrast, has shown potentially higher
alerting power than visual information [18]. Some studies
have also reported higher attention to the auditory over the
visual channel in high-arousal conditions, although con-
tradictory evidence also exists [19, 20]. Altogether, audio-
visual associations to Takete and Maluma are not yet ex-
plored in detail.

Regarding the auditory channel, associations of musi-
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Figure 5. Conditional effects of path, ball, and modality. y-
axis = estimated probability of a Takete response; errorbars
= 95% Credible Intervals.

cal excerpts to Takete or Maluma were experimentally
found [21], although the related analysis did not explain
which factors may have determined the associations.We
plan a further experiment, adding an auditory only con-
dition and related signal analysis, to identify cues under-
lying Maluma and Takete responses. We hope to recruit
more participants such that the A/V/AV modalities could
be split between subjects. Literature into acoustic cues
driving sound-shape symbolism mentions links between
angularity, pitch, and other spectral aspects [22]. Mate-
rial characteristics, such as hardness, might also drive the
responses; high importance of auditory cues in identifica-
tion of materials from bouncing events has been demon-
strated [23].

As our data do not yet include the auditory only condi-
tion, it is possible that the Takete bias in the AV condition
was caused by cross-modal enhancement, similar to the ef-
fect observed by Stein et al. [24]. They reported increased
visual brightness in presence of an auditory noise burst,
although later research has offered other than perceptual
explanations for the effect [25].

Assuming that the audiovisual Takete effect was indeed
caused by auditory influence, we turn to the question of
how the auditory channel may have achieved such dom-
inance; there is ample evidence of general visual domi-
nance, for example in terms of the Colavita effect [26, 27].
In our experiment, the strong auditory influence could be
explained, firstly, by higher attention to the auditory chan-
nel when sound appears. Attention is known to modulate
the visual dominance effect [28]. Secondly, our congruent
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stimuli likely increased the importance of auditory cues in
feature integration based on the whole-object bias – the
spreading of attention to other modalities containing co-
herent information (see [29]). Auditory dominance has
also been demonstrated in situations involving temporal
processing [30], or when the auditory channel is more re-
liable or contains more information, such as music.

5. CONCLUSIONS

Our results showed a credible Takete bias in the audio-
visual versus visual condition. We cannot, however, pro-
vide a general conclusive answer about the potential of
sound to bias a sensation. As we have discussed, the au-
ditory feedback coming from the rolling balls may have
biased our participants toward Takete due to specific “asso-
ciative cues” in those sounds operating above their obvious
interpretation, in terms of the physical events they reported
about. If existing, such cues are yet to be understood. On
the other hand, the suggestions posed by these results moti-
vate the design of further experiments that could contribute
to clarifying the role of sound in multi-sensory associa-
tions.
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ABSTRACT

The task of classifying emotions within a musical track
has received widespread attention within the Music Infor-
mation Retrieval (MIR) community. Music emotion recog-
nition has traditionally relied on the use of acoustic fea-
tures, verbal features, and metadata-based filtering. The
role of musical prosody remains under-explored despite
several studies demonstrating a strong connection between
prosody and emotion. In this study, we restrict the input
of traditional machine learning algorithms to the features
of musical prosody. Furthermore, our proposed approach
builds upon the prior by classifying emotions under an ex-
panded emotional taxonomy, using the Geneva Wheel of
Emotion. We utilize a methodology for individual data col-
lection from vocalists, and personal ground truth labeling
by the artist themselves. We found that traditional machine
learning algorithms when limited to the features of musi-
cal prosody (1) achieve high accuracies for a single singer,
(2) maintain high accuracy when the dataset is expanded
to multiple singers, and (3) achieve high accuracies when
trained on a reduced subset of the total features.

1. INTRODUCTION

The work presented in this paper is situated in the inter-
section between research on emotion for robotics [1] and
emotional classification research in Music Information Re-
trieval [2]. In particular, we focus on the under-explored
domain of emotion-driven prosody for human-robot inter-
action [3]. Verbal prosody is concerned with elements
of speech that are not individual phonetic segments but
rather pertain to linguistic functions such as intonation,
tone, stress, and rhythm. Similarly, musical prosody is de-
fined as the performer’s manipulation of music for certain
expressive and coordinating functions [4]. It has been hy-
pothesized that these expressive functions serve to commu-
nicate emotion [5].

In this paper, we explore the relationship between musi-
cal prosody and emotion through three research questions.
First, are traditional machine learning algorithms able to
accurately classify an individual’s emotions when trained
on only the features of musical prosody? Next, are these
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models able to generalize to a larger group of vocalists?
Finally, which features of musical prosody contribute the
most to the classification of emotion?

The paper is structured as follows, in Section 2, back-
ground and motivation are discussed. Section 3 describes
the dataset collection, training and testing, the taxonomies
used in classification, the feature extraction methodology
and analysis of their relevance to emotion, feature aggre-
gation, feature selection, and model generalization. Sec-
tion 4 presents the experiments: Experiment 1 asks how
well can traditional machine learning models classify emo-
tion when limited to inputs of musical prosody, Experiment
2 explores our approach’s ability to generalize to a larger
population of singers, and Experiment 3 explores the indi-
vidual contribution to accuracy of each feature via training
on reduced subsets of the input vector. Section 5 provides
discussion to these results, with particular attention paid
to the relationships between emotions and potential future
work. Finally, section 6 concludes the paper. A demo via
python notebook with audio samples is available online. 1

2. BACKGROUND

Emotion classification has been a major focus of research
in recent years. Ekman created a discrete categorization
that consists of fundamental basic emotions which are the
root for more complex emotions [6]. Another classifica-
tion model is the Circumplex model proposed by Posner et
al which plots emotions on a continuous, two-dimensional
scale of valence and arousal [7]. In this paper, we clas-
sify emotions using a model similar to the two-dimensional
Circumplex model which is further described in section
3.1.

There has also been much work done in the field of ana-
lyzing emotion from text for tasks such as sentiment anal-
ysis. Research on classification of emotion in audio has
taken many different approaches. Research into classifying
emotions in knocking sounds has found that anger, hap-
piness and sadness could be easily classified from audio
alone [8]. There have been multimodal approaches which
use audio in combination with another feature, namely
visual facial features [9] [10] or text lyrics [11]. Fur-
thermore, researchers have performed emotional classifi-
cation from audio in the context of music by analyzing
which musical features best convey emotions [12]. Panda
et al. have found a relationship between melodic and

1 https://github.com/brianmodel/
EmotionClassification
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dynamic features to a number of specific emotions [13].
Such features that were used to classify emotion in music,
however, cannot be easily generalized to other domains.
Prosody has been found by linguists to communicate emo-
tion across various cultures, with patterns of pitch and
loudness over time representing different emotions [14],
and has shown the potential to improve human-robot inter-
action [15–17]. Our approach aims to bridge this gap by
analyzing these prosodic features which are fundamental
to everyday speech and explore how they can be used to
classify emotional driven prosody.

Koo et al. have done work in speech emotion recognition
using a combination of MFCC and prosodic features with
a GRU model on the IEMOCAP dataset [18]. We expand
upon their work by performing an in-depth analysis of 11
different audio features and their effect on classifying emo-
tion. We also classify emotion beyond spoken language by
analyzing prosodic features which better generalize to how
humans convey emotion using the new dataset collected, as
described in section 3.2.

3. METHODOLOGY

3.1 Taxonomy

One of the main challenges in emotional classification is
the derivation of a taxonomy that accurately reflects the
problem domain. The two common approaches to ad-
dress this challenge are 1. Discrete emotional categoriza-
tion; and 2. Continuous quantitative metrics of Valence
and Arousal (sometimes called Control). We use both ap-
proaches with a categorical, as opposed to regression, ap-
proach to the latter.

Our models classify emotion under two taxonomies: first
we categorize each data point as belonging to one of the
twenty emotions located around the Geneva Wheel of
Emotion. Then we categorize each data point as belong-
ing to one of the quadrants depicted by the intersection
of valance and control by assigning each emotion from
the Geneva Wheel of Emotion to its respective quadrant.
We abbreviate each of these quadrants as follows: "High
Control Negative Valance": "HCN", "High Control Posi-
tive Valance": "HCP", "Low Control Negative Valance":
"LCN", and "Low Control Positive Valance": "LCP". See
Table 1 and Figure 1 for a visualization of the domain’s
taxonomy.

HCN HCP LCN LCP
Anger Amusement Disappointment Admiration
Contempt Interest Fear Compassion
Disgust Joy Guilt Contentment
Hate Pleasure Sadness Love
Regret Pride Shame Relief

Table 1. Selected emotional taxonomy for training

3.2 Data Collection

Due to a lack of data labeled with the appropriate taxon-
omy, we decided to collect and annotate a new dataset. To

Figure 1. The Geneva Wheel of Emotion

achieve this goal, we asked professional singers to con-
sciously sing each emotion. To generate our dataset, three
professional singers were tasked to improvise as many
phrases as possible for each emotion in the Geneva Wheel
of Emotion. The singers were instructed to sing each
phrase between 1 and 20 seconds, and to spend approx-
imately 15 minutes on each emotion, resulting in 4 to 6
hours of recordings per singer annotated with ground-truth
labels.

Additionally, the singers were given the following in-
structions during their recording session:

1. Do not attempt to control for different intensities for
each emotion

2. Sing anything for each phrase that you believe
matches the emotion except use words.

3. After recording, mark any phrase that you believe
did not capture the intended emotion and it will be
deleted

3.3 Feature Extraction

In the following section, we define the features selected for
extraction from our dataset prior to model training. Fur-
thermore, we discuss each feature’s relevance to emotional
classification through an analysis of prior works.

3.3.1 Zero Crossing Rate

Zero Crossing Rate, the rate of sign-changes across a sig-
nal, is key in classifying percussive sounds. Unvoiced re-
gions of audio are known to have higher Zero Crossing
Rates [19]. One study analyzed ZCR for Anger, Fear, Neu-
tral, and Happy signals and noted that higher peaks were
found for Happy and Anger emotions [20].

3.3.2 Energy

Energy, the area under the squared magnitude of the con-
sidered signal, relates to the amount of spectral informa-
tion in a signal [21] and previous studies have found energy
is essential in distinguishing stressed and neutral speech
[22].
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3.3.3 Entropy of Energy

Entropy of Energy, the average level of "information" or
"uncertainty" inherent within a signal’s energy, has been
shown in one study to have similar values for disgust and
boredom [23]. To accurately measure the entropy of the
different emotions, we must make sure we are not includ-
ing parts of the signal where the individual is not speaking.

3.3.4 Spectral Centroid

Spectral Centroid, the power spectrum’s center of mass,
perceptually has a connection with a sound’s brightness. It
follows, that this parameter serves as an indicator of musi-
cal timbre [24]. Previous studies have shown spectral cen-
troid is a significant component in music emotion [25].

3.3.5 Spectral Spread

Spectral Spread, the second central moment of the power
spectrum, has shown to help the listener to differentiate
noise-like and tone-like portions of a signal [26].

3.3.6 Spectral Entropy

Spectral Entropy, the entropy of the power spectrum, when
used with MFCC features has shown an improvement in
speech recognition accuracy [27]. Another study found
spectral entropy to have the highest correlation to emo-
tional valence of all features tested [28].

3.3.7 Spectral Flux

Spectral Flux, a measure of the rate of change of the power
spectrum calculated as the Euclidean distance between se-
quential frames, relates to how fast the pitch changes in
time and has been shown to be dominant in cross-domain
emotion recognition from speech and sound and from
sound and music [29].

3.3.8 Spectral Rolloff

Spectral Rolloff, the frequency under which some percent-
age of the total energy of the spectrum is contained, helps
differentiate between harmonic content, characterized be-
low the roll-off, and noisy sounds, characterized above
the roll-off. Spectral rolloff has been shown to be one of
the most important prosodic features in classifying emo-
tion [28].

3.3.9 MFCCs

Mel-Frequency Cepstral Coefficients (MFCCs), a repre-
sentation of the short-term power spectrum based on a lin-
ear cosine transform of a log power spectrum on a nonlin-
ear mel scale of frequency, are used in speech recognition
with their ability to represent the speech amplitude spec-
trum in a compact form [30]. Many studies have linked the
importance of MFCC analysis to emotion recognition [20]
[31] [32] .

3.3.10 Chroma Vector and Deviation

Chroma Vector, an approximation of the pitch class pro-
files present within a given frame and often used as the
twelve tones, allows for the capture of harmonic and
melodic characteristics while remaining robust toward

Parameter Value
Mid-term Window Step 1.0 seconds
Mid-term Window Size 1.0 seconds

Short-term Window Step 0.05 seconds
Short-term Window Size 0.05 seconds

Table 2. Feature Aggregation Parameters

changes in timbre and instrumentation. Previous studies
have shown increases in emotional classification accuracy
with chroma vector and its standard deviation [33, 34].

3.4 Feature Aggregation

Figure 2. Model of Feature Aggregation

In this section, we define the aggregation pipeline from
feature extraction to feature vector for each audio file. Fig-
ure 2 provides a visual modeling of our feature aggregation
pipeline. Table 2 delineates the feature aggregation hyper
parameters used in this study.

3.4.1 Short-term Aggregation

The short-term aggregation of a 5-second clip, using a
Short-term Window Step of .05 seconds and a Short-term
Window Size of .05 seconds is defined as follows: Each
of the 34 features discussed above are extracted for every
50ms, resulting in 100 feature vectors of size 34x1, rep-
resented as a 34x100 matrix. Next, the deltas between
each time step are calculated according to the equation
𝑑𝑒𝑙𝑡𝑎 = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 − 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟_𝑝𝑟𝑒𝑣. The
first time stamp has all deltas set to 0. Each delta vector
is concatenated onto its respective feature vector resulting
in a size of 68x1, represented as a 68x100 matrix for the
entire 5 second audio clip.

3.4.2 Mid-term Aggregation

Next, mid-term aggregation occurs with a Mid-term Win-
dow Size of 1.0 seconds and Mid-term Window Step of
1.0 seconds. The 68x100 matrix of Short-term features
is split according to the ratio between the Mid-term and
Short-term window size and step, resulting in 5 matrices
of size 68x20. For each matrix, we calculate and flatten
the mean and standard deviation for each row, resulting in
5 136x1 mid-term feature vectors, represented as a 136x5
matrix. Finally, we take the mean across the first axis re-
sulting in a 136x1 feature vector representing our 5 second
audio clip.
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3.5 Classification

Prior work focused on musical classification has primarily
found success in the implementation of k-nearest neigh-
bor (K-NN) and support vector machines (SVM), finding
the highest accuracies using SVMs [35]. In exploration
of the relationship between musical prosody and emotion,
we will implement a variety of machine learning models,
namely we will train and evaluate KNNs, Linear SVMs,
Random Forests, Extra Trees, Gradient Boosting, and Feed
Forward Neural Networks (FFNN). FFNNs are used in ex-
periment 3 only.

Experiment 1: we explore the base line accuracies, F-
scores, and confusion matrices achieved by training each
model with identical training, validation, and testing data
from a single singer.

Experiment 2: we explore our model architecture’s abil-
ity to generalize by expanding the dataset to include all 3
singers from data collection.

Experiment 3: we explore model performance on a re-
duced subset of the training feature, utilizing additive fea-
ture selection to compile a ranking of features.

4. RESULTS

4.1 Experiment 1

In experiment 1, we analyze the baseline accuracies, F-
scores, and confusion matrices achieve by training KNNs,
linear SVMs, Random Forests, Extra Trees, Gradient
Boosting models on a single singer utilizing only the
prosodic features outlined in the previous section. All
models were trained with features extracted according to
the parameters outlined in Table 2. Additionally, each
model is optimized with respect to its associated hyper pa-
rameter. We optimize KNN for the number nearest neigh-
bors, SVM for the soft margin, random forest for num-
ber of trees, gradient boosting for the number of boosting
stages, and extra trees for the number of trees. 2

Table 3 provides the best accuracy, F1-score, and selected
hyper-parameter for each of our models trained on a Big
4 taxonomy for a single singer. All models perform bet-
ter than twice the accuracy of random guessing, with the
linear SVM and Gradient Boosting models achieving the
highest accuracies. Further analysis of the confusion ma-
trix of the Gradient Boosting model, shown in Figure 4,
provides information about the classes that are most often
confused for one another. The model struggles in distin-
guishing between Low Control Positive Valance and High
Control Positive Valance. This is to say the model can tell
that an individual is in a positive mood, but has difficulties
distinguishing the Control or Arousal of the emotion.

Next, we examine classification under a single emotion
taxonomy for a single singer. Table 4 shows the best ac-
curacy, F1-score, and selected hyper-parameter for each of
our models. Each model significantly outperforms random
guessing. Even the worst model, the KNN, performs 6.5
times better than random chance (20 possible categories =
5% chance random guessing). Our best model, the linear

2 https://scikit-learn.org/

Model Accuracy F1 Hyperparam
KNN 56.1 56.2 C=11
SVM 66.5 65.3 C=1.0

Extra Trees 64.6 64.3 C=100
Gradient Boosting 67.0 66.7 C=500

Random Forest 63.5 63.2 C=200

Table 3. Big 4 Taxonomy, 1 Singer Classification Results

Model Accuracy F1 Hyperparam
KNN 33.8 32.1 C=15
SVM 49.1 48.1 C=5.0

Extra Trees 44.3 42.8 C=500
Gradient Boosting 47.2 46.6 C=200

Random Forest 43.8 42.3 C=200

Table 4. Single Taxonomy, 1 Singer Classification Results

SVM, performs approximately 10 times better than ran-
dom guessing with an accuracy of 49.1%. The confusion
matrix for the single emotion taxonomy has been included
in Figure 3. Analysis of this confusion matrix yields a few
observations: Disgust is rarely confused with other emo-
tions, having the highest individual accuracy of 81.4%.
Fear and Guilt are the two most common pair of emotions
to be confused for one another. Pleasure is the most diffi-
cult emotion for the model to classify correctly, having the
lowest individual accuracy of 18.6%.

Finally, our models perform extremely well when tasked
with categorizing between two emotions, achieving accu-
racies as high as 98.9% with a f1 of 98.9 in the distinction
between Love and Disgust using a SVM. This reinforces
the intuition that by reducing the number of emotional cat-
egories we can achieve higher accuracies for identification.

4.2 Experiment 2

Within machine learning, model generalization poses
many challenges as models tend to memorize data and per-
form worse when exposed to new datasets. In experiment
2, we generalized our model by training on 3 different
singers as opposed to training on one singer. Tables 5 and
6 compare the accuracies achieved by the various model
architectures for 3 singers vs 1 singer.

With the exception of linear SVM, all model architectures
maintain similar accuracies when trained on the 3 singer
datasets. This maintenance of accuracy demonstrates the
ability for traditional machine learning models to general-
ize well to a larger population when trained on only the
features of musical prosody. We are unsure of why linear
SVMs perform worse during generalization as compared to
other models, seeing a drop of 6% in Big 4 taxonomy and a
drop of 13% in single emotion taxonomy. This drop could
potentially be a limitation in our methodology of only ap-
plying a linear kernel to SVM training, as perhaps an RBF
or polynomial kernel would be better able to generalize to
a larger population.

The results of this experiment are encouraging to the de-
velopment of a general model of emotional classification
based on musical prosody as accuracy is maintained when
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Figure 3. SVM, Individual Taxonomy, 1 Singers Confusion Matrix

Figure 4. Gradient Boosting, Big 4 Taxonomy, 1 Singer
Confusion Matrix

Model 1-S Accuracy 3-S Accuracy
KNN 56.1 57.9
SVM 66.5 60.6

Extra Trees 64.6 63.5
Gradient Boosting 67.0 68.8

Random Forest 63.5 65.1

Table 5. Big 4 Taxonomy, 1 Singer vs 3 Singer Accuracy

the dataset is expanded to a larger portion of the overall
population.

4.3 Experiment 3

Experiment 3 analyzes model performance on a reduced
subset of the feature vector for our single emotion taxon-
omy. Our implementation of Feature Selection follows an
additive approach. We start with an empty permanent fea-
ture set and each feature is trained on its own. The feature
with the highest f1 score is selected and added to our per-
manent feature set. This process is repeated until all fea-

Model 1-S Accuracy 3-S Accuracy
KNN 33.8 32.5
SVM 49.1 36.9

Extra Trees 44.3 42.7
Gradient Boosting 47.2 43.8

Random Forest 43.8 43.8

Table 6. Single Emotion Taxonomy, 1 Singer vs 3 Singer
Accuracy

tures have been added to the permanent feature set. Finally,
we plot the f1 score vs features used in model training.

For 136 features, an additive feature selection training
loop requires the training and f1 validation of 9316 models.
Our initial training and validation was based on implemen-
tations using the python library sklearn. Unfortunately,
sklearn does not provide native GPU training support and
thus performing an additive feature selection using sklearn
is not feasible with respect to training time. Our solution
is to continue to use the feature selection and aggregation
outlined above, and to replace the sklearn models with a
Tensorflow feed forward neural net. All of these mod-
els look for statistical correlations between our features
and the emotional classification. Thus the particular model
should have minimal affect on the analysis of feature im-
portance performed by additive feature selection. Training
was done sequentially on a RTX 3090 using CUDA v11
and took just under 24 hours to train and validate all 9316
models.

Our feed forward neural net contained the input layer,
two dense layers of 136 nodes with relu activation func-
tions, and a dense 20 node output layer. We trained using a
Sparse Categorical Cross entropy loss function optimized
using an Adam optimizer with 5 epochs per model.

Figure 7 shows the F1 score achieved vs the Feature in-
cluded in the model pipeline. All feature on and to the right
of any point in the x axis are included in training. An F1 of
45 is achieved within the first 25 features. Furthermore, the
addition of the remaining 111 features only increases our
F1 score to 52. This graph emphasizes the importance of
spectral roll-off and MFCC 7 in the classification of emo-
tion, as aggregations of these two features allow for an F1
score just below 20 with 4 total features.

5. DISCUSSION

5.1 Analysis

We demonstrate that prosodic features can be used to clas-
sify human emotions, achieving high accuracies on classi-
fying emotions for a single singer dataset as seen in tables
3 and 4. Furthermore, we obtained encouraging results
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Figure 5. Gradient Boosting, Individual Taxonomy, 3 Singers Confusion Matrix

Figure 6. Gradient Boosting, Big 4 Taxonomy, 3 Singer
Confusion Matrix

regarding the model’s generalization between singers as
demonstrated by tables 5 and 6. However, given our lim-
ited dataset, more research is needed to study how the mod-
els generalize for additional singers with different voices.

Our feature selection aligns with prior research indicat-
ing that energy and MFCC were the most useful features
for classifying emotion [9]. However, we have been able
to show that the results holds true not just for phonolog-
ical speech, but in the more specific domain of musical
prosody.

5.2 Relationships between Emotions

The classification results give us new insights into the
uniqueness and relationships between emotions. Looking
at the individual classification data between all the singers
in Figure 3, we can see how the model was best able to
classify fear, joy and relief. This is in contrast to emo-
tions such pleasure or admiration which showed the low-
est classification accuracy. These results demonstrate the
manner in which different humans convey emotions, and
what emotions are similarly expressed by different individ-
uals. When conveying relief, all three singers expressed a
diminuendo and exhale. Similarly, when conveying fear
all three singers expressed a crescendo and more accented
tones. On the other hand, there was a high level of vari-
ation when conveying pleasure, with many different tone
ranges, mouth shapes, etc. being present in the data.

Furthermore, from the confusion matrix in Figure 5, we
can see that the emotion pairs of Hate and Disgust as well
as Pleasure and Contentment are the most common emo-

tions to be misclassified as one another. We suggest that
this is due to these emotions representing similar mean-
ings, thus they would be conveyed using similar features.
For instance, Hate and Disgust both tend to consist of
lower tones while Pleasure and Contentment have higher
tones.

5.3 Future Work

One of the major challenges we faced was the limited
amount of data that was collected. We plan on expand-
ing this dataset to a larger variety of singers and other in-
strumentalists so that we can better understand how the
models can generalize to different sounds. Additional fu-
ture work includes developing a more sophisticated deep-
learning based model on the raw audio data for classify-
ing emotion using the expanded dataset we will collect.
This will allow the model to make predictions beyond what
could be possible using the features we chose in our feature
selection. It would open up the potential to achieve much
higher accuracy and better model generalization.

6. CONCLUSIONS

Our novel dataset using an expanded emotion taxonomy
provides opportunity for the development of a more ar-
ticulate understanding of emotions. Previous attempts to
correlate emotion to audio or music are based on fewer
emotions, and often rely on lyrics or song metadata for
classification. Our algorithms demonstrate a high level of
accuracy on a 20 category taxonomy for emotions, utiliz-
ing only prosodic features. By restricting the type of in-
put data to prosodic features and expanding the number
of classified emotions, our models can be used for a wide
range of research challenges within the domain of emo-
tional classification. Furthermore, we have demonstrated
that our approach is able to generalize to a larger subset
of the overall population. Finally, the restriction of our
feature vector via additive feature selection demonstrates
the ability for prosodic features to achieve a high-level ac-
curacy for emotional classification for a relatively small
number of features.
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Figure 7. F1 score vs Features included in model pipeline
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ABSTRACT

Knocking sounds are highly expressive. In our previous
research we have shown that from the sound of knocking
actions alone a person can differentiate between different
basic emotional states. In media productions, such as film
and games, knocks can be very important storytelling de-
vices as they allow the story to transition from one part to
another. Research has shown that colours can affect our
perception of emotions. However the relationship between
colours and emotions is complex and dependent on mul-
tiple factors. In this study we investigate how the visual
characteristics of a door, more specifically its colour, tex-
ture and material, presented together with emotionally ex-
pressive knocking actions, can affect the perception of the
overall emotion evoked in the audience. Results show that
the door´s visual characteristics have little effect on the
overall perception of emotions, which remains dominated
by the emotions expressed by the knocking sounds.

1. INTRODUCTION

Knocking on a door is a very common everyday sound.
Much information can be conveyed through such a sim-
ple yet expressive action: from perceiving the way the
knock is performed (e.g. closed or open palm), to recog-
nising the emotional intention of the person knocking on
the door. Understanding how communication through ev-
eryday sounds takes place, and in particular how emotions
can be recognised through these sounds, is of fundamen-
tal importance when designing and synthesising everyday
sounds with a specific intention to be conveyed. Media in-
dustries such as gaming, advertising and cinema can ben-
efit from technologies informed by knowledge of cross-
modal perception in order to produce the desired effects
on their audiences. Research on how emotional intentions
are expressed in everyday sounds is relatively recent, es-
pecially in comparison to what we know about emotions
and music or voice. A number of studies in recent years
have expanded on the knowledge of human perception of
emotions in aural stimuli of different nature [1–4]. Within
this broader field of research, there is little exploration of
the effect of knocking sounds on the emotions perceived
by a listener. The aim of the present study is to build upon

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the
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previous research on everyday sounds and emotions by fo-
cusing on audiovisual integration in multimodal stimuli of
knocking sounds. More specifically, we assess the effect
that audiovisual integration has on the perception of five
basic emotional states (anger, fear, happiness, sadness and
neutral). We investigate how audio and visual modalities,
carrying congruent as well as non-congruent emotional in-
formation, interact in a simple representation of a knock-
ing action performed on a door, and contribute to produc-
ing the perception of an overall emotion. In this regard,
Gerdes et al. [5] explored how audio and visual cues in-
teract to steer attention. The study shows that emotional
auditory cues guide visual spatial allocation of attention
specifically to emotionally congruent pictures.

We conducted a pre-study and an audiovisual experiment.
The pre-study involved visual-only stimuli of doors of dif-
ferent colours, materials and textures. The aim of this
study was to use its results, in conjunction with findings
from literature on colour and emotions, to select 5 differ-
ent coloured doors associated with anger, fear, happiness,
sadness and neutral. In the subsequent audiovisual exper-
iment, we combined 5 knocking action sounds, which in
our previous study [6] were rated to be strongly associated
with the same 5 basic emotions, with the 5 coloured doors.
In this experiment, we aimed to investigate whether the
combination of the appearance of the door with an emo-
tional knocking sound could affect the overall emotional
perception 1 .

The next sections are organised as follows: in Back-
ground (§2) the most relevant previous research and theo-
retical background is reviewed; in Method (§3) the descrip-
tion of the experimental design is presented; in Results (§4)
a summary of the statistical analysis of the collected data
is reported; in Discussion (§5) results are discussed in light
of previous research, and in Conclusions (§6) the work is
summarised and directions for further work are outlined.

2. BACKGROUND

Everyday sounds can communicate complex information
[7]. Furthermore, even sounds without explicit connection
with everyday objects or actions, such as tones and noise
complexes, can produce an emotional reaction [8]. Fur-
thermore, emotions, as well as other characteristics such
as material and shape of an object [3,9,10], are an integral
part of auditory perception and are used to categorise ev-

1 see stimuli from pre-study and audiovisual ex-
periment here: https://kth.box.com/s/
ske2j9gzzl7eclnzehlrlfzqt7hy3acq
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eryday sounds [4]. From someone´s footstep, for example,
we can infer many characteristics of the walker including
gender, type of sole, and emotional intentions [2]. In re-
gard to knocking sounds, our recent research has shown
that basic emotional intentions such as anger, fear, happi-
ness, sadness, and neutral state can be recognised from lis-
tening to knocking sounds alone [11]. Additionally, when
utilising a large dataset of knocking action sounds pro-
duced by a professional Foley artist the degree of emotion
recognition increases, showing only confusion between
the labelling of anger and fear [6]. We also showed that
emotion-specific acoustic patterns in knocking sounds con-
firm findings from previous research in speech and music
performance [2, 12]

In this study, we selected 5 knocking sound actions from
our data-set 2 of professionally performed knocking ac-
tions that were most strongly associated with anger, fear,
happiness, sadness, and neutral state. We then combined
them with visual representations of doors, which were cre-
ated using Blender 3 . The design of these images was in-
formed by research on colour, material and texture (i.e. the
roughness and pattern of the surface). Research shows that
colours can affect our emotional perception [13–15]. What
emerges is a general agreement between most authors on
a few colours (e.g. blue, red and yellow), although there
is little consistency in the framework adopted for defining
and categorising the colours and the emotions associated
to them. Additionally, research shows that associations
between colours and emotions depend on cultural fac-
tors [16, 17] as well as other aspects such as age [18–21].
Despite this complex picture, practical knowledge about
colours is applied in many areas such as media produc-
tion [22], marketing [23] or interior design [24]. Research
on the association between materials and emotions, or tex-
tures and emotions appears to be limited. Crippa et al. [25]
found that different materials can evoke emotions, even if
weakly, such as satisfaction, joy, fascination, dissatisfac-
tion and boredom. In relation to texture and emotion, Ebe
and Umemuro [26] and Iosifyan and Korolkova [27] have
found that people significantly associate basic emotions to
different textures perceived through touch. For this study,
we created 32 doors with different colours, materials and
textures. Then, by combining the results of our the pre-
study with findings from research on colour and emotion,
we selected 5 doors that are strongly associated with the 5
basic emotions explored in this work.

3. METHOD

3.1 Pre-study

3.1.1 Stimuli

Thirty two images of closed doors (600 × 600 px), com-
bining 8 colours (yellow, blue, black, grey, green, white,
red, brown) and 4 materials plus textures (metal, smooth
wood, intermediate wood, rough wood), were rendered us-
ing Blender 2.90.0 in a neutral indoor environment com-
prised of an off-white surrounding wall, a light grey floor

2 http://doi.org/10.5281/zenodo.3668503
3 https:https://www.blender.org

and basic door features (door frame of the same material of
the door and a simple metallic-grey handle (e.g. Figure 1)).
Six out of eight colours were chosen from the most fre-
quently studied in previous colour and emotion research,
while grey and brown were chosen as being the colours
most commonly associated to a door of the selected mate-
rials.

Figure 1. Example of a door image used in the pre-study
and the audiovisual experiment, depicting a red door with
an intermediate wood texture.

3.1.2 Procedure

An online survey was created using the online platform
PsyToolkit 4 . Participants were presented with the 32 im-
ages of doors. For each image, participants were asked to
choose which emotional state the door evoked. The or-
der of the stimuli and the options available for each ques-
tion were randomised. Finally, for each door, participants
were asked to select the colour and material/texture of the
door by answering two separate single-choice questions.
This allowed researchers, who did not have control over
the viewing monitor, to confirm that participants viewed
the visual characteristics of the doors correctly.

3.1.3 Participants

Twenty four participants participated in the survey. Six did
not complete the survey and their results were therefore ex-
cluded. The remaining 18 participants (11 female, 7 male)
were aged 19-65 (11 between 19 and 25; 5 between 26 and
35; 1 between 36 and 50; 1 above 50). None of the partic-
ipants were colourblind.

3.2 Audiovisual experiment

3.2.1 Stimuli

In this experiment we used 30 audiovisual stimuli. These
combined the 6 most strongly emotionally expressive
knocking action sounds from our dataset recorded by a

4 https://www.psytoolkit.org
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professional Foley artist, one per each of the 5 basic emo-
tions considered plus one additional neutral knocking ac-
tion, and 5 images of doors associated with the same basic
emotions selected from the pre-study stimuli. The reason
for having two neutral knocking sounds was to be able to
investigate in more detail whether the lack of a strongly
recognisable emotion in the sound (neutral state) would
allow for the emotion evoked by the visuals to affect the
overall emotional perception more strongly. Finally, in
order to select the 5 doors we combined the results from
the pre-study (see §4) with findings from the literature in
colour and emotions. Here the main selection criteria:

1. the door must be among those significantly associ-
ated, in the pre-study, with the emotion in question;

2. the door must have a relatively high absolute number
of responses in the pre-study for the emotion consid-
ered;

3. associations between door characteristics and emo-
tion must be confirmed, wherever possible, by pre-
vious research. [13, 16, 28] specifically support the
red-anger pair, [20, 28] explicitly support the blue-
happiness pair, [14, 29] associate yellow to negative
valence/unpleasant feelings, and [14, 21] associate
grey to negative valence and low arousal.

The doors selected were: anger = red + intermediate
wood (RIW); fear = yellow + rough wood (YRW); hap-
piness = blue + metal (BM); neutral = grey + smooth wood
(GSW); sadness = brown + metal (BrwM).

3.2.2 Procedure

An online survey was created in PsyToolkit. Participants
who had participated in the pre-study, or were knowledge-
able about colour or sound theory were excluded. Before
starting the test, participants were asked to adjust the vol-
ume in their headphones in order to be able to comfortably
perceive both the softest and the loudest sounds used in the
experiment. For each stimulus, the evoked emotional state
was tested as a single-choice question. The order of the
stimuli and the options available for each question were
randomised.

3.2.3 Participants

One hundred and seven participants participated in the ex-
periment. Among these, 52 did not complete the survey
or had participated to our previous pre-study, and 20 had
knowledge about colour or sound theory, and were there-
fore excluded from the analysis. Of the remaining 35 (15
female, 20 male) none were colourblind and their ages
ranged as follows: 3 between 18 or below, 10 between 19
and 25, 5 between 26 and 35, 3 between 36 and 50, 14
between 51 and 65.

4. RESULTS

4.1 Pre-study

The Chi-Square test shows that there is a significant rela-
tionship between the doors´ colour and the perceived emo-

tions 𝜒2(28, N = 576) = 110.313, p < .01. When consid-
ering the z-test pair-wise comparisons with a Bonferroni
correction, we find that each emotion is significantly asso-
ciated with a number of colours.

Figure 2. Pre-study: Door’s colour vs perceived emotion.

Anger is significantly associated with red, yellow, blue.
Red rough wood and red intermediate wood have the high-
est number of responses. Happiness is significantly as-
sociated with blue, green, red, white. Blue metal and
blue intermediate wood have the highest number of re-
sponses. Sadness is significantly associated with brown,
black, grey, green, white, yellow. Brown metal has the
highest number of responses for sadness. In regard to fear,
there is no significant difference in association with any
of the colours. Yellow rough wood has the highest num-
ber of responses for fear. Similarly, for neutral state, there
is no significant difference in association with any of the
colours. Grey Smooth wood has the highest number of re-
sponses for neutral. When focusing on emotions and ma-
terial/texture we find that fear is significantly associated
with rough wood, while happiness and neutral are not as-
sociated with rough wood. Finally, the colours were cor-
rectly recognised (94.4% of the time, on average), with the
sole exception of the metal white door, which was con-
fused with the metal grey door 38.8% of the time. The ma-
terial of the door, metal or wood, was recognised correctly.
The intermediate wood texture was at times confused with
smooth wood or rough wood (53.5% of the time). Over-
all, by combining these results and findings from previous
research (see §3.2.1), the following doors were selected to
be utilised in the audiovisual experiment: RIW for anger,
YRW for fear, BM for happiness, GSW for neutral, BrwM
for sadness.

4.2 Audiovisual experiment

We found a significant relationship between the intended
emotion of the knocking action sound and the perceived
overall emotion 𝜒2(16, N = 1050) = 803.651, p < .01.
There is no statistical significant difference between re-
sults for anger and fear. This confirms results from our
previous study [6] from which the knocking actions where
selected. Happiness, sadness and neutral are recognised
correctly with statistical significance (see Figure 3).

There is no significant relationship between the doors’ in-
tended emotions and the perceived overall emotions 𝜒2(16,
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Figure 3. Audiovisual experiment: Perceived emotion vs
intended audio emotion.

N = 1050) = 20.666, p > .05. The visual characteristics of
the doors do not contribute to the overall emotional percep-
tion of these audiovisual stimuli. The sound of the knock-
ing action, on this occasion, dominates the overall per-
ceived emotion. In regard to congruent audiovisual stimuli
(i.e. where the intended emotions for audio and visual as-
pects coincide), they do not seem to be significantly more
expressive, however we note that the RIW door combined
with the angry knock has the highest number of responses
for perceived anger; the BrwM door combined with the
sad knock reports the second highest number of responses
for perceived sadness (GS with sad knock reports the high-
est); the BM door combined with the happy knock reports
the second highest number of responses for perceived hap-
piness together with BrwM with happy knock (RIW with
happy sound has the highest number of responses). Finally,
the intended emotions of the doors such as anger, fear, hap-
piness and sadness do not come through more strongly in
the overall perceived emotion when the knocking sound´s
intended emotion is neutral.

5. DISCUSSION

Results from the pre-study are consistent with trends found
in previous studies on the association between colours
and emotions. More specifically, high-arousal emotions
are often matched with warmer colors like red and yel-
low [19,20,22,23], or highly saturated colours [14,19,28].
Our results also confirm the complexity of the area. While
associations between single emotions and a few colours
were detected, no one-to-one associations between emo-
tional states and colours. We suggest that if one-to-one
colour-emotions associations exist, they might require a
larger sample size to detect them. The most important re-
sult from the audiovisual experiment is the dominance of
the aural modality on the perception of the overall emotion.
It appears that, in this case, the audio drives the emotional
state evoked in the subjects, a conclusion which, we spec-
ulate, could be due to the different implied sources of the
audio and visuals respectively. While a knocking sound
would usually imply the presence of a human as its source
(i.e. an agent experiencing emotions), the colour and mate-
rial of a door are features of an inanimate object that does
not experience emotions (although we might project our

emotions onto this object). We therefore suggest that, in
this case, the emotion behind an human action, here por-
trayed by the audio modality, bears more importance than
the emotion evoked by the door. This might tell us that,
in the context of filmmaking, for example, Foley perfor-
mances contribute more than we think to the overall story-
telling experience, and should perhaps be considered with
the same attention traditionally granted to other visual as-
pects of the process (e.g. production design). In regard to
congruent and not congruent stimuli, we did not find sig-
nificant results. However looking at absolute number of
responses for some emotions congruence suggests an in-
crease in effect. With a larger study the presence of such
small effects might be confirmed.

6. CONCLUSIONS

With the goal of exploring the perception of emotion in au-
diovisual representations of everyday actions, and building
on previous research in the field, we have conducted two
experiments. These enabled us to investigate how basic
emotions can be evoked through a combinations of audio
and visual features, and assess the impact that the differ-
ent modalities have on the perceived emotions. Overall,
the results provide a basis to help us understand how dif-
ferent aspects of an audiovisual artifact might contribute
to the formation of an overall emotional experience in an
audience. Further work could include investigating the im-
pact of several other features on the perception of emo-
tions. For example, point-light animations of the knocking
hand could clarify the point of view and point of audition,
door size, and audio and visual contextual elements could
be added to the investigation. Furthermore, a wider range
of emotions could be investigated, perhaps using different
frameworks such as arousal-valence, as well as the impact
of different immersive playback environments (cinematic,
VR, gaming environment, etc.) on the perception of emo-
tions in audiovisual stimuli.
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ABSTRACT 
Features are arguably the key factor to any machine learn-
ing problem. Over the decades, myriads of audio features 
and recently feature-learning approaches have been tested 
in Music Emotion Recognition (MER) with scarce im-
provements. Here, we shed some light on the suitability of 
the audio features provided by the Spotify API, the leading 
music streaming service, when applied to MER. To this 
end, 12 Spotify API features were obtained for 704 of our 
900-song dataset, annotated in terms of Russell’s quad-
rants. These are compared to emotionally-relevant features 
obtained previously, using feature ranking and emotion 
classification experiments. We verified that energy, va-
lence and acousticness features from Spotify are highly 
relevant to MER. However, the 12-feature set is unable to 
meet the performance of the features available in the state-
of-the-art (58.5% vs. 74.7% F1-measure). Combining 
Spotify and state-of-the-art sets leads to small improve-
ments with fewer features (top5: +2.3%, top10: +1.1%), 
while not improving the highest results (100 features). 
From this we conclude that Spotify provides some higher-
level emotionally-relevant features. Such extractors are 
desirable, since they are closer to human concepts and al-
low for interpretable rules to be extracted (harder with hun-
dreds of abstract features). Still, additional emotionally-
relevant features are needed to improve MER.  

1. INTRODUCTION 
During the beginning of the 21st century notorious changes 
have occurred on the way people access and consume mu-
sic, movies and other media. Before technical advances 
such as ubiquitous internet access, digital compact audio 
formats or the massification of mobile devices, music con-
sumption would swirl around physical media such as 
tapes, optical discs or vinyl. These were normally sold at 
local stores, which provided limited and normally region-

                                                           
1 With an expected drop in revenues due to COVID-19 [1] 
2 https://newsroom.spotify.com/company-info/ 

specific catalogs. In the course of the last decade this par-
adigm has changed, with music access, available through 
streaming services, taking over music ownership. 

The first internet-based music services, centered on ille-
gal distribution, contributed to the decline of music reve-
nues, which achieved its lowest point in 2014. Since then, 
music revenues have risen for 6 consecutive years1 led by 
streaming services such as Spotify, Deezer, or Pandora [1]. 

Nowadays these services provide easy access to millions 
of songs with unprecedented convenience (e.g., Spotify of-
fers over 70 million tracks as of December 31, 20202). 
However, such massive amount of data requires better 
search and discovery mechanisms than simply searching 
by artist, title or genre. Spotify mitigates these issues by 
using several data-driven personalization methods, and 
manually curated playlists. These are mostly based on us-
ers’ listen history, while less focus has been given to the 
audio content due to the complexity of the task.  

Meanwhile, we know that music is a language to express 
emotions, with some considering it to be its primary func-
tion [2]. Thus, music emotion recognition (MER) re-
searchers have been proposing computational models to 
uncover and exploit these relations automatically. It is 
known that Spotify and other industry players are inter-
ested in various music information retrieval (MIR) topics, 
e.g., Spotify is said to be planning to use the user tone to 
detect his/her mood and personalize music suggestions3. 

So, how does the MER current state-of-the-art research 
compare with the solutions of the aforementioned ser-
vices? In this paper we explore this question and shed 
some light on possible paths for future research. To this 
end, we assess how the audio features provided by the 
Spotify API4 compare with the features used in MER. 
First, 12 Spotify audio features were gathered for a subset 
of 704 songs from our 900-song dataset [3]. Several audio 
feature ranking and emotion classification experiments are 
then run using these, as well as the top 100 features iden-
tified experimentally by our team as emotionally-relevant 
in [3], to understand how these compare and complement.  

Among others, we verified that the 12 Spotify features 
are worse at discriminating Russell’s quadrants, although 
four of them proved relevant. While not being a magic 

3 https://www.bbc.com/news/entertainment-arts-55839655 
4 https://developer.spotify.com/documentation/web-api/ 
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wand, the inclusion of extra audio features by Spotify 
might help improving their recommendation data, some-
thing that may even be already in place internally, while 
not available thought their public API.  

This paper is organized as follows. Section 1 introduces 
the problem, motivation and objectives. Section 2 briefly 
describes the related work relevant to the topic. Next, the 
experimental setup, including dataset, audio features and 
classification strategies are presented in Section 3, while 
Section 4 discusses the observed results. Finally, Section 5 
draws the conclusions and suggests future work. 

2. RELATED WORK 
Music Emotion Recognition is a subfield of MIR which 
aims to automatically extract emotional information pre-
sent in music. The field bridges knowledge from areas as 
diverse as music theory, machine learning, digital signal 
processing and psychology. In very broad terms, a typical 
MER solution uses a source of musical data (e.g., audio 
signals, lyrics, scores) to understand the governing rela-
tions between its properties (i.e., features) and emotional 
cues (e.g., annotations, in supervised learning), deriving 
rules to classify the emotion in newer examples (i.e., un-
known musical data) [4]. 

The relations between music and emotions have been a 
matter of study for long by psychologists, with many rela-
tions documented [5]. As an example, consonant harmo-
nies and major modes are usually associated with positive 
emotions, while the opposite with negative ones. However, 
the mechanisms governing these are not fully understood 
yet, and some studies present contradictory results [5]. 

In the field of computer science, several digital signal 
processing algorithms have been developed to capture 
sound and music characteristics from audio signals. These 
have been originally proposed to solve specific problems 
(e.g., speech recognition) but soon were employed in other 
MIR subfields, with MER being no exception [6]. 

In this journey of recognizing emotions with computers, 
different emotion paradigms (e.g., categorical or dimen-
sional) and related taxonomies (e.g., Hevner [7], Russell 
[8]) have been used. These, intertwined with one of the da-
tasets proposed in the field (e.g., [9]–[11]) served as foun-
dations to many works. From emotion classification using 
raw audio signals [3], [12], [13], symbolic notations [14], 
or lyrics [9], to multi-label classification (i.e., several emo-
tions per clip) [15], [16], dimensional MER [10], music 
emotion variation detection [11], [17] or multi-modal ap-
proaches [13], [14]. 

The majority of these works follow a typical machine 
learning approach, with handcrafted features, testing dif-
ferent datasets and machine learning strategies. However, 
results have stagnated over time, with authors suggesting 
better solutions “should perhaps be more musical 
knowledge-intensive” [18] to narrow the so-called seman-
tic gap [19], a view also supported by us [3]. 

An alternative (or even complementary) path to the ap-
proach with handcrafted features is deep learning (DL). 

                                                           
5 https://newsroom.spotify.com/company-info/ 
6 https://haulixdaily.com/2019/05/spotify-40000-tracks-per-day 

DL has been gaining momentum due to the ever increasing 
computational power and big data. There, AI-powered fea-
ture engineering is used, by feeding the neural network di-
rectly with the dataset (e.g., in the form of spectrograms). 
Several MER studies have tested techniques such as con-
volutional and recurrent neural networks [17]. However, 
such solutions fell short of expectations (so far), in part due 
to the lack of massive high quality datasets, which are 
complex to obtain [3] – one of the open problems in MER.  

2.1 Spotify 

Spotify is the major music streaming service, with 345 mil-
lion monthly active users and 155 million subscribers in 
93 markets as of December 31, 20205. The service is re-
sponsible for reshaping the way music listeners experience 
music nowadays, exchanging ownership for easier access 
to large catalogs and personalized recommendations. 
Nowadays the service revolves around playlists, with 4 bil-
lion of them interconnecting 70+ million songs.  

With such massive amounts of data, the company was 
able to expand from a simple music streaming player to a 
data-driven personalization service that drives discovery 
and engagement, increasing in value with each new user. 
The effect it now has on new songs, artists and their earn-
ings is immense, e.g., “being added to Today’s Top Hits, a 
list with 18.5 million followers (…), raises streams by al-
most 20 million and is worth between $116,000 and 
$163,000” in additional revenue from Spotify alone [20]. 
Still, the question remains: how exactly does Spotify rec-
ommend personalized content to each user? 

Although not fully documented to the public, several de-
tails are known. Traditionally, recommendations relied on 
collaborative filtering [21], a technique used to understand 
a specific user’s music taste based on historical listening 
data from all users, for instance using implicit matrix fac-
torization [22]. Such techniques are content-agnostic (i.e., 
do not use the audio signals), relying only on users’ con-
sumption patterns. This fact is also its Achilles heel: they 
are unable to recommend new and unpopular songs given 
the lack of listening data – known as the cold-start prob-
lem, relevant when ~40,000 tracks are added daily6. 

To overcome this, Spotify includes additional sources of 
information, driven by the acquisition of The Echo Nest in 
2014 – a music intelligence service providing automatic 
data extraction from songs by web crawling (e.g., 
metadata, lyrics, reviews), and digital signal processing 
techniques on the audio signal itself. Among others, it is 
able to estimate the danceability of a song or its valence. 

Moreover, Spotify is known to use deep learning tech-
niques to crunch metadata and audio signals for better rec-
ommendations. This began with Dieleman’s work with 
deep convolutional neural networks [23] and has been 
evolving since then. Nowadays Spotify provides datasets 
and contributes with research in diverse areas from recom-
mendation to user modeling or music creation7. Despite 
their advances, one major hurdle persists regarding MER 

7 https://research.atspotify.com/ 



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

240

– the absence of quality emotion annotations that can help 
to better understand and predict what makes a happy or sad 
song. 

3. EXPERIMENTS 
The system provided by Spotify has been evolving over 
the years, fusing different sources of data (i.e., historical 
usage data, music metadata, web crawling, high-level fea-
tures from The Echo Nest and DL). Even so, it is unclear 
if the emotional content present in the audio signal is being 
captured. To shed some light on this, we tested the high-
level features provided by the Spotify API in a typical 
MER problem and compared them with the state-of-the-
art. 

In brief, we built on our previous work [3], where a 900-
clip dataset was used to predict Russell’s quadrants [8], 
identifying and proposing novel emotionally-relevant fea-
tures. Here, we adopt a similar strategy, adding the 12 au-
dio features provided by the Spotify API8. Each step in this 
direction is described in the following subsections. 

3.1 Dataset 

The original dataset contains 900 audio clips (up to 30 sec) 
annotated with Russell’s quadrants (i.e., Q1 to Q4, repre-
senting respectively happiness, tension/aggression, sad-
ness, and calmness). Both samples and metadata were 
sourced from AllMusic9 and balanced (quadrants and gen-
res). The AllMusic mood tags were matched against War-
riner’s norms of valence and arousal for English words and 
transformed into quadrant annotations, following a manual 
validation by volunteers. Further details in [3]. 

Crawling the Spotify service returned 704 of the 900 
songs, for which audio features were obtained and used. 

3.2 Audio Features 

In general terms, a feature describes a characteristic part of 
something, it may be the composer, genre, its tempo, du-
ration, or even more abstract statistics of the signal itself 
[24]. In this study we use computational audio features 
proposed in the literature or provided directly by Spotify. 

3.2.1 Literature Features 

From the audio clips, a total of 2719 features were initially 
extracted using MIR Toolbox, Marsyas and PsySound3 
audio frameworks, as well as a set of novel features pro-
posed in our previous work [3]. This high number is caused 
by the duplication of features across frameworks, as well 
as the summarization of time series into several statistics. 
These were then reduced by excluding features whose val-
ues had zero variance, as well as pairs of features with cor-
relation higher than 0.9, as detailed in [3]. 

Next, the ReliefF algorithm [25] was used to identify 
and rank features according to their emotional relevance. 

                                                           
8 https://developer.spotify.com/documentation/web-api/ 
9 https://www.allmusic.com/ 

Then, emotion classification experiments with the top 100 
of these features achieved an F1-measure of 76.4% [3]. 

In this work we use these 100 features for the subset of 
704 songs10. 

3.2.2 Features provided by the Spotify API 

Spotify provides 12 audio features through its API11: 
• Acousticness – whether the track is acoustic 
• Danceability – how suitable a track is for dancing 

based on a combination of musical elements in-
cluding tempo, rhythm stability, beat strength, 
and overall regularity 

• Energy – a perceptual measure of intensity and 
activity based on dynamic range, perceived loud-
ness, timbre, onset rate, and general entropy 

• Instrumentalness – whether a track contains no 
vocals (> 0.5 indicate instrumental tracks, with 
confidence increasing as it approaches 1.0) 

• Key – the key the track is in according to standard 
Pitch Class notation 

• Liveness – indicates presence of an audience in 
the recording (> 0.8 provides strong likelihood 
that the track is live) 

• Loudness – the overall loudness in decibels (dB) 
• Mode – the modality (major or minor) of a track 
• Speechiness – presence of spoken words 
• Tempo – overall estimated tempo in beats per mi-

nute (BPM) 
• Time signature – estimated overall time signature 

(meter) of a track 
• Valence – describes the musical positiveness con-

veyed (higher valence sounds more positive, e.g. 
happy, cheerful) 

 
These 12 high-level audio features were obtained for 

our 704 tracks and used in the experiments described next. 

3.3 Feature Selection and Emotion Classification 

Having the audio features, our next step was to understand 
which of these were more suited to our quadrants classifi-
cation problem by using the ReliefF [25] algorithm. Sev-
eral reasons weighted in favor of this particular algorithm, 
namely, not being as CPU intensive as forward feature se-
lection (which performs exhaustive classification tests) 
and the fact that it provides a rank / weight for each feature. 
At each iteration of the algorithm, a random song is se-
lected and the K closest songs of the same class (i.e., quad-
rant) and of different classes are picked (using the Euclid-
ean distance between feature vectors). The weight of each 
feature is then adjusted based on this distance between 
same vs. different class instances. Three different rankings 
were computed: 

1. Ranking of our 100 features 
2. Ranking of the 12 Spotify API audio features 
3. Ranking of all 112 features combined 

10 https://github.com/renatopanda/TAFFC2018 
11 https://developer.spotify.com/get-audio-features/ 
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The main goal with the first one was to re-rank and un-

derstand the changes in our top 100 features, since the orig-
inal order was computed with the complete dataset (900 
songs), against 704 now. The second ranking helps under-
standing which Spotify API features are more emotion-
ally-relevant and better discriminate our dataset. Finally, 
ranking the 112 features together gives us a better under-
standing on how they compare and work together. 

Using these rankings, several classification tests were 
run. Here, Support Vector Machines (SVM) was selected 
given its better results in the MER field [4] and our prior 
experience [3]. To this end, John Platt's implementation of 
sequential minimal optimization (SMO) for training 
SVMs, provided by the Weka12 framework, was used with 
10 repetitions of 10-fold cross-validation. 

4. DISCUSSION 
This section discusses the outcomes of the experiments de-
scribed previously, regarding the dataset reduction, feature 
ranking and emotion classification13. 

4.1 Dataset Analysis 

Our original dataset contains 900 audio clips, balanced 
across quadrants (225 clips each) and genres. However, 
196 of these were not found in Spotify. The missing songs 
are spread across all quadrants, as shown in Figure 1, with 
Q2 (tense/anxious) affected the most (58 clips eliminated, 
now 167) and Q4 (calm/relaxed) on the other end of the 
spectrum (lost 37, now with 188). 

 

Figure 1. Distribution of the 704 clips across quadrants 
(Q0 are songs with neutral energy and/or valence). 

Spotify estimates both energy and valence (EV) of each 
song. These are the two dimensions that define Russell’s 
circumplex model of emotion [8]. In reality, energy is not 
exactly arousal, but serves as its surrogate. By transform-
ing them into quadrants we can understand song distribu-
tion across quadrants (Figure 1). As illustrated, Spotify 
seems skewed towards Q1, with 250 of 704 songs consid-
ered happy. On the other hand, only 128 end up in Q2 
(tense, anxious). 

                                                           
12 https://www.cs.waikato.ac.nz/ml/weka/ 

 

Figure 2. Songs according to Spotify’s EV values (col-
ored according to the original dataset annotations). 

To better grasp these differences, Figure 2 presents the 
704 songs placed in the Russell’s plane, colored according 
to the original annotations. A perfect scenario would be 
each color (original quadrant) contained inside a single 
plane quadrant (Spotify quadrant), which is far from ob-
served. Despite the lack of accuracy, this visualization un-
covers interesting tendencies. Namely, the energy metric 
is more accurate, since most songs originally tagged with 
Q1 and Q2 (red and green) are placed in the top half of the 
plot, while the remaining are in the opposite end. The same 
cannot be said about valence, since, for instance, many Q2 
songs (anxious/tense, in green) have positive valence, and 
Q4 songs (calm/relaxed, in purple) negative valence. 

 

Figure 3. Original quadrants (annotations) vs. Spotify en-
ergy-valence based quadrants confusion matrix (each tile 
showing counts, overall percentage, row percentage and 
column percentage). 

13 Data available at: https://github.com/renatopanda/SMC2021 
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These differences were somewhat expected given that: i. 
Spotify values (i.e., energy and valence) are computed 
from the audio signal, while the original dataset was vali-
dated by humans, and ii. predicting valence from audio is 
an harder problem, still to be fully addressed in MER [3]. 
In other words, it demonstrates that existing audio feature 
extractors still need to be further studied and improved. 

To conclude, Figure 3 provides a more analytical view 
of this. Here we can see that Q1 is where we find more 
agreement (125 clips), while Q2 songs (originally 167) are 
mostly spread by Spotify between Q1 (75) and Q2 (81). A 
similar situation happens with Q3 and Q4, with the major-
ity of these placed in Q3 by Spotify (93 + 80). 

4.2 Standard Features’ Ranking and Classification 

The next step was to understand how the elimination of 
songs from the dataset (196 songs dropped) influenced 
both features’ relevance and emotion classification. 

 

Figure 4. Classification results for 900 vs. 704 instances 
using the obtained feature ranking. 

To this end we used the Weka ReliefF implementation to 
re-rank the top 100 features obtained previously using the 
704 songs subset. Given the nature of ReliefF, several dif-
ferences in the feature order were expected, and several 
reasons contribute to this. First, one-fifth of the songs were 
removed and ReliefF estimates the weight of each feature 
based on the Euclidean distance between features of ran-
domly picked instances’ assigned to distinct classes. Re-
moving instances from the experiment will lead to differ-
ent distances and thus different weights. Moreover, a dif-
ferent number of instances or even the seed (random) will 
lead to slight weight variations and ranking fluctuations 
(e.g., the top 10 features of each ranking might be differ-

                                                           
14https://blog.echonest.com/post/53511313353/new-audio-attribute-
acousticness 

ent). Thus, the new ranking is useful to assess how the clas-
sification changes by using the best N features (e.g., top 10 
to top 100), more than to assess which feature comes first. 

Using this ranking, quadrants classification for both da-
tasets (900 and 704) was tested using SVMs and is shown 
in Figure 4 (C = 8, γ = 0.08 for 704, C = 7, γ = 0.1 for 900). 

As illustrated, the results are very close between the two 
sets, with the highest F1-measures separated by less than 
1% (75.6% to 74.7%). The slightly lower result of 704 sub-
set (with 21.8% fewer songs) might be indicative of the 
impact that the size of the dataset has in machine learning 
problems – the more quality data available, the better, 
more generalizable and robust are the identified patterns. 

4.3 Spotify API Features’ Ranking and Classification 

Although only 12 features are provided, these are of much 
higher level than most features found in audio frameworks. 
As an example, Spotify’s danceability is derived by com-
bining information about tempo, rhythm, beat strength and 
regularity. Results of the ReliefF algorithm in our dataset 
(704) and the 12 features, in Figure 5, sheds some light on 
their contribution to discriminate across quadrants. 

 

Figure 5. Influence of Spotify API features to separate 
songs among Russell’s quadrants, according to ReliefF. 

As expected, energy and valence audio features have the 
highest weight to the problem. These features are highly 
correlated with the quadrants, since they define the Rus-
sell’s plane. If the algorithms that extract them from audio 
signals were perfect, they would probably be enough. Still, 
using only these in classification experiments achieves an 
F1-measure of 47.8%. In addition, the acousticness feature 
was also highly rated and thus required further inspection, 
as illustrated in Figure 6. Originally developed by The 
Echo Nest14, it distinguishes between natural acoustic 
sounds (e.g., acoustic guitar, piano, unprocessed human 
voice – high acousticness) and mostly electric sounds (e.g., 
electric guitars, synthesizers, auto-tuned vocals – low). 

Further analysis of the acousticness feature in our dataset 
uncovered two interesting facts. First, low acousticness, 
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indicating mostly electric sounds, is more prevalent in Q1 
(i.e., happy) and especially Q2 (i.e., tense/angry) songs 
(Figure 6-A). Secondly and as a result of the first, a high 
(negative) correlation was found between energy and 
acousticness (Figure 6-B). 

Still regarding feature weights, on the other end of the 
spectrum we have features such as danceability, time sig-
nature, tempo and mode. While a lower weight for time 
signature (and also key) is not a surprise, one would expect 
features like mode [6] and danceability to have a different 
result. After all, major modes are usually associated with 
happiness and, intuitively, one would expect danceability 
to be too. In this case, it may happen that the algorithms 
used are not robust enough yet or caused by specificities 
of this dataset. In addition, it may be that these features 
work better in the presence of others currently missing. 

 

Figure 6. Distribution of acousticness values per quadrant 
(A), and correlation between energy and acousticness (B). 

 

Figure 7. Classification results using the 12 Spotify API 
features (our top10 features added for comparison). 

The classification results obtained using the 12 Spotify 
API features is presented in Figure 7, with the results from 
our best 10 features added for comparison. One notable 
fact is that with only one feature – energy, the classifier is 
able to correctly identify more than half of the songs, 
achieving an F1-measure of 44.2% (and accuracy of 
50.9%), while our best feature is way behind (32.2%). 

However, given the abovementioned findings (i.e., less 
relevant features and high correlations), the classification 
results using Spotify API features scarcely increase from 
the fourth to the twelfth feature. 

4.4 Combining both sets of Features 

After testing each set of features individually – Spotify 
API and ours, the logical step was to verify if the combi-
nation of both would improve the classification results. To 
this end, we combined both into a 112 features set and ap-
plied the ReliefF feature selection algorithm to assess the 
weight of each feature to the problem. Remarkably, four 
out of the 12 Spotify API features were among the top 5, 
while another four were placed in the bottom 5, as illus-
trated in Figure 8. The remaining were ranked in positions 
52nd, 74th, 92nd, and 99th. 

 

Figure 8. Best and worst rated features according to Re-
liefF (Spotify API features in bold). 

In addition, the top 10 features included three features 
related to expressive techniques, two related to musical 
texture (proposed by us in [3]) and one to melody (from 
PsySound3). As expected, the three most important 
Spotify API features were again energy, valence and 
acousticness. Though, this time their order was reversed 
and each had slightly different weights. Moreover, mode 
was ranked fifth amongst the 112 features, obtaining a 
much higher weight than previously obtained when only 
12 features were ranked (in Section 4.3). 

To understand these differences we need to remember 
that ReliefF is a filter model – uses statistics extracted from 
the training data (i.e., Euclidean distance) and correlates 
them with the associated labels (i.e., quadrants). In brief, 
in each iteration a random instance (song) is selected and 
the two songs closer to it (one for each class) are also se-
lected. This is based on the Euclidean distance between 
feature vectors, as if they were placed in an N-dimensional 
space. Then, the weight of each feature is readjusted using 
the differences between the feature values of the random 
song and the other two (of same and different class). This 
has several implications, two of those are: 1) a different 
number of features (dimensions) will influence the dis-
tance between instances and 2) the random selection of 
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songs to compute the weights (non-exhaustive) will lead to 
slight variations in feature weights over each run of the al-
gorithm (with different random seeds). Both points shed 
some light on the slight order and weight differences, and 
might explain the increase in the importance of mode. 
Since mode is binary (major or minor), its relevance was 
lower when combined with other 11 features – especially 
considering that only 3 were of high relevance. Once the 
dimensionality increases and the number of relevant fea-
tures increases, its own (i.e., mode) discrimination power 
is increased (interaction between features). 

The next step was to use the combined ranking and re-
peat the classification experiments with SVMs (C = 0.07, 
γ = 4). As summarized in Table 1, no substantial differ-
ences were observed between results of our set of 100 fea-
tures and the combined set of 112 features. Here, the more 
noteworthy were: 1) the higher F1-measure from Spotify 
API when only one feature is used; 2) the fact that with 
few features (less than 10), the combined set performs 
slightly better; and 3) the convergence in results as the 
amount of features increases (illustrated in Figure 9). 

No Features Spotify Ours Combined 
1 44.2% 32.2% 31.4% 
5 56.2% 57.3% 59.6% 
10 56.1% 64.2% 65.3% 
20 - 68.9% 68.9% 
50 - 71.9% 71.8% 
Best result 
(# features) 

58.5% 
(11) 

74.7% 
(100) 

74.2% 
(100) 

Table 1. Summary of the emotion classification results. 

Figure 9. Classification results for each feature set. 

The first is a consequence of the selected ranking algo-
rithm, since the same feature is available in both Spotify 
and Combined sets (energy) but was only selected as first 
in the former. Although much more resource-intensive, 
one approach to mitigate this is by combining ReliefF (fil-
ter model type of feature selection) with a wrapper model 
(e.g., forward feature selection). Still, this is dissipated 

when more features are added. When the number of fea-
tures in use increases (e.g., 5 to 10), we see the advantages 
of combining both sets. 

As the number of features in use increases, the perfor-
mance differences become negligible. One possible expla-
nation is that the combination of some of the (lower-level) 
features in our top 100 may be able to capture similar emo-
tional cues to the few higher-level proposed by Spotify 
API and thus their relevance drops in the combined set. As 
an example, the most relevant Spotify API feature (energy) 
combines dynamic range, perceived loudness, timbre, on-
set rate, and general entropy. Such characteristics were 
previously extracted separately to obtain our top 100 fea-
ture set [3]. 

5. CONCLUSIONS
This paper offered an analysis on the suitability of the 
Spotify API audio features to the music emotion recogni-
tion field. As part of this, its features were compared to 
audio features previously proposed in the scientific litera-
ture that are known to be emotionally-relevant. 

From the experiments, several conclusions were drawn. 
First, three of the 12 Spotify API features were identified 
as highly relevant to emotion classification – energy, va-
lence and acousticness. While the first 2 were expected, 
given their relation to the Russell’s plane, acousticness – 
which was found to be highly correlated with energy, was 
somewhat new. Moreover, tense/anxious songs were al-
most exclusively low on acousticness (i.e., non-natural, 
electric sounds), information that complements our previ-
ous survey on emotionally-relevant audio features [6]. 

Secondly, the 12 features provided by the Spotify API 
are subpar to the problem in analysis, achieving only 
58.5% F1-measure, when compared to the state-of-the-art 
(74.7%). While Spotify’s goal is music recommendation 
and user taste modeling, we believe that the addition of 
emotionally-relevant audio features may improve the sys-
tem, after all some argue that music’s primary function is 
to express emotions [2]. Such idea might even be already 
in use, but just not exposed in their public API. 

Finally, we believe that novel audio feature extractors, 
are needed to improve this as well as other MIR problems, 
since most MIR solutions are generic, “without relying on 
musically meaningful features” [18]. These novel features 
should be higher-level (i.e., closer to human knowledge), 
providing ways to uncover interpretable rules between 
emotions and an handful of audio cues, after all that is sci-
ence’s main goal – to explain and understand. 
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ABSTRACT

Music emotion recognition is an important task in MIR
(Music Information Retrieval) research. Owing to factors
like the subjective nature of the task and the variation of
emotional cues between musical genres, there are still sig-
nificant challenges in developing reliable and generaliz-
able models. One important step towards better models
would be to understand what a model is actually learning
from the data and how the prediction for a particular input
is made. In previous work, we have shown how to de-
rive explanations of model predictions in terms of spectro-
gram image segments that connect to the high-level emo-
tion prediction via a layer of easily interpretable percep-
tual features. However, that scheme lacks intuitive mu-
sical comprehensibility at the spectrogram level. In the
present work, we bridge this gap by merging audioLIME –
a source-separation based explainer – with mid-level per-
ceptual features, thus forming an intuitive connection chain
between the input audio and the output emotion predic-
tions. We demonstrate the usefulness of this method by
applying it to debug a biased emotion prediction model.

1. INTRODUCTION

The quest for interpreting the inner workings of “black-
box” models and explaining their predictions has led to
many recent advances in the area of explainable AI and
is becoming an increasingly important staple of all AI sub-
fields. Not only do model explanations help in enhanc-
ing trust in the model in applications where its predictions
are critical decisions like creditworthiness or medical di-
agnosis, but they can also often reveal telling signs of al-
gorithmic bias [1, 2]. While algorithmic decisions in the
field of MIR are not as life-critical as medical diagnosis,
in today’s era of music streaming and recommendations,
they can have far-reaching effects on diverse audiences,
creators, and artists alike. For instance, machine-learning-
based music recommender systems have been shown to ex-
hibit severe biases towards or against certain user groups
[3]. Interpretable explanations of these models or their pre-
dictions would be extremely helpful for identifying such

Copyright: c○ 2021 the Authors. This is an open-access article distributed un-
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biases.
Previous work on interpretability in MIR has dealt with

tasks such as music tagging using self-attention [4] and
transcription using invertible neural networks [5], and
post-hoc explanations for music content analysis have
been used to understand what a genre classifier [6] or a
singing voice detector [7–11] have learnt. More recently,
audioLIME has been proposed [12, 13] and has shown
promise in explaining tagging models [14] as well as rec-
ommendation models [15].

However, explanations of music emotion recognition sys-
tems have received relatively less attention notwithstand-
ing the importance of this task in the areas of musical anal-
ysis and recommendation. [16] used models trained with
different combinations of sound sources to deduce the im-
portance of each source to emotion predictions. We pre-
viously proposed using an intermediate layer of mid-level
perceptual features [17] to explain music emotion recog-
nition models through a linear connection between the in-
termediate and final layers [18]. We followed this up with
a two-step explanation approach [19] to further explain the
predictions in the mid-level layer using components from
the input spectrogram. This two-level scheme used LIME
(Local Interpretable Model-agnostic Explanations) [13]
to construct explanations for the mid-level predictions in
terms of specific patches of the input spectrogram (which
were obtained via image segmentation). While this gave
us the regions in the spectrogram contributing most to a
particular prediction, these regions did not hold any mu-
sical meaning by themselves. As a result, it is difficult to
comprehend these explanations in terms of meaningful or
intuitive concepts.

In this work, we bridge this gap by merging the
audioLIME method, which uses sound sources as explana-
tory features, with the approach of mid-level features, to
obtain comprehensible explanations from the input audio
as well as from the perceptual layer. It thus forms an in-
tuitive connection of hierarchical explanations from low-
level constituent sources of audio to the high-level emotion
predictions through the intermediary mid-level layer, all of
which have a musical interpretation.

We believe that explainability is particularly important
for developing better music emotion recognition algo-
rithms since it is often difficult to identify misclassifica-
tions and biases in this task because of its inherent sub-
jectivity and inter-annotator variability. As an example of
real-life application of our method in understanding the po-
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tential cause of bias in an emotion model, we demonstrate
how a model that has seen few examples of a genre during
training results in a pattern of errors on the test set that con-
tains examples of this genre. We trace this pattern of errors
back to a particular mid-level feature and this feature to a
particular source in the input. Doing so allows us to pre-
dict how the model would change when retrained with a
balanced training set. We can then qualitatively verify that
the retrained model has in fact changed in the way that we
expected from our explanations.

2. TWO-LEVEL EXPLANATIONS

Our proposed two-level system will explain emotion pre-
dictions by first tracing them back to the most relevant mid-
level features and in a second step explain the intermediate
mid-level layer via audio sources. We will first describe
each of the parts separately from the lowest level (audio
sources) to the highest level (emotion predictions) and then
put together all the parts in Section 2.3.

2.1 Explaining via Audio Sources: audioLIME

In order to explain individual mid-level predictions we
make use of audioLIME, a recently introduced approach
based on LIME [13] for interpreting models in MIR [12,
14]. LIME uses simplified inputs based on a set of hu-
man interpretable features (depending on the domain of
the task – e.g., superpixels for images) to train a simpler
explanation model 𝑔 in order to explain a more complex,
potentially deep model 𝑓 . Previous approaches based on
LIME have used time-, frequency-, or time-frequency seg-
ments [7], or segments computed by an image segmen-
tation algorithm [19]. audioLIME introduced a new type
of interpretable features: sound sources estimated by a
music source separation algorithm. In other words, the
audioLIME explanation for a given prediction will be in
the form of particular sound sources (and possibly spe-
cific temporal segments – which we do not use right now),
telling us that it is some sonic aspects of these sources that
seem to be influential. In our case, the source separator
is the pretrained music source separator spleeter [20], thus
the explanatory sound sources will be (what the source sep-
arator believes are) individual instruments.

2.2 Explaining via Mid-level Perceptual Features

Mid-level features are perceptual qualities or descriptors
that emerge from low-level musical building blocks such
as timbre, beat structure, harmony, etc. They are more sub-
jective than the low-level features, thus difficult to model
using hand-crafted feature extractors, but musically dis-
cernible enough to have many people reach a high agree-
ment in annotations. Examples include qualities such
as perceived melodiousness or rhythmic complexity [17].
They, therefore, form a suitable choice for an intermediary
to higher-level concepts like emotion.

This idea was first used in [18] to explain emotion pre-
dictions. We use a similar approach here, but we use
the more recently introduced receptive-field regularized
ResNets [21, 22] to model the emotions and the mid-level

features. In addition, we learn the emotions and mid-level
features from two separate datasets using multi-task learn-
ing, i.e., jointly learn to predict mid-level features and
high-level emotions, allowing us to be flexible with our
train and test domains.

The mid-level layer is the penultimate layer of the model,
with a linear transformation between it and the final (emo-
tion) layer, thus making the connection interpretable. It is
learnt end-to-end from audio spectrograms by optimizing
on the combined loss from the emotion and mid-level lay-
ers.

Emotion predictions can be interpreted by looking at ef-
fects plots, which are visual representations of the contri-
bution of each mid-level feature to the final emotion pre-
diction, calculated as the product of the feature value and
the weight joining it to the emotion. These indicate the rel-
ative influence of the individual features on the final pre-
diction.

2.3 Putting it All Together: Intuitive Two-level
Explanations

For a given prediction, we then work backwards. First, we
obtain the mid-level explanation of an emotion by comput-
ing the effects. The larger the effect of a mid-level feature,
the larger is the contribution of that feature to the emotion
prediction. Next, we compute the audioLIME explanations
for the mid-level feature with the largest effect (we can in
principle compute audioLIME explanations for all features
to obtain a more diverse explanation, depending on the ap-
plication). Given these two explanations, we can describe
a prediction as being arrived at by the model due to the
explanatory mid-level feature, which is in turn most influ-
enced by the input component given by audioLIME.

3. EXPERIMENTAL SETUP

For our analysis with emotion explanations, we first need
to train the “explainable” models, which have the penulti-
mate mid-level layer connecting linearly to the final emo-
tion outputs. This section describes the datasets and the
training procedure for such models.

3.1 Datasets

For our experiments we are using three different datasets:

3.1.1 Mid-level Perceptual Features Dataset

The Mid-level Perceptual Features Dataset introduced
in [17] consists of 5000 song snippets with annotations be-
tween 1 and 10 for the mid-level descriptors melodious-
ness, articulation, rhythmic complexity, rhythmic stability,
dissonance, tonal stability, and modality (called “minor-
ness” here). We use this dataset to train the intermediate
layer of our emotion model.

3.1.2 DEAM: Database for Emotional Analysis in Music

The DEAM dataset [23] is a dataset of dynamic and static
valence and arousal annotations. It contains 1,802 songs
(58 full-length songs and 1,744 excerpts of 45 seconds)
from a variety of Western popular music genres (rock, pop,
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Arousal Valence
RMSE R2 RMSE R2

P(P - bl) 0.23 0.61 0.25 0.41
P(P) 0.25 ± 0.03 0.60 ± 0.10 0.31 ± 0.04 0.40 ± 0.14
D(P) 0.27 ± 0.01 0.50 ± 0.03 0.33 ± 0.00 0.30 ± 0.02
D(D) 0.26 ± 0.01 0.49 ± 0.02 0.22 ± 0.01 0.51 ± 0.04
D+P(P) 0.23 ± 0.01 0.65 ± 0.02 0.28 ± 0.00 0.50 ± 0.02
D+P(D) 0.26 ± 0.01 0.50 ± 0.03 0.23 ± 0.01 0.48 ± 0.02

Table 1: Emotion prediction performance with our “explain-
able” model trained and tested on difference datasets – P:
PMEmo, D: DEAM. The dataset inside the parentheses is the test
dataset. The top row is the baseline performance from [16].

electronic, country, jazz, etc). In our experiments, we use
the static emotion annotations, which are continuous val-
ues between 0 and 10.

3.1.3 PMEmo: Popular Music with Emotional
Annotation

The PMEmo dataset [24] consists of 794 chorus clips from
three different well-known music charts. The songs were
annotated by 457 annotators with valence and arousal an-
notations separately for dynamic and static. In our exper-
iments, we use static labels, which are continuous values
between 0 and 1.

3.2 Model Training

The mid-level and emotion model is trained end-to-end us-
ing audio spectrograms as inputs and optimizing on the
combined loss from the mid-level and emotion layers. The
batch size is 16 and contains 8 samples from the Mid-
level dataset and 8 samples from either the DEAM or the
PMEmo dataset. The loss function is the mean squared er-
ror. The learning rate is 10−3 with cosine annealing, and
we perform early stopping on a validation set as regular-
ization. We use the Adam optimizer [25].

The inputs are log-filtered spectrograms (149 bands) of
40-second audio clips peak normalized and sampled at
22.05 kHz with a window size of 2048 samples and a hop
length of 704 samples, resulting in 149×1252-sized ten-
sors. If a clip is longer than 40 seconds, we take a random
snippet, and if it is shorter, it is looped to 40 seconds.

The labels are scaled to the range [−1, 1] for all three
datasets. Therefore, an RMSE of 0.26 would represent
13% error. We split the train and test sets such that they
have mutually exclusive sets of artists. A summary of the
emotion prediction performance can be found in Table 1.

4. EVALUATION OF EXPLANATIONS

Essentially, there are three targets for empirical evaluation:
the two individual components of our two-level explana-
tion framework, and the final composite explanations pro-
duced by the model. Regarding the former, the higher level
– explanations of emotion predictions in terms of mid-level
perceptual features – has already been discussed at length
in our previous paper [18]. We showed how effects plots
can give insight into the relative importance of various
mid-level qualities. The lower level – using audioLIME to
explain mid-level feature predictions via audio sources – is

a new concept, and the experiments in the following sec-
tion are intended to validate it. Empirical evidence for the
usefulness of the complete, two-level explanation model,
finally, will be presented in the form of a study, in Section 5
below, where we demonstrate how these explanations can
help us debug a biased prediction model by gaining insight
into what the sources of its problems are.

4.1 Explaining Mid-level Features via Sound Sources

Evaluating the quality of explanations is a hard task since
there is no consensus on what makes a good explanation,
with a variety of desired aims and properties proposed in
literature [26–28]). We build our evaluation of audioLIME
explanations for the mid-level layer on two metrics, (a) fi-
delity as proposed by Ribeiro et al. along with LIME [13]
and, (b) complexity, a recently proposed metric for feature-
based model explanations [26].

Fidelity measures how well the local model 𝑔 (the ex-
plainer) approximates the global model 𝑓 (the model up to
the mid-level layer in our case) [13] and is computed us-
ing the coefficient of determination between the local and
global model’s predictions as in the original LIME imple-
mentation 1 .

In addition to high fidelity, low complexity is desired.
The most complex explanation would be the one where all
𝑑 features get the same attribution (i.e., all weights 𝑔(𝑓, 𝑥)𝑖
of the linear explanation model 𝑔 are the same). The sim-
plest explanation concentrates all attribution on one fea-
ture. To measure complexity, a probability distribution 𝑃𝑔

is defined:

𝑃𝑔(𝑖) =
|𝑔(𝑓, 𝑥)𝑖|∑︀
𝑗∈[𝑑] 𝑔(𝑓, 𝑥)𝑗

(1)

Complexity is then defined as the entropy of this distri-
bution [26]. We compare the complexity per dataset with a
random baseline, which is obtained by creating “random”
explanations with feature weights drawn from a uniform
distribution.

For the analysis, we compute predictions and explana-
tions for all test examples and calculate the above men-
tioned metrics. The results for one mid-level feature (we
picked “rhythmic stability” as it is used later on as an ex-
ample) are summarized in Figures 1 and 2. We can see in
Figure 1a that the fidelity score (coefficient of determina-
tion) is relatively high across all combinations of models
and test sets. The median score is 0.86 across all explana-
tions (including all mid-level features), the 25%-quantile
is at 0.78. This means that for 50% and 75% of the ex-
planations more than 86%, and 78%, respectively, of the
variation in the dependent variable (mid-level prediction)
can be predicted using the independent variables (instru-
ment sources).

Figure 1b shows the computed complexities, compared to
a random baseline. Most explanations are far less complex
than the random baseline.

The results shown in the previous figures suggested a
relationship between the fidelity and complexity scores.

1 https://github.com/marcotcr/lime/
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(a) Fidelity (higher is better). (b) Complexity (lower is better).

Figure 1: Figure 1a shows the computed fidelity (coefficient of determination 𝑅2 between the predictions by the global model 𝑓 and
the local model 𝑔) scores for the evaluated explanations. Figure 1b shows the complexity (entropy of a distribution over the feature
attribution weights) scores for the evaluated explanations. The green region shows the standard deviation of complexities for 1000
random explanations, with the black line being the mean.

Figure 2: A more detailed view on the relationship between the
fidelity score and complexity for the predictions of “rhythmic sta-
bility” for a model trained on both datasets. The color indicates
the test set.

Therefore we visualized the two metrics for all explana-
tions computed for “rhythmic stability” for a model trained
on the combined data sets in Figure 2. Although they seem
related on a dataset level, the metrics do not look related
when analyzed for each explanation separately, suggesting
that indeed both are needed.

5. MODEL DEBUGGING

A practical use case of our explanation scheme is demon-
strated in this section. We use the two-level explanations
to understand why an improperly trained model might be
overestimating the valence predictions for one particular
genre.

5.1 Setup

First, we use a pre-trained tagger [29] to predict genre tags
for all the tracks in the three datasets mentioned in Sec-
tion 3.1, since we do not have genre metadata for these

Figure 3: Fraction of hiphop songs in quantiles vs the mean
valence error of each quantile over PMEmo dataset (with model
trained on DEAM)

datasets. This is only done in order to obtain an estimate of
the genre-dependence of the emotion predictions later on.
We then train two explainable models – one on the DEAM
dataset, and one on the combined DEAM and PMEmo
dataset. The test set is a fixed but randomly chosen sub-
set of the PMEmo dataset (with a mutually exclusive set of
artists from the training set).

5.2 Overestimated Valence for Hiphop

When we take the model trained only on DEAM and use
it to predict arousal and valence for the entire PMEmo
dataset, we observe that the error in valence shows a pat-
tern – overestimations of valence primarily occur in hiphop
songs, as shown in Figure 3.

We can reason about relatively poor performance for
hiphop songs based on the discrepancy between the train-
ing and testing sets in terms of genre composition. In Fig-
ure 5, we can see that PMEmo has a large percentage of
hiphop songs whereas both DEAM and Mid-level datasets
have a small percentage. Since our model has not seen
enough hiphop songs during training, it is to be expected
that it does not perform well when it encounters hiphop
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(a) Trained on DEAM (b) Trained on PMEmo+DEAM

Figure 4: Relative effects of the mid-level features for valence prediction for two models trained on different datasets, but tested on the
same fixed subset of the PMEmo dataset.

during test. However, a question that is pertinent next is –
what is it about hiphop songs that makes our model over-
estimate their valence?

Figure 5: Compositions of datasets as fraction of songs tagged
"hiphop" by a pre-trained auto-tagging model [29]

5.3 Explaining Valence Overestimations Using
Mid-level Features

To answer this question, we first seek to understand which
of the mid-level qualities can be attributed most to high va-
lence predictions. This is the first level of our explanation
system. We find these attributions by computing the ef-
fects of each mid-level feature on the valence predictions.
The effect of a feature is simply the value of that feature
multiplied by the weight of the linear connection between
it and the target node. In our case, the target is valence
and there are seven mid-level features that affect it. We are
only interested in relative contribution of each feature, and
so we divide each effect by the sum of the absolute values
of the effects of all features and take the average across all
test songs tagged “hiphop”.

We observe that rhythmic stability has the maximum pos-
itive relative effect on the prediction of valence. Therefore,
we select rhythmic stability for the next step of explana-
tion.

5.4 Explaining Rhythmic Stability Using Sources

Once we have selected a mid-level feature as having the
most positive relative effect on the valence, we would like

to understand what musical constituents in the input can
be attributed to positive contribution to that feature. To do
this, we take the help of audioLIME and generate source
based explanations for rhythmic stability. The sources
available in the current implementation of audioLIME 2

are vocals, drums, bass, piano, and other.
We find that vocals are a major contributing source for

the rhythmic stability predictions for the hiphop songs.
For songs tagged as other genres, contributing sources are
more distributed.

5.5 Re-training the Model with Target Data

Bringing together our two types of explanations, we can
reason that the high valence predictions for hiphop songs
is due to overestimation of rhythmic stability, which, in
this case, can be attributed to the vocals. While there
is a lot of diversity in the style of rapping (the form of
vocal delivery predominant in hiphop), it has been noted
that rappers typically use stressed syllables and vocal on-
sets to match the vocals with the underlying rhythmic
pulse [30, 31]. These rhythmic characteristics of vocal de-
livery (that constitutes “flow”, and may add metrical lay-
ers on top of the beat) contribute strongly to the rhythmic
feel of a song. The positive or negative emotion of hiphop
songs is mostly contained in the lyrics – the style of vo-
cal performance does not necessarily express or correlate
with this aspect of emotion. Therefore, it makes sense that
a model which has seen few examples of hiphop during
training should wrongly associate the prominent rhythmic
vocals of hiphop to high rhythmic stability and in turn high
valence. A model that has been trained with hiphop songs
included, we expect, would place less importance on rhyth-
mic stability for the prediction of valence, even if the vo-
cals might still contribute significantly to rhythmic stabil-
ity. Thus, we expect the relative effect of rhythmic stability
for valence to decrease in such a model.

2 https://github.com/CPJKU/audioLIME
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Figure 6: Mean valence overestimations for two models trained
on different datasets, but tested on the same fixed subset of the
PMEmo dataset.

This is exactly what we observe on a model trained with
the combined PMEmo+DEAM dataset. The average rel-
ative effects are shown in Figure 4b and we can see that
the relative effect of rhythmic stability has decreased while
those of minorness, melody, and tonal stability have in-
creased. Thus, the model changed in a way that was in line
with what we expected from the analysis of our two-level
explanation method.

Looking at mean overestimations (Figure 6) in valence
for hiphop and other genres for models trained on DEAM
and PMEmo+DEAM shows that valence overestimations
of hiphop songs have decreased substantially, without neg-
atively affecting the predictions on other genres 3 .

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed a method to explain music emo-
tion models in an intuitive way using components from
low- and mid- levels of the hierarchy of musical concepts
by combining audioLIME, which uses input audio sources
as explanatory components, with intermediate layer based
explanations. We also demonstrated its potential as a tool
for model debugging and explaining model behaviour.

This points us towards exploring this method further and
getting more granular explanations as a way of improv-
ing the effectiveness of this system for MIR. An immedi-
ate next step that we are currently pursuing is to extend
audioLIME to provide explanations in the form of tem-
poral segments using semantic music segmentation, along
with the sound sources.

We are also looking at explaining emotion conveyed in
classical piano performances, which pose particular chal-
lenges – including the non-availability of training data,
where transfer learning of explanatory features becomes
necessary [32].

3 Code for reproducing model debugging experiments is available at
https://github.com/shreyanc/model_debugging
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ABSTRACT 
This paper reports results of a survey that was conducted 
to assess the use and efficacy of soundscapes composed 
for an DAB+ radio station and on demand audio App 
‘ABC-Kids listen’ provided by the Australian Broadcast-
ing Corporation (ABC).  The soundscapes were a series of 
previously composed pieces titled Sleep Through. 21 peo-
ple who had listened to one or more of the compositions 
completed the survey as part of a qualitative study of how 
music can aid sleep.  Results suggested very high overall 
efficacy, but also revealed applications to situations that 
did not involve aiding the parents and/or their infants to 
sleep.  These included using Sleep Through for pleasure, 
and for breast feeding.  Open-ended responses to the sur-
vey were organized into themes labelled: Relaxation (the 
most prevalent theme), Associations (often linked to the 
title and environments portrayed in the soundscape), Dis-
traction (strongly related to Relaxation), and Auditory 
Masking.  The theme labelled Habit (using Sleep Through 
to develop healthy sleeping habits) was also considered, 
but exhibited too great an overlap with other themes.  The 
themes were strongly connected with those found in the 
literature investigating the use of music for sleep by adults, 
and also supported the approach of the composer. The 
study was conducted in collaboration with the composer, 
with his intentions and responses to the study forming an 
integral part of the research.   

1. INTRODUCTION 
The creative process of composition can be a one-direc-
tional process, where a composer is charged with both cre-
ation and evaluation of the creative work [1].  This respon-
sibility means that feedback from audience, critics and 
other assessors can be seen as a final judgement on a piece.  
However, another approach is to collaborate with empiri-
cal researchers experienced in designing studies concerned 
with aesthetic perception.  For example, the American 
composer Roger Reynolds collaborated with several re-
searchers investigating the perception of his composition 

The Angel of Death, producing among other things a spe-
cial issue in the journal Music Perception [2, 3].  Several 
innovative developments in such projects see productive 
collaboration between creative and empirical researchers.  
It is in this rather novel tradition that we report a study on 
a series of compositions by an Australian composer (au-
thor AH) that was released to a global audience via Aus-
tralia’s national broadcaster and provider of online ser-
vices, the Australian Broadcasting Corporation (ABC). 

This paper reports the background to the piece, and the 
details and results of a survey completed by users of the 
ABC Kids listen App.  The present investigation particu-
larly focuses on an important issue in health and wellbeing, 
the matter of getting a ‘good night of sleep’, quality sleep 
having important health ramifications for both adults [4]  
and infants [5].  Furthermore, the ABC had a target audi-
ence for this project of an important but rarely considered 
demographic – young children and their carers –and the 
challenges of getting such a family unit to Sleep Through 
the night, using specially created soundscapes.  The use of 
soundscapes to aid sleep is not new [6], but the close col-
laboration between music psychology and composer 
promises new insights.  The paper commences with the 
composer’s perspective of the compositions, followed by 
a survey gathering usage and efficacy information from an 
online audience.  The paper then concludes by reconciling 
the findings of the survey with the composer’s perspec-
tives. 

2. COMPOSER PERSPECTIVE 
From its inception, the ABC Kids Listen service adopted a 
child-centered approach, focusing content directly to the 
young listener without commercial interruption. When 
commissioned to provide music to support this audience, 
the consideration was one of how to use broadcast audio 
to co-create, with the intended listeners, the experience of 
an acoustic space that was conducive to and supportive of 
listening, both prior to and during sleep. 

In the span of 3 years, approaches evolved over the three  
iterations of the projects; however, four foundational ap-
proaches remained important throughout: (a) Auditory 
Masking, (b) Relaxation through Entrainment (c) Acoustic 
space and Incorporation, and (d) Association and Famili-
arity.  

Auditory masking was important to exclude sudden un-
wanted intrusions that may impact sleep [7]. White noise 
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is particularly efficacious for this, and although used in 
maternity wards for this reason, it was deemed unsuitable 
for broadcast to a wider public and potentially disruptive 
for co-listening with adult carers. Instead, field recordings 
using naturally occurring noise (such as waterfalls, streams 
and wind) were adopted, to align with hypothesised lis-
tener expectations for relaxing acoustic environments. 
These were often accompanied with stacked harmonics 
produced by synthesis and reflectionless reverberation to 
further fill the frequency spectrum.  

To support a drift into sleep, each of the pieces followed 
a philosophy of repetition with variation, with the intention 
of producing a sound event that evokes the experience of 
‘everyday’as opposed to ‘musical’listening  [8], to fa-
cilitate the experience of inhabiting a conducive acoustic 
space. The pieces unfolded gradually, with a foundation of 
simple, repetitive and slow-moving harmonic structures. 
Complex melodies were avoided, and expectations of 
rapid change were minimized. However, random seeding 
and generative algorithms were used to produce intricate 
movements in the smaller details throughout the earlier 
stages of each piece, in order to give active attention to 
something to latch onto. This gradually shifted into a sim-
pler sustained structure towards the middle of the work and 
returned (to a lesser extent) towards the end, to avoid dis-
ruption if the piece was played in a recurring loop. 

Drawing inspiration from Erik Satie’s project of musique 
d’ameublement [9], these pieces aimed to augment acous-
tic space by making it more comfortable for the activities 
of the listeners. However, given the centrality of early 
childhood development in ABC Kids listen, the long-form 
broadcast (or on-demand) without interruption also pro-
vided an opportunity to introduce the young listener to 
complex natural soundscapes and textural variation. These 
were included, working with the hypothesis thatparticu-
larly in hypnogogic statesexposure to these soundscapes 
may enrich early relationship to sound [10].  

In the title for each piece, the short accompanying text 
on the website (written by the composer) and the sounds 
used, these pieces drew on ecological (relationship be-
tween humans and the environment) rather than cultural 
associations (human interactions), with spoken framing 
and associations with music found in waking life deliber-
ately avoided. This was based on the intention that these 
pieces could be inhabited as unique acoustic spaces asso-
ciated with sleep and relaxation. Some pieces (particularly 
‘Home’) used aesthetic choices based on an understanding 
of the acoustics of pre-birth experience, in order to encour-
age associations with safety and closeness. 

Of course, the intentions of the composer become largely 
irrelevant once the works are disseminated, unless there is 
a reciprocal loop between composer and listener as co-cre-
ators in the production of the listening experience. Susini, 
Houix and Misdariis [11] propose a relationship between 
sound creation and research in auditory perception 
wherein sound design is informed by perception research 
through a 3-step iterative process of analysing, creating 
and testing. This occurs through the co-contribution of 
stakeholders:  ‘researchers’, ‘composers’ and ‘users’. The 
current study is useful insofar as it serves to explore these 

compositional premises through a survey into audience re-
ception. By doing so, it opens the ongoing development of 
the Sleep Through series into a wider conversation be-
tween stakeholders. 

3. METHOD 
A qualitative survey was applied to explore how Sleep 
through was used, and to gather information about its effi-
cacy from the child’s parents and/or caregivers. 

3.1 Survey design 

An online survey using Qualtrics (www.qualtrics.com) 
was developed to collect data for this research.  There were 
8 questions in total, with the first 3 being open-ended ques-
tions as to why participants choose to listen Sleep Through 
music, and were subjected to thematic analysis. Questions 
4 to 7 investigated what makes these nature-based sound-
scapes effective or otherwise in supporting sleep. The 
wording of the questions are shown in Table 1: 
 

 Question text / response options 
Q1 
Open-
ended 
question 

Under what circumstances are you or 
your child listening? 

Q2 
Open-
ended 
question 

What are your aims in listening to Sleep 
Through, and what works and what 
doesn’t work for you or your child? 

Q3 
Open-
ended 
question 

Which compositions in particular did you 
use/listen to the most and why? 

Q4 
Multiple 
choice  

What musical aspect did you think was 
effective listening to the Sleep Through 
compositions for you or your child?  

• Use of low-pitched sounds. 
• Use of high-pitched sounds. 
• Use of white noise. 
• Use of nature sounds. 
• Use of regular beating/pulsing. 
• Use of irregular beating/pulsing. 

[see Figure 2 for answer options.] 
Q5 
Rating 
Scale 

How often have you or your child lis-
tened to or used Sleep Through? 

Q6 
Rating 
Scale 

On average, for how long do you or your 
child listen to Sleep Through composi-
tions? 

Q7 
Rating 
Scale 

How effective were the compositions to 
you or your child? Please select the best 
answer possible. 

Q8 
Open-
ended 
question 

If you would like to add any further in-
formation, please do so here. 

Table 1.  Survey question response types and wording 
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3.2 Stimuli (Sleep Through) 

As indicated in section 2, Sleep Through is a program on 
ABC Kids Listen (https://www.abc.net.au/kidslisten/) that 
is designed to help infants Sleep Throughout the night. At 
the time of the study, there were 18 different soundscapes, 
all of which were composed by author AH.  

The Sleep Through soundscape tracks are laid out in 
blocks, with an image and a short description shown cor-
responding to the title of the soundscape track (see Figure 
1). Participants chose their soundscapes, and streamed or 
download the composition in their own time. 
 

 
 
Figure 1. Hulbert’s (2020) Sleep Through soundscape lay-
out in: https://www.abc.net.au/kidslisten/sleep-through/.  
Note that the list shown in the Figure is a sample of the 
available soundscapes.  See Figure 4 for a longer listing of 
the soundscape titles.  

3.3 Participants and Procedure 

Participants were assumed to have listened to the ABC 
Kids listen Sleep Through soundscapes prior to taking the 
survey. A survey link was distributed through social me-
dia; gaining attention from the ABC Kids followers (either 
for the child or their care-givers). Participants were able to 
listen to the stimuli for as long as they wanted. Further-
more,  participants needed to provide consent for their par-
ticipation in the survey and those wanting to discontinue 
had the right to withdraw at any time. After two months of 
gathering participants, the survey was brought to a halt. 
Forty-four participants commenced the survey, with 21 
participants completing the entire survey.  The analysis of 
results examines completed responses only. 
 

4. SURVEY RESULTS AND DISCUSSION 

4.1 General Usage and Effectiveness of Sleep Through 

76% of the participants used Sleep Through more than 8 
times, with 52% of those using it for more than an hour 
and/or on repeat. All participants gave one of the two high-
est ratings regarding the effectiveness of Sleep Through 
(Question 7): 60% found Sleep Through to be quite effec-
tive and 40% of people found Sleep Through to be very 
effective. In terms of the effectiveness of previously inves-
tigated musical characteristics regarding to Question 4, 
[12-14] Figure 2 shows the graph of the results.  Here par-
ticipants most frequently reported low-pitched and nature 
sounds as effective characteristics of Sleep Through, with 
high pitched and irregular beats least effective.  This is 
consistent with the analysis of music characteristics used 
to aid sleep by young adults [15] and is discussed further 
in section 4.2.5. 
 

 
Figure 2. Distribution of answers to Question 4. What mu-
sical aspect did you think was effective listening to the 
Sleep Through compositions for you or your child? 

4.2 Themes 

NVivo, a qualitative data analysis software was used to iad 
with the organization of a thematic analysis of participant 
responses taken from the Qualtrics survey in categorizing 
certain key words or synonyms to appropriate themes.  
Several ways of organising the data according to theme 
groups were considered, and were presented as theme 
maps.  We discuss the two most convincing theme maps.  
Themes were identified using a directed content analysis 
approach [16]. 

Several themes identified were based on research by 
Dickson and Schubert [7], Mazzarolo [17] and Trahan, et 
al. [18] on why music was effective in assisting sleep. 
Dickson and Schubert [7] found that relaxation, distrac-
tion, entrainment, masking, enjoyment and expectations 
were important themes. Their findings sifted through 101 
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publications in relation to music and sleep via online data-
base searches and searching references. Mazzarolo [17] 
expanded Rogers [19] research, and noted that Sleep 
Through was based on predetermined principles (see sec-
tion 2). Similarly, Trahan, et al. [18] grouped their findings 
using 4 main, overlapping themes: Distract, Provide, Habit 
and State. By applying the amalgamated themes to the sur-
vey data and then refining, the following themes were 
identified: Relaxation, Association, Distraction and Audi-
tory Masking is shown in Figure 3.  The possible addition 
of the theme Habit was also discussed (see section 4.2.3). 
These themes help to understand the different ways in 
which the compositions benefit the listener.  

 

  
Figure 3. Theme map from the Sleep Through survey. The 
first branch of categories shows the main uses of Sleep 
Through. The second branch of categories are subthemes 
and the third branch are prominent responses from the sub-
themes identified in the survey.  ‘n’ is the number of par-
ticipants whose responses could be coded into the sub-
theme.  The sum of n is greater than the total N (= 21) be-
cause responses from a participant could be coded into 
more than one theme.  

4.2.1 Relaxation 
Participants responded to the slow, ambient sounds of the 
Sleep Through playlist as a major source of relaxation. Re-
laxation refers to the tension released from the body (phys-
iologically) and mind (mentally) to minimise and combat 
stress and anxiety [18].  Overall, out of 21 participants who 
indicated terms such as ‘relax’ or ‘calm’, 18 of them were 
closely linked to a mental state of mind. Examples in-
cluded “it helps me relax into sleep especially after a hectic 
day” (P15) (P = participant code), “to calm down and clear 
my head (P13)” and “I find it makes me feel a lot calmer 
and sleepier” (P39).  This theme is therefore related to the 
distraction theme we discuss below.  20% of these partici-
pants used music for sleep in connection with the physical 
process of deep breathing whilst the remaining participants 
used music for clearing and slowing the mind before bed-
time.   

The physiological process of deep breathing can be re-
laxing because relaxed breathing patterns calms the auto-
nomic nervous system [20]. Nanthakwang, et al. [21] in-
vestigated deep breathing exercises and body scan medita-
tion combined with sedative music, finding improvement 

in sleep quality of adults when sedative music was playing. 
This is in line with the present study where three partici-
pants reported effects that were linked to physiological as-
pects of relaxation. P2 stated, “The rising and falling of the 
sound is good to regulate my breathing” and P5 revealed 
that “Tools such as the ABC Listen app have helped us 
build their skills in body awareness, step by step relaxa-
tion, and deep breathing” (Author note: The ABC Listen 
app can also be accessed via the Kids listen content).  Ad-
ditionally, P10 used Sleep Through for their children to 
“meditate before bed to get them falling asleep quicker”. 

 

 
Figure 4. Frequency of selection of preferred Sleep 
Through soundscapes listened to before or whilst in bed.  
Note that the ‘Depends’ option reflects participants who 
selected more than one Sleep Through soundscape. 

4.2.2 Association 
Association refers to a mental connection between con-
cepts, mental states or events, that usually stems from spe-
cific experiences [22]. We ascertained the significance of 
association from responses to Question 3 where partici-
pants chose their favourite soundscapes along with the rea-
son for its choice. Figure 4 shows that the majority fa-
voured the soundscape named ‘Home’ and the reasons for 
liking this soundscape were based on the composition it-
self and the description provided in the stimuli.  The de-
scription of the soundscape reads “Warmth, love and peace 
fill this special space. The calming sound of a heartbeat 
and distant music keep you company as you drift into 
slumber.”  Five participants specifically mentioned that 
they use the ‘Home’ soundscape to help bring themselves 
or their child to sleep.  The composition of ‘Home’ could 
be described as containing elements that are monotonous 
and muffled, where layers of audio are sounding simulta-
neously. There is a regular drone of harmonies that come 
and go in waves. Each wave gradually crescendos and de-
crescendos, with a period of about 10 seconds. Underneath 
the layer of waves, a pulsing beat can be heard throughout 
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the track (in particular, at 33 minutes into the track), evok-
ing the sounds of a heartbeat inside the mother’s womb. In 
between hearing the sound of waves and heartbeat, modu-
lated broadband noise mimics sound transmitted through 
amniotic fluid. As all three layers are combined, care-giv-
ers use the track for both themselves and their child in a 
manner that resembles shutting down the mind and body 
to rest, just like an unborn baby is sheltered from the out-
side world while resting in their mother’s womb [17]. In 
particular, P12 mentioned the soundscape “Home”, as be-
ing most calming, saying that “the subtle heartbeat sounds 
help calm my son to sleep”. This particular participant en-
joyed playing ‘Home’ for his son, and reported a decrease 
in anxiety and undisturbed sleep. Thus, it is not a type of 
stimuli that would arouse the listener, but rather create a 
comforting environment to support sleep, and its potential 
to support sleep in infants was espoused by Mazzarolo 
[17]. 

The incongruence between sound and place can remind 
individuals of times when they were connected to nature 
[23]. Even though ‘Home’ was the single most favoured 
soundtrack (Figure 4), the majority of selected sound-
scapes were water-based (i.e. ‘Rain’, ‘Ocean’ and ‘Water-
fall’). This was attributed to the participants having been 
to a place where they have seen rain, an ocean or a water-
fall, being suggestive of the Association theme. As a fur-
ther example of this association between sound and place, 
P5 comments “If we have been to the beach that day, they 
always pick ocean”. P5 plays the soundscape ‘Ocean’ for 
their kids throughout the night as a reminder of the past 
events they had enjoyed or would want to relive the expe-
rience. P40 listened to ‘Stars’ whilst watching the stars be-
fore sleep in order to calm down to “help with faster sleep-
ing”. Both these participants have associated music with 
activities performed earlier. 

4.2.3 Habit formation and non-sleep related reasons 
We were not unanimous in choosing Habit as a theme into 
which responses could be placed, because those responses 
generally overlapped with other themes (hence not shown 
in Figure 3).  However, habit formation has in recent years 
been proposed as possible explanation why playing music 
each night is a successful way of aiding sleep [18, 24]. In 
the present study, most participants played Sleep Through 
as an indication that it is time to go to bed, with explicit 
example such as “I use it to get to sleep” (P7), “to assist 
with falling asleep” (P4) and “to assist my 2year old in set-
tling for sleep – she seems to have a good association be-
tween the music and sleep” (P6).  Habit was included in an 
alternative version of our thematic analysis.  We decided 
to omit Habit as a theme in our final analysis because of 
its considerable overlap with the Relaxation theme and be-
cause some habit related responses could be incorporated 
into the Association theme.  With the alternate analysis, 
the theme Association linked with the subtheme 'sound 
and place', and Time related references became as sub-
theme of Habit signalling bedtime: "I use it to get to bed", 
"assist with falling asleep” etc. Furthermore, the responses 
related to breastfeeding also fitted comfortably as a sub-
theme of Habit formation.  For the interest of the reader, 
Figure 5 shows this alternate theme map that includes 
Habit. 

 
Figure 5. Alternate theme map from the Sleep Through sur-
vey, with the Habit theme included. Notice the large num-
ber of overlapping themes.  See Figure 3 for more details.  

4.2.4 Distraction 
Sleep Through was beneficial because engaging in the 
soundscapes diverted the listener from focusing on stress-
ful thoughts.  Five participants in the present study ex-
pressed that Sleep Through helped reduce distractions 
from their own thoughts, as shown in Table 2.  Notice the 
considerable overlap between this theme and the Relaxa-
tion theme discussed above.  Indeed, it may be possible 
that relaxation mediates sleep, and distraction is a means 
to facilitate relaxation, but in and of itself does not offer a 
direct psychological pathway to sleep [for further 
discussion see 25].   
 

Partici-
pant 

Response classified as Distraction theme 

P15 “I find ‘Rain’, ‘Forest’ and ‘Bushland’ most 
relaxing and the repeat of sounds helps me to 
focus on sound rather than running over 
things in my head”. 

P17 Plays all the nature soundscapes for her 
daughter to “stop and slow down to go to 
sleep” 

P5 Uses Sleep Through to help switch off at 
night – “my son is always thinking and my 
daughter fidgets a lot” 

P40 Plays Sleep Through to “help destress and 
help with faster sleeping” 

P41 Uses Sleep Through “for my brain to slow 
down”. 

Table 2. Response classified of Distraction theme  

Not only do internal distractions contribute to the inter-
ference of focus, but external distractions are also factors 
that involve visual triggers and online social interactions 
via the use of technology. From the survey, 2 participants 
reported using Sleep Through as a way to fix the previous 
bad habits when getting into sleep for healthier sleep hab-
its. Notice again the overlap between themes, this time be-
tween distraction and the possible theme of habit. P16 uses 
Sleep Through to “avoid watching movies while he falls 
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asleep” and P39 plays Sleep Through in bed to limit the 
use of being on the phone scrolling through social media. 
Both of these participants wanted to reduce the amount of 
time spent on technology that could potentially tire the 
eyes. Brockmann, et al. [26] mentions evening exposure 
from watching television is associated with poor quality 
sleep in preschool children, due to the constant light expo-
sure in a dark room. Long-term blue light exposure via 
phones, television and computer screens can damage the 
photoreceptors in the eye [27]. Hence, the option for hav-
ing soundscapes running in the background is a more sub-
tle approach in getting the child to bed. 

4.2.5 Auditory Masking 
Auditory masking drowns out or minimizes unwanted 
background noise enabling focus on the sounds we want to 
hear and can be applied to music to aid sleep [7]. The un-
wanted sounds can be intermittent sounds filling our sur-
rounding environment, causing a disturbance for both the 
individual and surrounding people [7]. Hence, the hustle 
and bustle of unwanted sounds during sleep can cause poor 
sleep quality and quantity. Three participants reported us-
ing Sleep Through for their child and themselves before 
bed by leaving the playlist running throughout the night 
with P8 saying “I use it for the toddler as background 
sound to sleep and aid uninterrupted sleep”. P6 says “It as-
sists in blocking background noise in the house” and P12 
enjoys the “calm sounds that play softly in the background 
and help drown out sounds of the rest of the house.” Like-
wise, Xie, et al. [28] investigated the influence of ocean 
sounds on sleep patterns in an intensive care unit. Patients 
who were grouped to a condition for receiving ocean 
sounds (based on white noise stimulus) reported higher 
scores in the quality and quantity of sleep than those who 
had to slept with no music or sound. This was explained in 
terms of patients exposed to ocean sounds feeling a ‘low’ 
level of arousal, putting them in a state of calmness result-
ing in better sleep. However, there can be sounds in the 
sleep-aiding stimulus which may inadvertently interfere 
with sleep resulting in participants being woken up. P12 
continued “I always wake up to the sky soundscape. The 
bing and bong noises are too high pitched.” As our brain 
is constantly active in cycling through REM and NREM 
stages of sleep, sudden high pitched, loud sounds may re-
sult in the disruption of sleep, providing ineffective mask-
ing of environmental sounds  [15]. In this case, the occa-
sional high-pitched sounds reported by P12 was more 
overbearing than the unwanted noise, resulting in P12 
waking up in the middle of the night.   

4.2.6 Other uses of Sleep Through 
Even though Sleep Through was aimed to induce sleep, 
adults reported using these soundscapes for non-sleep re-
lated applications. P39 said, “When I'm listening to Sleep 
Through whilst studying, I find myself concentrating more 
and being in the zone.”  Although not the specific aim of 
the soundscapes, the response should not be that surpris-
ing, with evidence existing, for example in research by 
Newbold, et al. [23] that auditory stimulation can help 
maintain attention and concentration.  

Also not directly related to supporting sleep was the re-
ported use of the soundscapes for breast feeding.  P3 was 
explicit in reporting benefits to both sleep and breast feed-
ing, using Sleep Through “To sleep calmly and soundly 
than before. Also, for my nearly 2-year-old to settle 
straight back to sleep after her breastfeed together”. Simi-
larly, P8 used Sleep Through “for a small baby when up 
feeding throughout the night to aid uninterrupted sleep and 
help join sleep cycles.”  Music used in breast feeding en-
hances the attachment between the mother with her infant 
[29]. 

5. CONCLUSION 
This paper investigated audience responses to the sound-
scapes composed as part of the ABC commissioned series 
Sleep Through composed by author AH.  When prompted 
for the reasons that the compositions were selected, and to 
assess their efficacy, an overwhelming number of re-
sponses were consistent with established views on how 
music is used to aid sleep for adults, with key themes being 
Relaxation, Association, Auditory Masking, Distraction, 
and Habit.  Relaxation was most frequently reported, and 
some overlap between relaxation and distraction were also 
observed.  The ‘Home’ soundscape was the most fre-
quently selected by the sample, possibly because of its as-
sociation with events in the day, or because it applied 
sounds that mimic gestational womb sounds, triggering the 
comfortable past for the infant.  The water-based connec-
tion as an explanation of the soundscapes is also reflected 
in the frequent choice of water-related soundscapes by the 
participants, although this too was frequently related to ac-
tivities that took place during the day, such as going to the 
beach.  The proposed themes while distinct, showed nu-
merous cases of overlap. 

The compositions were also considered highly useful in 
helping young families commence and maintain healthy 
sleeping behaviours, but interestingly other, non-sleep 
benefits were observed, including using the soundscapes 
for breast feeding, or purely for pleasure.   

The near absence of criticism of the works is encourag-
ing in identifying alignment of the initial propositions with 
the reception of the works, keeping in mind that respond-
ents were drawn from the ABC’s social media channels 
and therefore more likely to have self-selected according 
to positive associations with the brand. Some of the works 
surveyed were composed during and after research from 
Mazzarolo [14], speaking to the growing dialog between 
the community, composer and empirical researchers sur-
rounding this unique broadcast. The one finding that con-
tradicted initial compositional premises (namely the im-
pact of short, high sounds in one piece) affords a valuable 
insight for future compositions.  Also interesting is the 
close alignment between the empirically arrived at themes 
and three of the four foundational approaches reported by 
the composer: Auditory Masking; Relaxation through En-
trainment, and; Association and Familiarity. 

The study is obviously limited, in that the participation 
rate was small, due in part to the ethics requirements.  The 
ethics requirements required detailed explanations. Since 
participants were given the option of identifying them-
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selves, they needed to be aware of this before commenc-
ing, if they agreed to participate.  This was a factor in dis-
suading a larger sample from participating.  The quantita-
tive results were therefore presented in descriptive form 
only, but those data and the examination of the open-ended 
responses still produced responses consistent with previ-
ous research, which was largely based on adult uses of mu-
sic for aiding sleep.  

The current study, for obvious reasons, relies upon adults 
reporting infant experiences, and future research will be 
needed to determine what special aspects of music and 
soundscapes might need to be adapted to better serve in-
fant sleep.  But our findings are consistent with the theo-
retical position of the kind of music that might be suitable 
for infants as proposed by [17], as well as the literature 
highlighting musical characteristics most preferred by 
adults to facilitate sleep [15].  While larger-scale studies 
await, our findings suggest that there are some commonal-
ities in the approaches to sound throughout the Sleep 
Through series that support sleep, and that these can be 
further developed to support the positive health outcomes 
that result from a good night’s sleep for both children and 
adults. 
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ABSTRACT

The design and noticeability of alert sounds have been
widely researched and reported, and not least, notifica-
tion sounds are ubiquitous in both software and hardware
product development. In an ongoing research project con-
cerning the retail industry, we aim at designing short alert
sounds that only grab attention from one group of cus-
tomers, while others do not register the alerts: this par-
ticular aspect has to our knowledge not yet been studied.
To establish design guidelines for such alert sounds, we
conducted an experiment where test subjects would experi-
ence ordinary shopping activity including background mu-
sic and an ambient soundscape in a virtual reality cloth-
ing store, but with added alert sounds. We tested, specif-
ically, six differently designed sound alerts belonging to
two classes: contextual-specific congruent sounds, and in-
congruent sounds that did not fit the sonic context. The
results disproved our assumptions that incongruent sounds
would outperform the congruent and thus in the context
more anticipated sounds. The findings suggest that alert
sounds can be designed with subtlety and still be notice-
able and that customers will not necessarily be annoyed.
We present here a first approach towards design guidelines
for short alert sounds in a shop environment.

1. INTRODUCTION

Notification sounds are omnipresent in our lives: we get
exposed to alert sounds for communication, interaction,
status, and safety situations, and we get these from our mo-
bile devices and computers, vehicles, household machines,
and public buildings. Furthermore, the alert sound designs
span from clicks and beeps to human voices and music ex-
cerpts.

In an ongoing research project “Sonification of store
goods” involving retail, theft, and shopping, we need to
reconsider attentiveness towards notification sounds: we
aim at designing short alert sounds for non-critical con-
texts that only grab attention from targeted actors in an en-
vironment. The main aim for our project is to discourage

Copyright: © 2021 the Authors. This is an open-access article distributed un-
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and prevent shoplifting by playing alerts as sonifications
of interactions with goods in shops without discomforting
regular customers or distracting employees. Ideally, the
sonifications should not attract attention from others than
store clerks and shoplifters, and the sounds should not re-
duce the overall shopping experience.

Using sonification for monitoring state can free up cog-
nitive resources [1], cutting back costs on expensive video
surveillance systems, and open for live monitoring where
information on what goes on in the store can be conveyed
to the staff in real time. It also solves the ethical question
of storing customer information in the form of video mate-
rial, with reduced impact on personal integrity. However,
not much has been done in terms of using sonification in
store environments.

We have identified knowledge gaps in several aspects of
this particular challenge, for instance, how fast do listen-
ers react to sounds (with head movements), how do sounds
that have either context-specific congruence or incongru-
ence to the store’s sonic ambience differ in terms of grab-
bing attention, do sounds with early onsets perform better
for notification and localization than slow onsets, and will
repeated exposure increase or decrease attention.

For this present study, our goal is to investigate the effects
that exposure to different sound types have on customers
and clerks in a virtual store. The research question is to
find if visitors to a (virtual) store will have their attention
drawn towards sound alerts being played depending on the
type of sound. Our assumption was that congruent sounds
would draw less attention than incongruent sounds which
diverge from the sonic store environment. Especially, we
expected a recording of chirping birds and a metallic wind
chimes to be overrepresented in terms of detection as these
sounds were chosen intentionally to be detached from the
context.

In the next section, we present the contextual framework
of the project, namely loss prevention in retail, and also
necessary theory on perception, sonification, sound design,
and the experimental environment. The method section de-
scribes both the sound design and the practical test design
in a semi-controlled experimental setting. The result sec-
tion focuses to some extent on head movement data, while
in the discussion we interpret the results from a practi-
cal sound design perspective. The paper concludes with
a first approach towards alert sound design considerations
and implications in a non-critical context.
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2. BACKGROUND

There is a documented need for surveillance in stores. The
total loss due to shoplifting has reached US$10 billion
yearly in the United States [2]. To counter this, stores adopt
different methods of surveillance such as increasing mon-
itoring staff, security guards and cameras, and electronic
alarm systems such as electronic article surveillance and
RFID tags; the most effective countermeasures generally
involve human factors [3].

In addition to anti-theft alarms in stores using RFID tags
and alarm noises when someone walks out of the store,
using loud sounds to prevent, disrupt, or rectify undesired
situations are widely implemented in the society today. Car
alarms, for example, typically appropriate the car horn;
however, there are also suggestions for alternative designs
to be found in the literature, such as musically informed
car alarms [4]. Another common case is in hospital envi-
ronments where doctors are constantly exposed to a great
number of different alerts and warnings from apparatus,
often similarly-sounding, with the result that alarms are
missed, ignored, or even turned off [5].

2.1 Perception and Localization of Alert Sounds

The perception of sound is a heavily researched area and
has been much influenced by Lord Rayleigh’s ”duplex the-
ory“ of sound localization as a combination of interaural
differences from sound pressure level and phase [6]. Build-
ing on his observations, studies of localization of sound
in the horizontal plane have found that, although stimuli
could be located with reasonable accuracy, test subjects
confuse stimuli presented in front and from back. Specif-
ically, most errors occur around 3000 Hz and decline at
higher or lower frequencies [6].

Directional hearing is the ability to locate the position of
a sound source. This ability depends on comparisons be-
tween the acoustic inputs from the two ears, while pitch
and intensity can be derived from only one ear [7]. The
direction is determined binaurally from the time difference
and the loudness difference of the sound waves reaching
the two ears. The onset and beginning part of a sound
is more important for our perception than later parts of a
sound [8].

In a study on localization of sound in rooms, Rakerd and
Hartmann found that impulsive tones with short onset and
offset were more accurately located than those with slow
onset due to the precedence effect; also, tones of longer du-
ration that gave no precedence effect showed large individ-
ual differences [9]. There were no measurable effects on
pulse durations ranging from 5–2000 milliseconds, instead
Rakerd and Hartmann proposed the “plausibility hypothe-
sis” where listeners ignore ongoing location cues after the
onset when these are implausible.

2.2 Perceptual Attention and Urgency

Perceptual attention is defined as the ability to extract rel-
evant information from complex surroundings that cueing,
i.e., playing a sound or a warning about a sound before the
actual sound is played, can improve our ability to detect

and to locate a sound [10]. Therefore, the use of the same
sound, or a sound the one is used to hear, would increase
the ability to detect and locate it. However, with simul-
taneously played sounds there is a risk of a performance
reduction in terms of reaction time [11], and with repeated
sounds there is a risk of increased annoyance [12].

Alert sounds typically have been designed and imple-
mented to communicate urgency and attract attention to-
wards critical events that require immediate action [13]. It
is reasonable to say that attentiveness to urgent notifica-
tion sounds has been widely researched and reported; one
example is the concept of “attensons” as put forward by
Hellier and Edworthy, which are attention sounds designed
from established perceptual and psychophysical principles
such as signal-to-noise ratios [14].

The auditory system is built to process simultaneous and
overlapping stimuli, although dependent on attention [15].
One study showed that people working in security opera-
tions centers with computer-network security were aided
by sonification in ways that enabled peripheral monitor-
ing in busy multitasking environments [16]. Sound alerts
also has the benefit of utilizing the fastest of the human
senses [17].

Our perceptual and cognitive knowledge of an environ-
ment is grounded in our ability to learn from previous ex-
periences. We use this knowledge in relation to a context
to predict which sounds that are likely to appear, but also
to reject interpretations incongruous with a context [18].
When audiovisual sensory information is unrelated it leads
to an uncertainty of interpretation, causing an attentional
focus on identifying what is incongruent [19].

2.3 Sound Design and Contextual Sounds

Notifications can be realized with sonification: here we de-
fine sonification as systematically translating sensor data
to non-vocal sounds. In particular, we use an event-based
approach for monitoring state in a multimodal environ-
ment [1], by playing sound recordings to describe the in-
teraction taking place.

There is a need for design of more aesthetically pleasing
sonification designs and alert sounds [20]. Several authors
have also stressed the importance of designing alert sounds
with a high level of ecologic validity [21, 22] to match
the function. In this study, sounds that would grab atten-
tion but not be disturbing were applied in a virtual store.
This type of sound design where sounds that should be
heard without being too cognitively demanding has been
approached in a previous study [23].

Ecological validity in terms of good recordings or realis-
tic sound simulations are not necessarily the most efficient
design strategy to convey information. Instead, context-
specific congruent low-level models that sacrifice realism
for plainness have proven to be effective in communica-
tion, as shown in the research literature on sound objects
and cartoonification [24]. Our assumption for the study
was that incongruent sounds unrelated to the actions and
the environment would inevitably draw more attention than
the congruent sounds, and would also be perceived as more
disturbing.
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In the present work, we are not designing alerts or soni-
fications that communicate immediacy or urgency, but ar-
guably with more coherence than the range of less urgent
notifications that has resulted from the growing all-purpose
use of smartphones and other technologies.

2.4 Virtual Reality Environment

Virtual reality (VR) is a computer generated interface that
realistically simulates a physical environment. It is typi-
cally experienced through a head-mounted display (HMD)
such as the Oculus Quest 1 . There are many advantages
with using VR in research studies, such as increased exper-
imental control, isolating test variables, and of approaching
multiple variables in controlled conditions. Commercially
available VR products like the Oculus Quest makes it pos-
sible to track body motion and head movements, which
in many circumstances facilitate running complex experi-
ments which would otherwise be difficult [25].

The kind of VR used in this study, HDM, is defined
by providing 3D stereo vision, surround vision and user
dynamic control of viewpoint [25]. In addition, sound
was played uncompressed through Audio-Technica ATH-
M50X stereo headphones which fit comfortably on the
HDM. The spatialization mode in the software was without
corrections for vertical head displacement, only horizontal
movements. These features, when implemented together,
provide for an immersive experience where the user is per-
ceptually shielded from the surroundings, but where the
experience matches a real world. Studies have showed that
the sense of presence and immersion is generally high [26].

3. METHOD

We designed the experiment such that test subjects would
experience a visit to a virtual clothing store including mov-
ing, autonomous customers, background music, recorded
store ambience, and added alert sounds. The main data col-
lected for analysis were head movements and interviews,
while all audio events were variables under our control.
The position and rotation of the test subjects’ head move-
ments and in-game movements were sampled and saved in
the Oculus Quest HMD at 10 Hz.

The clothing store VR environment and sound program-
ming were implemented using the game engine Unity 3D.
The store measured approximately 700 m2 and its mer-
chandise consisted of shirts, pants, hats, backpacks and
belts, among others, see Fig. 1. In addition to that, six
avatars, two men and four women, would walk around in
the environment and interact with the merchandise.

3.1 Experiment Design

The experiment included 16 test subjects (9 female, 7 male,
age 24–53). Most of them had little to none previous expe-
rience with VR environments. The subjects were randomly
assigned to one of two groups, Knowing and Unknowing,
and were told they would play the part of store clerk in an
informal game or VR experience where you cannot win or

1 https://www.oculus.com/quest/

Figure 1. The virtual store environment, which has one
large space with shelves and clothing racks, one small ad-
jacent room with more items, and one fitting room. The
avatars on the platform walk around and look at items dur-
ing the test.

lose. Then, the groups were given different instructions:
The knowing group was informed that alert sounds may
occur in the store, which signalled that one of the avatars
picked up and looked at some merchandise. They were
given the instruction to experience the store and possibly
pay attention to what the avatars were doing. The unknow-
ing group was not informed about the alert sounds. They
were given the instruction to experience the store and that
we would conduct an interview to evaluate the “quality of
the avatar’s AI” without explaining what that meant.

The reason for having two conditions was to compare
across the participants. In this study, the focus is on reac-
tions to different sound types, congruent and incongruent,
while attentiveness between knowing and unknowing par-
ticipants are explored in more detail in a related paper [27].

To let all participants experience the store in a compara-
ble way, they were not in control of their avatar’s motion
across the room, but only the head movement. In order to
avoid having a strange VR sensation, the subjects were in-
structed to hold on to and position themselves between two
chairs and follow the avatar’s motion through walking and
turning on spot, which through testing proved to be very
helpful.

The rotation of the test subjects head movements during
the test were compared to the location and time of the alert
sounds, and we could see if the alerts triggered any reac-
tion with the test subject. Data was analyzed using t-tests
and Chi-square with 5% significance level. The movement
data is available online. 2 The VR session lasted for 10
minutes. After the experiment, the participants were inter-
viewed about their experience.

3.2 Sound Design

The sounds in the environment, apart from the actual alert
sounds, consisted of generic background music and cloth-
ing store background noise/ambience. These sounds are
also used in several associated experiments not reported
here. Store ambience sound and the background music

2 https://annexes.smcresearch.se/2021-SMC-AELF
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Figure 2. Spectrograms of the six alert sounds. From the top: The three congruent sounds, then the incongruent sounds
sweep, chimes and bird. The sounds are also available online (see Footnote 2 ).

were omnipresent and played from virtual speakers placed
all over the ceiling. The alert sounds were spatially sepa-
rated in the VR environment, where each sound event was
played from a virtual speaker close to the place of inter-
action. However, the alert sounds were not acoustically
affected by walls and other objects. Therefore, the acous-
tic environment can be considered as an open space; al-
though within the VR context, the experience is simply that
of standing in a room without audible reverberation.

Six alert sounds were designed by two professional sound
designers through iterations based on sound qualities such
as attack, length and intensity, and did not have har-
monic or tonal qualities that would conflict with the back-
ground music. The sounds belonged to one of two groups:
three congruent sounds corresponded contextually with the
clothing store environment and three incongruent sounds
were contextually detached.

The three incongruent sounds—bird song, a time
stretched sweep sound, and wind chimes—were selected
on grounds of their disassociation from a store environ-
ment, and these three did not bear any internal resem-
blance. In particular, the wind chimes and bird song were
intentionally distinctly detached from the context. See
Fig. 3.2 for spectrogram representations; all sounds are
also available for listening online (see Footnote 2 ).

The sounds considered as congruent were two recordings
of a clothing hanger and a sweep-like sound, based on them
mimicking the action of removing a piece of clothing from
a hanger. The sweep sound was clearly resembling the
hanger sounds in terms of structure and timbre, but in a
cartoonified manner.

The sounds were played, in total, 25 times per test at the
exact same time, position, sound level, and in the same or-
der. Each sound had its own virtual speaker in the store,

Figure 3. The layout of the virtual store environment with
playing zones (virtual loudspeakers) for the sound alerts
marked with red circles. Background music is played ev-
erywhere from virtual loudspeakers in the ceiling.

connected to a physical object such as a shelf, a table, or
a clothing rack, see Fig. 3. The volume was set, through
testing, to be just a bit louder (a few dB) than the masking
sound from the background music and ambience. The per-
ceived sound volume of the alert would however depend on
the position of the virtual speaker relative to the head ro-
tation of the avatar, and to some extent on the background
music at that very moment.

Notification sounds appeared from testing to have the
same level when positioned both in the middle of the room
and when following the avatar along its path. While the
level decreased with distance to the speaker, the distances
to each of the virtual speakers were identical for all sub-
jects as they followed a set path through the store with the
set actions and movements from the avatars. Only head
rotation varied between subjects. The overall sound level,



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

265

based on the background music, was set to a comfortable
listening level by the subject.

4. RESULTS

First, we could confirm that head movements by the un-
knowing and knowing groups differ, see Fig. 4. Dur-
ing sound alerts, the average motion measured in angular
speed and extent of rotation was almost twice as high for
the knowing group, while in-between sound events being
played, the amount of motion was almost the same.
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HEAD MOVEMENT
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Figure 4. Head movements for the unknowing and know-
ing groups during sound alerts being played and in-
between sound alerts, measured in speed and extent of the
rotations.

The next step in the analysis of the head movement data
was to determine “hits”, or reactions to sounds where the
head rotation pinpoints the sound source. An event would
be considered a hit if the head rotation of the test subject
existed in the range of 30 degrees from the direct line from
the test subject to the event position. Experimenting with
the angle and trying different ranges of hit area led to the
conclusion that the range did not affect the number of hits
considerably as the range increased, and therefore we set
30 degrees as default range.

We found that the reaction to a sound event typically came
after two seconds from the start of the sound. The amount
of hits would have a ceiling effect from three seconds and
longer. Thus, we include hits identified between the start
of the sound plus three seconds.
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Figure 5. Reactions (“hits”) for congruent, incongruent,
and all alert sounds in percent for the unknowing and
knowing groups.

Looking at the total amount of hits during the tests we can
see that the group which were informed to look or listen
for sounds outperformed the other group significantly (𝜒2,
𝑝 = 0.000), see Fig. 5. On average, the unknowing group
reacted to 30% of all sounds, while the knowing reacted to
67%.

Furthermore, we found no significant effects (𝜒2-tests) of
the distance from the sound source to the test subject, of the
physical place of the sound, of the test subject’s gender, or
of the sound-causing avatar’s gender. The knowing group
were generally unaffected by the total length of the sounds;
longer sounds gave slightly more hits while medium long
sounds gave fewer, but the differences were small and not
significant (𝜒2, 𝑝 = 0.24). On the other hand, there was an
effect of duration for the unknowing group (𝜒2, 𝑝 = 0.025)
where longer sounds resulted in more hits. Sounds longer
than two seconds resulted in twice as many hits on average
than sounds below one second. There were no significant
differences between having an early or late (100–800 ms)
sound amplitude peak (𝜒2, 𝑝 > 0.31). There was no effect
when the same stimulus was repeated for the unknowing
group, but the knowing had a small increase of hits for a
repeated sound (𝜒2, 𝑝 = 0.005). We notice a slight decline
in attentiveness among the test subjects, but there are no
significant effects of exposure over time.

The Bird type sound generated most hits, followed by the
three congruent sounds, see Fig. 6. These differences are
significant (𝜒2, 𝑝 = 0.025). The Bird sounds got most
attention from the unknowing group, while the largest dif-
ference between the two groups was found for the Sweep
sound. Chimes was the sound with overall least number of
hits. However, these observations have not been evaluated
statistically.
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Figure 6. Reactions (“hits”) to the different alert sounds in
percent for the unknowing and knowing groups.

Finally, the results partly disproved assumptions that in-
congruent sounds would outperform congruent and more
subtle sounds, see Figures 5 and 6. Instead, we notice cer-
tain patterns that will be discussed in the following.

5. DISCUSSION

Interpreting the results can give us a clue into what impli-
cations for the sound design it may result in. First off, it
is possible to locate spatially separated sounds in a busy
clothing store environment and directional sounds can be
used. And more importantly, the sounds could be played at
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a lower volume overall. It was proven that the ability to de-
tect and locate sounds in such an environment was not an
overwhelmingly difficult challenge. And furthermore, the
unknowing group tended to react less to the sounds than
was expected. This leads us to believe that a lower volume
could be used, where those who do not listen will be even
less disturbed, but those who do listen will still be able to
distinguish the majority of alerts.

Another finding we did not anticipate was that shorter
sounds proved to be more suited compared to longer
sounds. One might think that longer sounds would have
a greater impact on our perception purely because of their
length and longer exposure to our ears but when it comes
to raising our attention, at least in this environment, shorter
sounds are more effective. Furthermore, it was shown that
the onset or attack in the shorter sounds had no effect on
detectability. This was also in contradiction to the hypothe-
sis, which could be due to the short durations overall. The
onset differed with a maximum of 600 milliseconds and
humans typically have a reaction time to audio stimulus of
140–160 milliseconds [28].

The results show that congruent sounds generally are no-
ticed to a greater extent than the incongruent sounds. There
are differences between groups in attention towards the
sound types. This can be seen particularly for chimes and
bird sounds compared to the three congruent sounds. Both
bird and chimes stand out from the background music and
ambient sounds because of their strong and distinct har-
monics, but the chimes, which we expected to be the most
noticed sound of all, scored the least. This can surely be
partly explained by the length of the sound, but then the
sweep sound should not fall in-between.

This leads us to two somewhat contradictory conclusions.
Our hypothesis that incongruent sounds stand out from
the context holds in part, with different reactions from the
knowing and unknowing groups. However, the congruent
sounds, although more subtle, are easily and consistently
noticed by the knowing group, but not by the unknow-
ing. This might have support in the previously mentioned
“plausibility hyphotesis” for localizing sounds [9].

Alert sounds for store environments could thus be in-
congruent since customers, which are represented in this
test by the unknowing group, will not notice the sounds as
much as the knowing group, the store personnel. How-
ever, these incongruent sounds need to be carefully de-
signed, while congruent sounds can be implemented with
less care. This encourages discreet notification designs,
but also opens up the design space for shops and allows for
instance freedom to develop sonic branding as part of the
store’s monitoring system.

The result of finding no growing sensitivity to the alerts
adds to the argument that sounds could be designed in a
way that is directed towards those who listen for it without
them being disturbing for those who do not. These findings
also suggest that alert sounds can be designed with subtlety
and still be noticeable, and even that customers will not
be increasingly annoyed. However, more research on how
alert sounds are perceived in a real store environment in
relation to pleasantness, fatigue and function over longer

time is needed.
The study included only a small number of participants,

which jeopardizes using statistical methods and making
conclusions from these. Also, the sound stimuli design
was not formally evaluated before the experiment, nor how
and how often these were presented. There was no ran-
domization of stimuli presentation. The participants did
not get any training in visiting a VR environment, and the
store layout was not evaluated for realism. As such, there
are many uncertainties present in the study, and the results
should therefore be considered as preliminary.

6. CONCLUSIONS

Based on the findings presented here, a first approach
towards design guidelines for short alert sounds in a retail
environment are stated as follows. Alerts can:

– be congruent with and contextually fit the environment
of where they are played,
– be played at a lower volume than the background music,
– be short in length, around one second,
– be designed without much attention of attack sharpness,
– be used without concerns of growing sensitivity over
time,
– be incongruent, if designed with care.

This first approach towards design guidelines will be
evaluated and developed in forthcoming experiments. As
such, the particular sound designs that were tested in this
experiment will serve as inspiration, but should not be con-
sidered to be general design recommendations.

We believe that there are promising opportunities for
sound design for marketing purposes as well as for in-
creasing customer shopping experiences and working con-
ditions for employees. VR was used successfully in this
exploratory study where a real store would introduce a
number of uncontrollable variables.
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ABSTRACT

When monitoring an industrial process, extreme sensory
conditions can make it difficult to rely solely on direct ob-
servation. In this paper, we describe the development of an
alternative display method for the production criteria of a
wire-arc 3D-printing process using sonification. We made
this display mostly ambient, as it is preferable in order to
avoid fatigue in long-term usage. The sounds were cho-
sen to be cognitively distinct progressive alarms so they
would be easier to identify. The evaluation consists in a
dual-task identification trial, so as to measure the proper
communication of critical information as well as account
for the level of distraction from other tasks. The results
show that the attentional pull is rather minor and still al-
lows for above-random criteria recognition rates. Though,
there seems to be an occasional cognitive overlap between
the sounds representing local and global overheating. The
droning tone for the height of the part also tends to be
drowned out in some cases. Both flaws will need to be
addressed in future iterations.

1. INTRODUCTION

Despite considerable progress in the automation of indus-
trial processes, a human presence still tends to be required
to monitor the machines. This monitoring task can usually
be carried out via simple visual observation. However, in
practice, visual attention is not always guaranteed as op-
erators may be distracted or focused on other more active
tasks. Additionally, an industrial working context is likely
to be too unfriendly on the senses to allow for direct obser-
vation.

Hearing tends to be more versatile and better adapted to
perceiving changes over time than vision, while not requir-
ing constant focus [1]. This makes it a suitable modality
for real-time process monitoring by users faced with visu-
ally overwhelming working conditions [2–5], in order to
avoid the pitfall of inattentional blindness [6, 7].

Such auditory displays of data can be achieved through

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which
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sonification, a data-driven, non-verbal sound [8], usually
produced through algorithmic processes in a "systematic,
objective and reproducible" way [9]. The use of sonifica-
tion for monitoring has been a subject of research for many
years, in domains as varied as surgical gestures [10, 11],
vital signs [12], business processes [13–15], internet activ-
ity [16–19], algorithmic processes [20], or domestic activ-
ity [21, 22].

While developing our sonification for a manufacturing
process, we want to avoid the "better safe than sorry" ap-
proach of using sudden and loud alarms, as pointed out
by Patterson et al. [23] and Lazarus et al. [24]. Instead
we need a continuous sound that can be relegated to the
background of other activities and evolve into a notifica-
tion when necessary. This type of notification system is
known as a peripheral display, or an ambient information
system [25].

Our goal in this paper is to construct and evaluate a pe-
ripheral sonification prototype for the monitoring of an in-
dustrial 3D-printing process. As this work is still in an
early stage of development, the evaluation will be con-
ducted in a simulated work context rather than in-situ. We
start by describing the process to be sonified as well as its
use context. We then analyse the existing methodology re-
garding the design and evaluation of peripheral displays,
before describing our prototype and its dual-task evalua-
tion process. From the results, we assess ways to improve
the sounds used.

2. 3D-PRINTING PROCESS

The process to be monitored is a wire-arc 3D-printing pro-
cess [26]. Operators for those machines need to be able
to detect anomalies in five criteria: the local width, height,
and temperature monitored at the position of the printing
head, and the global height and temperature along the part
being constructed. See also [15].

The printing takes place inside an inert atmosphere to
prevent chemical reactions that may impair the material’s
properties. Unfortunately, this precaution gets in the way
of the operator’s visual inspection. The wire-arc process
emits flashing lights and projections, so operators have
to wear protective masks which also greatly narrow down
their fields of vision. Thus it is only really convenient to
visually check the production during the cooling phases
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between each layer. Even then, the discrepancies to be no-
ticed in the geometry are usually smaller than a few mil-
limeters, and the temperature cannot be assessed visually
most of the time.

For these reasons, there has been an effort in the last few
years towards augmenting reality for manufacturing pro-
cesses using alternative display methods [15, 27–30] such
as, in the case of this work, sonification for wire-arc 3D-
printing.

We notice that, to some extent, the sounds of manufac-
turing already provide some insight into defects that may
be occurring during the printing process, such as the noise
grains becoming more distinct in case of a lower weld pool,
or the sound stopping entirely in case of a material short-
age. However, that sound is overall loud and unpleasant, as
well as potentially dangerous for hearing upon prolonged
exposure. Thus operators wear noise-reducing headphones
to protect their ears. Our aim is to put those headphones to
good use by having them output an auditory display de-
signed to help monitor the process.

3. RELATED WORKS

3.1 Peripheral Displays

In 1985, Jenkins saw the potential in the hearing modal-
ity for information communication in ambient contexts [1].
The concept of ambient or peripheral displays then rose in
popularity in the late 1990s and early 2000s with the arrival
of ubiquitous computing and calm technologies announced
by Weiser & Brown in 1996 [31]. In 1998, Wisneski et al.
offered an early review on the topic, while calling for more
research into ambient information technologies [32].

Such research took place in the 2000s in an effort to boil
down the main criteria for the design of a peripheral dis-
play based on its goals and use context. McCrickard et
al. [33] define 3 criteria: interruption, reaction and compre-
hension. Matthews et al.’s criteria [34] relate more to the
way a notification should appear in one’s field of attention:
abstraction, notification level and transition. Pousman and
Stasko [25] give 4 criteria: information capacity, notifica-
tion level, representational fidelity and aesthetic emphasis.
A few nuances aside, all these criteria can be roughly ag-
gregated into the following list of considerations, which we
used to better define the scope of our display:

• Information capacity: How many dimensions of data
does the display need to account for? Here we have
5 dimensions (the weld pool’s width, height, temper-
ature, and the part’s height and temperature). For all
of those dimensions except the part’s temperature,
users should also be able to recognize the direction
of the anomaly.

• Information abstraction: How precisely should users
be able to reconstruct the data from the display?
Here, there is no need for exact values but users need
to know which dimensions are behaving abnormally,
in which directions, and whether those anomalies
should be considered critical.

• Notification levels: How does the degree of urgency
evolve according to the type of information being
conveyed? Here we want a subtle progression of the
sounds following data fluctuations, so that a slight
change in a dimension, without necessarily being
detrimental to the production in itself, can preemp-
tively catch the user’s attention for the potential ar-
rival of a bigger shift.

• Aesthetic emphasis: How pleasant should the dis-
play be? So far, the criteria for our work seem to
relate it to what Pousman et al. call an "information
monitor display", for which aesthetics are of rather
low priority [25]. Though, since users would be lis-
tening to that sound repeatedly and over prolonged
periods of time, we still feel it is necessary to make
it pleasant enough to not become stressful.

3.2 Evaluation Methodology

A few different approaches can be taken to evaluate a pe-
ripheral display. Eventually, the best way is to put the dis-
play to use directly in its intended context by means of an
in-situ implementation [22, 35]. Although, in early design
stages, this is not always possible or suitable, either from a
lack of equipment or because the display is still too exper-
imental to be representative of what the intended audience
may expect.

In a lot of situations, simply asking users to assess their
experience through interviews and surveys is enough to
gather information about the aesthetic value and intrusive-
ness of a display [36–40]. This is sufficient when the dis-
play’s intended use is to be part of a relaxing augmented
environment for the house, workplace, or public spaces.

Additionally, in cases where the display needs to con-
vey more critical information, the evaluation also has to
account for the intelligibility of that information. This re-
quires more quantifiable data on users’ performance when
using the display, which are usually obtained by means of
identification trials [15, 41, 42].

When a critical information display is intended to be part
of a larger work context, a measurement of distraction is
also needed. McCrickard et al. recommend a dual-task
evaluation process to this end [33]. This methodology has
also been researched more recently by Hausen et al. [43],
Daniel [44], and it was implemented in several experiments
on peripheral auditory displays [19, 21, 45–49].

In the case of our work, in-situ implementation is not fea-
sible yet, as no sensors are actually present on the print-
ers to provide the critical data to be monitored. Still, our
goal is to produce a display that will help monitor the pro-
cess with no need for direct exposure. This requires us to
take into account other activities that would be made pos-
sible by this newfound sensory freedom, such as for exam-
ple "checking one’s e-mail" or "preparing the next print".
Thus, our experiment will not only account for data intelli-
gibility, but also for attentional capture through the use of
a dual-task identification trial.
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4. MAPPING CHOICES

Soundscapes of several simultaneous sound streams have
been shown to facilitate the identification of multidimen-
sional data [12, 47, 49–51] so we chose to convey our data
using a soundscape of four perceptually and cognitively
distinct sounds streams. The natural world offers many
audible phenomena that can be metaphorically related to
temperature (boiling, sizzling, exploding, crackling), but
not that many when it comes to hearing the dimensions
of an object. So, although we can afford to symboli-
cally represent temperature with temperature-related audi-
tory icons [52], the display of geometry requires a more
abstract representation. For our display, we chose musical
parameters. We expect that using sounds of such different
natures will help quickly identify which one is behaving
abnormally. Following is a description of how each sound
stream is constructed and mapped to its corresponding cri-
terion.

The geometric criteria (part height, weld pool width and
weld pool height) are conveyed by continuous streams of
structured, repetitive musical notes. It is preferable that
those notes follow western rules of musical intervals, as
they are easier to identify for european listeners [53], and
are commonly considered more pleasant to listen to than
atonal or noisy sounds. In the absence of anomalies, those
notes constitute a baseline sound confirming that the soni-
fication is up and running. As anomalies arise though, their
fluctuations should induce a feeling of slight unease in the
listeners, thus prompting reaction [54].

For the local weld pool dimensions, a lead arpeggio (L)
of 3 notes in the chord of C major keeps playing as long as
the dimensions are within bounds. This repetitive sequence
of notes serves as a metaphor for droplets of matter being
deposited during printing. The timbre for this sound is the
default SuperCollider synth: a basic piano-like sound. The
width influences the duration of those notes (inverse po-
larity mapping between 0.5 and 1.5 seconds). The height
is conveyed by the starting pitch of the sequence (between
C5 and F6). Loudness is also influenced by an amplitude
factor, computed as the mean of two values respectively
mapped to width and height anomalies (each between 0.02
and 0.2). We expect this sound to stand out in case of an
anomaly by becoming faster, louder, and more erratic as
the dimensions diverge from the norm.

For the relative part height (difference between the ex-
pected height and the current height), a continuous droning
synthetic tone (D) varies in pitch (notes between E2 and
D3). The absolute value of the height difference is con-
veyed by an amplitude factor mapped between 0.1 and 0.4.
This continuous sound serves as a metaphor for the con-
tinuity of horizontal layers, with pitch fluctuations repre-
senting irregularities in a layer. The timbre for this sound is
constructed as a sawtooth wave, bandpass-filtered around
its first and second harmonics with each filtered harmonic
playing in the left and right ear respectively.

Meanwhile, the thermal criteria (weld pool temperature
and part temperature) are conveyed by noisy pre-recorded
natural sounds that emerge in case of anomalies but remain
silent otherwise. We elected to use the sounds of water re-

acting to heat and cold as they constitute an easily identifi-
able everyday metaphor for temperature in the system, and
their noisy nature makes them stand out against the tonal
background.

The weld pool temperature, when below its ideal value,
is conveyed by the sound of crackling ice (W-). A tem-
perature over the ideal value is conveyed by the sound of
boiling water (W+). Straying further from the accepted
range influences an gain factor mapped between 0 and 0.9,
then rescaled and graduated as:

𝐺𝑎𝑖𝑛 =

⎧⎪⎨⎪⎩
0 if 0 ≤ 𝐺𝑎𝑖𝑛 ≤ 0.4

0.2 if 0.4 < 𝐺𝑎𝑖𝑛 ≤ 0.6

0.5 if 0.6 < 𝐺𝑎𝑖𝑛 ≤ 0.9

(1)

Thus this sound stream is inaudible as long as the temper-
ature is within bounds, and only emerges as it turns into an
anomaly.

Finally, when the global temperature of the part passes its
threshold of 600°C, the sudden sound of sizzling water (S)
is triggered.

The pitch, speed and loudness ranges for those sounds
were chosen as a consequence of our previous work on
the same project [15], which resulted in the participants
requesting lower, slower and overall more distant sounds.

In the following sections, anomalies will be referred to
by the first letter of their sound elements. For instance,
the combination of lead arpeggio, drone, and boiling water
anomalies will be called LDW+.

5. EXPERIMENT

5.1 Process

The primary task of our dual-task evaluation is based on
the one described in [44]. It consists in copying random
sequences of ’X’ and ’O’ symbols, whose lengths are ran-
domly picked between 2 and 5. Participants interact with
this game by clicking elements of a graphical user inter-
face. As soon as a sequence has been copied, another one
is generated and displayed, prompting the participants to
copy as many sequences as they can in the duration of each
level. We chose this very simple primary task because it
gives an easily quantifiable assessment of the participants’
performance while not relying too heavily on any one’s in-
dividual abilities.

Simultaneously, the secondary task consists in listening
and labelling sounds in real time by checking the corre-
sponding boxes in the interface. See Figure 1. Those boxes
are labelled after the types of sounds conveying the anoma-
lies: "Lead", "Drone", "Water" and "Sizzle". W+ and W-
are fused into a single box in the interface, simply labelled
"Water" as, for now, the evaluation is more focused on the
recognition of the anomalies than their polarities.

Before getting to the evaluation itself, players go through
a progressive training phase during which they learn to
copy sequences, then to recognize sounds, and finally to
carry out both tasks at the same time. This training can
be redone as many times as the player deems necessary.
Still, players have to get a labelling score of 90% or higher
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Figure 1. A screen capture of the experiment interface dur-
ing a level. In the middle, the player rewrites the sequence
displayed by clicking the ’X’ and ’O’ buttons in the same
order. Upon each sequence completion, a new one appears.
Boxes on the right allow the player to point out anomalies
as he or she notices them.

in the last phase of that training before they can start the
evaluation.

This evaluation interface can still be accessed online 1 ,
but it does not record entries anymore.

5.2 Data

We used pre-simulated data recorded in .csv files repre-
senting various printing scenarios. Our data were sonified
into .wav files according to the mapping choices described
in Section 4 using a SuperCollider 2 script. In those sim-
ulations, the only anomaly combinations encountered are
the ones that are likely to occur according to the way cri-
teria physically interact (e.g. a higher local temperature
causes the weld pool to spread out more, thus becoming
lower and wider). This gives us 8 possible combinations,
including the regular anomaly-free behaviour. Three of
those were selected for the training phase and presented in
this order: LD, LDW+, and no anomaly. All other anomaly
combinations available were used for the experiment in a
randomized order: LDW-, D, LW+, LW-, LW+S, and five
more situations with no anomaly.

5.3 Participants

43 participants took part in the experiment: 20 M, 23 F,
aged from 18 to 67 (average 32). By taking part in the ex-
periment, participants certified that their hearing was unal-
tered. Five of them had taken part in an earlier experiment
for the same project and were familiar with some of the
mapping choices.

6. RESULTS

We measured participants’ performance at the primary task
by recording the length and time of completion of each se-
quence copied. For the secondary task, we recorded the
times at which anomaly boxes were checked. After the

1 https://maxime-poret.emi.u-bordeaux.fr/these/
eval2020/ - Accessed 3/12/21

2 https://supercollider.github.io/ - Accessed 3/12/21

Figure 2. Mean error rate for the identification of anoma-
lies, for each anomaly type (colors) and for each anomaly
combination (horizontal sections).

experiment, participants were given the option to also an-
swer a short survey on the aesthetics and intrusiveness of
the display.

6.1 Anomaly identification

For each type of level, we computed the error rate for
anomaly identification, such that a criterion was consid-
ered inaccurately identified when its box was checked de-
spite there being no anomaly, or unchecked despite the
presence of an anomaly. Those results are displayed in
Figure 2. We find it encouraging that all criteria were
recognized above random chance, as it is likely that with
more training testers would be able to identify all anoma-
lies more accurately. Still, the most frequent errors high-
light which parts of the display can be made clearer in fu-
ture iterations.

D seems to be the most difficult anomaly to label as its
error rate is the highest in 4 levels out of 6. For levels
LW+, LW-, LW+S, and no anomaly, false positives may
be due to the fact that people start expecting D for every
anomaly combination, as it is often linked to others and is
present in most of the training levels. In levels LDW- and
D, false negatives may be due to the fact that the drone is
more subtle than the other sounds, and can be more easily
tuned out or drowned out. Both false positives and false
negatives seem to indicate that the drone sound is not no-
ticeable enough for some testers, who instead choose to
respond seemingly "at random".

We also notice that, in the level LW+, the sound of boil-
ing water was sometimes mistaken for the sizzle, which re-
sulted in 35% of testers checking that box. During LW+S,
the sizzle was mostly recognized but some participants ne-
glected the L and W+ anomalies also occurring at the same
time.

6.2 Attentional curves

We computed the attentional curves for each type of level
as the average symbol-copying speed of participants over
the course of a level. On the same time scale, we also
plotted the anomaly onsets and average labelling times as
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Figure 3. Attentional curves for each level type in the eval-
uation, computed as the average number of symbols copied
for each decisecond. Red lines: onset times of the anoma-
lies. Green dotted lines: mean annotation time. Level types
from top to bottom: No Anomaly, LDW-, D, LW+, LW-,
LW+S

timestamps of the attentional capture of the participants.
See Figure 3.

In levels with no anomaly, users get gradually more ef-
ficient at the primary task as their copying speed reaches
a limit of 0.2 symbols per decisecond after 8 seconds. A
similar dynamic can be observed at the start of the other
types of levels, but with an efficiency drop of approxi-
mately 0.1 symbols per decisecond when an anomaly is
triggered. Participants do not seem to have issues recover-
ing once they have reacted, since by the end of each level
the average copying speed returns to the limit of 0.2 ob-
served in levels with no anomaly. Recovery appears to take
more or less time depending on the number of onsets, their
distribution in time and their durations.

In the LDW- level, the anomaly onset for D did not af-
fect participants’ performance as much as the anomalies in
most levels (about 0.03 symbols per decisecond instead of
0.1). Although it was still noticed on average before L and
W- started playing, it took longer to be labelled than most
of the anomalies. This may be due to the fact that, in that
level, the drone’s pitch starts slowly lowering before any
other anomaly is triggered, which may be more difficult to
perceive than faster changes, or a rising pitch.

In the LW+S level, although W+, S and L were triggered
in this order with delays of 1 second between each, S was
the first one to be attended to on average, possibly due to
its more startling nature and its relative rareness in the ex-
periment.

6.3 Survey

After testing the display, 21 of the participants also an-
swered a survey about their experience. In the survey,
they were presented with a series of sentences regarding
the experiment, which they could rate on a scale from 1
(disagree) to 3 (agree), 2 being a neutral response. 18 par-
ticipants (85.7%) disagreed with the sentence "The sound
bothered me while doing the task", while the rest remained
neutral. On the sentence "I found the sound to be stressful",
14 participants (66.7%) disagreed, 6 (28.6%) remained
neutral, and 1 (4.8%) agreed. These answers suggest that
the sound was not perceived as overly intrusive by testers,
but that its aesthetics, especially when it comes to inducing
stress, could be more polished. A more formal evaluation
of these rather qualitative properties of the display is still
to be produced.

7. CONCLUSION

We produced an auditory display for an industrial process
that does not allow for direct visual monitoring. This dis-
play is intended to be minimally-intrusive and aesthetically
pleasing. The sound streams were chosen in a way that
should make them easily identifiable and relatable to the
criteria they represent. We evaluated this display with a fo-
cus on both the attentional pull and the intelligibility of the
information.

Our experiment shows that there is an overlap between
the sounds of sizzle and boiling water that makes it more
difficult for users to distinguish them when they are pre-
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sented separately. In expected use scenarios, though, the
sizzle sound is mostly intended as a last resort alert. In-
deed, it should not occur very often and the sound of boil-
ing should have already been playing for a good amount of
time when the sizzle happens. We find it encouraging that,
although both sounds were not perfectly discriminated,
most testers definitely recognized overheating alerts.

We also find that when the drone’s pitch goes downward
too slowly, it is harder to notice as an anomaly, so a linear
mapping of relative height to pitch alone may not be the
most suitable choice. We could make this sound stream
more alerting by having another timbre emerge when the
part height passes its tolerated threshold.

The brief evaluation process we implemented gives us in-
sight into flaws that can be addressed in future iterations of
the prototype, but it would also be interesting to know how
many of the reoccurring mistakes would still be made after
a longer training period, possibly over several sessions.

Predictably, most anomaly onsets cause the attention for
the primary task to drop, but participants are still able to
recover rather quickly. It is worth noting that not everyone
takes the same amount of time to move their mouse be-
tween the two areas of the screen. This adds a bias to our
computation of attention which we could have measured
in an early step of the experiment (for instance by timing
testers clicking back and forth between those areas) and
accounted for in the results.

Sound ecology is an important aspect of auditory moni-
toring [55] that we wish could have been more thoroughly
taken into account in both the design and evaluation of the
display. Indeed, despite the use of noise-reducing head-
phones, it is unlikely that the noise of production will be
entirely suppressed, which may get in the way of some of
the sounds we chose. Also, due to the sanitary conditions
at the time of testing, the evaluation was presented as a
webpage sent out to participants, who all played it at home
on their own setups and using their own sound gear. For
those reasons, we look forward to experimenting in better
standardized conditions in the future.

Once improved for optimal recognition rates, this display
is intended to be put to use in further experimentation on
integrating sonification into an augmented work context,
putting operators in simulated printing sessions where the
criteria are displayed through both sound and touch.
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ABSTRACT 
This paper presents CareTunes as a concept to explore mu-
sical sonification of patient vitals and the role of music in 
Intensive Care Units (ICU). In this paper, we first describe 
the design specifications for the sonification of data in a 
musical fashion. Secondly, we present two applications for 
CareTunes in prototype stage and user evaluation studies. 
The first application regards the ICU nurses’ need to mon-
itor patients from a distance (CareTunes as musical up-
dates for nurses) and second application regards families’ 
need to connect with their loved in the ICU (CareTunes as 
musical messages for families). We conclude that music 
has the potential to represent changes in patient vitals for 
nurses and emotionally regulate families’ anxieties regard-
ing ICU patient’s condition. Music offers a platform for 
reutilizing patient data for human-centered solutions.  

1. INTRODUCTION 
CareTunes is a concept that challenges the clinical utili-
zation of data from patient monitoring devices found in In-
tensive Care Units (ICU). CareTunes is developed to ex-
plore methods for continuous musical stream that summa-
rizes patient vital signs and presents them in a coherent, 
logical, and pleasant way to the clinicians (mainly the 
nurse) and families. In this paper, we first describe the 
technical requirements for CareTunes and its design spec-
ifications for the sonification of data. Secondly, we present 
two applications for CareTunes in prototype stage and user 
evaluation studies. The first application regards the ICU 
nurses’ need to monitor patients from a distance (Care-
Tunes as musical updates for nurses) and second applica-
tion regards families’ need to connect with their loved in 
the ICU (CareTunes as musical messages for families). 
Overall, this paper demonstrates our vision and pose cri-
tique on sound design in healthcare by discussing the role 
of music in ICUs and novel ways of using healthcare data. 

Our motivation to explore music also comes from the 
need to eliminate cacophony and introduce harmony in the 
soundscapes of complex work spaces and healing environ-
ments. Essentially, we are exploring ways of sonification 
and its manifestation in the form of music which can offer 
richer data representations and pave the road for customi-
zation of sonified data by providing a systemic approach 
for data representation with its own rules. Music is also a 

familiar concept among people as daily musical interac-
tions allow potential users to gain a perceptual repertoire 
and quickly interpret notation or infer abstract meaning.  

1.1 Intensive Care Units 

People are admitted to the Intensive Care Unit (ICU) when 
they are in a life-threatening situation, and special equip-
ment is used to constantly monitor, support, and/or take 
over their bodily functions. ICU patients often require 
much rest, and some may be sedated, such as patients on 
mechanical ventilators. The average ICU length of stay is 
around 3.3 days [1]. However, it is influenced by several 
factors, such as the type of disease or surgery. For exam-
ple, the average length of stay of COVID-19 patients is es-
timated to be around seven to eight days at the time the 
research was conducted [2]. The COVID-19 situation calls 
attention to people who are hospitalised for a longer period 
in the ICU. Families of ICU patients often experience dis-
tress and anxiety. They have emotional and social needs 
such as assurance and closeness, but oftentimes they can-
not make contact with the patient, due to the medical re-
strictions or because the patient is unconscious. Such dif-
ficulties are emphasized during the COVID-19 pandemic, 
as patients may be transported to hospitals far from home 
due to the limited capacity of ICUs. This points to a de-
mand for a stronger patient-family connection and con-
nectedness. Nurses working in the ICU are exposed to a 
vast amount of sounds from medical equipment. The 
amount of alarms nurses cope with causes alarms fatigue, 
which causes nurses to become desensitised to alarms. Not 
only is this a threat to patient safety, it also causes stress. 

1.2 The need for music in the ICU 

Music can serve as a design approach for healthcare [3] as 
it is a powerful way to communicate emotions and mean-
ings and it also exerts physical and behavioral effects [4]. 
With the power to express meaning, it is possible to use 
music to pass on information about the patient to the clini-
cians or family. Music can also be used to enhance or re-
duce positive or negative emotions, or simply to regulate 
levels of arousal [5]. Therefore, music has the quality to 
fulfill the social needs, emotional needs, and need for in-
formation at the same time. Furthermore, some events may 
have a more natural representation in sound [6]. Bly stated 
that: “Because perception of sound is different than visual 
perception, sound can offer a different intuitive view of the 
information it presents.” [7] While numbers, texts, and the 
image of a loved one being unconscious may feel unfamil-
iar to their families, music may allow people to connect 
with the patient in a more natural way.  
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1.3 Communicating Information with Music 

Research into music communication and Sonic Interaction 
Design (SID) offers guidance for designing music to com-
municate information [6] [8] [9]. For example, sound is 
better suited to display relative data than absolute data with 
high precision [6]. Therefore, if music is used to display 
everchanging information, such as the physiological data 
of the patient, it is not necessary, nor aesthetically pleas-
ing, for the music to change precisely with every detail of 
the data it translates. Musical communication is not only 
about the music providing information, but also about peo-
ple interpreting the music. Factors that may affect musical 
communication include musical features, situations and 
contexts, and individual preferences and knowledge [10]. 
Therefore, the meaning of the music may not be fixed, but 
rather changeable as fluids within certain boundaries, in 
relation to the listener’s experience [11]. The mental space 
for imagination and interpretation can have its advantages 
and disadvantages. For example, it can make the listening 
experience more intimate as it allows the listener to give 
meanings to the music based on perception of the context 
in an emotional way. Nevertheless, the listener’s individ-
ual preferences or emotions can greatly influence their in-
terpretation of the music’s meaning, making it difficult to 
design accurately for an intended effect using music. We 
conclude that the strength of music communication lies in 
its ability to facilitate the listener to perceive information 
in a humanized way with emotions considered. 

1.4 Influencing emotions through music 

Justin and Västfjäll [12] concluded six mechanisms 
through which music listening may induce emotions: i. 
brain stem reflexes (e.g., arousal feelings when hearing 
sudden, loud, dissonant sounds), ii. evaluative condition-
ing (memory of music stimulus paired with other positive 
or negative stimuli), iii. emotional contagion, iv. visual im-
agery, v. episodic memory (relating music with a past 
event), and vi. musical expectancy (e.g., surprise caused 
by changes). Instead, the transitions in music are designed 
to be gradual. Examples in using music to cause emotional 
contagion include the use of different timbres. For in-
stance, the timbre of string instruments has a higher emo-
tional quality due to its voice-like characteristic [5]. While 
the strings are able to evoke more longing, sadness and 
tenderness, piano can evoke more joy [13]. Furthermore, 
music may reduce anxiety by making people attuned to its 
melodies and harmonies. Lee et al. [14] concluded that the 
characteristics of anxiety-reducing music include simple 
repetitive rhythms, predictable dynamics, low pitch, slow 
tempos, the consonance of harmony, a lack of percussive 
instrumentals and vocal timbres. However, there has been 
no consistent agreement on the type of music, and people’s 
musical preferences remain one of the most important fac-
tors in the effect of the use of music as a design tool [14].  

1.5 Timbre and tempo as design principles  

Patient data are continuous by nature and fluctuate upon 
metabolismic events. In a sonification of patient data, key, 
tempo, pitch and timbre could all be used to represent val-
ues of the different parameters involved. It is the sudden 

or drastic changes in the values that are monitored and 
acted upon. An important criterion for the design is 
whether or not listeners will likely be able to detect 
changes in sonification by foreground and background ef-
fects. Timbre seems to be an aspect of sound that is quite 
universally recognised by people. People are able to re-
member the voice of someone they know and recognise it. 
Differences between musical instruments, especially from 
different families, can be heard by most untrained people. 
A guitar clearly sounds different than a trumpet, even 
when playing the same note. In ‘Remembering the melody 
and timbre, forgetting the key and tempo’, Schellenbach 
and Habaschi [15] show how people perform better at the 
memorisation of melodies when the timbre remains the 
same in both instances they heard it in. This implies timbre 
plays a role in recognition of melodies. Wolpert [16] even 
shows that to people without musical training, timbre has 
a bigger influence on the perception of a musical excerpt 
than harmonics; when non-musicians were asked to select 
the excerpt they heard earlier, 95% selected a sample in 
which the instrumentation is unchanged, ignoring that 
sample’s incorrect harmonic accompaniment. If non-mu-
sicians are indeed inclined to recognise musical samples 
by their timbre, this would be a useful attribute for to rep-
resent data in a sonification. It would mean users could lis-
ten to the sonification and recognise changes in the values 
sonification represents without having to identify tonal or 
harmonic changes. This can make the design less reliable 
on musical training. 

Levitin and Cook [17] show that the memory of a piece 
of music contains a reasonably accurate tempo for that 
piece; when people were asked to reproduce a song they 
had not heard for at least 72 hours, the majority of people 
were able to reproduce the tempo of the song with an error 
of only 8% or less. This suggests there is an absolute 
memory of tempo when people remember a song. A musi-
cal sonification will inherently have a certain tempo. Be-
cause people have a reasonably accurate memory of a 
tempo of a musical piece they have heard before, this 
tempo, like timbre, seems a suitable aspect of music for the 
representation of data.  

2. PROTOTYPING CARETUNES 

2.1 Sonifying patient vitals  

A first prototype is built to demonstrate the concept of us-
ing three of a patient’s vital signs to influence the way dif-
ferent parts of music sound. We examined 48 hours of 
anonymized patient data from Drager Patient Monitors to 
characterize patient data flow. The data offer changes in 
patient vitals, which then input different software synthe-
sisers. The musical prototype that is presented as a result 
the first cycle consists of a Max MSP program (Figure 1) 
that sonifies three patient vitals that are often monitored on 
the patient monitor: heart rate (HR), Oxygen levels in the 
blood (SpO2), and blood pressure (BP). Manipulating syn-
thesisers based on data can be done with the help of Max 
MSP. Max also offers integration with Ableton Live, 
which will become instrumental in prototyping later design 
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Figure 1. The state diagram for the Max patch.

iterations. In this first design attempt, software synthesis-
ers and audio effects that are integrated in Max are used to 
generate musical motives. Parameters of the software syn-
thesisers that influence its timbre can be manipulated 
based on the numbers of simulated patient vitals. Figure 1 
shows a state diagram of how the Max patch works.   

2.2 Musical complexities.  

A second prototype was built to demonstrate the concept 
of switching between different complexities in the musical 
composition and also to explore the role of individual mu-
sical taste. Therefore, Ableton Live is selected as the most 
suitable tool for this prototype. Ableton Live is a program 
for music sequencing and arranging (Ableton.com). Able-
ton Live is preferred mostly because of its integration with 
Max, which makes it possible to automate parameters in 
audio effects from Max. In the ‘session view’ in Live, one 
can record audio or midi ‘tracks’ that all contain ‘clips. 
These clips can be triggered, either in the interface itself or 
from external hardware, allowing the user to create a com-
position out of pre-recorded samples or midi sequences. 
Three simple compositions, changing in genre (i.e., pop, 
jazz, ambient), are written in Ableton Live all consisting 
of a chord progression accompanied by drums and a bass 
line. Within a composition, there are four different ver-
sions of each composition, each of which is slightly more 
complex than the previous one. This is achieved by adding 
extra bass notes, adding accents in the drum part or by 
playing the notes of the chord sequentially and more often. 
Musical scores for the two out of four intensities of one of 
the ‘genres’ are shown in Figure 2.  

2.2.1 Evaluation of the concept.  

Our aim was to understand whether the participants would 
be able to recognise the changes in timbre and whether 
they would need to change between songs and musical 
complexities for a long-term listening (effect of tempo). 
Genres were used to address individual music preferences. 
 

 
Figure 2. Broken chord and more elaborate drum and bass 
rhythms make the piece sound more complex. 

Participants. Seven design students (4 males and 3 fe-
males) participated in the evaluation with a mean age of 
23,5 years.  

Set-up and procedure. The prototype that simulates the 
current version of the CareTunes concept played from 
Ableton Live on a laptop. The participant would listen to 
the continuous song (i.e., musical sonification) from this 
laptop while working. The participant was able to control 
the prototype through the Open Sound Control interface 
(OCS). The researcher triggered changes in timbre from 
the computer, which the participant could then react by 
pressing a button on OSC. Participants were given the task 
to recognise changes in timbre and indicate them on the 
mobile device. If they would prefer a more exciting ver-
sion of the song they chose which would increase its ‘com-
plexity' on the OSC. Participants were also asked to indi-
cate when they want to listen to a different sonification on 
the mobile device via OSC, and a new song started playing 
once they do so. Participants were occupied with another 
task while they listened to the songs for the duration of the 
test (i.e., one hour) to see whether the changes in the music 
could be detected when people are distracted.  

A semi-structured interview was conducted after the test 
to get a grasp of how well participants are able to recognise 
different timbres and how confident they feel in doing so. 
The following questions were used in this interview. What 
is the participant’s overall impression of the sonification? 
How hard was it for the participant to recognise and dis-
tinguish the changes? How quickly did the sonification 
start to bore the participant? Were the sonifications dis-
tracting from the work participants were trying to do? 
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Measurements. Timestamped notes of the user’s behav-
iour are recorded including when they change the intensity 
or when they seem in doubt about how to respond to the 
soundscape, the number of times the user successfully and 
unsuccessfully recognises a change in timbre. The users 
verbally answer the interview questions. 

Results. The results from the user test are divided into the 
measured results and the participants’ answers to interview 
questions. The amount of time that participants were able 
to listen to the songs before they wanted to switch to a next 
one is reflected by the measured results of their behaviour. 
Participant quotes from the interview show how they felt 
about the different songs and complexities and switching 
between them. Figure 3 shows the participant’s behaviour 
in switching between songs and what they thought about 
this. A large majority of timbre changes was successfully 
recognised by participants (Table 1). Participant quotes 
show how they experienced the task.  

 

 
 
Figure 3. The moments participants changed songs (see the 
‘play’ icon) during 60 minutes and their specific com-
ments. The thickness of the lines changes as participants 
seek for a more complex musical structure.  

Song-like sonifications can make it hard to consistently 
recognise changes. As one listens to a song, it is quite nor-
mal to hear changes in timbre as a part of it. Instruments 
may be played in different ways, or sound effects may be 
applied by the artist. The song-like structure in the current 
design therefore confuses people in whether the changes 
they hear are a part of the song or if they hear something 
they are supposed to point out.  

Switching between songs can make it more interesting 
to listen to the soundscape for a long time, but 
can also make it harder to get used to using the sonifi-
cation. Participants in the test were able to switch between 
different soundscapes and they did so roughly every ten 
minutes. The amount of time one can comfortably listen to 
the sonification can be increased by adding more songs. 
Some participants did however notice that they they had to 

get used to the new song to easily recognise timbre 
changes again.  

Songs have parts that are layered, sounding at the same 
time, making it harder to distinguish them. Using a 
song like structure in the sonifications means each part 
representing a datapoint may sound at the same time as an-
other part. Some of the participants were very easily able 
to detect a change in the song overall, but found it difficult 
to point out which of the part it was.  

There is a learning curve to using CareTunes. Most par-
ticipants note that it becomes easier to work with the son-
ification as they are listening to them for a while. This in-
dicates working with a song may require a certain amount 
of training by the nurse.  

 
 
Table 1. Participants’ success rate in recognizing changes 
in timbre.  

3. CARETUNES – MUSICAL UPDATES  
Medical alarms are quite often misused as nurses look for 
possibilities to be constantly aware of the situation. The 
basic premise of an alarm use is to be notified when action 
needs to be taken [18]. Alarms seem to be often used by 
nurses as a constant status report. Nurses can do this by 
setting limits more tightly than they need to be, to be noti-
fied when the parameter approaches the actual limit. This 
use of alarms is the cause of many non-actionable alarms. 
Because of this, nurses can get used to switching off 
alarms right after they occur without attending to the pa-
tient. Currently, alarms used for monitoring patients do not 
carry the kind of information nurses may practically need 
[19]. Nurses need knowledge about several values meas-
ured by equipment to judge how they need to respond. 
Current alarms never give them this information except for 
the very worst cases, like an asystole alarm, is it immedi-
ately clear what action needs to be taken. All the less se-
vere alarms (i.e., yellow alarms) may mean that any of the 
patient’s vital signs slightly exceeds the value that has 
been set as a limit. It does not convey which vital sign has 
exceeded the limit, by how far it has done so, or even 
whether it surpassed the low or the high limit. This means 
nurses nearly always need to verify the state of the patient 
by checking the exact values, often to find out no action 
needs to be taken.  

3.1 Design considerations for musical updates 

The song-like structure of the sonification in the previous 
cycle made it hard for users to distinguish between the dif-
ferent parameters they were listening to. A brainstorm ses-
sion with three trained musicians was organised to fulfill 
nurses’ needs in relation to the sonification design. Several 
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requirements for the sonification were used as a starting 
point for the session: i. Each instrument used in the sonifi-
cation to represent a different parameter should be easily 
distinguishable; ii. Four levels of timbre change on each 
side of the safe middle should be recognisable by the lis-
tener. These should have clearly audible differences be-
tween values higher and lower than the middle value; iii. 
The timbre of each parameter should become less pleasant 
to listen to as it approaches the limit set for that parameter; 
iv. Sounds which represent a value over the limit should 
universally be regarded unpleasant to listen to; v. Instead 
of continuous music, the sonification should give the lis-
tener periodic updates.  

Timbre change. For each parameter, the range between the 
upper and lower limit is divided into four segments above 
the safe middle and four segments below it. Each of these 
segments has its own timbre so the listener can identify 
each segment by listening. This allows the nurse to be 
aware of how much change occurs in one direction or the 
other. As the parameter approaches a low limit, the sound 
that represents that parameter will sound more muffled in 
each segment. This is achieved through the use of a low 
pass filter over the original, safe value sound. Each of the 
segments the frequency of the filter is changed just enough 
to create a noticeable difference from the segment that pre-
cedes it. The same technique is used to make each segment 
approaching an upper limit sound slightly sharper. In this 
case a high pass filter is used to achieve this effect.  

Dissonance. The timbre changes indicate a parameter that 
reaches an unsafe value and help the nurse be more proac-
tive in taking action as a patient’s vitals change. When a 
limit that a nurse has set is crossed by a parameter how-
ever, this should still be made very clear to the nurse, as a 
dangerous situation may be the result of this. To ensure the 
nurse’s attention is gained in such a situation, dissonance 
is used in the sonification. Dissonance in musical theory 
are notes that sound unstable together and need resolution. 
Out of key notes are added to the sound that represent the 
parameter that exceeds the limit. Out of rhythm sounds are 
added when this concerns the heart rate parameter. To look 
for the right solutions for these requirements, the session 
involved ideations with the help of Ableton Live and sev-
eral MIDI instruments. A range of instruments and sound 
effects were tested to find those that could be used to create 
the desired amount different timbres. The result of the ses-
sion was an overview of how changes in each of three vital 
functions will influence an audio effect. The parameters 
that are sonified were divided not just across different in-
struments, but across three different aspects of music: 
rhythm, harmony and melody. The three parts play in se-
quence to make them easier to distinguish. The listener 
hears three medical parameters, one by one (See Figure 4).  

3.2 Usability test with nurses 

A usability test with nurses was conducted to get more in-
depth insights in how well CareTunes works and how it is 
experienced by nurses. The questions addressed by the 
user test are: What values do nurses intuitively assign to 

the different timbres in each parameter they hear in Care 
Tunes? How well are nurses able to recognise the different 
parameters and the changes within them? Do the visual 
cues in the user interface support nurses in understanding 
what they hear? How do nurses feel about using Care-
Tunes in their work? What do they see as advantages and 
disadvantages? Would they trust themselves to hear 
changes in the sonification?  

 

 
Figure 4. An out of limit value is indicated by dissonance. 

Participants. Four ICU nurses (two male, two female) 
with the same roles but different levels of experiences par-
ticipated.  

Procedure. Before starting the test, the basic principles of 
the design were explained to nurses. A storyboard was 
used to help the participant understand the role that Care-
Tunes would fulfill in the ICU. The test started by the par-
ticipant listening to the sonification first without and then 
with the GUI. The participant listened through on-ear 
headphones which allowed for conversation to take place 
while listening. While the participants listened to the sim-
ulated patient data, they were asked explain what they 
heard and what it could mean. When all timbre changes 
have been covered, a participant was debriefed.  

Results and Conclusions. Two boards are used to show 
the difference between listening without and with the GUI. 
Quotes are linked to the different timbres that the nurses 
heard during the session, showing how they intuitively 
perceive them, and how this changed when the GUI was 
introduced. This gives the following insights.  

Some of the timbres in each parameter intuitively sound 
urgent to participants. For other parameters, some partici-
pants feel the timbre change may be too subtle. Most par-
ticipants were able to recognise the timbre change corre-
sponding with a value close to the limit. All participants 
recognised a value crossing the limit. The introduction of 
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visual support clearly made it easier for participants to fol-
low the parameters and hear which part of the music be-
longs to each of them. When listening to the sonification 
with visual support, some participants indicate the sonifi-
cation sounds less urgent than they would expect for the 
heartrate and oxygen saturation parameters. Three partici-
pants felt wearing an earpiece would be convenient way of 
listening to CareTunes and one expressed discomfort and 
concern about nurses wearing hearing aids.  

4. CARETUNES – MUSICAL MESSAGES 
The music design of CareTunes as musical messages for 
Families focuses on emotional contagion and visual im-
agery. Emotional contagion as a concept can help us think 
of way to reduce negative emotions and evoke positive 
emotions, and visual imagery helps to communicate infor-
mation regarding the patient state. Sudden changes in the 
music can avoided to prevent causing surprises or sudden 
emotional arousal. The data sources are selected according 
to what kind of information would better increase the sense 
of connectedness, and what the families would be likely to 
interpret or imagine (See Figure 5). This information in-
cludes the patient’s emotions, state of consciousness, and 
activities. Therefore, heart rate, brain waves, and move-
ments serve as data sources for the music variations. Heart 
rate and brain waves are data that are on a spectrum. For 
example, a normal resting heart rate for adults ranges from 
60 to 100 beats per minute (though some ICU patients’ 
heart rate can be higher due to increased metabolic rate 
[20]), and brainwaves are defined by electroencephalog-
raphy (EEG) frequency: alpha wave (8-13Hz), theta wave 
(3-7Hz), etc. [21] Therefore, they are divided into levels 
when being presented in the music.   

A mixture of meanings. Although the patient data sources 
are separate, they usually affect one another, often in a 
complex manner, and cannot be distinctly separated to rep-
resent respective meanings. For example, when a person 
starts exercising, their heart rate and movements would in-
crease. Nevertheless, an increase in heart rate does not nec-
essarily mean a person is exercising; it can also signify 
emotional arousal such as stress or excitement, as heart 
rate. Heart rate and brain waves also change according to 
a person falling asleep or waking up. 

Limitations and alternatives. While heart rate is always 
monitored, continuous EEG monitoring is yet uncommon 
and still being developed in the context of ICU [22]. Mo-
tion sensors are not a standard equipment in the ICU, ei-
ther. Nevertheless, this project included these data sources 
as a design vision for the ideal situation. If it is to be im-
plemented without EEG and motion monitoring devices, 
alternatives can be considered, such as using heart rate to 
present the state of consciousness and physical activities. 
However, this may not have the same effect as using brain 
waves, because families might relate thoughts and emo-
tions more to the brain, and regard the heart to have a more 
“biological” meaning, according to the user evaluation.  It 
is also possible to eliminate the presentation of physical 

activities and focus on presenting psychological activities. 
Meanwhile, this also points to one of the advantages of 
having multiple tracks of music in the design: it allows dif-
ferent ICUs to customize the music according to their re-
sources and expertise. 

Design Principles. The data derived from the monitoring 
devices should not be constantly changing to avoid evok-
ing the feeling of instability and hence uncertainty. There-
fore, the data is updated at regular intervals (e.g., every 
five minutes). In addition, if any track is to be added or 
removed from the music, it needs to follow the bars of the 
music and wait for the right moment to come in. 

 
Figure 5. Data mapping of the music generation. 

4.1 User evaluation with families 

Two rounds of design and qualitative user evaluation pro-
vided insights into how music can better present the patient 
to the family while reducing negative emotions and induc-
ing positive emotions.  

Procedure. In the user tests, the participants answered a 
short questionnaire after listening to each piece of music, 
then participated in a structured interview based on their 
answers to the questionnaire. In the first round of user 
evaluation, the participants listened to three pieces of mu-
sic; in the second round, the participants listened to four 
variations of one piece of music, and were able to access 
the music within 48 hours.  

Participants. In order to gain in-depth feedback, a total of 
eight participants were selected to join the qualitative user 
evaluation. The first user test consisted of six participants 
(three males and three females, mean age 27,5 years), three 
with experience of a relative being in the ICU. The second 
user test consisted of two participants whose close rela-
tives have stayed in the ICU. 

Data Collection and Analysis. The data collection of the 
research is through structured interviews. In the inter-
views, the participants first explained their answers to a 
self-report questionnaire about their emotions affected by 
the music. The questionnaires mainly serve to guide the 
participants to reflect on their emotions and experience. 
The participants then proceeded to talk about how they in-
terpreted the music, and what they thought the music told 
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them about their loved one in the ICU. The interview re-
sults are arranged into codebooks with different themes 
and sub-themes to present the commonality of emotional 
effect by music on people. 

Results and Conclusions. Tables 2 and 3 show the results 
of the user evaluation interviews. In the first round of user 
evaluation, participants expressed that they feel more con-
nected to their loved ones when the music feels more pos-
itive and tender. Furthermore, the continuous stream of 
music felt like the continuous presence of the patient. Par-
ticipants also pointed out that, when the music directly pre-
sents the crucial information, such as the heartbeat of the 
patient, they feel worried and uncertain. Meanwhile, the 
music feels more meaningful when they present the pa-
tient’s emotions and activities. In the second round of user 
evaluation, more patient data are included in the music 
composition. Participants expressed that music enables 
them to feel calmer and more positive in critical situations. 
They also feel that the music enhances intimacy between 
them and their loved ones as music presents the emotions 
of the patient. The family could also bring in their own im-
agination to interpret what the music represents.   

 
Table 2. Results of the first round of user interviews. 

5. CONCLUSIONS 
In this study, we explored the role of music in the ICU and 
its potential for reutilizing patient data in a way that corre-
sponds to the psychological and emotional needs of ICU 
users. We studied patient data and found ways to represent 
it musically. Our explorations provided evidence that mu-
sic has the power to represent changes in patient vitals 
when used as an update tool for nurses replacing yellow 
non-actionable alarms and emotionally regulate families’ 
anxieties when used a messaging tool. Our prototypes pri-
oritized possibilities for sonification and did not tackle ac-
tual system design, which will be the priority for the next 
design iteration for CareTunes in the near future. 

Furthermore, we did not study the effect of musical data 
representation on patients. Live music has shown to be ef-
fective in reduction of pain. Patients own musical data may 
have a positive effect on regulation heart rate and varia-
tions. Following studies will look into physiological effect 
of music on patients, what music could mean to different 
types of patients (neonates, children, and adults) and how 
individual music preferences can be dealt with. Music as a 
therapeutic tool will be so investigated. In addition, this is 
an explorative study in sonification and its clinical rele-
vance must be tested in randomized controlled trials.  

 
Table 3. Results of the second round of user interviews. 
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ABSTRACT

This study focuses on the exploration of the possibilities
arising from the application of an NLP word-embedding
method (Word2Vec) to a large corpus of musical chord
sequences, spanning multiple musical periods. First, we
analyse the clustering of the embedded vectors produced
by Word2Vec in order to probe its ability to learn com-
mon musical patterns. We then implement an LSTM-based
neural network which takes these vectors as input with the
goal of predicting a chord given its surrounding context in
a chord sequence. We use the variability in prediction ac-
curacy to quantify the stylistic differences among various
composers in order to detect idiomatic uses of some chords
by some composers. The historical breadth of the corpus
used allows us to draw some conclusions about broader
patterns of changing chord usage across musical periods
from Renaissance to Modernity.

1. INTRODUCTION

Algorithmic approaches to music usually come in two fla-
vors: music information retrieval (MIR) aims at extracting
relevant patterns from musical signals (e.g. audio record-
ings, MIDI files, or images of scores) and improve the per-
formance on certain specific tasks, such as genre or com-
poser classification, automatic playlist generation, optical
music recognition and more. Computational music analy-
sis, on the other hand, aims at using data-driven methods
to study the domain of music in order to develop a deeper
understanding of its cultural and historical diversity, or im-
plications for its perception and cognition.

This study bridges the two approaches by applying the
machine-learning (ML) methods often employed for the
task of chord prediction in MIR to a large corpus of sym-
bolic chord sequences. However, our goal is not to glob-
ally optimize chord prediction in this dataset. Rather,
we use the chord-prediction task as a benchmark measure
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for investigating stylistic characteristics of different com-
posers in the dataset. We suppose that the historical di-
mension in particular affects stylistic differences which,
in turn, should be reflected in the performance of a (glob-
ally constant) chord predictor. In other words, assuming a
fixed model for chord prediction, how does its performance
change given historically varying input? What conclusions
can we draw from this perspective?

In the remainder of the paper, we first summarize recent
related work (Section 2). We then describe the dataset
used in our study (Section 3), as well as our specific ap-
plication of the three ML approaches in more detail (Sec-
tion 4). We report two important results (Section 5): that
clustering in an embedding space reveals functional rela-
tions between chords, and that changes in performance of
our chord-prediction model (dependent on composer and
historical time) indicate fundamental changes in the usage
of harmony.

2. RELATED WORK

Our study draws on a dataset of symbolic musical chord
sequences and uses three fundamental machine learning
building blocks: word embeddings, clustering, and Recur-
rent Neural Networks (RNNs).

Word embedding is a popular technique in Natural Lan-
guage Processing (NLP) which learns a mapping of words
to vectors in a low-dimensional embedding space from a
corpus of texts, which is supposed to contain sufficient
information on the semantic relationships between words.
The mapping is such that the relative positions of the vec-
tors (hopefully) reflect these semantic relationships. The
precise learning of this mapping is dependent on the spe-
cific method used. We use Word2Vec [1]. In Word2Vec,
words often appearing in similar contexts are mapped to
close points in the embedding space, according to their co-
sine distance.

Previous work has used Word2Vec successfully for mod-
eling aspects of the musical language. In [2], the authors
show that a simple approach of splitting musical scores
into short slices containing note presence information is
able to capture some simple features such as tonal proxim-
ity. Later, in [3], a similar slicing procedure is used on a
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larger corpus that re-affirms Word2Vec’s ability to model
musical concepts such as tonal relationships between mu-
sical keys. In [4], the authors learn an embedding space
in a similar way, but use as input multi-hot vectors of note
presence, rather than one-hot encodings of unique symbols
(as in the standard Word2Vec). In contrast to these efforts,
our work takes annotated chord symbols as input, thus en-
abling us to model information at a much higher level of
abstraction by eliminating information spurious to the har-
monic structure such as short passing tones and ornamen-
tation.

Clustering is a well-known unsupervised learning prim-
itive, which works by grouping together close points in a
space, and is used to extract information about the points
that might be contained in their coordinates. We use hi-
erarchical clustering [5] with cosine distance to analyze
the structural properties of our resulting chord embedding
space. This hierarchical approach (as opposed to a more
naive clustering approach like K-means [6]) has the benefit
of allowing us to investigate clusters at different levels of
granularity without needing to fine-tune any hyperparame-
ters. Previous work has also investigated the clustering of
musical embeddings, using explicitly trained chordal em-
beddings (e.g., [2,3]), chord clusters induced through train-
ing for a different task (e.g., [7, 8]), or clustering of larger
groups of chords (e.g., [9]).

RNNs are widespread tools in NLP, particularly in the
field of word prediction with their Long Short-Term Mem-
ory (LSTM) [10] variant. LSTMs are particularly suited
to this task because of their structure, involving a for-
get gate, which solves the short-term memory problem,
typical of traditional RNNs. Similar work shows how
they can be successfully employed in musical contexts,
for “next-slice” modeling [4, 11], as well as for chord pre-
diction [7, 12], and cadence identification [13]. While the
cited works try to maximize prediction accuracy as much
as possible, our goal is slightly different. Of course, we
do want the models to perform as well as possible, but
our main focus in the current work is instead to investigate
the change in prediction performance across historical time
(enabled by our expansive corpus), and to try draw musi-
cological conclusions from this.

3. DATA

The dataset at our disposal, used for embedding, clus-
tering, and chord prediction, consists of 4045 chord pro-
gressions in pieces by 24 Western classical composers,
spanning the wide historical range from the Renaissance
to 20th-century Modernism. The data has been derived
from harmonic annotations using the syntax presented
in [14–17]. For this study, the labels have been simpli-
fied in order to decrease the size of the chord vocabulary
and to remove sparsity in our data. The pieces have been
partitioned into local key segments that are either in the
major or the minor mode (i.e., they contain no modula-
tions), and chords are expressed relative to the tonic of that
mode. Specifically, chords are represented by their root
(expressed as a Roman numeral referring to the scale de-
gree of the mode) and their quality (major, minor, dimin-

ished, or augmented; 7th chords are reduced to their corre-
sponding triad). Because of this representation, the chord
vocabulary is potentially infinite because the seven scale
degrees of the two modes can be preceded by arbitrarily
many accidentals. In particular, this allows us to distin-
guish enharmonically equivalent triads, such as #II:MAJ
and bIII:MAJ that may entail different harmonic func-
tions. Applied chords have been reduced to be directly re-
lated to the tonic of the mode, e.g. “vii∘/V” is translated
to “♯iv∘” and represented as #IV:DIM. Thus, the chord
sequences in our dataset are of the form

∙ MAJOR;I:MAJ,II:MIN,V:MAJ,..., or

∙ MINOR;I:MIN,II:DIM,III:MAJ,...,

where mode and chord labels are separated by a semicolon
and chords within a progression are separated by commas.
The average length of a chord sequence is 31 chords for
major sequences and 28 chords for minor sequences. Since
the roots of chords are expressed in relative notation, i.e. as
the distance to the tonic, an F major chord is represented
as IV:MAJ if the chord sequence is in C major, but as
III:MAJ if it is in D minor. Following these reductions,
there are 81 distinct chords in major sequences, and 77
different chords in minor sequences in our data.

As one can observe in Figure 1, the amount of data at our
disposal varies greatly across composers and historical pe-
riods. Note, for example, that no chord sequences in the
major mode are available for Sweelinck. Great care has
thus to be taken when generalizing our results to the entire
œuvre of these composers or the historical periods they
represent. The data is available at https://github.
com/DCMLab/chordembeddings-smc2021.

4. METHODOLOGY

4.1 Chord embedding

Our first processing step, serving as a basis for the two
downstream tasks of clustering and chord prediction, is
the application of Word2Vec [1]—specifically its imple-
mentation in the Gensim library [18]—which takes as in-
put “sentences” (in our case, major or minor sequences)
of “words” (in our case, chord labels). We treat major
and minor chord sequences as independent and never in-
clude chord sequences from both modes in conjunction.
Thus, in the following, when we say “train/test on all sen-
tences/sections of a composer” or “train/test on a com-
poser”, we implicitly mean that those sections are all in
the same mode.

Word2Vec has four hyperparameters to tune: size,
window, sg (skip-gram), and min count. size de-
termines the dimension of the embedding space. To avoid
overfitting, it should be less than the size of the vocabu-
lary, i.e. the number of distinct chords in the corpus. In
our case, the vocabulary size varies considerably, between
20 and 100 chord types per composer within either of the
two modes. window defines the “width” of the context,
i.e. how many chords, to the left and to the right, constitute
the context of the current chord. The binary parameter sg
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Figure 1. Total number of non-unique chord labels used by
each composer, split between major and minor sequences.
Composers are ordered by year of death (from oldest at the
top to more recent at the bottom).

is short for “skip-gram” and selects the training algorithm:
it can be either “continuous bag of words” (CBOW, i.e.
guessing the target word from its context), or “skip-gram”
(guessing the context given the target word). min count
sets a minimum absolute frequency a chord must have in
order to be kept in the corpus. Since our corpus contains
a Zipf-like distribution, this allows us to remove from the
result the numerous irrelevant mappings of rare chords.

For all of our experiments, we exclude rare chords, as
the model is unable to learn a stable embedding for such
chords, making any relevant conclusion impossible. We
therefore set min count = 50 (since the most common
chords have absolute frequencies of hundreds, if not thou-
sands), which led to a vocabulary size of 32. The size of
the embedding space was then chosen to be 5 (alternatives
were essentially equivalent). We set window = 2 (again,
other values led to similar results), and finally, we chose
to use skip-gram rather than CBOW embeddings, because
this led to more interpretable results.

4.2 Clustering

A first application of the mapping learned by Word2Vec is
clustering, which is used to detect musical patterns. As is
understandable from the properties of the mapping, chords
appearing in the same cluster are likely to often appear in
similar contexts. For this task, it is very difficult to carry
out an objective, quantitative model evaluation. Therefore,
we choose hyperparameters based on how much the out-
come corresponds to music-theoretical intuitions. For ex-

ample, we expect, when only training on major sections,
that tonics and dominants are embedded close to each
other, since they constitute the most basic musical pattern
imaginable, as discussed in [15], and therefore often occur
in very similar contexts.

Hierarchical clustering works by recursively merging
the pair of clusters 𝐶𝑖 and 𝐶𝑗 (starting from singletons)
that are the closest to each other according to some dis-
tance metric. We use cosine distance, commonly used
for vector embedding spaces. The recursion stops when
the minimum distance between clusters is above a given
distance threshold, or when only a single cluster
remains.

The fact that this algorithm can work with cosine
distance is ideal to detect similarities in a Word2Vec
embedding space. Moreover, it is able to capture
clusters of any shape. One might argue that a
choice of distance threshold can be quite arbi-
trary. However, this can be avoided by setting the
distance threshold to some large value (thus merg-
ing all clusters into one), and then plotting a dendrogram
of all possible mergers. A dendrogram (e.g., Figure 3) is a
depiction of the nested clusters produced by this method:
it clearly shows all the mergers 𝐶𝑖 − 𝐶𝑗 that happened,
and the distance associated to them.

4.3 Chord prediction

Another use of the mapping provided by Word2Vec is the
chord prediction task. LSTMs are an improvement over the
classic RNN design that solve its short-term memory prob-
lem (caused by the well-known vanishing gradient prob-
lem): this allows them to effectively track long-term de-
pendencies in sequential data. They are commonly used in
NLP to predict the next word in a sentence.

We implemented an LSTM-based neural network for
chord prediction, which trains on a training corpus (all
sentences from a set of training composers for a given
mode) and is tested on a test corpus (all sentences from a
single test composer for that mode). For the LSTM exper-
iments, the Word2Vec embedding is retrained using only
the training corpus. Thus, we test how well-predictable
chords in musical sequences by a composer are given the
knowledge about chord sequences by all other composers.
The metric used is the simple accuracy: the fraction of
correctly-predicted chord occurrences, either overall or
grouped by chord. We use the overall accuracy results for
a single test composer to see how “predictable” they are,
from what we learned from the training composers. We
use the same results, split by chord, to investigate which
chords are easier to predict and which are used more id-
iomatically (and are thus more difficult to predict).

The LSTM design is shown in Figure 2, and is structured
as follows. Given a target chord (𝑐𝑛 in the figure), a first
LSTM layer takes as input the concatenation of the embed-
ded vectors of chords within some window of the target
chord (shown as black circles in the figure with a window
size of 2). A linear layer then maps the LSTM’s output
vector to a vector of length n vocab (where n vocab is
the number of distinct chords), with a final softmax activa-
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Figure 2. Diagram for the predictor network.

tion.
For the chord prediction experiments, we use the same

Word2Vec parameters as above, although the embeddings
are recalculated for each test composer. For both training
and testing the LSTM, we take care to remove any data
points which contain any chord (either as input or as the
target) that falls below Word2Vec’s min count (in the
training corpus). For training the LSTM, we use the Adam
optimizer [19] with mean squared error (MSE) for the loss.
We train all results for 2 epochs (this was enough for them
to converge in all cases).

5. RESULTS

Our results imply two main findings: 1) clustering chords
in the embedding space reveals meaningful functional rela-
tions between many of them; 2) chord prediction accuracy
exhibits historical trends.

5.1 Clustering reveals functional chord relations

First, we report the results we obtained by applying hierar-
chical clustering on the embedded chords from the major
and minor sections of all composers in the corpus. We vi-
sualize the hierarchical clustering in the embedding spaces
for the major and the minor mode in dendrograms in Fig-
ures 3 and 4, respectively. As mentioned before, distances
in embedding spaces are inherently difficult to interpret in
general. However, many of the resulting clusters are quite
well interpretable in various ways.

The resulting clusters for chord sequences for both modes
reveal two fundamental tonal relations: functional equiva-
lence and functional difference [20–22]. This extends ear-
lier similar findings on functional categories restricted to J.
S. Bach’s chorales and based on chord bigrams [23]. Be-
low we list a number of notable functional chord relations
that can be found in our clusterings.

5.1.1 Functional equivalence

Chords that share common tones may be regarded as func-
tionally equivalent. Functionally equivalent chords include
relative and parallel chords, as well as other common-tone
relations [24]. Two chords are each other’s relative if they
are the tonics of two keys that have the same key signature
(e.g. V:MAJ and III:MIN in a major key). A major and
minor chord are parallel if they have the same root (e.g.
II:MAJ and II:MIN). Chords may also retain the same
function, if they share a number of tones (e.g. V:MAJ and

Figure 3. Dendrogram for chord embeddings in major.

Figure 4. Dendrogram for chord embeddings in minor.
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#VII:DIM jointly form a dominant seventh chord in any
minor key).

In the major mode (Figure 3), the relative chords
that are clustered together are II:MIN and IV:MAJ
as well as IV:MIN and bVI:MAJ. The parallel chords
are VII:MAJ and VII:MIN, and the chords in-
volved in other common-tone relations are V:MAJ
and VII:DIM; II:MAJ and #IV:DIM; II:DIM
and IV:MIN; III:MAJ and #V:DIM; VI:MIN and
#IV:DIM as well as III:DIM and #I:DIM.

In minor (Figure 4), the relative chords close to
one another in the embedding space are VII:MIN
and bII:MAJ; IV:MAJ and II:MIN; as well as
IV:MIN and VI:MAJ. The parallel chords in mi-
nor are #VI:MAJ and #VI:MIN; and, finally, the
chords with other common-tone relations are II:DIM
and #VII:DIM; I:DIM and III:MIN; V:DIM and
VII:MIN; #III:MIN and #I:DIM; as well as
#IV:MAJ and ##IV:DIM.

Overall, in our chord embeddings, the relative and
common-tone relations are much more frequent than par-
allel relations, which is to be expected, since the latter in-
volves a change of mode and the sections from which the
chords are drawn are precisely defined as staying within
one mode (major or minor, notwithstanding potential sin-
gular exceptions).

5.1.2 Functional difference

Chords are functionally different if they, or their equiva-
lents, are separated by a perfect fifth, as for example in
tonic-dominant or tonic-subdominant pairs, e.g. in authen-
tic or plagal progressions. Note, however, that pairs of
chords in the embedding space are undirected. In the ma-
jor mode (Figure 3), we find fifth-based relations between
chords in the embedding space for I:MAJ and V:MAJ;
I:AUG and V:AUG; III:MAJ and #II:DIM; 1 as well
as #IV:MAJ and #I:MAJ. In the minor mode (Fig-
ure 4), we find I:MIN and V:MAJ; II:MAJ and V:MIN;
#VI:MAJ/MIN and #III:MIN; I:MAJ and IV:MIN;
as well as III:MAJ and VII:MAJ

It is notable that the main cadential chords in both modes
(i.e. triads on scale degrees I, V, IV, II, and VII in major,
and I, V, and II in minor) occur in relatively close proxim-
ity. Despite the fact that distances in embedding spaces are
generally hard to interpret, we take the ubiquity of relative,
parallel, subset, and fifths-based relations to be an indica-
tor for their pervasiveness in the harmonic progressions in
our corpus.

5.2 Chord prediction indicates historical differences
in harmonic styles

Here, we summarise the results obtained in chord predic-
tion. Since a composer’s prediction accuracy may change
for each run of our algorithm due to random initialization
of the Word2Vec and LSTM models, we run each exper-
iment ten times, and report mean and standard deviation
values for each composer. These are plotted in Figure 5,
per composer and mode, where each point represents the

1 We interpret #II:DIM as a shortened VII:DOM7.

mean accuracy for all chords combined, and the shaded
bands show the standard deviation across the ten runs. The
composers are ordered by their year of death in order to
investigate historical trends.

The first thing to notice is that the standard deviations are
all quite small (< 0.04 in all cases), showing that our re-
sults are consistent across runs and are not affected by ran-
dom noise in the modeling process. Furthermore, the ap-
proximately “inverted U-shape” of the mean values implies
that Classical composers are the most predictable from our
data, followed by Baroque and Romantic composers, with
Modernist and Renaissance composers being the least pre-
dictable. This is not to say that Classical composers are
more predictable in general than composers from other
eras. Indeed, remembering that for each composer we
train on the data from all other composers in the corpus,
this trend is roughly implied by the distribution of data
shown in Figure 1. However, the very fact that such an
effect exists suggests that composers of the different eras
do use chords in fundamentally different ways. Since each
model is trained on a very similar set of data (differing by
only one composer), the learned model is necessarily sim-
ilar across composers. Therefore, if two composers used
chords similarly, their results would likewise be extremely
similar. So, the fact that we see a historical trend at all
suggests that composers of the different eras do indeed use
chords in fundamentally different ways (although we make
no claim here about what those differences are).

Furthermore, since the majority of our data comes from
Classical composers, we can hypothesize that the mean ac-
curacy of a composer should be positively correlated with
the similarity of that composer’s chord usage to that of
an average Classical composer. From this perspective, the
overall shape of the curve makes a lot of sense.

An analysis of the detailed per-chord accuracy results
(data available with the code), gives even more insight
about the idioms common to a specific composer or period.
The strongest result, in a major context, is the very low
prediction accuracy for I:MAJ and V:MAJ (the easiest
chords to predict overall) when testing on Ravel and De-
bussy. Indeed, they are two Impressionist composers, who
are generally known for their “distinct” harmonies, which
rarely (if ever) use authentic cadences. Moreover, we find
IV:MAJ and II:MIN to be two “polarising” chords: for
most composers, we either predict them very well or very
poorly compared to the average. In particular, IV:MAJ is
only well predictable for Baroque composers, while others
(with the exception of Beethoven, Chopin, and Dvořak)
seem to use it in a more peculiar way. II:MIN, on the
other hand, only becomes hard to predict from the late Ro-
mantic period. This latter result, albeit neat and striking,
is not as easily interpretable as the previous one. In mi-
nor sections, a low accuracy on I:MIN (the most com-
mon chord together with V:MAJ) for Renaissance com-
posers (Gesualdo, Sweelinck, Monteverdi, Schütz) and for
Modernists, again signals that this chord has played diverse
roles across the centuries. We achieve a relatively low ac-
curacy on many of the most common minor chords for both
Romantic and Modernist composers, with the exception
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Figure 5. Global chord prediction accuracy for each composer, for major and minor sections. Standard deviation is given
by the shaded region around each point. Composers are ordered chronologically by year of death.

of Tchaikovsky. This indicates that he is closer to Clas-
sical composers in his works in minor contexts (indeed,
his only work in the dataset are the Seasons, a collection of
rather traditional piano pieces overall). Changes in chord
predictability related to stylistic differences are supported
by historical studies focusing on the pitch-class content of
musical pieces [25, 26].

6. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated progressions of chords
in both the major and minor mode by a number of
different composers. Our study explored two applica-
tions of deep learning methods to music theory: which
inferences about tonal relations between chords could
be drawn from embedding them in a lower-dimensional
space, and whether attempting to predict chords based on
the regularities in the data would reveal stylistic differ-
ences between composers across historical periods. All
data and code are available at https://github.com/
DCMLab/chordembeddings-smc2021.

Word2Vec was our first processing step, which provided
useful grounds to base our subsequent analyses on. When
applied to the output vectors of Word2Vec, clustering
could capture some well-known tonal relationships be-
tween chords, including relative, parallel, and subset rela-
tions, as well as (possibly transposed) tonic-dominant pairs
of chords. On the other hand, LSTM-based chord predic-
tion yielded fairly high accuracy results in general (roughly
50% for most composers), but it also allowed us to use

their high variability across chords and composers to draw
some conclusions about chord usage across time which
are supported by music theory. Globally, we found that
Classical and Baroque composers use chords in a similar
way, while Modernists and Renaissance composers seem
to have a more distinctive style. The Romantic style seems
to be complex, as there is a high variance in how com-
posers from that era use chords.

Future work might also include a more refined use of
clustering, for instance by applying it to a Word2Vec
model trained only on a single composer—or on a group
of composers which are known to be relatively similar to
each other—in order to detect some special tonal relation-
ship unique to that set of composers. Alternatively, chord
prediction could be employed to investigate how rigidly a
given composer belongs to a given artistic era: by restrict-
ing the training corpus to composers in the same era, we
would prevent the model from learning totally unrelated
idioms, thus achieving a higher accuracy on the test com-
poser (to an extent depending on how similar he actually is
to the others in that era).

As mentioned, in the current work, we identified the exis-
tence of historical differences in chord usage. However, we
did not identify what those differences were. Future work
could look at the problem from a more causal perspective
by limiting the training corpus for each composer to only
those composers who preceded them.
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ABSTRACT

Cognitive music theory analyzes the listeners’ understand-
ing of music. The generative syntax model (GSM) has
shown that the structure of expectation-realization in a
harmonic progression becomes recursive and hierarchical,
in terms of context-free grammars. However, GSM only
takes into consideration the cognitive structure after lis-
tening and does not discuss the dynamic process during
listening, but given that music is a temporal structure of
sound, dynamic changes in cognitive structure are more
important. In this study, we extend the GSM by using
probabilistic context-free grammar to represent the cogni-
tive structure for each successive chord. Furthermore, we
implemented a harmonic analysis system based on the ex-
tended model. We use a jazz standard, a genre of music in
which harmonic progression is particularly important, as a
case study, analyze it, and show its efficacy. The exper-
imental result quantified its unexpectedness, appearing in
the middle of a piece of music.

1. INTRODUCTION

The origin of music is said to be closely related to the evo-
lution of language [1], and thus, “what is music?” is a
historically abstruse question. The first theorized music
seems Pythagoras’ pitch in ancient Greece, however, along
with the history the music has diversified into various gen-
res, and in accordance with the theories also have been
complicated. On the other hand, many fundamental ques-
tions, such as “how do we understand music?” still remain
unclear. Cognitive music theory focuses on such questions.
Cognitive music theory analyzes music based on the cog-
nitive processes of the “listener”, whereas a general music
theory is used as a tool for the music “creator”, that is, to
compose and arrange music [2, 3]．

In cognitive music theory, there is a method of analyzing
music as a hierarchical structure. The notion of a hier-
archical structure of a piece of music originated from the
reduction hypothesis proposed by Schenker [4]. The re-

Copyright: c⃝ 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which
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Figure 1. Structural analysis of ii-V-I based on GSM

duction hypothesis states that “a listener of a piece of mu-
sic will try to organize all pitch events (notes and chords)
into a hierarchical structure of relative importance.” Ler-
dahl and Jackendoff’s A generative theory of tonal music
(GTTM) [5] analyzes the melody of a piece as a hierarchi-
cal structure [6–8]. The generative syntax model (GSM)
by Rohrmeier focuses on harmony and defines context-free
rules for harmonic progressions [9]. This allows the hier-
archical structure of harmonic cognition to be represented
as a tree structure, as shown in Figure 1.

However, GSM only takes into consideration the cogni-
tive structure after listening and does not discuss the dy-
namic process during listening, but given that music is a
temporal structure of sound, dynamic changes in cogni-
tive structure are more important. The philosopher Meyer
states that “the meaning of music arises from the relation
of sounds in which the preceding sound somehow expects
the following sound, and the embodiment of the following
sound tries to confirm or review the preceding sound [10].”
The interest in music is formed by incremental cognition.

Furthermore, in the original GSM, we cannot compare
the tree structure if multiple analyses are probable due to
generative syntax. This is because there is no concept of
probability. The degree of expectation in the middle of a
piece can be expressed by probabilities.

In this study, we focused on the incremental cognition of
music. To clarify the cognitive structure for each succes-
sive chord, we propose the application of incremental chart
parsing [11] to GSM. In addition, we extend the grammat-
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ical rules of GSM to probabilistic context-free grammar,
to enable a quantitative discussion of unexpectedness in a
harmonic progression. This makes it possible to compare
the importance of different tree structures. The proposed
method is implemented on a computer, and incremental
analysis is performed on a jazz piece to discuss where the
unexpectedness occurs within the music.

This paper is organized as follows: In the following sec-
tion, we summarize the theory of GSM; In section 3, we
detail the mechanism of incremental parser and proba-
bilistic context-free grammar; In section 4, we propose a
method for the evaluation of unexpectedness; In section 5,
we show an example of incremental analysis with a jazz
chord sequence and discuss the unexpectedness; In section
6, we summarize our contributions.

2. GENERATIVE SYNTAX MODEL

2.1 Overview

The GSM [9, 12] is a cognitive music theory proposed by
Rohrmeier. GSM is a model that represents the cognitive
structure of a musical piece as a tree structure, similar to
GTTM [5], a well-known cognitive music theory. Whereas
GTTM proceeds without explicit context-free rules, GSM
is strongly based on Chomsky’s generative grammar theory
[13–15], and proceeds with explicit context-free rules for
harmonic progressions.

GSM makes the following assumptions about harmonic
cognition: one chord has a dependency relationship with
the chords before and after it. In particular, an adja-
cent chord has a “functional head,” in which the dominant
chord governs a broader time interval absorbing surround-
ing pitch events.

There are several versions of the phrase structure rules
presented in the GSM, depending on the type of music. In
the following, we will focus on the rule [12, 16] proposed
for jazz music, which is the subject of this study.

All syntactic rules presented in the GSM are said to fol-
low either the Prolongation principle or the Prepara-
tion principle . Figure 2 shows the GSM analysis of the
jazz standard Birk’s Works (Fm6 A♭m7 D♭7 Gm7♭5 C7
Fm6) In the following, We explain the principle of Prolon-
gation and Preparation using this analysis.

The initial Fm6 established the tonic and as such creates
the expectation that the progression ends with Fm6. The
chords A♭m7 and D♭7 function as the tritone-substituted
subdominant and dominant of C7, respectively. They
therefore create expectation that resolves in the (tempo-
rally distant) chord C7. Gm7♭5 can be thought of as a
subdominant chord in the F minor key. It herefore creates
expectation that resolves with the dominant chord C7 wich
itself resolves into the last tonic chord Fm6. We say that
the tonic chords constitute a Prolongation. The subdom-
inant chords Prepare the dominant chords and the domi-
nant chords Prepare the tonic chord. Abstractry, we say
that a chord X refers to a chord Y if X either prolongs or
prepares Y .

Figure 2b illustrates the structure of expectation realiza-
tion in the harmonic progression. Chord pairs, represented

(a) Harmonic syntax tree based on GSM

(b) Harmonic expectation–realization structure

Figure 2. Syntax tree example about the final chords of the
jazz standard Birks’s Works [16]

by arrows in the diagram, are based on the preparation
principle, in the sense that the former chord serves as a
preparatory function for the following chord, while pairs
such as Fm6 - Fm6, without arrows, are based on the pro-
longation principle. This is in one-to-one correspondence
with the tree structure in Figure 2a, so it can be said that the
tree structure of harmonic progressions reveals the struc-
ture of expectation–realization in harmonic progressions.

There are also two types of prolongation principles:
strong prolongation and weak prolongation. A strong pro-
longation is an extension with the same chord type of the
same root, while a weak prolongation is an extension of
a chord with the same function (e.g., prolongation by C
and Am in the key of C major). A strong prolongation is
represented as X → X X for any chord symbol X (e.g.,
Fm6 → Fm6 Fm6). Weak prolongation is represented as
X → Y X orX → X Y with respect to functionally equal
chord symbols X,Y (e.g., Fm6 → A♭ Fm6). The prepa-
ration principle is represented by X → Y X for chord
symbols X,Y that are not functionally equal (e.g., Fm6→
C7 Fm6).

The prolongation and preparation principles can be sum-
marized as follows:

Strong Prol. X → X X

Weak Prol. X → Y X | X Y

Preparation X → Y X

These syntactic rules are characterized by the fact that non-
terminal symbols do not have their own category but are
expressed in the form of a binary tree, where the left-hand
side symbol always appears on the right-hand side. This
feature can also be seen in grammatical theories such as de-
pendency grammar [17] and combinatorial category gram-
mar (CCG) [18]. The symbol appearing on both sides of
the arrow is called the head. In the setting of GSM, the
prolonged (resp. prepared) chrod is the head. Therefore,
the preparation rule is always right-headed, but the weak
prolongation rule can be left-headed or right-headed de-
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Algorithm 1 Algorithm of incremental parsing
function CHART_PARSING(G_chart, w)

L_chart← {} \*Local charts*\
temp← {}

\*step1 Lexicon Consultation*\
for α ∈ Lexicon do

if w = α then
L_chart← L_chart ∪ {[w]α}

\*step2 Rule Application*\
for σ ∈ L_chart and β → β1β2 . . . βn ∈ Rules do

if σ = β1 then
L_chart←
L_chart ∪ {[σ[?]β2

]β ]}

\*step3 Term Replacement*\
for ϕ ∈ G_chart and ψ ∈ L_chart do

if γ = lut(ϕ) ∧ γ = ψ then
replace lut(ϕ) with ψ
temp← temp ∪ {ϕ}

G_chart← temp \*Global charts*\
return G_chart

\*main*\
G_chart← [?]S \*initialize*\
for i=1,...,last do

wi ← input_chord
G_chart← CHART_PARSING(G_chart, wi)

pending on the interpretation.

2.2 Jazz Harmony Treebank

The Jazz Harmony Treebank (JHT)1 [16] is a dataset an-
notated with the results of the hierarchical analysis of har-
monic progressions in jazz standards by experts. Hier-
archical analysis was based on the aforementioned GSM
principles. In this study, it was used as a corpus to estimate
the probability of applying the probabilistic context-free
grammar described below.

The analysis of JHT is based on 150 jazz tunes in the
genres of Swing, Bossa Nova, Jazz Blues, Bebop, Cool
Jazz, and Hard Bop, and does not include non-tonal genres
such as Modal Jazz, Free Jazz, and Modern Jazz.

3. INCREMENTAL STRUCTURAL ANALYSIS

3.1 Incremental Chart Parsing

We have proposed a model that displays the tree struc-
ture, for each successive chord, by incrementally analyzing
harmonic progressions [19]. This model was realized by
applying a natural language parsing method, incremental
chart parsing [11], to the GSM. Here, we explain this al-
gorithm, which is a natural language processing technique,
we use the word “word” to describe it, but in harmony,
“word” refers to a chord symbol (e.g., CM7, G7, etc.).

1 https://github.com/DCMLab/JazzHarmonyTreebank

In natural language processing, the input is a sequence of
words spaced by blanks. Each word is positioned by num-
bers, called nodes, placed at the blanks between words;
thus, word wi resides between node i− 1 and node i.

An edge combines one node with another. A tree is rep-
resented by a data structure, called term; when α belongs
to category X , we write it as [α]X . Here, α is either a
word (chord), a term, or a list of terms. A chart consists
of an edge and term. For example, when a chart is (i, j)
and [[α]Y [β]Z ]X , it represents a (local) tree obtained by an
application of production rule ‘X → Y Z’ between nodes
i and j to the sequence of αβ, being recognized by α and
β belonging to Y and Z, respectively. In contrast, an edge
can possess multiple terms; that is, there may be multiple
parse trees on the edge. Thus, there might be different in-
terpretations of edges. The term displayed by [?]X is called
an undecided term, where the content of category X is not
decided. When an undecided term resides on an edge, the
edge is called active; otherwise, inactive.

In incremental chart analysis, when the i-th word wi is
input, the following operations are performed sequentially:

Lexicon Consultation When the category ofwi isX , add
an inactive edge labeled by term [wi]X on (i− 1, i).

Rule Application When there exists an active edge la-
beled by term [. . . ]X on (i − 1, i), for all grammar
rules such as A → XY . . . Z, add an edge labeled
by term [[. . . ]X [?]Y . . . [?]Z ]A on (i− 1, i).

Term Replacement Let ϕ, ψ be terms, and [?]X be the
leftmost undecided term of ϕ labeled on (0, i − 1).
If the category of ψ labeled on (i − 1, i) is X , add
an edge labeled by a term that replaces the leftmost
undecided term of ϕ with ψ to (0, i).

Algorithm 1 shows the above operations in pseudo-code.
In pseudo-code, an edge is represented by a pair of in-
dices in the array; hence, an edge is not mentioned ex-
plicitly. Furthermore, σ, ψ, ϕ, and γ represent terms, and
when terms are connected by equals (=), it indicates that
the outermost categories are equal. In addition, we denote
the left-most undecided term of term ϕ as lut(ϕ).

In general, chart parsing takes the whole sentence as an
input and constructs a tree. On the other hand, in incre-
mental chart parsing, parts of a sentence are input sequen-
tially, and the tree is constructed incrementally. There are
two types of algorithms for chart analysis: bottom-up and
top-down. The bottom-up algorithm starts with a word
and builds a tree toward the start symbol S. The top-down
algorithm starts with the start symbol S and builds a tree
toward the leaves, that is, the word. A combination of
bottom-up and top-down algorithms can be used to deal
with sequential inputs. Therefore, incremental chart pars-
ing introduces two top-down operations into the bottom-up
chart analysis, namely, the operation of applying a gram-
mar rule to an active arc and the operation of replacing the
leftmost undecided term, of a term labeled with an active
arc, with a term labeled with another active arc. In the ac-
tual system, only the global chart at each stage is displayed.
In this study, we refer to these terms as candidate trees.
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In addition, it is necessary to initialize the global chart
with an undecided term whose category is the start symbol
S. In this paper, following tonic chord for all 12 keys are
used for start symbol S.

S = {C,D♭,D, . . . ,B} × {M,M7,m,m7} (1)

3.2 Probabilistic Context Free Grammar

Probabilistic context-free grammar (PCFG) models extend
context-free grammars and can calculate the probability
of occurrence of a syntax tree [20]. This model assigns
the following conditional application probabilities to each
generative rule in the grammar A→ α.

P (A→ α|A) (2)

Since it is a conditional probability, the following equa-
tion holds. ∑

α

P (A→ α|A) = 1 (3)

In other words, the sum of the probabilities of applying
the generative rules, with the same non-terminal symbol
(pre-terminal symbol2 ) on the left side was 1. The sim-
plest way to calculate such a probability is to use a parsed
corpus. The probability of applying the generative rule can
be calculated as follows:

P (A→ α|A) = Number of A→ α in the corpus
Number of A in the corpus

(4)

In Equation (4), the denominator is the number of occur-
rences of non-terminal symbols in the corpus, and numer-
ator is the number of times the generative rule is used.

Obviously, expression 3 is satisfied. In addition, given the
application probabilities in this way, the generation prob-
ability of a certain tree structure t can be given by the
product of the application probabilities of all the genera-
tive rules that make up the tree structure.

To prevent the exponential increase in analysis time with
longer sentences in the incremental chart analysis, we per-
formed branch trimming, using the generation probability
of the tree structure at each word stage. The terms stored
in the global chart, at the time of each word, up to the top
100 terms in probability, were retained for the analysis of
the next word.

3.3 Expectation-based Chord Sequence Analyzer

In this study, we implemented a GUI application called
expectation-based chord sequence analyzer (ECSA)3 .
The main purpose of this application is to intuitively un-
derstand the harmonic structure.

Figure 3 shows ECSA’s main view. When we enter a
chord sequences in the text box on the top page, the results
of the tree structure analysis for the input are displayed in

2 This is the equivalent of phrases such as NP and VP in natural lan-
guage processing. In this study, we follow the example of [12, 16] and
use a grammar rule that equates non-terminal with pre-terminal symbols,
namely there are no lexicons.

3 https://github.com/yutaogura/Ex-based-Analyzer

Figure 3. Appearance of Expectation-based Chord Se-
quence Analyzer

multiple lines. Each line shows the result of the analy-
sis up to the point when the chord was entered. Figure 3
is the analysis result of jazz standard Cute, which will be
explained in section 5. The first line shows the results of
the analysis at the stage when chords up until Dm7 are in-
put, and the second line shows the results when up to when
Dm7 and G7 are input. Each parse tree, at that time, is dis-
played in a slider (carousel) panel. At the top of each panel,
the generation probability of the parse tree is shown, and
the parse trees are sorted from left to right with the high-
est probability. Also, the number next to the label of each
chord name shows the unexpectedness measure U that will
be described in section 4.

4. EVALUATION OF UNEXPECTEDNESS

In this study, unexpectedness is considered to arise from
expectation–realization and expectation–deviation. A har-
monic progression with “low” unexpectedness is a har-
monic progression in which the expectation of the preced-
ing chord is realized by the following chord. A harmonic
progression with “high” unexpectedness is a harmonic pro-
gression in which the chord deviates from the expectation
set up by the preceding chord.

This expectation–realization and expectation–deviation
depends on the growth process of the tree. In a harmonic
syntax tree in the middle of a piece of music, the chords ex-
pected to follow are represented as categories of undecided
terms such as [?]CM7. In the next step, we consider an
expectation–realization to have occurred when chord CM7
is actually input, and an expectation-deviation to have oc-
curred when another chord is input. In the following, we
refer to the stage in the middle of a piece, where a certain
chord is input as the chord step.

The change in the generation probability of the tree struc-
ture is also important for unexpectedness. In general, there
are multiple candidate trees for each chord step, and the
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Figure 4. Tree structure change pattern with maximum generation probability

candidate trees are ranked by their generation probabili-
ties. In this study, we focus on the tree structure with the
highest generation probability, at each chord step, as a rep-
resentative of the cognitive structure at each chord step.

Figure 4 shows a schematic diagram of how the tree struc-
ture, with the highest generation probability, changes at a
given chord step. The numbers in parentheses indicate the
rank of the probability at that chord step. In the follow-
ing, the tree structure from which a certain tree structure
is grown is called the derivation tree structure. The thick
solid arrows show the relationship between the source and
destination of the tree.

Pattern a and b in Figure 4 show how the chord expected
in the previous chord step is realized in the current step. In
Pattern a, there is no change in the value of the probability
of generating the tree with the highest probability, but in
Pattern b, the value of the probability of generating the
tree with the highest probability has changed because the
rank of the tree structure that was n-th in the previous step
has become the first. Pattern c shows the input of a chord
that was not expected in the previous step. In this case, a
new substructure is added (dotted arrow in the figure), and
the value of the probability of generating the tree with the
highest probability changes.

Based on the above discussion, we formulate a measure
of unexpectedness that considers the degree of increase in
rank and the addition of substructures. Let t(n) denote the
candidate tree structure at a certain chord step n, and let
t
(n)
maxprob denote the tree structure with the highest gener-

ation probability, and P (t(n)maxprob) denote the probability
value. The tree structure from which t(n) is derived is de-
noted as t(n−1). In this case, the unexpectedness U (n) of a
chord step n is given as follows:

t∗ = t
(n)
maxprob (5)

A =
P
(
t∗(n−1)

)
P
(
t
(n−1)
maxprob

) (6)

B =
P
(
t
(n)
maxprob

)
P
(
t∗(n−1)

) (7)

U (n) =


P
(
t
(n)
maxprob

)
(n = 1)

A×B =
P
(
t
(n)
maxprob

)
P
(
t
(n−1)
maxprob

) (n > 1)
(8)

The closer the measure of unexpectedness U is to 1, the
more the expectation–realization has occurred, meaning a
“low” unexpectedness, and the closer it is to 0, the more the
expectation–deviation has occurred, meaning a “high” un-
expectedness. The A represents the scarcity of the source
tree structure in the previous chord step, that is, the in-
crease in rank (Eq. 6). Also,B represents the probability of
generating the newly added substructure (Eq. 7). The un-
expectedness measure U is a combination of these. In the
actual calculation, the P (t∗(n−1)) parts cancel each other
out, so in the end, U is just the ratio of the probability of
generating the tree with the highest probability before and
after the target chord step.

5. CASE STUDY WITH A JAZZ CHORD
SEQUENCE

In this study, we present an example of incremental struc-
tural analysis using an actual jazz standard Cute.

Cute consists of 32-bars ABAC form. In this section, we
analyze the AC part, which is the second half of the 16-
bars. The chord progression and lead melody are shown in
Figure 5.
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Figure 5. The chord progression and lead melody of Cute
(second half 16-bars)

Before discussing the unexpectedness of the piece, us-
ing incremental structural analysis, let us review the basic
characteristics of the piece from the perspective of con-
ventional music theory [21, 22]. Cute is in the key of C
major. This is evident from the fact that the last chord of
the song ends with CM7. The first four measures, Dm7 –
G7 – CM7, are two-five-one of the C major key. The fol-
lowing bars 5 and 6 are also two-five-one in the key of C
major, and in the seventh bar, chord CM7, which is tonic,
is expected to come, but the chord Gm7 is inserted, and
from here, Gm7 – C7 – FM7, two-five-one in the key of
F major, begins. This is followed by B♭7, a subdominant
minor, and Em7, a diatonic chord in the key of C major,
and then iii – vi – ii – V – I, leading to tonic CM7.

The results of the tree structure analysis are shown in Fig-
ure 7. The figure shows the tree structure output by the
system for each chord step. The system can display up to
the maximum number of candidate trees for branch trim-
ming at each chord step, but only a few of them are shown
for the sake of space limitations. (a)–(h) show the chord
steps in the chord progression of Cute. In the upper part of
each tree structure, the generation probability of the candi-
date tree and the ranking of the generation probability for
each chord step are shown in parentheses. In the follow-
ing, a candidate tree whose probability of generation is n-
th in chord step (a) is denoted as (a–n). ‘?’(question mark)
denotes an undecided term and indicates the next expected
chord or category. The rank in parentheses with an asterisk
(*) indicates an inactive arc, that is, a closed tree structure.

If we look at the growth process of the tree structure in
order, we can see that at each chord step, various chords
are expected to be realized in the next step, and the tree
structure is recombined. Looking at the evolution of the
tree structure, up to (d–1), we can see that the tree grows
as (a–4)→(b–1)→(c–2)→(d–1). CM7 is the tonic in this
piece, and the progression of Dm7 – G7 – CM7 forms a
group. Thus, the closed tree structure is considered to be
harmonically stable at this point.

Next, the unexpectedness value U is calculated for all the
chord steps, as shown in Figure 6. It can be seen that the
value of U decreases from the 6th to the 7th bars, which is

Figure 6. U value at each chord step of Cute

the part where two-five-one in the key of F Major appears.
In the actual tree structure, G7 is expected to be the parent
of Gm7 in (f–1), but in (g–1), the insertion of C7 causes a
recombination of the tree structure, and FM7 is expected
to be the parent.

Then, FM7 at the 9th bar is inserted such that the expec-
tation of 8th bars is realized, and the value of U is low-
ered again in the following B♭7 and E7. This is thought to
be caused by the non-diatonic chord B♭7. In general mu-
sic theory, B♭7 is considered to be a sub-dominant minor
chord. It comes from the iv chord in key of C minor, which
is the parallel key4 . Together with FM7, FM7–B♭7 this
progression is famous for the formation of a subdominant-
subdominant minor chord progression. In this case, FM7 is
often analyzed as working as a pivot chord5 , while tonally
it remains in C major. Therefore, the fact that the value of
U is lower in Em7, which is often analyzed as a tonic in C
major, should be reconsidered as whether it has cognitive
reality6 or not.

6. CONCLUSION

In this study, we focused on the cognitive structure for each
successive chord and proposed an incremental structural
analysis of jazz harmony, based on the generative syntax
model [9, 12]. Especially, we have employed probabilistic
context-free grammar (PCFG) instead of traditional CFG,
and thus, we could externalize the unexpectedness U , con-
cerning the growth process of syntactic tree. Through
the analysis of jazz music, using the implemented system
ECSA, it became possible to quantitatively evaluate the po-
sition of unexpectedness in the music.

The importance of expectation-realization in music cog-
nition has been discussed in Narmour’s implication-
realization model [23], but it was limited to the analysis
of an entire piece. The main contribution of this study

4 A major scale and a minor scale that have the same tonic are called
parallel keys. In this case, C major and C minor is parallel key.

5 A chord that has a function across multiple tonalities. In the case of
FM7, one is I (tonic) in the key of F major, another is IV (subdominant)
in the key of C major.

6 When a concept or model can rationally explain a cognitive or psy-
chological phenomenon, it is said that the concept or model has cognitive
reality.
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Figure 7. Incremental structural analysis of Cute
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is to propose an analysis method that is closer to human
music cognition by representing expectation-realization or
expectation-deviation for each successive chord, using an
incremental structural analysis method.

As a future work, we believe there is an advantage in
investigating the cognitive reality of the measurement of
unexpectedness U by experiment. The reason for this is
that there is a difference between the position of a piece of
music, that we consider surprising based on conventional
music theory, and the position where unexpectedness oc-
curs quantitatively using the measurement of unexpected-
ness U . The position of unexpectedness in a piece of mu-
sic is thought to vary greatly depending on the individual’s
musical experience. Therefore, we need to creat a measure
reflecting the cognitive differences between individuals, to
go back to the grammatical rules themselves and to exam-
ine their rationality.

As a possible application, we are considering incorporat-
ing it into real-time applications such as automated session
systems, taking advantage of the incremental analysis of
the sequential interpretation of music flow.
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ABSTRACT

A chord name can be interpreted in multiple ways, so a se-
quence of chord names has combinatorially many interpre-
tations though most of which are inadequate. Tonal Pitch
Space (TPS) is a music model which enables us to mea-
sure the distance between two chords, and thus we can rely
on the theory to find most plausible interpretations, calcu-
lating the shortest path in the network of chord sequences.
Although TPS is based on classical music theory, it is not
based on data in a precise sense. As a result, the distance
in the original TPS is somewhat rough to achieve high pre-
diction accuracy.

In this study, we combine empirical observations with
TPS, that is, to allow users to pick arbitrary combinations
of features and calculate the distance of two chord inter-
pretations. Then we propose a path probability formula to
convert a path distance to a path probability, so that we
can train the parameters from annotated datasets. We illus-
trate several experimental distance elements and show that
some combinations of them can significantly improve the
prediction accuracy, which resulted in over 86% in the test
set.

1. INTRODUCTION

A Berklee style chord name by itself can be interpreted in
several ways, and we need to consider the context to deter-
mine the plausibility of each candidate. Tonal Pitch Space
(TPS) [3] gives us a foundation to consider the context by
defining the smoothnesss of chord connection as the nu-
meric distance between two chords, given their keys and
degrees. Based on this, Sakamoto et al. [4] have proposed
a method to find the most plausible interpretation path for
a chord sequence as the shortest path in the interpretation
graph, that expresses all possible chord interpretation paths
each edge is weighted by the distance on TPS. However,
the prediction accuracy of this method is only around 40%.
This is, we assume, partly because TPS is based on clas-
sical music theory but not on data. So its structure and
coefficients are not, strictly speaking, defined in an objec-
tive manner. Therefore, the model is a little too simple to
achieve high prediction accuracy.

In this study, we work through these problems by com-
bining empirical observations with TPS. First, we rear-

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

range the distance formula in TPS to the sum of three dis-
tance elements, then generalize it to allow us to add other
distance elements. These distance elements we define are
in the form of tables whose cells correspond to the spe-
cific combinations of features of two chord interpretations.
Next, we propose a path probability formula which gives
higher probability to a path with shorter total distance. Fi-
nally, by differentiating the cross entropy loss function, we
calculate the gradient and update the parameters using it.

Our approach 1 enables us to generalize and refine TPS
by learning the metric model of arbitrary combinations of
features as long as they contribute to decrease the value
of target (loss) function. And we demonstrate the effec-
tiveness of our approach by showing the best model being
able to significantly improve the prediction accuracy and
achieve over 86%.

This paper is organized as follows. In Section 2, we re-
view related works. Then we give the formal represen-
tation of our proposed model and the learning strategy in
Section 3 and 4, respectively. Thereafter, we show the ex-
perimental results in Section 5. Finally, we conclude in
Section 6.

2. TPS-BASED APPROACH

There have been a lot of approaches to analyze musical
harmony, and nowadays, a model with Hidden Markov
Model (HMM) [12–15] and that with neural networks
[16–18] seem prevalent. In this paper, however, we focus
on Tonal Pitch Space. The theory finds the shortest path by
the sum of the smallest distances in chords, and thus it re-
sults in the most plausible interpretation of chords by keys
and degrees. Therefore, the detection of the shortest path is
also expected to coincide with the local key identification.

2.1 Tonal Pitch Space

TPS is a music model for the quantitative harmony analy-
sis proposed by Lerdahl [3]. It is proposed to complement
Lerdahl’s the other music theory (the Generative Theory of
Tonal Music [5]), which applies the generative grammar to
extend the Schenkerian theory. A chord can be interpreted
in multiple degree/key pairs (e.g., interpretations of C ma-
jor triad are as follows: I/C, III/a, V/F, IV/G, VI/ a, and
VII/d) and TPS defines a distance between every pair of
these degree/key pairs.

The distance between chord interpretations 𝑥 and 𝑦, when

1 Source code is available at https://github.com/kusuli/
smc2021/.
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they are in related keys, can be calculated as equation (1)

𝛿(𝑥, 𝑦) = 𝑟𝑒𝑔𝑖𝑜𝑛(𝑥, 𝑦) + 𝑐ℎ𝑜𝑟𝑑(𝑥, 𝑦)

+𝑏𝑎𝑠𝑖𝑐𝑠𝑝𝑎𝑐𝑒(𝑥, 𝑦)
(1)

where 𝑟𝑒𝑔𝑖𝑜𝑛(𝑥, 𝑦) is a distance between keys,
𝑐ℎ𝑜𝑟𝑑(𝑥, 𝑦) is a distance between degrees, and
𝑏𝑎𝑠𝑖𝑐𝑠𝑝𝑎𝑐𝑒(𝑥, 𝑦) is a distance on a structure called
basic space.

The calculation above is applicable only when 𝑥 and 𝑦
are in related keys which are defined as follows:

𝐶(𝑅) =

{︃
{I, i, ii, iii, IV,V, vi} if 𝑅 is a major key
{i, I,bIII, iv, v,bVI,bVII} otherwise

(2)
where roman numerals in this equation mean the keys with
the tonic being the degree of 𝑅 (e.g., 𝐶(F) is F, f, g, a, Bb,
C, and d). If 𝑥 and 𝑦 are not in related keys (i.e., distant
keys), distance between 𝑥 and 𝑦 can be calculated as :

𝛿(𝑥, 𝑦) = min (
𝛿(𝑥, 𝑇𝑅1) + ∆(𝑅1, 𝑅𝑛) + 𝛿(𝑇𝑅𝑛 , 𝑦)

|𝑅1 ∈ 𝐶(𝑅𝑥), 𝑅𝑛 ∈ 𝐶(𝑅𝑦)
)

∆(𝑅1, 𝑅𝑛) = min(
𝑛−1∑︁
𝑖=1

𝛿(𝑇𝑅𝑖
, 𝑇𝑅𝑖+1

)|𝑅𝑖+1 ∈ 𝐶(𝑅𝑖))

(3)
where 𝑇𝑅 is key 𝑅’s tonic, 𝑅𝑧 is chord interpretation 𝑧’s
key. In other words, the transition from 𝑥 to 𝑦 must be
considered as a combination of transitions within related
keys, and the overall distance is the shortest total distance
of the transitions.

As explained above, the distance within related keys
(equation (1)) is composed of the sum of three elements.
Now, because equation (3) is the sum of equation (1)s,
the resulting distance can also be considered as the sum
of three elements. Therefore, we can rewrite the distance
as follows:

𝛿(𝑥, 𝑦) = 𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛(𝑥, 𝑦) + 𝑡𝑜𝑡𝑎𝑙𝐶ℎ𝑜𝑟𝑑(𝑥, 𝑦)

+𝑡𝑜𝑡𝑎𝑙𝐵𝑎𝑠𝑖𝑐𝑠𝑝𝑎𝑐𝑒(𝑥, 𝑦)
(4)

2.2 Former Approaches based on TPS

Sakamoto et al. [4] have applied TPS to analyze chord
sequences to find the most plausible interpretation as the
shortest path based on the distances described above.

Given a chord sequence, first their method extends each
chord to its interpretations and constrcuts a graph whose
edges have weights that correspond to the distances on
TPS. Then it applies the Viterbi algorithm [6] to find the
shortest interpretation paths from the start to the goal. Fig-
ure 1 shows an interpretation graph for chord sequence C
→ F → G → C. One of the shortest interpretation path in
Figure 1 is I/C → IV/C → V/C → I/C.

Catteau et al. [9] utilized the key profiles of Temperly
[10] alongside TPS to define probabilities concerning
chords, scales, and chroma vectors to estimate keys and
chords from audio. Rocher et al. [11] used Temperly’s key
profiles and TPS to construct a harmonic graph then esti-
mate individual chords and keys by finding the best path.

Figure 1. Interpretation graph.

In the effort to improve cadence detection, Matsubara et
al. [7] have proposed to restrict the minor scale to har-
monic one to avoid the ambiguity in chord interpretation,
and to revise the candidates of chord interpretations of each
chord names. Yamamoto et al. [8] have proposed to extend
TPS and interpretation graph to consider (1) tetrads and
three minor scales, (2) pivot-chord modulations, and (3)
certain cadence patterns to improve the expressiveness and
reduce the ambiguity mainly focusing on jazz harmony.
Furthermore, there are many approaches with some kinds
of metric models other than TPS. Feisthauer et al. [19] ,for
example, defined three proximity measures based on mu-
sicologial knowledge to find the optimal path as the tonal
plan.

In the following sections, we revise the structure of TPS
and predict chord interpretations using the interpretation
graph proposed by Sakamoto et al. [4].

3. PROPOSED MODEL

We define notations as follows:

𝒳 Δ
= {I/A, ii/A, · · · ,VI/g#,VII/g#} : the set of

chord interpretations

𝑥, 𝑦 ∈ 𝒳 : individual chord interpretations

ℐ Δ
= {1, 2, 3, 4.1, 4.2, 5.1, · · · , |ℐ|}: the set of dis-

tance element indices

𝑠𝑐𝑎𝑙𝑒 : 𝒳 → {0, 1}: the function which
maps a chord interpretation to its scale 2 (e.g.
𝑠𝑐𝑎𝑙𝑒(𝑖𝑖𝑖/𝐴) = 0, 𝑠𝑐𝑎𝑙𝑒(𝐼𝐼𝐼/𝑐) = 1)

𝑡𝑜𝑛𝑖𝑐 : 𝒳 → {𝑛 ∈ Z|0 ≤ 𝑛 ≤ 11}: the function
which maps a chord interpretation to its tonic note 3

(e.g. 𝑡𝑜𝑛𝑖𝑐(𝑖𝑖𝑖/𝐴) = 9, 𝑡𝑜𝑛𝑖𝑐(𝐼𝐼𝐼/𝑐) = 0)

𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝑥)

Δ
=

{︃
𝑡𝑜𝑛𝑖𝑐(𝑥) if 𝑠𝑐𝑎𝑙𝑒(𝑥) = 0

(𝑡𝑜𝑛𝑖𝑐(𝑥) + 3) 𝑚𝑜𝑑 12 otherwise

2 Here, we only consider major (= 0) and minor (= 1) scales.
3 We use pitch classes to express notes.
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(e.g. 𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝑖𝑖𝑖/𝐴) = 9,
𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝐼𝐼𝐼/𝑐) = 3)

𝑟𝑜𝑜𝑡 : 𝒳 → {𝑛 ∈ Z|0 ≤ 𝑛 ≤ 11}: the function
which maps a chord interpretation to its root note
(e.g. 𝑟𝑜𝑜𝑡(𝑖𝑖𝑖/𝐴) = 1, 𝑟𝑜𝑜𝑡(𝐼𝐼𝐼/𝑐) = 3)

𝑑𝑒𝑔𝑟𝑒𝑒 : 𝒳 → {𝑛 ∈ Z|1 ≤ 𝑛 ≤ 7}: the function
which maps a chord interpretation to its degree (e.g.
𝑑𝑒𝑔𝑟𝑒𝑒(𝑖𝑖𝑖/𝐴) = 3, 𝑑𝑒𝑔𝑟𝑒𝑒(𝐼𝐼𝐼/𝑐) = 3)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑖 : 𝒳 × 𝒳 → R: the function
which maps a chord interpretation pair to their dis-
tance based on the distance element of index 𝑖 ∈ ℐ

𝑏 : ℐ → {0, 1}: the function which specifies the
activation of each distance element

The distance on TPS can be thought of the sum of three
distance elements as in equation (4). Now we rearrange
this equation as a sum of all (active) distance elements.

𝐺𝑇𝑃𝑆(𝑥, 𝑦) =
∑︁
𝑖∈ℐ

𝑏(𝑖) · 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑖(𝑥, 𝑦) (5)

The first three distance elements are from the original TPS,
namely, 𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛, 𝑡𝑜𝑡𝑎𝑙𝐶ℎ𝑜𝑟𝑑, and 𝑡𝑜𝑡𝑎𝑙𝐵𝑎𝑠𝑖𝑐𝑠𝑝𝑎𝑐𝑒
in equation (4). In addition to them, we can add arbi-
trary new distance elements by freely choosing which and
which features to distinguish. In the following subsections,
we propose in total twelve new distance elements, which
are inspired by the original TPS. Finally, with 𝑏(𝑖) term
in equation (5), we can use any combinations of distance
elements.

3.1 Distance Element 4: Scale Distance

Distance elements for scale transitions. We define two
variants as follows:

3.1.1 DE 4.1: Symmetric Scale Distance

𝑀4.1 ∈ R2

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡4.1(𝑥, 𝑦)
Δ
= 𝑀4.1

[︂
(𝑠𝑐𝑎𝑙𝑒(𝑥)− 𝑠𝑐𝑎𝑙𝑒(𝑦))

𝑚𝑜𝑑 2

]︂
4

(6)

This one merely distinguishes whether the scale is
changed or not.

3.1.2 DE 4.2: Asymmetric Scale Distance

𝑀4.2 ∈ R2×2

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡4.2(𝑥, 𝑦)
Δ
= 𝑀4.2 [𝑠𝑐𝑎𝑙𝑒(𝑥), 𝑠𝑐𝑎𝑙𝑒(𝑦)]

(7)
The asymmetric version of DE 4.1 (e.g., major → minor,

and minor → major are considered same in DE 4.1, but not
in DE 4.2).

4 𝑀 [𝑖𝑖, 𝑖2, · · · , 𝑖𝑛] indicates the value in 𝑛 dimensional table 𝑀 at
the index (𝑖1, 𝑖2, · · · , 𝑖𝑛).

3.2 Distance Element 5: Tonic Distance

Distance elements for tonic transitions, by which we intend
to generalize 𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛 in equation (4). Tonic transi-
tions can be thought of as key transitions without consid-
ering scales. We define six variants as follows:

3.2.1 DE 5.1: Symmetric Relative Tonic Distance

𝑀5.1 ∈ R7

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡5.1(𝑥, 𝑦)

Δ
= 𝑀5.1

⎡⎢⎢⎢⎣𝑚𝑖𝑛

⎛⎜⎜⎜⎝
(𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝑦)−𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝑥))

𝑚𝑜𝑑 12,

(𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝑥)−𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝑦))

𝑚𝑜𝑑 12

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
(8)

Among all variants, this one is conceptually closest to the
original 𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛.

3.2.2 DE 5.2: Symmetric Parallel Tonic Distance

𝑀5.2 ∈ R7

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡5.2(𝑥, 𝑦)

Δ
= 𝑀5.2

[︃
𝑚𝑖𝑛

(︃
(𝑡𝑜𝑛𝑖𝑐(𝑦)− 𝑡𝑜𝑛𝑖𝑐(𝑥)) 𝑚𝑜𝑑 12,

(𝑡𝑜𝑛𝑖𝑐(𝑥)− 𝑡𝑜𝑛𝑖𝑐(𝑦))𝑚𝑜𝑑 12

)︃]︃ (9)

Unlike the relative tonic distance, this one identifies par-
allel keys (e.g., C major and C minor), instead of relative
keys (e.g., C major and A minor).

3.2.3 DE 5.3: Asymmetric Relative Tonic Distance

𝑀5.3 ∈ R12

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡5.3(𝑥, 𝑦)

Δ
= 𝑀5.3 [(𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝑦)−𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝑥)) 𝑚𝑜𝑑 12]

(10)
The asymmetric version of DE 5.1 (e.g., C → D and D →

C are distinguished in DE 5.3, but not in DE 5.1).

3.2.4 DE 5.4: Asymmetric Parallel Tonic Distance

𝑀5.4 ∈ R12

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡5.4(𝑥, 𝑦)

Δ
= 𝑀5.4 [(𝑡𝑜𝑛𝑖𝑐(𝑦)− 𝑡𝑜𝑛𝑖𝑐(𝑥)) 𝑚𝑜𝑑 12]

(11)

The asymmetric version of DE 5.2.

3.3 Distance Element 6: Key Distance

Distance elements for key transitions, which can handle
both scale transitions and tonic transitions at once. One
can calculate those distances by the combination of DE 4.x
and DE 5.x, but this assumes the independence of the tran-
sitions of scales and that of tonics. By contrast, DE 6.x can
consider the interactions of scales and tonics, if any. There
are two variants as follows:
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3.3.1 DE 6.1: Symmetric Key Distance

𝑀6.1 ∈ R2×7

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡6.1(𝑥, 𝑦)

Δ
= 𝑀6.1

⎡⎢⎢⎢⎣(𝑠𝑐𝑎𝑙𝑒(𝑥)− 𝑠𝑐𝑎𝑙𝑒(𝑦))

𝑚𝑜𝑑 2
,𝑚𝑖𝑛

⎛⎜⎜⎜⎝
(𝑡𝑜𝑛𝑖𝑐(𝑦)− 𝑡𝑜𝑛𝑖𝑐(𝑥))

𝑚𝑜𝑑 12,

(𝑡𝑜𝑛𝑖𝑐(𝑥)− 𝑡𝑜𝑛𝑖𝑐(𝑦))

𝑚𝑜𝑑 12

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

(12)

3.3.2 DE 6.2: Asymmetric Key Distance

𝑀6.2 ∈ R2×2×12

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡6.2(𝑥, 𝑦)

Δ
= 𝑀6.2

[︃
𝑠𝑐𝑎𝑙𝑒(𝑥), 𝑠𝑐𝑎𝑙𝑒(𝑦),

(𝑡𝑜𝑛𝑖𝑐(𝑦)− 𝑡𝑜𝑛𝑖𝑐(𝑥))

𝑚𝑜𝑑 12

]︃
(13)

The asymmetric version of DE 6.1.

3.4 Distance Element 7: Root-Degree Distance

Distance elements for root note transitions from each de-
gree, which roughly generalize 𝑡𝑜𝑡𝑎𝑙𝐶ℎ𝑜𝑟𝑑 in equation
(4), although with much more information 5 . We define
two variants as follows:

3.4.1 DE 7.1: Symmetric Root-Degree Distance

𝑀7.1 ∈ R7×7

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡7.1(𝑥, 𝑦)

Δ
= 𝑀7.1

⎡⎢⎢⎢⎣𝑑𝑒𝑔𝑟𝑒𝑒(𝑥),𝑚𝑖𝑛

⎛⎜⎜⎜⎝
(𝑟𝑜𝑜𝑡(𝑦)− 𝑡𝑜𝑛𝑖𝑐(𝑥))

𝑚𝑜𝑑 12,

(𝑡𝑜𝑛𝑖𝑐(𝑥)− 𝑟𝑜𝑜𝑡(𝑦))

𝑚𝑜𝑑 12

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

(14)
This one calculates distance according to the relative po-

sitions of roots for each (source) degree.

3.4.2 DE 7.2: Asymmetric Root-Degree Distance

𝑀7.2 ∈ R7×12

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡7.2(𝑥, 𝑦)

Δ
= 𝑀7.2 [𝑑𝑒𝑔𝑟𝑒𝑒(𝑥), (𝑟𝑜𝑜𝑡(𝑦)− 𝑡𝑜𝑛𝑖𝑐(𝑥)) 𝑚𝑜𝑑 12]

(15)
The asymmetric version of DE 7.1.

3.5 Distance Element 8: Key-Degree Distance

Distance elements for key and degree transitions, which
can handle both key (i.e., scale and tonic) transitions and
degree transitions all at once. Unlike the combinations of
DE 4.x, DE 5.x, and DE 7.x or DE 6.x and DE 7.x, DE 8.x
can consider the interactions of scales, tonics and degrees.
We define two variants as follows:

5 A straightforward way to do this may be to take step distance between
two degrees (i.e., replacing 𝑡𝑜𝑛𝑖𝑐 in DE 5.2 and DE 5.4 with 𝑑𝑒𝑔𝑟𝑒𝑒), but
we omitted them because both of them perform very poorly.

3.5.1 DE 8.1: Symmetric Key-Degree Distance

𝑀8.1 ∈ R2×7×7×7

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡8.1(𝑥, 𝑦)

Δ
= 𝑀8.1 [ (𝑠𝑐𝑎𝑙𝑒(𝑥)− 𝑠𝑐𝑎𝑙𝑒(𝑦)) 𝑚𝑜𝑑 2, 𝑑𝑒𝑔𝑟𝑒𝑒(𝑥),

𝑑𝑒𝑔𝑟𝑒𝑒(𝑦),𝑚𝑖𝑛

(︃
(𝑡𝑜𝑛𝑖𝑐(𝑦)− 𝑡𝑜𝑛𝑖𝑐(𝑥))𝑚𝑜𝑑 12,

(𝑡𝑜𝑛𝑖𝑐(𝑥)− 𝑡𝑜𝑛𝑖𝑐(𝑦)) 𝑚𝑜𝑑 12

)︃]︃
(16)

3.5.2 DE 8.2: Asymmetric Key-Degree Distance

𝑀8.2 ∈ R2×7×2×12×7

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡8.2(𝑥, 𝑦)

Δ
= 𝑀8.2 [𝑠𝑐𝑎𝑙𝑒(𝑥), 𝑑𝑒𝑔𝑟𝑒𝑒(𝑥), 𝑠𝑐𝑎𝑙𝑒(𝑦), 𝑑𝑒𝑔𝑟𝑒𝑒(𝑦),

(𝑡𝑜𝑛𝑖𝑐(𝑦)− 𝑡𝑜𝑛𝑖𝑐(𝑥))𝑚𝑜𝑑 12]
(17)

The asymmetric version of DE 8.1.
　
All the proposed distance elements and sample indices

are listed in Table 1.

DE I/C → V/G I/C → iv/c#
4.1 Sym Scale (0) (1)
4.2 Asym Scale (0, 0) (0, 1)
5.1 Sym Relative Tonic (5) (4)
5.2 Sym Parallel Tonic (5) (1)
5.3 Asym Relative Tonic (7) (4)
5.4 Asym Parallel Tonic (7) (1)
6.1 Sym Key (0, 5) (1, 1)
6.2 Asym Key (0, 0, 7) (0, 1, 1)
7.1 Sym Root-Degree (1, 2) (1, 6)
7.2 Asym Root-Degree (1, 2) (1, 6)
8.1 Sym Key-Degree (0, 1, 5, 5) (1, 1, 4, 1)
8.2 Asym Key-Degree (0, 1, 0, 5, 7) (0, 1, 1, 4, 1)

Table 1. Indices for two sample transitions.

4. LEARNING STRATEGY

We define additional notations as follows:

𝐺: an interpretation graph with |𝐺| layers

𝐺𝑠:𝑡: from 𝑠th layer to 𝑡th layer of 𝐺 (𝐺𝑠:𝑠 can be
abbreviated as 𝐺𝑠). As a simplified notation, a node
in the 𝑠th layer can be written as 𝑥 ∈ 𝐺𝑠, likewise,
𝑥 ∈ 𝐺𝑠:𝑡 be a path from the 𝑠th layer to the 𝑡th layer,
and 𝑥 ∈ 𝐺𝑠:𝑡−1||𝑥𝑡 be a path from 𝑠th layer to the
(𝑡− 1)th layer and added 𝑥𝑡 to be the last node.

𝑥𝑠:𝑡: from 𝑠th element to 𝑡th element of an interpre-
tation path 𝑥0:|𝐺| (𝑥𝑠:𝑠 can be abbreviated as 𝑥𝑠)

𝑥*
0:|𝐺|: the ground truth interpretation path

𝐺𝑇𝑃𝑆𝑝𝑎𝑡ℎ(𝑥𝑠:𝑡)
Δ
=
∑︀𝑡−1

𝑢=𝑠 𝐺𝑇𝑃𝑆(𝑥𝑢, 𝑥𝑢+1)
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We want the calculated distances to allow us to estimate
the true interpretation path as a shortest path in the inter-
pretation graph. So we need to learn the parameters to
give true interpretation path a shorter total distance than
the other interpretation paths.

For that purpose, we first define the path probability for-
mula and then train the tables by using the gradients on the
parameter spaces.

4.1 Path Probability

We define the path probability from start node to 𝑠th chord
interpretation as below:

P(𝑋0:𝑠 = 𝑥0:𝑠|𝐺0:𝑠)

Δ
=

{︃
1 if 𝑠 = 0 6∏︀𝑠−1

𝑡=0
exp(−𝐺𝑇𝑃𝑆(𝑥𝑡,𝑥𝑡+1))

𝑍𝐺,𝑡
otherwise

(18)

where

𝑍𝐺,𝑡
Δ
=
∑︁
𝑙∈𝐺𝑡

∑︁
𝑚∈𝐺𝑡+1

P(𝑋𝑡 = 𝑙|𝐺0:𝑡) exp(−𝐺𝑇𝑃𝑆(𝑙,𝑚))

We can calculate the probability for the whole interpreta-
tion path as P(𝑋0:|𝐺| = 𝑥0:|𝐺||𝐺0:|𝐺|). This probability
is designed to give higher values to the interpretation paths
with shorter total distances (Theorem 1).

We can calculate the node probability P(𝑋𝑠 = 𝑥𝑠|𝐺0:𝑠)
by marginalizing path probability:

P(𝑋𝑠 = 𝑥𝑠|𝐺0:𝑠) =
∑︁

𝑥0:𝑠∈𝐺0:𝑠−1||𝑥𝑠

P(𝑋0:𝑠 = 𝑥0:𝑠|𝐺0:𝑠)

=
∑︁

𝑥0:𝑠∈𝐺0:𝑠−1||𝑥𝑠

𝑠−1∏︁
𝑡=0

exp(−𝐺𝑇𝑃𝑆(𝑥𝑡, 𝑥𝑡+1))

𝑍𝐺,𝑡

=
∑︁

𝑥0:𝑠∈𝐺0:𝑠−1||𝑥𝑠

(︃
𝑠−2∏︁
𝑡=0

exp(−𝐺𝑇𝑃𝑆(𝑥𝑡, 𝑥𝑡+1))

𝑍𝐺,𝑡

)︃

× exp(−𝐺𝑇𝑃𝑆(𝑥𝑠−1, 𝑥𝑠))

𝑍𝐺,𝑠−1

=
∑︁

𝑥0:𝑠∈𝐺0:𝑠−1||𝑥𝑠

P(𝑋0:𝑠−1 = 𝑥0:𝑠−1|𝐺0:𝑠−1)

× exp(−𝐺𝑇𝑃𝑆(𝑥𝑠−1, 𝑥𝑠))

𝑍𝐺,𝑠−1

=
∑︁

𝑥𝑠−1∈𝐺𝑠−1

P(𝑋𝑠−1 = 𝑥𝑠−1|𝐺0:𝑠−1)

× exp(−𝐺𝑇𝑃𝑆(𝑥𝑠−1, 𝑥𝑠))

𝑍𝐺,𝑠−1

When 𝑠 = 0, 𝑥0:0 ∈ 𝐺0:−1||𝑥0 becomes 𝑥0:0 ∈ 𝑥0 be-
cause 𝐺0:−1 is empty. Note that, P(𝑋𝑠 = 𝑥𝑠|𝐺0:𝑠) =
P(𝑋𝑠 = 𝑥𝑠|𝐺0:|𝐺|) is not always the case. As we can
see, this process has a recursive structure, and, by calculat-
ing and memorizing in a sequential manner from the start
node, we can get the node probability and path probability
with the time complexity linear to 𝑠.

6 0th layer contains only one node, that is, the start node

4.2 Loss and Gradient

We define a cross entropy loss function as follows:

𝐿𝑜𝑠𝑠(𝑥0:|𝐺||𝐺0:|𝐺|)

Δ
=

∑︁
𝑥0:|𝐺|∈𝐺0:|𝐺|

−P*(𝑋0:|𝐺| = 𝑥0:|𝐺|)

× ln P(𝑋0:|𝐺| = 𝑥0:|𝐺||𝐺0:|𝐺|)

(19)

Here, P* is the probability function which only responds
to the ground truth:

P*(𝑋0:|𝐺| = 𝑥0:|𝐺|)
Δ
=

{︃
1 if 𝑥0:|𝐺| = 𝑥*

0:|𝐺|
0 otherwise

We can get the gradient by differentiating 𝐿𝑜𝑠𝑠 (19) with
respect to the parameters, then apply stochastic gradient
descent algorithm to update the parameters to minimize the
value of 𝐿𝑜𝑠𝑠 (19), which results in maximizing the path
probability for the ground truth path.

4.3 Accuracy

We evaluate our model based on how accurately it can pre-
dict each chord interpretation by specifying the shortest
path in the interpretation graph. If there are more than one
shortest paths, we calculate a weighted average for each
node in proportion 7 to how many paths go through the
node as is illustrated in Figure 2.

Figure 2. Accuracy calculation when there are more than
one shortest paths.

7 this proportion is different from the node probability



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

305

5. EXPERIMENTS

5.1 Data and Method

We use the dataset annotated in rntxt format [1], published
at [1, 2]. The dataset is composed of 360 pieces (1,691
phrases, 76,341 chords) and we regard every phrase as a
unit (i.e., to which we predict the interpretation path) but
when a phrase exceeds 50 chords we divide it into units
each of which does not exceed 50 chords, resulting in
2,472 phrases. Then use 1,976 phrases to the training, and
248 phrases to the validation, and remaining 248 phrases
to the test

Rntxt format contains a lot of information other than de-
gree/key, but in this study we utilize only key and degree
information. About secondary/tertiary chords, we employ
local keys (e.g., V/V/V on C major key is interpreted as V
on D major key).

We set all initial parameter values to be zero and train
the models by mini-batch stochastic gradient descent with
batch size=100 and learning rate=0.001. We continue
training until no accuracy update in validation set for ten
epochs in a row, then pick the parameter which gives the
highest validation accuracy..

5.2 Results

We compare the performances of each distance element
and some combinations. The result is shown in the Table
2, 3, and 4.

ex DE 1 DE 2 DE 3 mean stdev
0 0.1900 0.0257

1 ○ ○ ○ 0.3847 0.1023

2 ○ 0.3780 0.1034

3 ○ 0.1930 0.0288

4 ○ 0.3842 0.1023

5 ○ ○ 0.3770 0.1052

6 ○ ○ 0.3850 0.1025

7 ○ ○ 0.3841 0.1023

Table 2. Performances of each distance element (and com-
binations) of original TPS. 9

ex 0 is without any distance elements, just for informa-
tion.

ex 1 is the original TPS. This one successfully double the
accuracy (i.e., narrow down the candidate interpretation by
half) from ex 0. We consider this one to be the baseline.

We also conduct ablation patterns of TPS (ex 2-7). When
used alone (ex 2-4), 𝑡𝑜𝑡𝑎𝑙𝐵𝑎𝑠𝑖𝑐𝑠𝑝𝑎𝑐𝑒 is the best per-
formance (ex4) and achieved almost the same accuracy
as the full TPS (ex 1). We consider the reason why
𝑡𝑜𝑡𝑎𝑙𝐵𝑎𝑠𝑖𝑐𝑠𝑝𝑎𝑐𝑒 is a little better than 𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛 (ex 2)
is that basic space can exress region distance by the dia-
tonic level and also other levels can give additional infor-
mation. Seeing the result of ex 3, however, 𝑡𝑜𝑡𝑎𝑙𝐶ℎ𝑜𝑟𝑑 do

9 ex, DE, mean, and stdev represent experiment, distance element,
model mean accuracies, and standard deviations of accuracies respec-
tively

ex DE prms mean stdev
8 4.1 Sym Scale 2 0.1900 0.0257
9 4.2 Asym Scale 4 0.2522 0.1432
10 5.1 Sym Relative Tonic 7 0.3983 0.1006
11 5.2 Sym Parallel Tonic 7 0.2908 0.2415
12 5.3 Asym Relative Tonic 12 0.3974 0.1003
13 5.4 Asym Parallel Tonic 12 0.2870 0.2408
14 6.1 Sym Key 14 0.4249 0.1739
15 6.2 Asym Key 48 0.5017 0.3380
16 7.1 Sym Root-Degree 49 0.5646 0.1640
17 7.2 Asym Root-Degree 84 0.5741 0.1628
18 8.1 Sym Key-Degree 686 0.8625 0.1780
19 8.2 Asym Key-Degree 2,352 0.8690 0.1717

Table 3. Performances of proposed distance elements.

not improve accuracy well. That is also the case when used
two of them together (ex 5-7).

In ex 8-19, we test each proposed distance elements by
themselves. DE 5.1 can accomplish almost the same accu-
racy as the full TPS (ex 1, 10), although it has only seven
parameters. DE 4.x cannot improve accuracy at all with-
out distinguishing directions (ex 8,9), but surprisingly, for
many other distance elements, it turns out that there is very
little or no accuracy gain by distinguishing the direction
from the comparisons ex 10 to ex 12, ex 11 to ex 13, ex 16
to ex 17, and ex 18 to ex 19. We also test tonic distances
in which parallel keys are identified (ex 11, 13), but they
are significantly worse than those of relatie keys (ex 10,
12). DE 8.x, being the most complex distance elements,
can achieve over 86% accuracy.

In ex 20-26, we test some combinations of proposed dis-
tance elements. The combinations are selected so that in-
volved distance elements complement each other though
not exhaustive. The combination of ex 23 can achieve 83%
with only 58 parameters, likewise, that of ex 25 and ex 26
can achieve 85.0% and 86% with a little more parameters.
Therefore, it seems that taking the interactions of all scale,
tonic, and degree into account is not so important consider-
ing the huge parameter size. Also, it is interesting that DE
4.1 have meaningful contribution in ex 23 here although it
does not make difference at all by itself (ex 8).

We also test some combinations of TPS element and dis-
tance tables (ex 27-29). Root table can be benefited from
the elements from TPS (ex 28), but in the other combina-
tions, there are not so obvious accuracy gains.

From all the experiments, we can observe that the combi-
nations which achieved over 80% (ex 18, 19, 23-26, 29)
have all three features (i.e., 𝑠𝑐𝑎𝑙𝑒, 𝑡𝑜𝑛𝑖𝑐/𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐,
and 𝑑𝑒𝑔𝑟𝑒𝑒 (or 𝑑𝑒𝑔𝑟𝑒𝑒, 𝑟𝑜𝑜𝑡)), but one of them (ex 23)
does not consider interactions nor directions. Therefore,
it seems that, including those three features is crucial, but
considering interactions or directions have relatively small
effects.

For illustrative purpose, we show some possible interpre-
tations for a chord progression Cm → F → Bb → Eb →
A∘ → D → Gm and their total distances in Table 5. We
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ex DE 1 DE 2 DE 3 DE 4.1 DE 4.2 DE 5.1 DE 6.1 DE 6.2 DE 7.1 DE 7.2 prms mean stdev
20 ○ ○ 9 0.3978 0.1015

21 ○ ○ 11 0.5131 0.3402

22 ○ ○ 56 0.7627 0.1585

23 ○ ○ ○ 58 0.8301 0.1869

24 ○ ○ ○ 60 0.8226 0.1814

25 ○ ○ 63 0.8495 0.1775

26 ○ ○ 132 0.8601 0.1681

27 ○ ○ ○ 14 0.4210 0.2318

28 ○ ○ ○ 49 0.7309 0.1566

29 ○ ○ ○ 63 0.8308 0.1887

Table 4. Performances of some combinations of distance elements.

use the model trained in ex 23 to calculate the distances.
In this example, paths b and c both have only one key, but
calculated distances are longer than that of a, which con-
sists of two keys. But they are shorter than paths d and e.
We think this order more or less matches to our musical
perception.

Cm F Bb Eb A∘ D Gm
a ii/Bb V/Bb I/Bb VI/g ii∘/g G/g i/g

- 5.88 8.91 16.44 22.30 28.11 31.14
b ii/Bb V/Bb I/Bb IV/Bb vii∘/Bb III/Bb vi/Bb

- 5.88 8.91 14.25 20.75 26.59 33.36
c iv/g VII/g III/g VI/g ii∘/g G/g i/g

- 6.27 12.66 19.64 25.50 31.31 34.34
d v/f I/F IV/F VII/f vii∘/Bb VI/F ii/F

- 8.77 14.11 26.12 37.46 46.03 51.89
e i/c I/F I/Bb I/Eb ii∘/g I/D i/g

- 10.84 18.91 26.98 37.41 49.12 60.29

Table 5. Some possible interpretations and their total dis-
tances.

6. CONCLUSIONS

In this study, we have extended TPS to take in empirical
observation. We generalized the distance formula in TPS
and proposed a way to define distance elements that distin-
guish any combinations of given features and to train them
with data. Our best combination achieved 86.9% accuracy
in the test set, which is significantly higher than that of the
baseline model (38.5%), and this result, we believe, shows
that our approach successfully learns an effective metric
structure from data. Also, one of our combination with
only 58 parameters achieved 83%, and with 132 parame-
ters, 86%. We hope that these simple models will help us
to understand better about the structure of tonal harmony.

There are many potential directions to improve our
method. First, it would be beneficial to accept sequences
of chroma vectors or piano-roll as input. Second, not only
TPS, it would also be meaningful to extend our approach to

deal with key profiles like Krumhansl’s [20]. Furthermore,
the fact that distinguishing directions only makes small dif-
ference in accuracy is somewhat contradictory to our pre-
vious research [8]. This implies that there may be a better
way to take directions into account.
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8. APPENDIX

Theorem 1 (order accordance). In an interpretation graph
𝐺, 𝐺𝑇𝑃𝑆𝑝𝑎𝑡ℎ(𝑥0:𝑠) is smaller than 𝐺𝑇𝑃𝑆𝑝𝑎𝑡ℎ(𝑥

′
0:𝑠) if

and only if P(𝑋0:𝑠 = 𝑥0:𝑠|𝐺0:𝑠) is greater than P(𝑋0:𝑠 =
𝑥′
0:𝑠|𝐺0:𝑠).

Proof.

𝐺𝑇𝑃𝑆𝑝𝑎𝑡ℎ(𝑥0:𝑠) < 𝐺𝑇𝑃𝑆𝑝𝑎𝑡ℎ(𝑥
′
0:𝑠)

⇔ exp(−𝐺𝑇𝑃𝑆𝑝𝑎𝑡ℎ(𝑥0:𝑠)) > exp(−𝐺𝑇𝑃𝑆𝑝𝑎𝑡ℎ(𝑥
′
0:𝑠))

⇔ exp(−
𝑠−1∑︁
𝑡=0

𝐺𝑇𝑃𝑆(𝑥𝑡, 𝑥𝑡+1))

> exp(−
𝑠−1∑︁
𝑡=0

𝐺𝑇𝑃𝑆(𝑥′
𝑡, 𝑥

′
𝑡+1))

⇔
𝑠−1∏︁
𝑡=0

exp(−𝐺𝑇𝑃𝑆(𝑥𝑡, 𝑥𝑡+1))

>

𝑠−1∏︁
𝑡=0

exp(−𝐺𝑇𝑃𝑆(𝑥′
𝑡, 𝑥

′
𝑡+1))

#divide both sides by the same (positive) value

⇔
∏︀𝑠−1

𝑡=0 exp(−𝐺𝑇𝑃𝑆(𝑥𝑡, 𝑥𝑡+1))∏︀𝑠−1
𝑡=0 𝑍𝐺,𝑡

>

∏︀𝑠−1
𝑡=0 exp(−𝐺𝑇𝑃𝑆(𝑥′

𝑡, 𝑥
′
𝑡+1))∏︀𝑠−1

𝑡=0 𝑍𝐺,𝑡

⇔
𝑠−1∏︁
𝑡=0

exp(−𝐺𝑇𝑃𝑆(𝑥𝑡, 𝑥𝑡+1))

𝑍𝐺,𝑡

>
𝑠−1∏︁
𝑡=0

exp(−𝐺𝑇𝑃𝑆(𝑥′
𝑡, 𝑥

′
𝑡+1))

𝑍𝐺,𝑡

#from equation (18)
⇔ P(𝑋0:𝑠 = 𝑥0:𝑠|𝐺0:𝑠) > P(𝑋0:𝑠 = 𝑥′

0:𝑠|𝐺0:𝑠)
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ABSTRACT

This paper presents the Unreal Book project which aims at
exploring algorithmic generation of jazz lead sheets. Lead
sheets are the standard notation format in jazz composition
and are collected in many publications, the most relevant
being the Real Book. Lead sheet format provides simple
constraints (melody and chords) that allow for the appli-
cation of algorithmic composition techniques based on the
formalization of various jazz concepts. A computer-aided
solution for the generation of a Real Book-like collection
of lead sheets is presented, that takes also into account no-
tation, including visual features that are considered defin-
ing of the Real Book. Seven examples of composition ap-
plications are shown, ranging from the implementation of
jazz-inspired techniques to corpus-driven procedures.

1. BETWEEN COMPOSITION AND
IMPROVISATION: LEAD SHEETS

Jazz has often been, and still is, largely described as an
oral/aural practice, in which direct and mediated listening
plays a pivotal role [1, 2]. This evidently holds true if one
considers, respectively, the importance of musicians jam-
ming together and of learning by imitation, and the rel-
evance of recordings in the worldwide diffusion of jazz.
Nevertheless, it has been observed that such an empha-
sis on oral/aural tradition has overshadowed the fundamen-
tal role that written sources in music notation have played
since the early age of jazz, both in terms of organization
of music structures (and thus performances) and diffusion
of jazz repertoires [3]. The main written sources in jazz
practice are lead sheets [4, 5]. Lead sheets are based on
a notation format originating from classic American song.
As they come from singing, they include three elements.
The first two are the vocal melody, typically notated in the
treble key, and the lyrics to be sung; the third is the har-
monic background. Harmonies, i.e. chords, have been no-
tated by means of a specific notation format, partly inher-
ited from baroque abbreviated notation for basso continuo,
but modified to take into account post-impressionistic har-
monies [6], as shown in Figure 1. Chord sequences are
known as “changes” in jazz practice. As jazz is mostly
instrumental, most of the times lyrics have been dropped.

In short, the lead sheet notation format is a bare-bone

Copyright: c○ 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which
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Figure 1. Some chords abbreviations and pitch content [7].

Figure 2. Beginning of Anthropology, from [7].

one, including a single melody notated in common prac-
tice notion, with alphanumeric symbols on top represent-
ing chords. Apart from title and author, other typical fea-
tures are an approximate indication tempo, and form ab-
breviations (da capo, section labels). An example is shown
in Figure 2. Lead sheets are at the core of jazz practice
as they mediate between composition and improvisation.
On one side, they are written sources that provide input in-
formation to be taken into account by performers, like in
classical Western composition. At the same time, many
lead sheets are transcribed from recordings, so they do
not share the same status of classical composed pieces, as
they are rather scored a posteriori, even if the title and the
author are referred to. On the other side, they are taken
into account by performers as a starting material that is re-
organized in various ways. Melodies can be modified by
changing key, pitches and rhythm. Not only harmonies can
be transposed to a new key, but they can also be radically
altered, a standard practice known as “chord substitution”
(see e.g. [8–10]). Form is only hinted at by lead sheets,
typically showing the 32-bar form of the classic Ameri-
can song or the 12-bar form of blues: but these structures
can be seen as starting points to be extended by intros,
outros, soloing blocks, variable repetitions and reorgani-
zations. Finally, lead sheets do not include arrangement
features (orchestration), that are to be decided by the per-
former/arranger. To sum up, lead sheets, while still resid-
ing on the composition side, thanks to the openness of the
format, propel a whole set of activities, leading to the final
performance and steering to the improvisation side. This
set of activities, placed in a crucial grey zone between com-
position and performance/improvisation, has been called
“precomposition” [11]. Differently from written scores in
Western classical music, lead sheets provide features and
constraints that prompt, but not entirely determine, the fi-
nal performance.
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Figure 3. Beginning of Anthropology, from the Real Book.

2. FAKE, REAL, NEW REAL BOOKS

Lead sheets from famous jazz compositions have been
shared in the jazz community, and soon they have been
grouped into printed collections, reflecting the relevance
in jazz practice of the repertoire of the so-called “stan-
dards” [12]. Printed collections of standards are typically
named “fake books”, a fake book being “a collection of
charts or lead sheets used by jazz musicians (so-called
because jazz musicians improvise, or “fake,” their way
through a performance)” [2, Appendix, p. 15]. The most
famous fake book is the (pun intended) Real Book. The his-
tory of the latter is mostly unknown and goes unaddressed
in all the recent histories of jazz. Apart some older pieces,
it contains a selection of bebop and post-bop tunes, biased
towards the late ’60s-early ’70s. The Real Book is a pi-
rate assemblage of almost 5-hundreds, ad hoc handwritten
transcriptions (including some well-known mistakes). De-
spite its obscure origins (it does not report any editorial
data), the Real Book has gained a worldwide diffusion in
the jazz community, first by means of photocopies, then in
PDF format shared through p2p networks, thus becoming
a de facto standard. The model is now at the core of jazz
practice, as witnessed by the flowering of legal collections
inspired by it (e.g. [7], Figure 2), including the authorized
version by Hal Leonard of the very Real Book, providing
the same cover, song list and typeface [13]. The Real Book
handwritten typeface, while rooted into popular music ar-
rangements, has become so iconic that it has been associ-
ated to the specific jazz flavour of music fonts as currently
available in music notation software packages. Figure 2 is
evidently inspired by Figure 3 from the original Real Book.
The main features of the Real book are:

∙ dimension in order of 5-hundred of pieces;
∙ alphabetical indexing of the pieces;
∙ heterogeneous, even if not representative [3], sam-

pling of jazz repertoire in terms of history, style,
composition techniques;

∙ homogeneous notation format, based on lead sheet
notation;

∙ hanwdritten “jazz” typeface.

3. THE UNREAL BOOK PROJECT

The Unreal Book Project is an algorithmic music compo-
sition project inspired by the Real Book. It aims at gener-
ating jazz-inspired compositions, notated in the lead sheet
format, collected into a coordinated volume. The project
focuses on three main objectives:

1. Music composition: as far as the author knows,
no other project has focused on exploring the fea-
tures and constraints of Real Book format in the

context of algorithmic symbolic composition (i.e.
resulting into music notation generation, see [14]
rather than [15]). Algorithmic approaches to sym-
bolic composition, while having a long and flourish-
ing history, have never been applied to lead sheet
generation [16, 17]. Of course, jazz has been exten-
sively considered from an algorithmic approach, but
mostly in terms of generative improvisation strate-
gies (e.g. [18, 19]) and in relation to computational
musicological analysis, including generative music
theory [20] and corpus-based analysis [21, 22].

2. Algorithmic generation of music notation. Music
notation generation is a complex issue, both from a
theoretical perspective [23] and in terms of available,
viable solutions related to specific projects. The Un-
real Book project aims at investigating this issue in
a broader sense, including all visual elements of the
score;

3. Formalization of jazz techniques. Jazz theory has
moved over the decades (in particular from the ’60s)
from a state of total absence (as it was implied into
practices) to an abundant literature, related to the on-
going institutionalisation of jazz, discussing a vari-
ety of topics: mostly improvisation and harmony but
also arrangement and practice routine. On a nega-
tive side, it has been observed that the quantitative
increase in jazz pedagogy has led to a sort of ho-
mogenization. On a positive one, many resources
are available, some detailing technical aspects, other
discussing the latter in relation to historical develop-
ments, other proposing innovative approaches (see
in general [1–3, 11]).

The Unreal Book project tries to match the Real Book’s
main features:

∙ dimension: the Unreal Book actually includes 102
pieces, notated in 1-page lead sheets (the most typi-
cal piece size in the Real Book). It is open to further
expansion;

∙ heterogeneity: at the moment, seven different tech-
niques have been used to compose lead sheets (see
later), but the projects is meant as an open direc-
tory that allows to include other options and cross-
hybridization among technical aspects from previ-
ously used techniques;

∙ visual consistency: not only the Unreal Book adopts
the Real Book format, but it aims at mimicking its
main visual features. Apart from cover design and
TOC style, these include music notation typeface,
page organization, title style. This aspect is not only
related to visual aesthetics: rather, it helps musicians
to enter a “Real Book mood” while approaching it. 1

4. NOTATION ISSUES

In a symbolic algorithmic composition system, the score
might be considered as the output of a terminal module that

1 This is not at all irrelevant for music performance. For the very same
reason, the legal Hal Leonard reissue of the Real Book [13] is marketed
with the claim “You won’t even notice the difference: [. . . ] the covers
and typeface look the same”.
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maps generated music data structures onto music notation
symbols. From this perspective, music notation is meant as
a form of data visualization. This encapsulation is not al-
ways possible. Historically, there is a feedback loop from
notation to composition, as the former strongly constraints
the latter [23]. In algorithmic composition practices there
is a continuum going from integrated approaches, in which
the whole pipeline from abstract music data processing
to music notation is completely automated, to assisted or
aided composition, in which the composer and the com-
puter are loosely coupled – the computation agent provid-
ing elements (data structures, notation sketches) that are
finally integrated into the score by the composer [24]. As
in the Unreal Book project the notation format is explicitly
given in advance, the most relevant issue is a technical one:
for an output in the hundreds, it is mandatory to define at
least partially automated strategies to include notation gen-
eration in the composition system. Many computer-aided
composition packages (like OM [25], PWGL [26], Com-
mon Music [27], more recently Bach [28]) provide nota-
tion facilities that allow for drafting notation to be then
finalized in a specialized environment. A viable option
for totally automated notation generation in the style of
the Real Book is the Lilypond notation software, a TEX-
based language that compiles textual source files into PDF
files [29]. Being text based, source files can be generated
algorithmically. Lilypond source files can include not only
melody notation but also chord symbols placed on top of
it. Visual style can be adapted ingeniously so to reproduce
all the main Real book visual items 2 . While elegant, this
integrated solution does not allow an explorative approach
to the results. As the output is a graphic file, there is no au-
dio feedback associated to notation. MIDI commands can
be included into Lilypond source but the resulting MIDI
file must be open in a DAW environment with no inter-
action with the score. Moreover, MIDI does not support
chord notation. Interactive features are instead typically
provided by standard WYSIWYG notation environments
such as Finale, Sibelius, Dorico, MuseScore. On the other
side, these softwares use proprietary file formats. While
not a notation format, MIDI has thus been used as a good
compromise interchange solution (like in [22]). On one
side, the target notation for standard lead sheets is metri-
cally simple (resolution is limited to eight notes, rarely to
16ths, with only triplets as irregular groups) and can be
accurately imported. On the other side, it is not possible
to include chord symbols into MIDI, that must be con-
sequently added by hand to the score, but they are com-
paratively sparse with respect to other notation symbols.
The use of a WYSIWYG software allows for an immedi-
ate aural evaluation of results, and an eventual fine tuning
of notation. MusicXML [30] is gaining momentum as an
interchange format. A promising solution to be explored
is to directly generate MusicXML code, integrating notes
and chords, e.g. as allowed by the music21 toolkit 3 .

2 See A. Lee, “Mimicking the Real Book”, http:
//leighverlag.blogspot.com/2015/12/
mimicking-real-book-look.html

3 https://web.mit.edu/music21/

melody rhythmharmony text

MIDI/loggerform notation
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(+ Python)
MuseScore

ShoebotConTeXt

COMPOSITION

NOTATION

Figure 4. Overall system organization.

5. OVERVIEW OF THE SYSTEM

Figure 4 shows the overall software organization of the
system. It can be divided into two subsystems: COM-
POSITION and NOTATION. The COMPOSITION sub-
system is developed in SuperCollider [31], and partially
in Python (see later). It features four modules, meant as
open libraries of functions for data processing and gener-
ation. Contents of the modules will be discussed in the
next section in relation to examples. The rhythm mod-
ule contains functions to generate metrically based events.
The final format is always [n, att, dur], where n
is a placeholder to be filled with pitch information pro-
vided by the melody modules, and att and dur repre-
sent attack and duration, expressed in quarter beat units.
The melody module includes various functions to gener-
ate pitch models: it outputs the same format of rhythm
while replacing n proxies with actual values in MIDI no-
tation. The harmony module is responsible for harmonic
generation, that is, it outputs sequences of chords in stan-
dard alphanumerical notation. The form module coordi-
nates the previous three modules. For each piece, it gen-
erates a melody and a harmony background. It also de-
fines a general form in terms of sections (e.g. the classic
American song form AABA) and takes care of handling
section durations. The form module defines “composition
configurations”, that is, selections and parameterizations
of functions from the various modules, including a gener-
ated bpm tempo. Logical ordering of the modules depends
on the composition configuration (hence the double arrows
between modules in Figure 4). The MIDI/logger module
writes melodies into MIDI files, including tempo and key
signature. When key signature is not decided in advance,
it is inferred by comparing altered pitches in melody with
various key signatures, and taking the signature that re-
quires less momentary alterations. Chords cannot be in-
cluded into a MIDI file, and are written by MIDI/logger
into an easily human readable text file. The form module
is typically used iteratively, feeding the MIDI/logger with
100 pieces in one shot, in relation to a certain composi-
tion configuration. Composition parameters are setup in
in the SuperCollider/Python code. A crucial aspect of the
Real Book is to be a collection of works written by many
composers. The text module is devoted to generate names
of composers and title of pieces. For each composition
configuration, a batch of 5 composer names is generated:
these groups of “composer” labels thus represent a specific



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

311

“style”. Each composer is then associated with 20 titles.
Composer names are generated from lists of most popular
names (male and female) and surnames in the USA 4 . This
is both a homage to the birth of jazz in New Orleans, and
a good strategy to introduce variety, as USA have a largely
differentiated linguistic community. Each title is generated
by selecting one of the 50k movie reviews from the Large
Movie Review Dataset 5 , and then extracting and process-
ing a textual fragment. The database has been chosen as
it provides a colloquial tone typically associated with jazz
titles, while paying a homage to cinema, an art form which
has developed in 20th century, like jazz.

The NOTATION subsystem has the notation module at its
core. The notation module is operated manually (hence the
dashed contour in Figure 4), by interacting with the Mus-
eScore notation editor. The latter is used to import MIDI
files, and to edit them. MuseScore’s importing options may
be used to initially tune the notation. If occurring, editing
involves notation aspects (e.g. F♯ might be replaced by
G♭, da capo symbols might be inserted) but not music con-
tent. Chords are added by hand by taking as a reference
the harmony log file relative to the MIDI file. The nota-
tion module is where the evaluation step takes place. Each
piece, once imported is evaluated by the composer on the
base of a set of loosely defined criteria, such as rhythmic
complexity (pieces with too simple/complex rhythms are
discarded), melodic contour (too static/variable melodies
are discarded), melody/harmony clashing, etc. This man-
ual filtering operation has resulted in an acceptance rate
ranging between 10% and 20% of the generated pieces
for the different composition configurations. While cen-
tered around acceptance and final notation of the pieces,
the evaluation step provides also feedback on composition
configurations, so that it can lead to various modification
in the strategies on which these have been based. After
acceptance and editing, pieces are exported in PDF files
named with the format composer title. The remain-
ing part of the process is again fully automated. By using
the Shoebot vector graphics package 6 , a Python script is
used by the header module to create automatically for each
piece a graphic file containing the title, the composer and a
progressive page number based on alphabetical ordering of
the pieces, in the style of the Real Book. The header mod-
ule also generates a source file for ConTEXt, a TEX-based
typesetting document system 7 . The source file, includ-
ing references to all files, is compiled into the final Unreal
Book PDF. In terms of Computer-aided composition sys-
tems, the architecture can be thought as “fluid”, i.e. made
up of various modules “glued” together by two high level
programming languages (SuperCollider and Python) [24].

6. SEVEN EXPERIMENTS

In the following, seven composition configurations of the
previous system are described. These configurations, each

4 https://namecensus.com/
5 https://ai.stanford.edu/˜amaas/data/

sentiment/
6 http://shoebot.github.io/shoebot/
7 https://wiki.contextgarden.net/Main_Page

Figure 5. Atonal boppers example.

of which associated with a set of composer labels, are
meant as formalizations based on various features typi-
cally associated with jazz composition. Techniques are
inspired by harmony/melody relationships as discussed in
literature, mostly on improvisation 8 . In fact, there is a
substantial permeability between composed melodies and
improvised ones, as many times the latter are turned by
jazz players into composed motives [11].

6.1 Atonal boppers

As the name suggests, Atonal boppers refers to both
atonality and bebop. From the rhythmic point of view, be-
bop style results in less legato, with a distinctive presence
of fast eight notes and less syncopations across bars [1]. In
particular, Thelonious Monk’s music is characterized by
shifting riffs and accents, and isolated notes [6]. Atonal
boppers are thus loosely inspired by these features. In this
case, rhythm is handled by a drum machine-like pattern
generator (contained in the rhythm module) that can be
tuned so to generate blocks of a given metric duration with
a certain density (i.e. average number of events for time
unit). There are no slurs across bars. Figure 5 shows the
section A of a piece. Here the rhythm pattern has a 2-
bar duration, and is then repeated for the whole section.
This repetition is crucial to ensure a certain degree of re-
dundancy as the melody is freely atonal, a feature occur-
ring in more experimental bebop pieces. In order to fill
the rhythm pattern, the melody module exploits a Brow-
nian generator: starting from a pitch and given a certain
range in terms of semitones (e.g. ±3), it generates a new
pitch, then the process is reapplied. The Brownian model
is interesting as it creates pitch contours. If a new pitch is
outside a given overall boundary (substantially the treble
staff, as it is customary), then it is flipped by 1 octave so
to stay inside. The harmony module then provides auto-
matic harmonization of the melody, in three steps. First, as
the chords change at every bar, for each bar all the pitch
classes in the melody are collected in a set, and stacked by
thirds. Then, the resulting set is matched against a collec-
tion of given chords in a normalized form (e.g. major triad
= [0,4,7]). Each chord is ranked in relation to how many
pitches it is able to match in the pitch set, and the best is
taken. Finally, in case more chords are available with the

8 Code for the composition subsystems is available here https://
github.com/vanderaalle/unrealBookComp
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Figure 6. Harmonic graph.

same score, one is selected on the base of a given prior-
ity ranking, that is: chord types have been ordered so that
e.g. major chords have a higher rank than diminished ones.
In this case, harmonies are limited to 7th chords (as can
be seen in Figure 5). The form module randomly chooses
among various section structures: AA, AB, ABA, ABAB,
ABAC, and each section can have a length of 4, 6, 8, 12
bars. Figure 5 shows the A section of the piece, with a
standard 8 bar length.

6.2 Forgetful harmonizers

Forgetful harmonizers are obtained by reversing some as-
sumptions of Atonal boppers. Here, the rhythm module
exploits a “time tape” model: time units in quarter notes
are subdivided in 16th notes, and the latter are randomly
grouped into longer events (triplets included). Then, some
of the events are deleted according to a density parameter,
thus creating rests. This process yields to irregular rhyth-
mic groups. The relationship between melody and har-
mony is reversed, as the latter comes first in the generation
process. Chosen chord types (mostly 7th chords) are orga-
nized in a graph in which each chord type (e.g. min7b5) is
associated with a list of successors, based on [5] (Figure 6).
As chords are taken into account, pitch classes, represented
as integer in the range [0...11], are at stake. Each edge is
labeled with the number of positive semitones to reach the
new pitch class root (e.g. +5 is the relative subdominant)
from the chosen starting one. As chords are taken into ac-
count, the resulting pitch is to be taken mod 12 (pitch
class). In short, a cyclic graph results, that can be traversed
randomly (and starting from a random vertex), each path
representing a chord sequence once a starting pitch class
is given. Actual pitches are inserted into the rhythmic pat-
tern by looking at the relative harmony (again, one for each
bar). A set of modes is available, and each chord type (e.g.
min7) is associated with a subset of relative modes (e.g.
minor, phrygian, dorian). A Brown process picks up a ran-
dom pitch and selects a mode relative to the actual chord:
if the pitch is in the mode, it is taken as is, else it is matched

Figure 7. Forgetful harmonizers example.

Figure 8. Bluesers example.

against the nearest one in the mode (e.g. in the context of
Cmaj an E♭ becomes an E given a lydian mode). The next
pitch is chosen randomly in a settable range around the pre-
vious pitch (e.g. ±3 semitones), and again matched against
one of the available modes for the actual chord. If a pitch
duration extends across the bar, then the pitch is matched
against the intersection of two modes, one for each chord.
Form is organized as in the Atonal boppers case. This con-
figuration is based on two assumptions. First, in jazz many
times harmony comes first, not only in improvisation but
also in composition, as in the cases when a given chord se-
quence is reused for a new piece (see the Rhythm Changers
subsection). Second, since bebop there is a strong relation
between harmonies and modes/scales (see [4] for an ex-
treme application). In Forgetful harmonizers, harmonic se-
quences and harmony/mode relationships are based on [5].
Figure 7 shows an example, section A.

6.3 Bluesers

Bluesers are inspired by the classic 12-bar blues form. In
this case, form is fixed a priori, and harmony is generated
by reading an annotation file including typical 12-bar blues
chord progessions 9 . Thus, in this case form and harmony
are coupled and come first. Rhythm is again generated via
the time tape model. As in the case of Forgetful harmoniz-
ers, melody matches harmonies, this time exploiting typ-
ical blues modes (e.g. including blues minor and bebop
dominant scales [5]). Figure 8 shows an example with
(matched) harmonies changing every half bar. As a side
note, the typical “Blues” suffix has been appended to most
titles.

6.4 Parkerians

Parkerians follow a very different path. Historically, the
Charlie Parker Omnibook [32], a collection of 50 tran-

9 E.g. https://en.wikipedia.org/wiki/Twelve-bar_
blues
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Figure 9. E♭ dominant harmonic subgraph from Charlie Parker’s Omnibook.

Figure 10. Parkerians example.

scriptions of Parker’s solos, has been a crucial source of
inspiration for generations of jazz players. The Omnibook
has been annotated digitally [18] and is freely available in
various formats (MIDI, MusicXML, MuseScore) 10 : the
repository includes a Python script that allows to extract all
the MusicXML data from each tune, that is, time-stamped
melodies and chords. In Parkerians, following the model of
Forgetful harmonizers, first a data structure has been cre-
ated, in which each chord (in this case retaining the pitch
class, e.g. B♭) is associated to all its chord successors in the
whole corpus. The graph in Figure 9 is a subgraph of the
overall, cyclic harmonic graph, showing for sake of read-
ability only the 3-chord sequences starting with E♭ domi-
nant. Enharmonic pitch classes are shown with the same
color, regardless of their chord quality, and arrow colors
are related to the starting pitch class. A second data struc-
ture is then generated that associates for each chord all
the melodic fragments that are relative to it in the corpus.
These two data structures bind together rhythm, melody
and harmony. The form module selects a form among var-
ious options (AA, AB, ABA, ABAB, ABAC), and for each
section a duration in bars (like in Atonal boppers). Then,
for each section a chord sequence is obtained by traversing
the harmonic graph. Finally, for each chord in the gen-
erated sequence, a melodic fragment is randomly choosen
from those relative to the chord in the corpus. The whole
set of compositions is thus a Markovian, harmony-driven

10 https://nubo.ircam.fr/index.php/s/
BPtsmcqPQCNedgc

recombination of Parker’s melodic fragments, poured into
a new form. An example is shown in Figure 10.

6.5 Modalists

Modalism in jazz typically refers to a variety of solutions
based primarily on one or more modes at the basis of a
piece. This usually results in a slower harmonic rhythm
and in the use of one or more modes specified in advance
as a pitch reservoir. A chord acts as a wider background for
a mode-base melodic block. In Modalists, a set of modes
is taken into account. Initially, a chord is generated from
a degree in the chosen mode by stacking thirds. Then,
the following chord is generated from a mode having at
least one pitch in common with the starting one. Chords
last 4 bars. As in Parkerians, rhythm and melody are ex-
tracted from existing sources. The Jazzomat project 11

makes freely available a large corpus of solo transcriptions,
covering a variety of performers, styles, epochs [22]. The
database can be explored by means of the MelospyGUI in-
teractive tool, and selected items can be exported in MIDI.
For Modalists, compositions from Jazzomat database have
been chosen, converted into MIDI, re-edited so to simplify
complex rubato rhythmic grouping, finally re-exported in
MIDI. As solos are typically very dense, durations have
been doubled. Then, all resulting melodies have been
sliced into 1-measure-duration fragments. The recombin-
ing process is based on an enlarging reservoir. The reser-
voir is filled at initialization with a random fragment, then,
every time a fragment is picked up, a new fragment is
added to the reservoir. In this way, the reservoir keeps
memory of the available fragments, leading to repeating
patterns in the generated melody. Once selected, fragments
are adapted to the mode occurring in their context, like
in Forgetful harmonizers. In the example given in Fig-
ure 11, the same initial 2-bar melodic/rhythmic fragment
is repeated thrice, then a new one is presented. Once the
harmony changes at bar 5 from Fo7 to EM7, the recurring
fragment is adapted to the different mode. The form mod-
ule simply defines a variable number of 4-bar chord units.

11 https://jazzomat.hfm-weimar.de
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Figure 11. Modalists example.

Figure 12. Minmaximalists example.

In terms of notation, modes are logged with harmony so
to be reported –as customary with modal pieces– into the
final score, as can be seen in Figure 11.

6.6 Minmaximalists

While rooted in blues and in post-impressionistic harmony,
jazz has soon incorporated a variety of techniques de-
veloped in different contexts. Contemporary music tech-
niques, above all serial and twelve-tone procedures, have
been widely explored, in particular by the so-called Third
Stream movement [2,3]. Inspired by this perspective, Min-
maximalists are based on a serial, but not twelve-tone,
technique. Variable length series between 3 and 6 elements
are used for the pieces. Each integer item from the gener-
ated series is mapped onto a duration while some eight-
note rest is added, thus defining the rhythmic pattern to
be repeated. Analogously, a mapping strategy converts the
same values from the series into pitches. At each repeti-
tion of the rhythmic pattern, the pitch series is then trans-
posed following a random interval pattern. This organiza-
tion results in a combination of rhythmic redundancy and
melodic variety. In Figure 12 the rhythmic/melodic pat-
tern has a duration of 6/4, so that two patterns fill 3 bars.
Harmony advances at a regular 4/4 pace, thus providing a
second rhythmic layer. Chords are obtained by adopting
the same strategy used for Atonal boppers, but in this case
harmonies are more complex, up to 9ths rather then 7ths.
Coherently with the experimental assumptions, the form,
while maintaining a standard overall duration of 32 bars,
is not the classic AABA. Section A can be 8-bar, to be re-
peated (then AA) or a single 16 bar. Section A’ is the same
of A if the latter has a duration of 8 bars, or half A if the
duration of A is 16 bars. The resulting pieces are atonal
but the melody is anchored to jazz harmony, while rhyth-

Figure 13. Rhythm changers example.

mically they are based on a straight 8-note rhythm, with a
certain geometrical flavor, thanks to the eight-note based
patterns shifting on the 4/4 bar grid. Hence the reference
both to Minimalism and to its serial opposite.

6.7 Rhythm changers

Some chord progressions are widely used in jazz. The
most famous is derived from Gershwin’ song I Got
Rhythm. Known as Rhythm changes [5], it is at the base of
many famous jazz pieces. Rhythm changes are thus taken
into account as the starting point of the composition config-
uration. Thus, the form is the standard 32-bar AABA’ from
I Got Rhythm. In Rhythm changes, the harmonic rhythm
proceeds at 2 chords per bar in the section A, while slow-
ing down at 1 chord every 2 bars in section B. A common
practice in jazz is to perform chord substitutions, that is, to
replace original chords with new ones. This is seen as in-
strumental to offer new melodic possibilities. As discussed
by Liebman [33], chord substitution can also be seen as a
way to redefine harmony on the fly while improvising: a
certain given chord is thus mentally replaced by the impro-
viser with a different one, the latter acting as a reference for
expanded melodic construction. In Rhythm changers, first,
a second set of chords is defined for section A, which is an
altered/complexified version of the original sequence: as
an example, the starting maj7 chord is replaced by a min9.
Section B is subject to an extensive chord substitution, fol-
lowing the so-called Coltrane changes, while, as a second
step, it is altered/complexified as in A. Also, the harmonic
rhythm is converted into 2 chords per bars, like in A. These
richer A and B harmonies are used to create modes. For
each bar, the union of the two chords’ pitch sets defines a
reference mode. The raw material from melody is created
from Jazzomat, as described for Modalists. The fragments
are matched onto the reference mode for their relative bar.
While chord substitutions are used to create modes, they
are not displayed in the score. Rather, the original har-
mony is displayed for section A, but only in the first chord
of each bar. Analogously, section B displays the Coltrane
changes but before the complexification step, and only the
first chord of each bar. In short, harmonic complexifica-
tion results in a surface harmonic slower and homogeneous
rhythm, while feeding the melodic construction. An exam-
ple (in A♭) is shown in Figure 13.



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

315

7. CONCLUSIONS AND FUTURE WORK

The Unreal Book project has proven to be an interest-
ing test bench to develop an algorithmic-based, computer-
aided composition system capable to integrate final type-
setting by means of a “fluid” architecture. Performances of
pieces are planned, so that results can be tested and prop-
erly evaluated in the context of jazz playing. The project
can be expanded by implementing new composition con-
figurations that may be triggered both by further investiga-
tions in jazz theory and analysis, and by various algorith-
mic composition processes. In particular, larger harmonic
contexts could be taken into account to ensure harmonic
structure, and more automated data extraction procedures
could be implemented.
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ABSTRACT 
This paper provides a report on the development of 
SketchingSonicTrajectories (SST), a software tool for 
sound spatialization that simplifies the user interaction in 
a specific usage of IanniX graphic sequencer: SST 
integrates multi-track audio playback, Ambisonics spatial 
audio processing, and IanniX score and performance 
management. 

In addition to a project description and details on the user 
interface design, several strategies for the composition of 
the electroacoustic space with SST will be proposed, also 
with reference to the score examples included in the 
software package. The suggested exemplification is 
intended to illustrate the current software features and 
guide the user in the design and articulation of advanced 
movements of sound sources to achieve a multi-channel 
sound projection without getting entangled in software 
technicalities. 

1. INTRODUCTION 
Over the years, several panning techniques such as WFS 
[1], Ambisonics [2], and VBAP [3] have been developed 
with the aim of simulating the position and movement of 
sound sources in space accurately, and different 
approaches on their use in design and compositional 
practices have been adopted [4]. From the user side, 
strategies for sound spatialization commonly foresee 
automations on multitrack sequencers including software 
plugins, algorithms developed on programming 
environments, and performative practices involving a 
mixing console or a controller. In addition to standalone 
applications, certain implementations of spatialization 
algorithms can be integrated in software environments for 
real-time sound synthesis and processing (e.g., Max/MSP, 
Pure Data, or SuperCollider) and digital audio 
workstations. Among the notable tools available for free 
are Ircam Spat [5], ICST Ambisonics [6], HOA Library 
[7], Zirkonium [8], and SpatGRIS [9]; these offer a high 
degree of customization. However, it is worth mentioning 

                                                           
1 https://www.zhdk.ch/forschung/icst/software-downloads-5379 

that Zirkonium and SpatGRIS are currently incompatible 
with Windows, while spatialization libraries such as Spat, 
ICST and HOA depend on programming environments for 
their implementation, thus requiring specific skills from 
the user. Software plugins that rely on multitrack 
sequencers have the advantage of an easier approach, but 
limited control over the design of spatial movements; their 
representation is often trivial consisting in the variation of 
single parameters versus time. In different ways, these 
tools face the difficulty of interfacing the user with the 
notation and the representation of space as a compositional 
parameter. 

 In the ecosystem of sound spatialization tools, SST 
arises from specific questions: how to find a handy way to 
formalize and reproduce spatial parameters from the micro 
to the macro-form, in relation to the audio content; how to 
facilitate the design of sound trajectories for multi-channel 
electroacoustic works and sound design projects; how to 
offer flexibility to different live / studio contexts and broad 
compatibility with software and operating systems. The 
goal was to give access to a potentially wider user 
community by developing a tool capable of offering 
multiple approaches to notation and performance, and to 
bring attention to design and artistic issues instead of 
retaining the user on technical and programming aspects. 

We chose to consider the Ambisonics equivalent panner 
included in the ICST Tools1 for its flexibility in terms of 
parameter customization, suitability to a wide range of 
contexts, and licensing under the Revised BSD License. In 
particular, the uncoupling of the spatialization project from 
the electroacoustic configuration makes the system 
adaptable to different speaker setups, with the only 
requirement of having the same kind of speakers 
preferably arranged in a regular angular way. In real-life 
scenarios, loudspeaker amount and placement are usually 
different in relation to the host organization’s choices and 
other factors. 

As for the graphic design features, we decided  to use 
IanniX2 and discard the objects included in the ICST 
package. IanniX proposes a poly-temporal and multi-
formal open-source sequencer also useful for the creation 
and the performance of message-emitting control scores 
for sound spatialization [10]. Through the basic functions 
of the IanniX GUI, it is possible to notate and store various 
data such as the 3D position of sound sources and speakers, 
to design custom spatial movements and patterns with 

2 https://www.iannix.org/en/whatisiannix/  
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precise event timing, and to visualize a clear representation 
of global behavior in time and space. In addition to the 
GUI, the OSC and JavaScript approaches to score can be 
combined together to define the path of various types of 
curves available in IanniX (freehand, linear, Bézier, 
parametric and circular curves) [10]; this can significantly 
facilitate the spatialization design process according to the 
different abilities and needs of users. Most of the tools 
available for spatialization design provide one-way and 
single-strategy approaches, flat and non-reactive 
representations of the current position and level of sound 
sources, and simple and stereotyped motions such as 
rotation, translation, and random walk. In some cases, 
trajectory descriptions must be provided in a breakpoint 
format (time, coordinates) that forces the user to a clunky 
approach, especially when designing a macro-form. 

In order to interface the IanniX environment with the 
spatialization algorithm, we have developed a macOS and 
Windows application that also includes a multitrack 
reproduction device. The SST GUI was intended to 
facilitate the interaction with IanniX, guiding the user in a 
step-by-step project definition, proposing advanced 
customizable models of sound trajectories, allowing 
reactive and bidirectional management of the 
spatialization project, and avoiding dependence on DAWs. 
However, the user is given the option to choose the 
preferred audio input from external hardware or third-
party software (via virtual audio drivers), which makes 
SST suitable for both studio and live projects. 

After its first iteration [11], SST is currently under 
development at the Department of New Technologies and 
Musical Languages of the Conservatory of Padua. The 
software package is freely available for download3. An 
updated project overview accompanied by a description of 
the system components is presented in the Section “Project 
description”. The user interface has been adapted for 
improved usability, adding IanniX score controls, 
transport synchronization, event handling and 
visualization. Through this, we aim to further facilitate the 
production and reproduction of a graphic score for sound 
spatialization (see “User interface design”). Several score 
examples are proposed and discussed in relation to their 
functionality, in order to demonstrate different procedures 
related to the use of SST and the included trajectory library 
(see “Compositional and performance strategies”). 
Additionally, the use cases within our Living Lab Music 
showcase have been taken into account (see “Use cases”). 
Finally, we conclude with some considerations and 
perspectives for the future development of the project (see 
“Conclusions”). 

2. PROJECT DESCRIPTION 
The proposed system for the creation and reproduction of 
graphic scores for sound spatialization involves three main 
logical sections – SST, IanniX, and Mira – as described 
below. Communication is handled via OSC (to and from 
IanniX) and Bonjour protocol (between SST and Mira). 
 

                                                           
3 https://www.julianscordato.com/projects.html#sst  

Figure 1. Block diagram. 

2.1  SST 

SST is an application developed in Max/MSP; it includes 
a Graphical User Interface (GUI) for managing the score 
and related audio content, a series of devices for 
interfacing with the IanniX score and Transport, and a 
signal processing stage for audio routing, playback and 
spatialization (see Fig. 1). The SST GUI provides access 
to several components: Graphic score manager, Control 
panel, Audio settings, Spatialization preferences, and 
Audio output monitor. 
 

 
Figure 2. Graphic score manager. 

 
The Graphic score manager defines the possible 

strategies for the creation and facilitated handling of 
objects within a IanniX score, aiming at the design of a 
spatialization project (see Fig. 2). It allows the user to set 
the speakers’ number and position and to initialize the 
virtual displacement of audio signals and files into the 
ianniX score by organizing them into sound sources (see 
§3.2). Also, it suggests a series of 2D and 3D templates for 
the insertion of trajectory paths, and facilitates the 
interaction with the inserted objects by configuring their 
attributes and behavior as well as the visualization in 
IanniX of relevant information such as labels and audio 
level meters. 
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Figure 3. Control panel. 

 
 The Control panel can be accessed from both the SST 
application and the Mira app (see §2.3). It contains 16 
potentiometers and playback buttons, one for each 
available sound source (see Fig. 3). This panel is 
synchronized with the Transport information in IanniX, 
giving the ability to combine score reproduction with real-
time playback controls. Gain and mute controls for each 
audio channel can intervene at the input stage before the 
audio signal is routed to the Ambisonics panner. 
 The Audio settings module includes driver selection and 
audio I/O mappings. A further window is dedicated to the 
Spatialization preferences for adjusting the Ambisonics 
directivity and the amplitude attenuation pattern in the 
Ambisonics panner, which is based on the ambipanning~ 
object for Max/MSP [6]. The Ambisonics panner output is 
sent to the DAC as well as to the Audio output monitor in 
order to provide the user with visual feedback of the 
channel levels during score playback. 

SST application offers the possibility to choose different 
types of audio inputs: Audio player, ADC, Oscillator, and 
Noise. The Audio player is responsible for the 
reproduction of the audio files assigned to each of the 16 
available sound sources through the Graphic score 
manager. Activation of audio file playback with a desired 
gain level can be set in the score at any time position along 
a track. It is also possible to use the dedicated playback 
controls located in the Control panel (see Fig. 3). Except 
for the Audio player, the other inputs are mutually 
exclusive and can be switched via a selector; it is therefore 
possible, for example, to couple an external analog input 
with the playback of audio files using the same channel. 
The ADC can provide 16 channels from audio hardware as 
well as from virtual audio devices, in order to interface 
third-party audio applications with SST in real-time. To 
assist the user in testing the spatialization system, two 
ready-to-use audio inputs are selectable: a white noise 
generator and a polyphonic sawtooth oscillator. Available 
on channel 1, the noise generator can be conventionally 
used for a speaker test. The polyphonic oscillator, on the 
other hand, can be a useful tool in the design of 
spatialization models that involve multiple sources: it 
matches a single tone of the major scale to each of the 
sound sources, allowing the user to postpone the 
assignment of audio content. 

Formatting of IanniX speaker and source position 
messages for the Ambisonics panner is done by the 
Speaker/Source manager. This device also turns on the 
audio inputs when the Transport starts and turns them off 
when score playback is stopped. In order to automatically 
update the configuration with any intervention on the score 
between two consecutive reproductions, the 
Speaker/Source manager forces IanniX to output the 
current status of all the elements present in the score 
following the Transport activation. 

 

 
Figure 4. Example of static source positioning in a score 
included in SST software package (sequence_1.iannix). 

2.2  IanniX 

We have designated IanniX as the core sequencing engine 
and graphics platform for SST, due to its inherent poly-
temporal and multi-formal sequencing capabilities and the 
flexibility it offers in terms of graphic notation [10]. For 
the description, two blocks are distinguished: the 
Transport and the IanniX score (see Fig. 1).  
 The Transport sends the score playback status to various 
devices: Speaker/source manager, Audio player, and 
Control panel. Available directly from the IanniX GUI as 
well as from the Control panel, the Transport represents 
the main control for the global reproduction of the graphic 
score and for the synchronization of routines such as 
input/output activation and source position refresh (see 
§3.3). Transport information is also sent to the Audio 
player in order to enable the reproduction of the audio files 
added to the project via the Graphic score manager. 



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

319

The IanniX score stores the data and graphically 
represents the objects entered by the user through the 
Graphic score manager. The multi-formal representation 
space of the score includes a coincident reproduction of the 
Ambisonics 3D coordinate system [6] – which in turn can 
be considered as a convenient approximation of the 
electroacoustic space (see Fig. 6) – and up to 16 source-
related automation tracks (see Fig. 4). The IanniX score 
acts as an interface that allows the user to intervene on the 
virtual position of speakers and sound sources, to manage 
the automation tracks and to set advanced attributes of the 
IanniX objects (see §4). 

2.3  Mira 

New to this SST iteration, this latter section consists of a 
touch-control interface for real-time source positioning 
which also provides global transport and audio playback 
controls. Developed in Max/MSP, this interface makes use 
of the Mira app for gestural input and visualization on a 
compatible mobile device [12].  
 

 
Figure 5. Source location tab in Mira. 

 
 The proposed interface allows the user to combine the 
SST functionalities for score designing with the possibility 
of real-time intervention into the score during its 
performance; it contains two main tabs, both accessible via 
the Mira app: Control panel and Source location. 
Optionally accessible also from the SST GUI, the former 
provides audio controls for each channel (see §2.1). The 
latter allows real-time spatial manipulation of up to 4 
selectable sound sources (see Fig. 5). Since the source 
position and playback controls can be set gesturally from 
a compatible mobile device, the user is free to move to the 
“sweet spot” while maintaining a certain degree of control 
over the score. 

3. USER INTERFACE DESIGN 
This section addresses the design of fundamental aspects 
of the SST interface for the purposes we have set ourselves 
(see §1). In the first subsection we will present issues 
related to the visualization of the elements in the score, 
from the macro-form to the micro-form, with a particular 
focus on the latter since in our approach to spatialization 
design we consider the macro-form as a result of the 
articulation of individual events that unfold over time. The 

second subsection will cover notational aspects, in 
particular how the score composition process was 
designed and how the IanniX objects were used for this 
purpose. Finally, we will address the aspects related to 
score reproduction and the possible performative 
approaches. 
 
 

 
Figure 6. Example of a three-dimensional IanniX score. 

3.1  Score representation 

The three-dimensional Cartesian representation of the 
IanniX score in our specific application tends to be an 
approximation of a spatial configuration including both the 
actual speaker setup and the virtual positioning of the 
sound sources (see Fig. 6). The electroacoustic space is 
mapped according to the Ambisonics space definition [5], 
whose dimensions coincide with the absolute Cartesian 
coordinates of the rendering area of the IanniX score. A 
graphic texture has been placed to delimit conventional 2D 
boundaries. A similar two-dimensional representation is 
provided in the Mira interface for simultaneous control of 
up to 4 sound sources in live interventions (see Fig. 5). 
 Additionally, up to 16 source-related tracks are displayed 
in the lower area of the IanniX score (see Fig. 4). As in 
common sequencers, tracks provide additional timelines 
that normally serve the purpose of viewing and editing 
specific automations. In our application they constitute the 
support for the formal articulation of several types of 
events (see §3.2).  
 For the purpose of spatialization design, the content of a 
score includes a user-defined number of speakers, sources, 
and events notated as IanniX triggers; spatial trajectories 
are notated as IanniX curves; trajectory reading heads are 
notated as IanniX cursors with the function of driving the 
triggers associated with the same source.  
 During playback, the visualization in the main score area 
is synchronized with the events set along the tracks. 
Furthermore, to relate the audio content to the current 
position, a localized level meter is proposed for each active 
source by means of a HSV color variation in the related 
IanniX trigger. 

3.2  Notation 

In the design of the Graphic score manager, we 
distinguished three consequential phases in the user 
approach to creating a score: from the initialization of the 
electroacoustic setup (in terms of available sound sources 
and speakers), through the sketch of the sound trajectories, 
up to the addition of control events and audio content (see 
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Fig. 2). For the purpose of writing a spatialization score in 
SST, the basic IanniX objects (i.e. triggers, curves and 
cursors) take on certain functions. 
 In IanniX, a trigger is an “object with the ability to send 
individual output messages” [10]. Within the SST 
interface it can assume various connotations:  
 

● Speaker, i.e. a graphical representation of the 
loudspeaker position with a custom texture (see 
Fig. 6); up to 32 speakers can be entered and 
displaced in a score; 

● Sound source, namely an Ambisonics input (see 
Fig. 1) virtually positioned in the electroacoustic 
space; up to 16 sources can be displaced in the 
score; it is also possible to assign a single input to 
multiple sources through the I/O mappings 
included in the Audio settings window; 

● Event: Audio player (see Fig. 2) creates a marker 
placed on a source-related track to start playing 
an audio file and set its volume level; 

● Event: Source location creates a marker placed on 
a source-related track to set the three-dimensional 
displacement of a sound source in the score (see 
Fig. 4); 

● any other trigger that causes an event in the score 
using a IanniX loopback message formatted as a 
command [13]. 

 
 A IanniX curve is a “graphical representation of a 
function or a vector-based path within the score” [10]. 
Curves are used in the following cases: 
 

● trajectories, i.e. the three-dimensional paths 
involving one or more sound sources located in 
the main score area (see Fig. 6); 

● tracks, consisting of source-related timelines 
coupled with cursors aimed at activating events 
(see Fig. 4); in the SST GUI, the user can 
instantiate a track while initializing the related 
sound source (see Fig. 2);  

● track automations that define the desired 
variation of up to two parameters as a function of 
time, considering the Y and Z axes (see Fig. 7). 

 
 A cursor in IanniX is a “time-based graphical object that 
moves along the path of a linked curve and performs local 
and autonomous sequencing functions” [10]. In the context 
of the SST user interface, cursors are applied for dynamic 
positioning of sound sources: using IanniX loopback 
messages, a trigger can be forced to follow the current 
position of a cursor; through this, it is possible to define 
the temporal behavior of a sound source in the score and 
make the source move along the path of a three-
dimensional curve (see Fig. 6). Taking into account a 
modular temporal approach, multiple cursors can be 
associated to the same sound source to articulate different 
spatial-temporal behaviors in the perspective of a 
macroform. Secondly, IanniX cursors are used as part of 
source-related timelines for the activation of any colliding 
triggers (see Fig. 4), as well as for reading the values of 
any colliding curves (see Fig. 7). 
 

 
Figure 7. Example of track-level automation in a score 
included in SST software package (supershape.iannix). 

3.3  Reproduction 

As part of our goal of making SST suitable for both studio 
and live applications, we propose two main approaches 
related to the performance of a score. The former exploits 
the functions of the integrated Audio player (see §2.1), and 
is based on fixed audio content to be reproduced by means 
of events located on source-related tracks. The latter takes 
advantage of the ADC input for a more flexible 
configuration that allows the connection of external audio 
devices such as acoustic instruments, as well as other 
software and VSTs (using a virtual audio driver); this also 
led us to integrate the Mira interface into the system (see 
§2.3), in order to allow the user greater control over the 
audio content. 

Once the score has been set properly, the audio inputs 
and outputs can be configured in the SST GUI from the 
Audio settings window. The audio input level can be 
checked on the meter incorporated in the sound source 
representation only after starting the score playback. The 
Transport (see §2.2) can be activated via the play button 
which is synchronized between IanniX and the SST GUI. 
The activation involves updating the status of the IanniX 
objects representing sources and loudspeakers, which are 
forced to send control messages to SST. Any active events 
or trajectory-related cursors will reposition the sound 
sources on the planned paths or position. When score 
playback is stopped, audio input routing is interrupted 
accordingly. 

4. COMPOSITIONAL AND 
PERFORMANCE STRATEGIES 

This section is focused on the score prototypes included in 
the software package with the aim of exemplifying some 
possible SST applications both on the basis of the Graphic 
score manager functionality and through a more advanced 
use of IanniX (e.g. including the loopback interface and 
JavaScript functions). 

The trajectories library accessible in the Graphic score 
manager offers a potential starting point for a design 
process aimed at the dynamic spatialization of sound 
sources (see Fig. 2). Indeed, the proposed 2D and 3D curve 
templates rely on basic parametric equations that can 
easily transform and reshape the objects in IanniX and 
therefore adapt to the user’s needs. The temporal behavior 
of a single trajectory, as well as the articulation of different 
movements in a macro-form is made possible by the 
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definition of cursor’s parameters: time position [s] and 
cursor length [s]. The former establishes the starting point 
in relation to global transport in IanniX; the latter defines 
the cursor’s duration [s] along its support curve. A more 
advanced approach may also foresee the use of cursor 
acceleration patterns, recursion, or JavaScript functions, as 
described below. The positioning of a sound source can 
also be achieved by means of a single-step movement, for 
example in the event of a preset change or initial position 
setting. This can be practically implemented through track-
level automations or direct displacement of the related 
trigger in the IanniX score (see Fig. 4) as well as through 
a gestural approach using the Mira app (see §2.3). 

Overall, we have identified some significant usage 
strategies, not with the intention of being exhaustive but 
rather to illustrate some modular paths that from the 
instance of individual objects proceed towards a potential 
complete project of sound spatialization. These are listed 
as follows: 
 

● constant speed trajectory system with a 
predetermined and predictable space-time 
behavior resulting in a “control score” [10]; the 
cursors instantiated via SST can move either 
along a single curve or different curves intended 
as their spatial path; also, they can be temporarily 
synchronized or not, according to the cursor 
parameters set in the SST graphic score manager 
(see solar_system.iannix and DNA.iannix); 

● trajectories with non-linear speed defined by 
cursor acceleration patterns; each cursor can 
behave in a specific and independent way within 
the score (see circles.iannix); advanced object 
attributes such as cursor acceleration can be set 
via the Inspector panel, which is part of the 
IanniX GUI; 

● variable trajectories according to a parameter 
value defined by track-level automation (see 
supershape.iannix); as with traditional 
sequencers, the automations offer the possibility 
of defining the variation of mapped parameter 
values as a function of time (see Fig. 7);  

● variable trajectories according to a colliding 
object that modifies the parametric equation 
defining the cursor path; automations and events 
can be set directly in the representation space of 
the score, thus exploiting the IanniX-specific 
three-dimensional and poly-temporal sequencing 
features (see sphere.iannix); 

● variable trajectories according to themselves in a 
“recursive score” setting [10]; the IanniX 
loopback interface allows the user to route an 
output message to the IanniX input for a score 
command instance; a command can affect a 
single object as well as a group of objects, as in 
spirals.iannix; 

● static source positioning by means of track-level 
automation (see Fig. 4); the source positioning 
event set via the Graphic score manager is 
designed in the score at the track level; this allows 

                                                           
4 https://vimeo.com/sampllab/albums  

the user to have a view of the entire macro-form 
relating to single-step movements of the sound 
sources; the same approach applies to the 
triggering of audio files via the internal player 
(see sequence_1.iannix); 

● static source positioning using random functions 
that produce a “generative score” [10]; track-
level automations can be read in unconventional 
ways by going beyond the notion of linear 
timeline; different strategies are foreseen, such as 
the JavaScript implementation of a random 
function in a trigger-related output message that 
sets the object’s position (see 
random_points.iannix) or the use of a time-
related IanniX command [13] that affects the 
reading position on the timeline (see 
sequence_2.iannix); 

● dynamic source positioning via gestural input 
using the Mira interface (see §2.3); this approach 
produces an “interactive score” [10] in which 
predetermined temporal behaviors reproduced in 
IanniX can be combined with live controls; 

● creation of trajectories and performance control 
through other external inputs; specific 
OSC/MIDI input messages sent from third-party 
devices can be related to adding and controlling 
objects in a “reactive score” [10]; this requires a 
JavaScript approach to the onIncomingMessage 
method included in a IanniX score (see 
touchosc.iannix). 

 
The operational proposals listed above can be combined 

functionally and conveniently in a score in order to 
produce more complex behaviors intended as articulations 
of simple events in the perspective of a macro-form (i.e. 
the spatialization project as a whole). 

5. USE CASES 
SST has been used extensively in an artistic and 
technological scenario of Living Lab Music4, a SaMPL 
showcase that combines contributions from established 
artists and researchers with artistic products from the 
Department of New Technologies and Musical Languages 
of the Conservatory of Padua. Due to the restrictions of the 
COVID-19 pandemic, no audience could take part in the 
2021 edition. However, binaural audio and video 
recordings were made with the aim of disseminating the 
content online, while still returning an acoustic image of 
the specific setup and venue. Living Lab Music 8 took 
place at the Pase Platform5 in Venice, which provided a 
30-channel speaker system whose near-hemispherical 
arrangement (see Fig. 6) was particularly suitable for 
advanced spatialization. We could observe that the ICST 
Ambisonics equivalent panning algorithm presented a 
satisfactory response  after adjusting the parameters 
(Ambisonics order and level attenuation curves, in 
particular). A compromise was needed between the 
angular precision given by the Ambisonics order increase 

5 https://pase-platform.com  
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and the uniformity of the audio level in all points of space, 
which instead required a wider polar pattern. 

Ranging from fixed-media works to multimedia 
performances, the applications of SST in this context 
covered both the approaches identified in §3.3 (sometimes 
used in combination) and all the strategies proposed in §4, 
allowing us to test the full operation of SST. Early stage 
electronic music students could easily implement SST in 
their stand-alone or interactive projects after a minimal 
training period, only occasionally encountering issues in 
the interaction with the IanniX score (see §6). However, 
thanks to IanniX’s graphic sequencing capabilities 
combined with the ability to control the spatialization of 
sound sources in real-time via Mira or other interfaces, 
SST has proven flexible to the diverse performative and 
compositional needs of the students and artists involved. 

6. CONCLUSIONS 
Through SST we intend to propose an easy-to-use IanniX 
tool aimed at the design of multi-channel sound 
projections for musical works and sound design projects, 
but also to favor an approach to electroacoustic 
composition stimulated by the formalization of virtual 
sound trajectories organized in space and time. In a future 
version of the software we plan to focus on several 
additions and bug fixes, including: 

 
● a reverb implementation for improved distance 

simulation and room treatment; 
● advanced management of Ambisonics directivity 

using independent parameters for each sound 
source; 

● better management in the instance of IanniX 
objects, which can currently generate bugs 
related to the programming logic of IanniX score 
files; 

● an improved trajectory library and related score 
examples; we realize that we have not been able 
to consistently systematize a curve library, and 
have struggled to find satisfactory models in the 
literature to draw from; 

● the possible inclusion in the score of a further 
representation of cursor-related events at the 
track level (see §3.2); in the articulation of 
different trajectories, it is currently not possible 
to have a view on the entire macro-form, as the 
cursors appear only during their movement. 
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ABSTRACT

This paper introduces a series of techniques and ap-
proaches to algorithmic timbral spatialisation, the real-
time processing of audio data and its musical organiza-
tion in a binaural or multichannel listening space. The
intent of the work is to explore different ways for the au-
tomated spatialisation of the audio spectrum, especially in
contexts of electroacoustic and acousmatic music compo-
sition. Typical Digital Signal Processing operations and al-
gorithms will be used in order to create and/or retrieve data
for the dynamic positioning of the audio sources. Firstly,
in order to describe the processes, the concept of timbral
spatialisation will be introduced, describing the composi-
tional interest of such approach. Then the different tech-
niques for data generation will be formalized, describing
their “audioparous” process, that is when information re-
garding musical organization is extrapolated from an audio
source. The various approaches to interpretation and usage
of the data will be discussed, as well as their implementa-
tion in SuperCollider.

1. INTRODUCTION

The concept of “spatiality” has been taken into considera-
tion in the compositional practice since between the 10th
and 14th century in the vocal music, particularly with the
antiphonal psalms [1], later elaborated with the tradition
of polychoral music [2]. Even during the classical period
some works actively use the spatial component of sound
(“Serenata 8 in D major for 4 orchestras, K. 286” from
1777 by W. Mozart), and later in the 19th and 20th cen-
turies with composers such as Mahler (“Symphony No.
2”) or Charles Ives (“Unanswered Question”). But it is
only after the Second World War, with the introduction
of electronic instruments and loudspeakers, that spatial-
ity becomes a fundamental aspect of musical production,
with some prominent composers, such as Karlheinz Stock-
hausen, who take great advantage from it [3]. In partic-
ular, since the 1970s, the spatial aspect has been one of
the most in-depth and researched fields, [4], even with the
design of special diffusion systems [5]. In recent years,
with the greater accessibility and evolution of spatialisa-
tion techniques, several new concepts regarding spatiality
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have been introduced in the compositional practice. One
can argue that spatial movement, even with little formal
theory about it, has become a musical parameter just like
rhythm, timbre and pitch [2]. One of the approaches to the
organization of spatial parameter of sound is “timbral spa-
tialisation” [6]. This process deconstructs a sound source
into its individual spectral bands, addressing them as sin-
gle point-sources, and placing them in the listening space.
Timbral spatialisation then recombines the entire spectrum
virtually, whether in the concert hall or in headphones,
therefore not simply adding the spatial aspect at the end
of the composition process, but actually re-composing the
space [7]. Timbral spatialisation poses the problem of con-
trolling each individual spectral band in space: such pro-
cess can require potentially dozens of parameters, all at the
same time. Some of the most used techniques for this task
have been Wave Terrain Synthesis [8] or granular synthe-
sis [9], but given the compositional nature of the process,
the exploration of different algorithmic techniques for mu-
sical data generation is of relevant interest.

Sound and space are intertwined irreversibly: whenever
sound is recorded, the space where the sound “happens” is
recorded as well, inevitably being perceived with the spec-
tral properties of the source [10]. A similar process of link-
age can be used as framework for spatialisation, extrap-
olating data from audio sources in order to influence the
spatial aspect of the music. Such technique can be called
“audioparity”, a composition mode in which musical data
originate from sound. A compositional technique, conse-
quently, is audioparous if it defines a projection between
a source sound material and an outgoing musical organi-
zation [11]. For example, this compositional process has
been used by composers such as Messiaen, as he integrated
in his works transcriptions of singing birds [12]. With the
usage of the same audio data for the spatialisation con-
trol, one can extend the concept of “audioparity” to “self-
audioparity”, where sound and space influence each other.
We can therefore say that in “self-audioparous” techniques
the musical organization is directly influenced and modi-
fied by the audio source itself.

In discussing algorithmic composition, even more when
the concept of “audioparism” stands out, it is relevant to
point out how human perception processes time scales
differently. For example experiencing a simple sinusoid
transposed to different time scale would change the per-
ceptual results drastically, but the waveform itself would
still remain the same [13]. While this is true for sonic ex-
periences, it does not prevent the composer to cross the
boundaries of time scales in order to “apply” data extracted
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from one temporal region to another.
In the next chapters some of these techniques and ap-

proaches will be applied to real-time incoming audio sig-
nals in order create complex spatial textures within tim-
bral spatialisation. In particular an exploration in the use
of noise algorithms, the use of FFT descriptors and finally
an audio snapshot and manipulation technique to automate
the creation of auditory scenes.

2. APPROACH

While spatiality can be assimilated to other musical pa-
rameter such as pitch, rhythm and timbre, it is sometimes
used as a simple post-processing effect, mostly because
of the lack of a properly unified and defined spatial lan-
guage [14]. The formalization of techniques for the gen-
eration of spatial data, provides a framework for spatial-
isation that can be easily integrated inside a composer’s
work. This is particulary true in electroacoustic and acous-
matic composition where the space and spatial experience
is aesthetically central [10]. Consequently, the spatial per-
ception of the listener is of fundamental importance: how
the movements are generated, how they affect spectromor-
phology of sound and how the spatialisation is connected,
if it is at all, to its source. Even though there isn’t a solid
framework which might provide a reasonably secure basis
for investigating space [10], it is possible to define spatial
attributes and characteristics [14] that, in themselves, de-
fine and organize the spatial scene. These characteristics
are inevitably crucial for the impact on the spatial experi-
ence of the listener, and must be taken into account when
formalizing procedures for automatic spatialisation.

Timbral spatialisation enables the musical exploration of
sound very differently from point-source techniques. It in-
volves the “deconstruction” of sound into spectral bands,
by means of several bandpass filters with different cen-
tral frequencies, allowing for compositional processes to
determine how the sound will be spatially distributed for
each part of the spectrum. This process is similar to typi-
cal FFT synthesis and resynthesis, and even more to analog
vocoders [15]. They allow for the deconstruction and re-
construction of the sound based on its frequency content;
this process has been linked to the term spectromorphol-
ogy [10]. The concept of “deconstruction” or “decompo-
sition” of sound has been discussed previously [16], and
other researches have examined concept and applications
of timbral spatialisation as well [6, 17–19]. One can imag-
ine that this particular approach is similar to the concept of
orchestration, a term that acousmatic composers are very
fond of [5]. They effectively “orchestrate” music on sys-
tems like the Acousmonium to achieve the desired spa-
tial and sonic experience, creating and performing gestures
based on their own personal taste but also on the spectro-
morphology of sound [20]. Similarly, timbral spatialisa-
tion is capable of creating diffused and immersive sound
scenes [18], with the possibility of controlling each part of
the sound spectrum algorithmically, creating new possibil-
ities in spatial composition.

However, although the concept of splitting the sound
into various frequency bands with bandpass filters is by

Audio Source
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Output
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Reconstruction
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Figure 1. Flowchart of the timbral spatialisation process.

itself straightforward, it poses several questions of compo-
sitional interest that may completely change the resulting
spatial scene:

∙ How many frequency bands should be used?

∙ Which center frequency for each bandpass filter?

∙ Why? What’s the effect on using different filter set-
tings on the spatial experience?

For sake of consistency it is relevant that the process of
deconstruction-reconstruction gives the most faithful result
in comparison to the original: this means that is is desir-
able not to introduce any kind of distortion. In this specific
case, different combinations of frequency bands (called Fs
or frequency sets) were applied to the incoming signal, in
order to experiment on various scenarios, as described in
Table 1. In particular:

∙ Fs1 frequencies are the preferred octave frequency
bands according to the ISO standard [21];

∙ Fs2 frequencies from the Random*Source - Serge
Resonant Equalizer 1 ;

∙ Fs3 frequencies represent a logarithmic scale;

∙ Fs4 frequencies are from an API 560 graphic equal-
izer;

In each set, the lower and upper cutoff frequencies for a
single bandpass filter are defined by a pair of values: e.g.
[31, 63] are respectively the lower and upper cutoff fre-
quencies for the first bandpass filter in Fs4 (see Table 1).

The number of used frequency bands has a strong impact
on the overall experience: Fs3, that has only four spec-
tral bands, is more focused and its particular spectral re-
gions are highly localized, while the other frequency sets
are more immersive and seem to be a more coherent group.
However, different frequency sets can be used depending
on the compositional goal and, possibly, on the incoming
audio’s spectromorphology. In terms of timbral spatialisa-
tion, anyway, the process may also be applied to narrower

1 A unique ten-band filter designed specifically for electronic sound
synthesis and processing, where each band, except for bottom and top
two frequencies, are spaced at an interval of a major seventh.
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Fs1 (Hz) Fs2 (Hz) Fs3 (Hz) Fs4 (Hz)
22 29 10 31
44 61 100 63
88 115 1000 125

177 218 10000 250
335 411 20000 500
710 777 1000

1420 1500 2000
2840 2800 4000
5680 5200 8000
11360 11000 20000
20000 20000

Table 1. The various frequency sets (Fs) used.

bands of frequency so that the full audio spectrum of the
original source is not reproduced: this would yield non-
contiguous but very localized spatial sound-shapes. In this
case, the simplest scenario has been taken into considera-
tion, which involves static center frequencies for the bands:
further exploration of the spatial implications of this “dy-
namic” approach can be of relevant compositional interest.

3. TECHNIQUES - CONTROLLING THE
SPATIOMORPHOLOGY

Nowadays, many spatialisation systems and techniques are
still mixer-oriented [20]: this is because many master-
pieces of acousmatic and electroacoustic music were com-
posed for audio systems controlled by a mixer. This means
that the interpretation of musical pieces has to be done
manually: in the Acousmonium, for example, each fader
in a mixer controls the volume of a speaker (or group of
speakers) placed strategically in space, with its own fre-
quency response. The history of electronic music interpre-
tation regarding space, is strongly related with the sound-
space aesthetic developed in these systems [19]. The de-
velopment of several new technologies and techniques for
controlling spatialisation has changed the way composers
approach to this parameter, with very heterogeneous re-
sults [22]. The central point of spatialisation is, regard-
less of the technology used, the control of the spatial en-
vironment’s attributes. Unfortunately these attributes are
not definitive [14], not to mention the lack of a unified mu-
sical notation for spatiality and spatialisation [23]. This
means that the control of the spatiomorphology of a com-
position is defined everytime by the composer, perhaps not
even coherently with previous compositions. When music
is performed by acoustic instruments in an acoustic envi-
ronment, the physical level of description by itself often
provides a workable roadmap to both the listener’s experi-
ence and the composer’s intent [14]: this isn’t always true
for acousmatic and electroacoustic music, where space is
an aesthetically created “environment” [10].

For simplicity, the considered attributes are going to be
the geometrical coordinates in a 2D plane (x and y, repre-
senting back, front, left, right positions) and a “distance-
from-the-listener” (d) attribute: each of these parameters
will be applied for every frequency band of the timbral

spatialisation process. For example, in the Fs3, at least
twelve parameters (four frequency bands with three at-
tributes each) will be necessary to manipulate the spatial
scene. Moreover, the various frequency bands can be seen
not just as single, individual point-sources, but also as a
group or series of groups, reinforcing the spectral aspects
of the spatialisation, with the possibility of “granular” [9]
control over the bands. Picking x, y and d attritubes has
been a subjective choice of the author. However, this
choice provides a more general compositional framework:
these attributes can be defined in any spatial environment
(in various degrees), making it easier to switch between
spatialisation technologies, or even between implementa-
tion languages.

As previously noted, audioparous techniques indicate a
composition mode in which musical data originate from
sound. We can formalize several audioparous procedures
that can shape and define different aspects and timescales
of the compositions, from micro to macro musical organi-
zation: e.g. single generative spatial gestures, the flocking
movement of the whole timbral spatialisation etc.

However, differently from other examples of audioparous
compositional procedures [11, 12], the application of such
techniques in spatial contexts do not produce notation or
sound per se, but rather modify and reshape an incom-
ing audio signal. Furthermore, the actual incoming sound
is an interesting parameter to explore in order to control
sound itself: we can then extend the idea of audioparism to
a “self-audioparism”, where the incoming audio, perhaps
through some other control process, spatialises itself.

3.1 Exploring noise

In the time domain, noise can be defined as sound in which
the amplitude over time changes with a degree of ran-
domness. The amplitude is maximally random in the so-
called white noise. In the spectral or frequency domain,
noise can be defined as sound that has a continuous power
spectral density over a certain frequency bandwidth. The
power spectral density of all frequencies is equal in white
noise. [2]. Consequently, there are different “flavours” of
noise, and they can be suitable for different compositional
strategies.

Some synthesis techniques in analog electronic instru-
ments from the “control-voltage” era are still alive and
kicking: for example the use of sample and hold circuits
to create random sequences by “feeding” them pink noise
[24].

This particular techniques enables to sample a value upon
a received trigger and hold it still until another trigger is
received: if the sampled signal is noise, then the output
would be a sequence of random value. Even more inter-
esting is the interpolation between these values: instead of
jumping quickly from one value to another, the transition
is smooth, producing all the values in between as well, like
in Figure 2. In a spatial context these values can be eas-
ily used to automate all the parameters needed for each
frequency bands: it’s simple to create a rich and immer-
sive spatial scene by generating several of these functions.
Furthermore, by controlling the sampling rate, the speed of
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Figure 2. Quadratically interpolated random values sam-
pled from a noise function with relative trigger inputs.

the change of spatial attributes would dramatically change:
nesting noise functions into other noise functions to dy-
namically change the x and y positions of the frequency
bands adds fluctuation and unpredictability (Figure 3).

Figure 3. A sampled noise function with its sampling rate
modulated by another nested noise function.

3.2 FFT controlled walk

The Fast Fourier Transform (FFT) inspects the frequency
content of a signal, and can be extremely useful for audio
analysis or frequency-domain sound processing. By “win-
dowing” a real-time signal, a succession of overlapped
spectral frames are obtained: the FFT focuses attention
on the magnitude and phases values for all of the differ-
ent frequency bin resulting from this operation [15]. By
using this data, it is possible to spectrally analyze sound,
extrapolating some of its intrinsic characteristics: these at-
tributes can be used compositionally in a spatial context by
mapping them to the relevant values, in our case the x, y
and d attributes described in Section 2.

In this context, the so-called Instantaneous Spectral De-
scriptors [25] are used. They are a set of instantaneous
attributes obtained from the FFT analysis that describe the
spectral shape of sound in a certain moment in time: we

could say that they are a photograph of the spectromor-
phology of audio. In particular, three descriptors were
used:

∙ Spectral Centroid: the weighted mean frequency, or
the “centre of mass” of the spectrum. It can be a
useful indicator of the perceptual “brightness” of an
audio signal;

∙ Spectrum Roll-off point: the frequency below which
lies the 90/95 percent of the signal energy. This
somewhat indicates the harmonic/noise cutting fre-
quency;

∙ Spectral Flatness: it measures of “noisiness” or “si-
nusoidality” of the spectrum (or parts of it);

These descriptors are used as dynamic controllers for ran-
dom walks, also called Brownian motion [26]. Specifi-
cally, two random walk functions generate the x and y po-
sition for each of the frequency bands: respectively, the
Spectral Flatness and Spectral Centroid descriptors control
the frequency and step’s amplitude for the previously de-
fined functions. This means that depending on measures of
“noisiness” and the perceptual “brightness” of the incom-
ing audio, there will be a changing number of steps per
second and each of them will move closer or further away
from the previous one. The Spectrum Roll-off point de-
scriptor, instead, will control the distance attribute for the
whole group of frequency bands acting as a global modifier
and effectively treating them as a collective group that be-
haves coherently. The use of FFT analysis in this particular
compositional technique, defines what was previously dis-
cussed as “self-audioparism”: using the spectral descrip-
tors values obtained by the analysis of the incoming audio
onto itself, we define a self-sustaining, ever-changing al-
gorithmic spatial texture.

Figure 4. A 40 steps walk for a single frequency band in
the 2D space, where (0,0) is the listener’s virtual position.
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3.3 Audio snapshot technique

The audio snapshot is yet another audioparous technique
that involves sampling into a buffer a rather small snippet
of sound, using this data to drive the spatialisation. This
techniques is actually self-audioparous, because the sound
being recorded is indeed from the source itself. The basic
idea is to use an interpolating buffer player set to very low
playback rates in order to read data: in this way we “trans-
pose” information from a micro timescale (a few millisec-
onds of audio) to a sound object or meso time scale (from
several tenths of a second to a few seconds of audio) [13] .

Figure 5. One snapshot of 128 frames, taken from Solar
Ellipse by Barry Truax.

This particular technique of data generation, in practice,
produces pseudo-random spatial gestures, depending on
the length of the buffer: from 16 to 64 frames the gesture is
definitely short, while from 128 onwards the spatial phrase
starts being long enough to reach into the meso timescale.
This, of course, depends on the playback rate of the buffer
players: extending its frequency into audio territory (over
20Hz), one could even have audio-rate spatial modulation.

More precisely, for each of the frequency band, three
buffer players will read the data: one for x position, one
for y position and one for the distance attribute. Each of
these players will read the buffer from random initial posi-
tions in order to get coherent but varied results: the com-
bination of these three functions in time will be the actual
gestural output applied to the spatial texture. Randomizing
both the playback rate and the initial reading position, will
also ensure that the resulting spatial gesture is always dif-
ferent for each of the spectral bands, giving the impression
of a richer spatial scene. At any time the initial buffer can
be resampled, loading new information and starting back
from scratch with new audio data, producing completely
new spatial motions.

Furthermore, once the buffer has been filled, typical Dig-
ital Signal Processing operation can be applied to the
recorded data: for example, using sub-audio or audio gen-
erators with appropriate parameters will yield interesting
and extreme results (see Figure 6).

Figure 6. In the upper graph is the original sampled sig-
nal; in the middle graph 50Hz sawtooth wave acting as a
modulator; in the lower graph the resulting signal from the
multiplication of the two previous signals.

4. IMPLEMENTATION

The implementation of both the timbral spatialisation and
the control techniques poses some challenge in the organi-
zation of the data flow, and can be relatively CPU heavy
due to the spatial rendering of many frequency bands: in
experimenting with these techniques, an Ambisonics [27]
binaural approach was used. However, other technologies
(such as DBAP [28], for example) may be more suitable
for multichannel setups, both from perceptual aspect (no
sweetspot) and computational aspects (much cheaper).

All the software was implemented in the SuperCollider
environment [29] which features an Object Orientend pro-
gramming language that controls a powerful audio synthe-
sis server. The use of an audio dedicated programming
language is particularly fitting because it comes pre-loaded
with algorithms and Unit Generators that can be easily
integrated in the workflow. Moreover, the SuperCollider
community provides a series of free classes and add-ons 2

that dramatically extend the capabilities of both the lan-
guage and the synthesis server. One of these free plugins
has been used to implement the binaural spatial rendering,
the “Ambisonics Toolkit 3 ” (Atk), and more precisely the
FOA (“First Order Ambisonics”). With a process of en-
coding, transforming and decoding (Figure 7), the Atk ef-
fectively allows the user to easily spatialize sound by con-
trolling the transformation procedures, and specifying the
nature of encoder and decoder(s). In this case, the spatial

Figure 7. The Ambisonics workflow.

2 https://github.com/supercollider/sc3-plugins
3 https://www.ambisonictoolkit.net/
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rendering is obtained through a binaural decoder based on
the IRCAM’s Listen HRTF database 4 which provides var-
ious equalization for different head’s widths, allowing the
user to choose their preferred settings. The spatial render is
interchangeable with any appropriate binaural render, pro-
viding several of this decoders with different properties:
for example a Synthetic spherical head model HRTF [30]
or a CIPIC HRTF database from the University of Califor-
nia Davis 5 .

It is important to mention that the SuperCollider archi-
tecture is based on the dualism between language (sclang)
and server (scsynth) [31]: many processes can be imple-
mented within both the interpreted language or the synthe-
sis server, depending on the user’s need. Specifically, the
techniques and approaches presented here, have been im-
plemented server side: in other words most of the func-
tions such as noise generators, oscillators, FFT analysis
etc.. are specific Unit Generators that are allocated and
managed dynamically on scsynth. The advantage of this
organization is that, other than the readiness of use, the
low-level (C++) implementation of the Unit Generators al-
lows for a much more optimized use of the computational
power. Furthermore, scsynth offers a flexible and multi-
channel bus system which is perfect for sending/receiving
the large number of computed data in the spatialisation sys-
tem.

In SuperCollider there is a great choice of Ugens that can
be used inside this compositional framework, or even sub-
stitute the ones presented here. For example:

∙ a number of "coloured" noise Ugens or stochastic
generators such as WhiteNoise, PinkNoise, Brown-
Noise, GreyNoise or Crackle (a noise generator
based on a chaotic function);

∙ various degrees of interpolated or non-interpolated
sample and hold Ugens such as LFNoise0 (non
interpolated), LFNoise1 (linearly interpolated) or
LFNoise2 (quadratically interpolated);

∙ different types of Ugens suitable for real-time au-
dio analysis such as Pitch (autocorrelation pitch fol-
lower), Amplitude (envelope follower), Loudness
(extraction of instantaneous loudness in sones) etc..

∙ several add-ons are present, ranging from the sc3-
plugins to a large suite of audio analysis tools called
“Fluid Decomposition Toolbox” [32], all freely
available;

While for each spatialised frequency band the x and y po-
sitions are straightforward (representing front, back, left
and right), the d attribute described in Section 3 has been
implemented according to [33] on distance cues. In order
to emulate these cues, the d parameter scales the amplitude
of each frequency band so that the direct signal decreases
in amplitude more with distance than does the reverberant
signal.

4 http://recherche.ircam.fr/equipes/salles/
listen/

5 http://interface.cipic.ucdavis.edu/sound/
hrtf.html

The implemented techinques are available publicly on the
author’s GitHub 6 .

5. CONCLUSIONS

Timbral spatialisation is a signal processing technique that
has a great potential for creating rich and fascinating spa-
tial textures, but it can also be viewed as a tool for com-
posing space and effectively considering it a part of the
compositional workflow. Together with algorithmic tech-
niques for the control of the spatial environment, it is pos-
sible to automate the set of attributes that define such vir-
tual space. Furthermore, the introduced concept of “self-
audioparity” adds another layer of complexity and coher-
ence to the whole spatialisation process.

The possible applications for the discussed techniques are
multiple and in different contexts:

∙ live spatialisation of electroacoustic and acousmatic
performances;

∙ the reinterpretation in multichannel setups or binau-
ral rendering of fixed media compositions;

∙ as a standalone tool for spatial composition and for
the integration of space inside of a composer’s work-
flow;

It is important to notice that the implemented techniques
are described from a compositional point of view, which
means that the final user can adjust the internal parameters
and mappings according to its own taste: the specifications
collected here are a representation of what is possibile, but
are by no means definitive. Moreover, many other tech-
niques can be implemented, or perhaps expanding the ones
that have been presented: for example, further explorations
of different spectral descriptors and its mapping to spa-
tial attributes; the implementation of “dynamic” instead of
“static” frequency bands; the creation of completely new
audioparous algorithms from the ground up.

The next steps will involve the development of a frame-
work for easily switching between techniques in real-time;
inclusion of the “height” attribute in the spatialisation pro-
cess; the implementation of a GUI for visual feedback; the
integration of machine learning techniques for intelligent
spatialisation; the creation of a set of hardware tools for
the performative control of the spatial textures.
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ABSTRACT

The Interactive Virtual Environment System (IVES) is a
toolkit aiding the production of immersive audiovisual 3D
virtual environments for screen-based or virtual reality
(VR) applications with loudspeaker- or headphone-based
spatial audio reproduction. It is developed within Cy-
cling´74s Max programming environment and consists of
a set of interface-based, higher-level building-block mod-
ules, similar to the BEAP and VIZZIE toolkits included
in Max. IVES uses and unifies established programming
libraries such as Jitter / OpenGL (Cycling’74), Spat (IR-
CAM), VR (Graham Wakefield) into ready-to-use abstrac-
tions with graphical user interfaces (GUIs). This allows
simple patching of individual spatial audio and visual 3D
rendering chains. IVES provides various blocks in a flexi-
ble modular patching system, suitable for audiovisual ren-
dering in different application scenarios with different con-
tent, and manages the synchronization and conversion of
data, control messages and coordinate-systems, used dif-
ferently in the underlying libraries. Furthermore, the sys-
tem also provides modules for the creation, interaction,
motion, and transformation of audiovisual spatial elements
within virtual environments. The toolkit allows users to
concentrate on the composition and artistic content in au-
diovisual virtual environments rather than the program-
ming of the complex systems behind them.

1. INTRODUCTION

In the fourth movement of his composition "Symphony
No. 4" 1 , Charles Ives uses a percussion ensemble spa-
tially separated from the orchestra as a form of spatial com-
position technique. This type of, in this context, uncon-
ventional placing of sounds in space is only one of count-
less examples, representative of the interest of composers
in the use of spatial features in their works. Placing sounds
in space, like Ives did in the concert hall, moving them
around and using the room acoustics and their perception,
are common techniques used in spatial composition. In the
context of electroacoustic/acousmatic music and spatial

1 Symphony No. 4, S. 4 (K. 1A4), 1925; Charles Ives (1874–1954)

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

audio reproduction systems with multi-channel loudspeak-
ers or headphone-based binaural rendering, these tech-
niques have been further developed and also extended. Be-
sides more complex options like the movement with three-
dimensional trajectories, also new techniques such as spa-
tial sound processing and the simulation of different room
acoustics became possible [1]. This led to the emergence
of various software aiding the spatial composition process
(e.g., HoloEdit [2, 3], Zirkonium [4, 5]) and spatial au-
dio reproduction (e.g., Spat [6,7], ICST Ambisonics Tools
[8, 9], AudioScape [10]) in common computer music pro-
gramming environments (e.g., Max [11], PureData [12],
SuperCollider [13]).

1.1 Audiovisual Virtual Environments

Spatial audio plays an important role not only in music but
also in other media such as movies and games. In interdis-
ciplinary art, the interest of media artists and composers in
combining these media to create spatial audiovisual works
also increased. Especially the recent developments and
availability of virtual and augmented reality (XR) systems
led to new possibilities to explore audiovisual spatial envi-
ronments for art production.
Emerging from the gaming industry, game engines (such
as Unity or Unreal) represent powerful tools for creating
and rendering these spatial audiovisual environments for
screen- and XR-based applications, even beyond their pri-
mary application for games. While also being frequently
used for audiovisual spatial composition, game engines
can still have shortcomings in several application scenar-
ios. Being very powerful especially in the visual domain,
the possibilities in audio might be too limited for many
composition requirements. Real-time multi-channel input,
sound synthesis, and generative composition procedures
can be challenging in game engines. Also, deeper con-
trol over the audio processing and the synthesis of spa-
tial sound fields may be desirable for many applications.
This has led to several developments that combine game
engines and their extensive capabilities in 3D visual envi-
ronments with computer music languages for composition,
sound synthesis, and audio spatialization [14–16].

1.2 Audiovisual Rendering in the Max Environment

While game engines with their graphical editors and inte-
grated physics and rendering engines are attractive tools
for creating visual 3D worlds, their basic functionality can
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also be programmed in Max. Max is a graphical program-
ming environment, originally focused on audio and mu-
sic programming and often used by computer music com-
posers and media artists. The Max library Jitter for vi-
sual components has in addition to objects for graphics and
video also an implementation of OpenGL for programming
and rendering 3D environments.
The integration of virtual reality (VR) systems is real-
ized with the VR library for Max [17]. The library al-
lows implementing head-mounted-display (HMD) repro-
duction, tracking devices, and controller integration.
These libraries make the programming of virtual environ-
ments and their rendering within Max a potential alter-
native to the use of game engines. In combination with
a spatial audio and composing library, such as the well-
established Spat library by IRCAM, Max users can pro-
gram their custom virtual environment systems and render-
ing pipelines using these libraries. This gives them deep
control over the underlying processes in a programming
environment dedicated to audiovisual composition.
Still, even with the help of these libraries, programming
such systems can be very challenging. The implemen-
tation requires broad knowledge about spatial audio re-
production, 3D virtual environments, as well as render-
ing pipelines and their parametrization. Furthermore, ex-
changed data must be converted and adjusted, for example,
because of different coordinate conventions used by the li-
braries.
Toolkits such as COSM [18] aid the programming of vir-
tual worlds and rendering pipelines by offering high-level
programming externals. It provides objects for spatial vi-
sual and audio rendering, as well as the creation of virtual
worlds. Nevertheless, also with high-level externals, the
process of creating audiovisual virtual environments is still
quite programming intense.

1.3 The IVES Toolkit

In an attempt to minimize the programming effort required
to realize audiovisual virtual environments within Max, we
present in this paper the development of “IVES - Interac-
tive Virtual Environment System”, a modular toolkit for
3D audiovisual composition in Max. IVES is a set of
higher-level building-block modules with graphical user
interfaces (GUIs) aiding the patching of virtual environ-
ments and rendering pipelines. Within the toolkit, we use
the Spat library to program the spatial audio rendering and
composition modules, Jitter with OpenGL for visual 3D
environments modules, and the Max VR package to inte-
grate HMD-based VR systems. The conversion of data and
control messages used in between these libraries is done
inside the modules, ensuring consistent use of parameters
and coordinate conventions.
As a result, the toolkit provides ready-to-use abstrac-
tions with interfaces for parametrization with no addi-
tional programming required, while it fully integrates in
the Max development environment offering every kind of
programmable extension. The modular system preserves a
deep control over the signal and rendering processing and
allows the adaptation to different source data and applica-

tion scenarios. This implies the creation of a 3D world and
simulated sound field with virtual sound sources and cor-
responding visual elements, or the use of recorded or real-
time microphone array input in combination with audio-
reactive 3D visuals. Composers and media artists can cre-
ate virtual environments presented on VR systems with
six-degrees-of-freedom (6DoF) tracking and dynamic bin-
auralization over headphones, as well as works for a con-
cert space with projection and loudspeaker-based sound re-
production. They can integrate various controllers, inter-
faces, and tracking-systems available in Max and program
their own generative systems, algorithmic compositions, or
sound synthesis used as content in their audiovisual envi-
ronments.
The IVES toolkit aims to guide the creation of 3D virtual
environments with a focus on audio and music. Unlike
game engines, which are very powerful in the visual do-
main, IVES is used to embed a 3D virtual environment
engine in an audio and music specific programming lan-
guage such as Max, which is quite common among com-
posers and media artists. It provides an easy-to-use solu-
tion for artists, especially those already familiar with Max
or similar visual languages, and gives them deeper control
and more options for real-time audio, spatial composition,
sound and their spatialization compared to game engines,
with less complexity than combined approaches. Thus, the
toolkit allows artists to use the basic features of visual 3D
environments, VR, and sound spatialization without hav-
ing to learn a new environment or language, or program-
ming of the principles behind rendering and spatialization.

2. DESIGN AND IMPLEMENTATION

The IVES toolkit’s technical design follows the idea of
a modular system. It consists of higher-level GUI-based
blocks, as introduced with the BEAP and VIZZIE toolk-
its, which are integrated in the Max programming environ-
ment. This modularity allows the user to build up individ-
ual signal-processing chains by connecting modules with
patch cords. The visual programming paradigm used in
Max, with programming instructions as objects/nodes that
are also connected to each other by patch cords, is very
similar to this principle. This facilitates the adaptation
and implementation of such a modular system paradigm.
While the Max programming language can be considered
to be already very high-level, the main difference of the
here presented blocks is that they do not require further
lower-level programming of functionality. Instead, they
represent modules that can be connected in the order of
the required processing chain and parameterized over their
GUI. In its current development state, the available mod-
ules in IVES can be divided into 3 categories:

• Spatial audio modules to create and process a spatial
sound field. Those modules provide the required
rendering chain for loudspeaker- or headphone-
based reproduction. Furthermore, the modules
allow to transform and interact with the sound field
in the spatial audio domain.
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IVES.soundfield~ 

IVES.encoder° IVES.decoder°

Spatial Audio

Higher-Order Ambisonics Rendering

IVES.beam° IVES.rotation°

spatial domain

IVES.environment

IVES.vr_environment

Visual 3D Environment

IVES.shape

Spatial Composition

IVES.soundsource~

IVES.grid

IVES.move

IVES.transform

IVES System Overview

Figure 1. IVES system overview. The diagram shows the architecture with the spatial audio rendering as the center of the
toolkit. It shows the connections of spatial composition, as well as visual 3D environment modules to the spatial audio
rendering.

• Visual 3D environment modules that set up a virtual
world with the needed rendering chain implemented.
The modules allow to create 3D objects in the virtual
environment and link them to virtual sound sources.

• Control and interaction modules, for example, to
generate grids/patterns of object positions and tra-
jectory movements, transform object parameters,
and simulate/control head rotation parameters.

The system architecture of IVES (see Fig. 1) is centered
around the virtual sound field. This indicates the slightly
stronger focus on audio in IVES, as opposed to the game
engines discussed. The visual environment is linked to the
data of the virtual sound field. Virtual sound sources are
automatically represented as visual objects in the virtual
environment and can be linked to added 3D objects. For
example, parameters such as the listener’s position and
head orientation are synchronized as position and view
of the camera in the virtual environment. Still, the visual
environment, as well as the spatial sound field, can be used
and parameterized independently and self-sufficient.

In the current development state, the externals of
three libraries are used to program the modules for
creating, interacting, and rendering audiovisual virtual
environments in Max.
The OpenGL [19] objects of the Jitter library by Cy-
cling‘74, integrated in the Max 8 (v.8.1.10) programming
environment, are used to render a basic visual virtual
environment and place 3D elements in it. The VR library
by Graham Wakefield (v.1.0.1) is used to integrate PC-VR
systems, compatible with SteamVR, Oculus, or Vive
drivers, and render the virtual environment on HMDs and
use tracking for 6DoF rendering of the virtual environ-
ment.
The sound spatialization is implemented using the Spat 5

(v.5.2.1) library by IRCAM. It is used to set up the virtual
sound field and an Ambisonics-based [20] processing
chain to manipulate and render the sound field for
loudspeaker-based or binaural headphone reproduction.
Whereas Max 8, as well as all implemented libraries, are
compatible with Microsofts Windows and Apples MacOS
platforms, the VR functionality has only been tested on
Windows 10 operating systems.

2.1 Spatial Audio with Spat 5

The Spat library by IRCAM is a sophisticated library pro-
viding many externals for sound spatialization and spatial
composing. It can be used for many different spatializa-
tion scenarios, such as reproduction on loudspeaker- or
headphone-based systems. It offers all necessary functions
and algorithms for spatial en- and decoding, reverberation,
sound processing, plotting and visualization, as well
as tools for motion and trajectories of sound sources.
Even though the Spat library is already providing an
all-in-one sound spatializer (spat5.spat∼) with a graphical
interface, reverberation, and a fully integrated rendering
chain, it can be useful for many situations to implement
separated or different processing chains. As all elementary
spatialization algorithms and functions are also provided
as separated externals, one of the main purposes of the
Spat library is to enable the programming of individual
spatializers, tailored to different application scenarios
(see, for example, different Spat-based spatializers as
Max4Live devices [21, 22]).
IVES is also built on a custom implementation to achieve
the flexibility of a modular system and to allow the repro-
duction of simulated sound fields or multi-channel audio
from spherical microphone arrays. It allows transforming
the sound field, as well as the reproduction on various
multi-channel loudspeaker systems or headphones. IVES
uses the Spat externals with the MC multi-channel system
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introduced in Max 8, providing bundled multiple signal
chords to simplify patching and connection of the different
audio modules. The number of channels is automatically
adapted by IVES modules to the used input channels or
the spatial sound field order.

2.1.1 Sound Fields in IVES

IVES.soundfield∼ represents one of the core modules of
the toolkit and can operate in two different modes:

• Virtual Sound Sources:
This mode handles spatial parameters of the listener
as well as virtual sound sources and their signal pro-
cessing. It uses the spat5.viewer object to manage
the position of sound sources and the listener in the
virtual space. Additionally, the listener orientation
is considered to enable full 6DoF roaming with
dynamic binauralization in the appended rendering
process. Sound sources can also be freely placed
in the sound field coordinate system. To enable
distance perception of the virtual sound sources,
gain attenuation is implemented and applied to the
source signal. The distance between the listener and
each source is calculated, resulting in a gain factor
based on the inverse-distance law.
In addition to the distance attenuation, the source
pre-processing provided by the Spat library’s
spat5.source∼ object is implemented to generate a
continuous pre-delay based on distance to produce
a Doppler effect. The processed signals of the
sources, as well as the spatial parameters of all
elements in the coordinate space, are subsequently
passed to the spatial encoder.

• Multi-Channel Audio:
The IVES toolkit also supports rendering of sound
fields recorded with spherical microphone arrays.
Thus, this mode of the sound field module aids the
playback of multichannel audio files containing
such recordings. It is dynamically generating MC
signal streams according to the corresponding
channel number. Alternatively, for example for
real-time input, the input stream can directly be
connected to the spatial encoder.

2.1.2 Higher-Order Ambisonics En- and Decoding

The spatial audio rendering is performed with a Higher-
Order Ambisonics (HOA) processing chain (see Fig. 2). It
consists of an encoder and decoder module that can be ap-
plied to the described above modes and used for different
reproduction scenarios.
HOA represents the Ambisonics 3D-audio format in spa-
tial resolution orders greater than one. Ambisonics is an
object-based full-spherical spatial sound format, that, un-
like channel-based systems, is agnostic to channel num-
bers or speaker positions. While higher numbers of chan-
nels and loudspeakers lead to higher orders and resulting

spatial resolution, the decoding can be adopted to various
reproduction scenarios. The HOA spatial format was cho-
sen as it can encode single virtual sound sources as well as
microphone array recordings. The encoding results in the
B-Format sound field representation, offering high flexibil-
ity of decoding to various loudspeaker layouts as well as
binaural headphone reproduction. The Spat library offers
HOA encoders for simulated sound fields and several com-
mon microphone arrays. Decoders are available for loud-
speaker reproduction or as binauralizer for headphones.
The encoder module (IVES.encoder°), includes several
HOA encoders provided by Spat 5. One HOA encoder
for simulated sound fields and three encoders for micro-
phone arrays. The Zylia ZM1, Eigenmike EM32, and 1st
order A-Format microphones, such as the Sennheiser Am-
beo VR mic, are supported. The encoders can be selected
and parameterized with the module’s GUI. Parameters re-
quired through the whole rendering chain, such as spatial
order, dimension, or normalization, are passed automati-
cally to subsequent modules.
The decoder module (IVES.decoder°), includes a HOA de-
coder for multi-channel loudspeaker reproduction as well
as a HOA binauralizer for spatial headphone reproduction
using head-related transfer functions (HRTFs).
For the loudspeaker decoder, a grid generator was imple-
mented. It can generate loudspeaker positions for common
grids and loudspeaker layouts as provided by the Spat li-
brary. To enable dynamic binauralization also for recorded
sound fields with microphone arrays, head rotation param-
eters need also to be considered in the decoding process.
Because the HOA binauralizer provided in Spat 5 does not
support parameters of head rotation for dynamic binaural-
ization, a sufficient sound field rotation needs to be im-
plemented. For this, IVES rotates the sound field around
a static listener’s head position (in contrast to a rotation
from the listener’s point-of-view). As the HOA rotation
implemented in Spat 5 is by default intrinsic (following
the ‘ZYX’ convention), the rotation parameters are con-
verted to an extrinsic rotation order (following the ‘XYZ’
convention). This ensures an adequate sound field rota-
tion for a listener’s point-of-view with given Euler angles
(yaw/pitch/roll) as head orientation parameters.

2.1.3 Spatial Domain Manipulation

The IVES toolkit also provides sound field manipulation
modules operating directly on the spatial sound field. This
sound field interaction, transformation, and manipulation
are done in between the en- and decoding spatial process-
ing, in the so-called spatial domain (also called Ambison-
ics or spherical harmonics domain). In its current de-
velopment state, a rotation and beam-former module for
transformations in the spatial domain are implemented in
IVES. The rotation module provides a spherical Euler ro-
tation of the given sound field around the listener. The
IVES.beam° module provides an implementation based on
the spat5.hoa.focus external, allowing a selective fragmen-
tation of the sound field based on orientation and selectiv-
ity of the beam. It is based on the concept of beamforming,
a spatial filtering technique that can be used to filter spatial
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Figure 2. Spatial audio pipeline using IVES. The example shows a simple simulated sound field with one virtual sound
source. It is based on 3rd order HOA rendering with binaural reproduction. It consists of a virtual sound field module with
a single sound source module as audio input and the head rotation module for 3DoF motion tracking. The audio stream and
position data from the sound field module is then spatialized using the en- and decoder modules.

sound with a given directivity.
Both modules can be parameterized in the GUI and also
linked to external interfaces and controllers, which allows
designing new forms of interactions and spatial composi-
tions [23]. In contrast to spatial composition techniques
such as the positioning and movement of single sounds in
a simulated sound field, the techniques based on the inter-
action and transformation in the spatial domain can also be
applied to recorded sound fields with microphone arrays.

2.2 Visual 3D Environments with Jitter and VR

The processing chain for visual 3D environments is based
on Max Jitter and its implementation of OpenGL. Jitter is
Max’s integrated library for image, video and 3D graph-
ics processing. Similar to the MIDI and audio processing
objects with Max and the MSP library, Jitter offers objects

for programming signal processing with visual elements.
This includes 3D graphics using OpenGL, an open-source
application programming interface (API) for 2D and 3D
graphics rendering. To enable PC-VR systems, including
the presentation on HMDs and integration of tracking data
for 6DoF movement, the VR package for Max was inte-
grated. VR is a third-party library made by Graham Wake-
field and the Alice Lab for Computational Worldmaking at
York University to integrate VR hardware and stereoscopic
rendering on HMDs into the Max programming environ-
ment.
The core module for handling visual environments in
IVES is IVES.environment. It is the visual equiv-
alent to IVES.soundfield∼. When connected to the
IVES.soundfield∼ module, it synchronizes with the ele-
ments in the virtual sound field (number and position of
sound sources, listener position and orientation for the
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Figure 3. Visual 3D environment in IVES. The example shows a simple 3D environment with one sphere object linked to a
virtual sound source. It consists of the sound field module as the core of the virtual environment. The environment module
creates a visual representation of the sound field, a shape module renders a black sphere at the position of the given virtual
sound source. The head rotation module is connected to the sound field and used to enable 3DoF motion in the audiovisual
virtual environment.

viewer camera). The main difference to IVES.soundfield∼
is the implementation of the rendering chain inside the
module. A basic environment with a world and physics
context is set up, and the rendering of an empty world
showing a grid. When sound sources are added to the
sound field, they automatically show up as visual objects
in the environment. The IVES.shape module allows to add
further 3D objects. The module offers basic parametriza-
tion of geometry and material as well as transformation of
the objects. The objects’ position can also be linked to
sound sources of the sound field (see Fig. 3).
In addition to the conventional environment module, the
toolkit also offers the IVES.vr_environment module for us-
ing PC-VR systems. This module offers similar function-
ality as IVES.environment, but extends the rendering to
HMDs using the VR library. The implementation is us-
ing the VR external with multiple cameras for each eye
as documented in the package. The VR external also pro-
vides position and head-tracking parameters from the VR
system. These are converted to the coordinate conven-
tion used in Spat and can be transferred to the listener’s
position and orientation by connecting the module to the
IVES.soundfield.

2.2.1 Spatial Parameter Conventions and Conversion

Because the Spat library uses a different coordinate sys-
tem convention than Jitter/OpenGL, all position data and
parameters must be converted for the communication and
data exchange in-between these libraries. The VR library
uses the convention implemented in Jitter/OpenGL. Thus,
for 6DoF audio spatialization, the tracking data must be
converted to the Spat conventions accordingly.
All this conversion is done by the IVES modules automati-
cally and all GUI elements of the modules use the conven-
tion implemented in the Jitter library to ensure consistency
throughout the modules. The externals provided by the
Spat library support parameters in spherical/navigational
(azimuth, elevation, distance) and Cartesian coordinates
(x-,y-,z-axis). Jitter also supports Cartesian coordinates,
but the used convention is different.
Spat uses a right-handed coordinate system with the posi-
tive x-axis to the right, y-axis front to back, and z-axis up
and down from the listener. The OpenGL Jitter externals
are using the coordinate convention of the OpenGL API, a
system with the positive x-axis to the right, y-axis up and
down, and z-axis back and front from the listener. The
Jitter/OpenGL convention was chosen as the leading coor-
dinate convention. As Spat uses the spherical/navigational
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Figure 4. Spatial composition in IVES. The example shows a grid generator (IVES.grid) creating circular positions for four
virtual sound sources, and the IVES.move trajectories generator controlling the movement of the first sound source. Both
modules are connected to the sound field module managing the data of the virtual sound field.

coordinate system by default, a conversion from spheri-
cal to Cartesian coordinates into Jitter/OpenGL conven-
tion, and vice versa, is implemented. Because Spat is in-
terpreting Euler angles (yaw/pitch/roll) in relation to their
Cartesian coordinate convention, they are also adapted to
the convention used by Jitter/OpenGL.

2.3 Control and Interaction

To support the process of composition and interaction with
the audiovisual environment, IVES also provides modules
to create and transform spatial parameters of virtual objects
by integrating further externals from Spat aided for spatial
composition (see Fig. 4). The IVES.move module provides
an implementation of Spat’s trajectory external. The mod-
ule allows the selection and parameterization of trajectory
algorithms and apply them to sound sources, 3D objects,
or the listener/viewer.
IVES.grid provides an implementation of the spat5.grid
external, providing algorithms to generate different grids
of position coordinates for sound sources as used in the
IVES.soundfield∼ module. Spatial position coordinates of
the elements described in the sound field can be trans-
formed with the IVES.transform module, providing an im-
plementation of the same-named Spat external.
The IVES.soundsource∼ module allows the handling of in-
dividual sound sources. It provides a sound player with
different parameters for playback of sound files. Alterna-
tively, an input signal can be passed through or a noise
test signal can be generated. Furthermore, the position in

Cartesian coordinates can be parameterized.

3. DISCUSSION AND CONCLUSION

In this paper, we described the first pre-release version of
the IVES toolkit 2 . At the current state, the toolkit already
provides all basic modules necessary to create a simple au-
diovisual virtual environment for screen-based or virtual
reality applications with loudspeaker- or headphone-based
spatial audio reproduction.
While the basic 3D environment, sound spatialization and
VR features are already implemented in IVES, the visual
world creation modules are still quite limited, especially
compared to game engines. Although the future devel-
opment aims to further develop and expand visual capa-
bilities, the goal is not to create a full-scale alternative to
game engines. Instead, the IVES toolkit will concentrate
on single scene environments for artistic application, gen-
erative 3D visuals and sounds, as well as genuine audio-
visual interaction concepts, rather than complex multiple-
scene worlds, sophisticated rendering and simulation algo-
rithms or scripted interactions. The idea is to encourage
the development of new artistic concepts focused on sound
and music in the field of audio-visual 3D environments and
VR, without overwhelming the artists with standard fea-
tures from game development.
As is the case with most software of this type, continu-
ous expansion and further development is intended. Be-

2 Available: https://github.com/AudioGroupCologne/
IVES/releases/tag/0.1-smc
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sides the usual bug fixes, improvements and simplifica-
tions as well as enhancements with different focuses are
planned and/or already in development. To enable the
creation of more complex visual environments, additional
modules for composition with 3D objects are in develop-
ment. Also, additional interfaces for further controllers
and tracking devices, as well as for software for spa-
tial composition (e.g., Iannix [24]) will be created. Fu-
ture development will focus on modules for composition
with the sound fields in the spatial domain (cf. Sec. 2.1).
This approach is less explored compared to the composi-
tion of simulated sound fields (positions, motion) and of-
fers the potential for new techniques for sound process-
ing, composition, and the development of spatial musi-
cal instruments [25]. The most recent and future ver-
sions of IVES are available at: https://github.
com/AudioGroupCologne/IVES
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ABSTRACT

For the composer and the interpreter of acousmatic mu-
sic, the ability to place a sound in space has become an
essential element in the creative practice. Together with
pitch, timbre, intensity and duration, the position of sounds
in space determines its role as a whole. Even more, the
movement of sound in space allows them to evoke, with
the help of the interpreter, representations of physical envi-
ronments and gestures. The gesture as a source of motion
and the movement that follows, allows you to dive fully
in the sound environments depicted. The relevance of this
aspect has led us to study and to experiment the behavior
of a virtual environment, more precisely a virtual Acous-
monium, testing on it various gestures that are part of the
tradition repertoire of acousmatic interpretation. The goal
is to verify its effectiveness as a compositional tool, as a
tool for studying, for the preparation of acousmatic music
performances, and as a didactic support for interpretative
practice.

1. INTRODUCTION

In the acousmatic compositional practice, the concept of
spatiality has always been a central point: the representa-
tion of plausible or unlikely environments, the movement
of sources within a physical or virtual space, the evocation
of soundspaces, can bring an acousmatic work to a com-
pletely different dimension. In particular, the Acousmo-
nium is one of the most used diffusion systems for acous-
matic music: it is the so-called "loudspeaker orchestra",
where a large number of speakers are strategically placed
in space, each with their own frequency response. The per-
former of acousmatic music has access to the potential of
the Acousmonium through the mixing console: with inter-
pretative gestures, he can decide both the movement and
coloring the sound, giving its own personal imprint on the
music.

The idea of creating a virtual Acousmonium comes in the
first place from the difficulty of using a real Acousmonium:
it can be complicated to be able to test, perform and exper-
iment on these system, given the size and complexity. This
trouble in accessing the system reflects on artists, perform-
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ers and composers: a work reproduced by an Acousmo-
nium will be very expanded and enlarged. The composers
will therefore have to understand, within the structure of
the music, how this enlargement can be compatible with
their ideas.

For example: if we have two very fast and short sounds in
succession, how will they behave positioned in a space ten
times wider, played ten times louder? Without the avail-
ability of an Acousmonium it is much more complicated
for the artist to be able to relate to the space in which he
will play, not to mention the fact of not being able to access
the control interface.

The creation of a virtual Acousmonium compensates for
this problem by making accessible a system that not al-
ways can be so. The use of modern spatialization tech-
nologies also make this system flexible and usable in dif-
ferent situations in the studio: Ambisonics, in particular,
allows to spatialize sources both in binaural and in a multi-
channel environment. Developed by the engineer Michael
Gerzon in the 70s, the Ambisonics system gives the possi-
bilty to encode a sound field taking into account its direc-
tional properties [1]. In the case of a virtual Acousmonium,
for example, each speaker is represented in the Ambison-
ics system through its coordinates in a virtual space, from
which the physical characteristics of the acoustic field of
that source are obtained. The decoding occurs according
to the audio reproduction system, in which the number of
components is proportional to the level of complexity used
in the coding process (called order): this can take place in
headphones (binaural decoing) or in a multichannel con-
figuration [2].

Furthermore, the possibility of automating and program-
ming gestures and movements for the machine to perform,
is extremely interesting: in this way, many fascinating top-
ics can be delved into, such as didactic applications (ear
training and acousmatic composition) or performative ap-
plications (assisted spatialization, practice tool at the con-
trol interface).

2. BACKGROUND

From a non-musical point of view: "gesture is a movement
that you make with your hands, your head or your face
to show a particular meaning" 1 . Gesture and sound are
two intimately related dimensions. The musical gesture
is the movement that produces sound, which relates the

1 https://www.oxfordlearnersdictionaries.com/
definition/english/gesture_1?q=gesture
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sound object - the object that "plays" - with the cause of the
sound itself, inextricably linking music to physical activity
[3]. The physical gesture as an "expression of a thought" is
therefore linked to a sonic result, characterized by its tonal
qualities. In the spectromorphological terms of Smalley,
"A gesture is therefore an energy-motion trajectory which
excites the sounding body, creating spectromorphological
life" [3]. Consequently, the morphology of a sound will
bring with it the gestures that produced it.

However, a sound gesture can also be a movement of
sound in space. According to Roads [4] we, as human
beings, not only memorize and reason in spatial terms,
but perceive space. The same emotional charge that we
can evoke from the perception of a sound gesture, can be
obtained through the movement of sounds in space. The
space as a compositional element was used by various
composers, from the use of separate choirs in the 16th cen-
tury in the Basilica of San Marco, to Mozart, Berlioz and
Mahler, Stockhausen and Grisey. But it is undoubtedly in
electroacoustic and acousmatic music that space comes to
have the same relevance as pitch, rhythm and timbre [4].
From the potentiomètre d’espace created by Poullin in the
1950s, to the sound diffusion in electronic music studios
of the same years, passing through the panning techniques
of voltage-controlled synthesizers up to the potential of-
fered by computers, the use of audio-oriented program-
ming languages or to the implementation of plug-ins in
DAWs, space has always been a compositional and per-
formative element of this musical art [5].

Spatiality and spatial gestures have an enormous rele-
vance in acousmatic music and especially in the Acous-
monium, the diffusion system created specifically for this
music genre. The term acousmatic is derived from the
Greek akusmatikoi and describes the sound that is heard
without identifying the cause. The adjective refers to the
lessons of Pythagoras that the disciples had to listen with-
out being able to see the teacher, hidden by a veil. It
was the French composer Pierre Schaeffer who first coined
the term acousmatic music in his "Traité des objets musi-
caux" [6]. By isolating the sound from the visual context,
acousmatic music returns to the hearing the total responsi-
bility of a perception that normally relies on other sensitive
testimonies [3].

The Acousmonium, instead, was born from the idea
of Francois Bayle and the Groupe de Recherches Musi-
cales (GRM) after the experiences of concrete music in
the 1950s and 1960s by Pierre Schaeffer: they needed to
evolve electronic music, exploring all the problems re-
lated to listening and the little interest aroused by sim-
ple stereophonic reproduction in the early 70s. Inspired
by the orchestra as a standardized and unified concept by
Haydn, Bayle wanted both to create a predefined frame-
work in which the acousmatic composers could express
their ideas, and to define a reproduction system of great
impact in terms of sound and timbre. Almost simultane-
ously, Bayle’s first Acousmonium was born at GRM, pre-
miered on February 12th, 1974 in Paris, while Clozier cre-
ated the Gmebaphone for the Group de Musique Expèri-
mentale de Bourges in 1973. The latter separated the var-

ious audio channels by filtering the original source, sort-
ing the timbrically modified signal to the various speak-
ers; Bayle’s Acousmonium, on the other hand, created its
large timbral palette by positioning speakers with radically
different frequency response in space. This made it pos-
sible to circumvent the problem of the signal’s phase de-
riving from filtering of the source, which can lead to big
problems of localization of sound and to sound artifacts.
Today, compared to the 1970s, there are much more de-
veloped supports such as the computer and the possibility
of editing channels directly on the mixer. In addition, there
are Acousmonium configurations that provide a huge num-
ber of speakers, with different degrees of height compared
to the listener, or with an impressive variety of speakers.
With the creation of such systems, the importance of the
spatial interpreters has grown considerably: they are per-
forming musicians, require a certain degree of virtuosity
(depending on the speaker system and the ergonomics of
the sound projection instrument) and stylistic knowledge
of the repertoire [7]. According to Vande Gorne, there
are sixteen gestures (or spatial figures) that are applicable
to the interpretation of stereo compositions at the Acous-
monium: the spatial interpreter is responsible for binding
these gestures together in order to reinforce the writing of
the work [7].

In 2016 Barret and Jensenius [8] and Kermit-Canfield [9]
present two different versions of virtual Acousmonium.
However, the work presented here is specifically modeled
after the Sator Acousmonium 2 , and a number of gestures
have been formalized and experimented on this virtual sys-
tem in order to test its robustness.

3. THE VIRTUAL ACOUSMONIUM

The virtual Acousmonium was developed with the Super-
Collider programming language [10] and relies on spatial-
ization libraries based on Ambisonics [1]. The basic idea
for the recreation of an Acousmonium was to emulate the
desired number of speakers, place them in a virtual space
and "color" the frequency response based on the position
and type of speaker.

Stereo Player
MultiChannel 

or binaural 
output

Speaker

Speaker

Speaker

Speaker

…

Speaker

+

Virtual Speakers

Figure 1. Audio flow diagram from a single stereo source.

Each of these speakers receives a stereo audio signal and,
2 https://www.centrosanfedele.net/musica/
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through a series of equalizations, delays, reverberation and
spatialisation, it will emulate the speakers chosen in the
virtual space.

The user will have an interface where the sliders of the
relevant speakers (or groups of speakers) will be displayed,
being able to manually control their amplitude, the buttons
to activate the automations and the waveform of the stereo
file being read.

Figure 2. The Virtual Acousmonium prototype GUI.

Ideally it is useful to have MIDI or OSC controllers with
a sufficient number of faders, in order to have manual con-
trol on the individual sliders and receive visual feedback in
real time. In particular, a Korg NanoKontrol 3 and a 16n
Faderbank (figure 3) were used for testing.

Figure 3. 16n Faderbank.

3.1 The Acousmonium Sator

The virtual Acousmonium implemented here is based on
the configuration of the Acousmonium Sator of the Cen-
tro San Fedele in Milan 4 . Designed by Eraldo Bocca, the
Sator system consists of different types of speakers dis-
tributed along three concentric crowns and an effects sec-
tion which, controlled by a console consisting of a Yamaha

3 https://www.korg.com/it/products/
computergear/nanokontrol2/

4 https://www.centrosanfedele.net/musica/
acusmonium-sator/

LS9 mixer and a Yamaha 03D mixer for a total of 48 chan-
nels, allows the diffusion of acousmatic, electroacoustic
and mixed music.

Different groups of speakers are already present in the
room:

• an internal crown of 9 Nexo speakers + a Nexo sub-
woofer;

• an external crown formed by four speakers mounted
in the corridor of the balcony which produce a re-
flected and reverberated sound;

• two Db speakers positioned on the balcony for rear
reflected sound and eight JBL speakers for cinema
surround;

• two JBL main monitor speakers on stage;
• a central JBL speaker on stage;
• a JBL subwoofer speaker on stage.

Speakers built and installed specifically for the comple-
tion of the acusmonium are also present:

• two front distance speakers positioned in the back-
stage;

• a front section of colored loudspeakers positioned
on the stage made up of two loudspeakers for the
reproduction of dipole emission mediums;

• two diffusers for the reproduction of medium-high
dipolar emission;

• two hyperbolic horns for the reproduction of higher
frequencies;

• six supertweeters are inserted in the auditorium sky;
• on the balconies four loudspeakers for medium and

four supertweeters are installed.

The authors have chosen to emulate this configuration of
the Acousmonium given their collaboration with the Cen-
tro San Fedele and its availability for testing.

Figure 4. The stage of San Fedele with the Sator’s coloured
speakers and the Yamaha console.

3.2 Implementation and structure

Given the configuration of the Acousmonium Sator, we
opted for a narrower recreation than the large number of
speakers actually on site. In total 27 virtual speakers have
been created (plus control over the master):
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• 1 subwoofer;
• 6 coloring speakers: 2 trumpets, 2 medium, 2

medium-high;
• 6 full-range speakers: 2 front, 2 back and 2 front

echo effect;
• 4 full-crown speakers: 2 sides and 2 back;
• 4 external crown speakers (echo effect): 2 sides and

2 back;
• 6 supertweeters.

These virtual speakers are placed in space in accordance
with the arrangement of the Acousmonium Sator. In par-
ticular, to create the echo effect, a great distance from the
listener is emulated through delay time, reverberation, and
amplitude scaling (figure 5), just like in [11].

1 SynthDef(\src , {

2     arg x = 1, y = 0, lpf, hpf, amp, d, eq1, db1, eq2, db2, eq3, db3;

3     var sig, enc, dec, out, rev, del, eq;

4     //x and y positions between -pi/4 and pi/4

5     x = x.linlin(-1, 1, -pi/4, pi/4);

6     y = y.linlin(-1, 1, -pi/4, pi/4);

8     sig = In.ar(~srcBus, 2)*amp; //input signal

10     //speaker equalization

11     //low and high frequencies boundaries

12     sig = LPF.ar(HPF.ar(sig, hpf), lpf);

14     //3 bands parametric EQ with individual gain

15     eq = BPeakEQ.ar(sig, eq1, 0.5, db1);

16     eq = BPeakEQ.ar(eq, eq2, 0.5, db2);

17     eq = BPeakEQ.ar(eq, eq3, 0.5, db3);

19     //encoding and binaural decoding with x,y positioning

20     enc = PanAmbi3O.ar(sig, x, y);

21     dec = BinAmbi3O.ar(enc);

23     //delay and riverbero related to speaker distance

24     del = DelayN.ar(dec, 0.3, d.linlin(0, 5, 0.001, 0.3));

25     rev = FreeVerb.ar(del, 1, 0.8, 0.8);

27     //output stage

28     out = (dec*(1/d)+(rev*(1/d.sqrt)));

29     Out.ar(~revBus, out);

30 }).add;

Figure 5. SynthDef of a virtual speaker spatialized with
binaural Ambisonics 3D reproduction [12].

To differentiate the virtual speakers, the most important
aspect is equalization: in figure 5 (from line 12) the signal
is firstly delimited in the high and low frequencies (with
LPF and HPF) and then a 3-band equalization (BPeakEQs
in line 15-17) with individual gain is applied. In partic-
ular, the extreme limits of the signal are important in or-
der to denote the speakers: for example, the tweeters have
a range from 4,000Hz to 20,000Hz. This is even more
critical in the so-called "colouring" speakers: the trumpets
have a range from 3.500Hz to 10.000Hz, the middle ones
from 300Hz to 800Hz while the medium-high ones from
600Hz to 3.500Hz. To give the sound more liveliness, the
frequencies and gains of the 3 parametric equalizers for
each speaker are slightly randomized, creating a phasing
effect also between the L and R channels for each family
of speakers.

The subwoofer plays a separate role: for convenience, the

virtual speaker dedicated to low frequencies is considered
omnidirectional, therefore not spatialized. Furthermore, a
convolution reverber is applied to the final mix: since the
room of San Fedele has a very "dry" and little reverber-
ant acoustics, the impulse response applied to the virtual
Acousmonium is one recorded in a medium size concert
room with a percentage of "wet" around 20%.

The spatialization of each virtual speaker is made with
third-order Ambisonics, both for binaural rendering and
for quadraphonic reproduction. These two solutions are
particularly suitable in the studio, as Ambisonics is a tech-
nology that can quickly switch between the two decoding
techniques but that requires the listener positioned in a very
well-defined sweet spot [2] (in quadraphony).

One of the main problems of Ambisonics is also the poor
directionality. Ambisonics of the first order encodes each
sound field as an omnidirectional microphone (zero order
microphone) or as a microphone with 3 figure-eight (first
order microphone). It is possible to improve the directional
sound of the spatialized sound by using higher order micro-
phones: these techniques are called HOA (Higher Order
Ambisonics) [2].

4. THE MUSICAL GESTURE IN SPACE

In musical research, movement has often been linked to
the concept of gesture. The reason is that many musical
activities (performance, conduction, dance etc.) involve
body movements that evoke very precise meanings: these
movements are called gestures [13].

There are many ways in which body movements related
to musical contexts can be treated, measured, described
and applied. Consequently, there are many ways in which
the musical gesture can be meaningful. Musical gestures
can also be recognized within a context of spatial inter-
pretation at the Acousmonium. The authors propose two
categories of primary gestures:

• Compositional gestures: the musical gestures within
the work that can be observed spectromorphologi-
cally, that is, by studying how the sound is artic-
ulated over time timbrically, dynamically, rhythmi-
cally;

• Interpretative gestures: the musical gestures and
spatial movements produced by the acousmatic in-
terpreter during the performance.

These two categories are closely correlated: composi-
tional gestures very often correspond to an interpretative
gesture aimed at accentuating or highlighting certain in-
trinsic movements in the work. To these categories can
be added other types of secondary gestures: for example
physical movements of the performer as an aid to memo-
rization.

It is also important to note that the term spectromorphol-
ogy is not to be considered as an objective and scientific
concept, as a scientific analysis of sound is not very in-
teresting, although the latter can help in discovering some
details of the sound itself: it is much more interesting, from
an artistic point of view, the sound as perceived by the hu-
man ear. This is because the listener instinctively responds
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to body energy and the spectral qualities of sound: this is
what happens also during tonal music performances, as it
is not only a matter of pitches, harmonies and rhythms, but
also of timbre or spectromorphological qualities [3].

4.1 Gestures in acousmatic music and gestural
sonorous objects

Although Pierre Schaeffer is more commonly associated
with the concept of concrete music and acousmatic listen-
ing, one of his great successes was the idea of the sound
object. The sound object is a fragment of a sound, typ-
ically of a few seconds or even less. It allows to have a
vision of an entire fragment of sound represented with a
shape, therefore an object, with different characteristics si-
multaneously evolving between the initial and final points
of the latter (timbre, dynamics, texture etc). These objects
are raw fragments of sound, some of which can be cho-
sen and used within musical compositions, and therefore
elevated to the status of musical objects.

Schaeffer, in his monumental "Treatise on musical ob-
jects", observes how the sound object is an intentional
unity, constituted in our consciousness by our mental ac-
tivity [6]. The sound object can be inspected, explored
and progressively differentiated through its own character-
istics, which evolve or have different envelopes that can
be traced, becoming, according to Godøy [14], the ges-
tural object. Godøy says that there is a continuous men-
tal sound tracking in the musical perception following the
onsets, contours, textures, envelopes etc. with hands, fin-
gers, arms or any effector organ (capable of responding to
nervous stimuli) whenever we listen to or imagine music.
This means that from listening or continuously tracking the
sound we can recode musical fragments into multimodal
gestures based on biomechanical constraints: in short, we
move our body according to the type of sound to which
we are subjected. The opposite can also happen, that some
gestural images can generate sound images: it is therefore
a two-way process.

In the case of acousmatic music, the listener cannot see
what the gesture that produces the original sound is: one
of the key concepts in the theories of listening to acous-
matic music is precisely the fact of putting aside the anec-
dotal causes or meanings of sound, but focusing only on
the intrinsic characteristics of the music. In any case, it is
quite clear that Schaeffer, in his studies, made great use of
gestural and metaphorical concepts in qualifying the sound
objects. Again according to Godøy [14], Schaeffer’s use
of gestural concepts and metaphors can relate to an idea
of embodied cognition, in which virtually every domain
of human perception and thought (even the most abstract
ones) can be connected to images of movements. The con-
cept of sound-gestural objects can be introduced, an ex-
tension of the sound objects in relationship to the gestures
that it is transmitted to us during the acousmatic listening.
In Schaeffer’s works, gestures can be divided into three
caterogies of components concerning sound production:

• impulsive or discontinuous type;
• sustained or continuous type;
• iterative type;

Schaeffer also defines other categories of gestures, called
compound (where multiple sounds start simultaneously)
and composite (multiple objects merged together into one).
Furthermore, these gestures relating to the production of
sound match the different spectromorphological categories
(always defined by Schaeffer) like, for example: changes
in mass or harmonic timbre, but also in dynamics, in
melodic profile (general changes in pitch) or in mass pro-
file (changes in the intrinsic spectral content), all caused by
changes in speed, pressure, direction of the original pro-
duction gesture. The gestures concerning the modification
of the sound are also combined with these morphological
categories: modulation gestures such as the application of
vibrato or tremolo at different amplitudes and speeds, but
also changes in mass, dynamics, profile of pitches etc. pre-
viously mentioned. The point is to show that there are
gestural components incorporated in Schaeffer’s concep-
tual apparatus and inside his compositional works.

These gestural components can be applied to different
sounds interchangeably: a tremolo can be applied to both
a violin sound or to the sound of the pouring rain. We can
therefore say that they have a certain degree of abstraction:
they are transferable from one "domain" to another, both
at the physical and at the musical level. In this case, all
the characteristics of the sound-gestural object can also be
applied to the concept of space and spatiality, in particular
to the acousmatic interpretation and to the Acousmonium,
as it is strictly related to the spectromorphology of sound
and its projection in a diffusion space.

5. EVALUATION OF THE VIRTUAL
ACOUSMONIUM

5.1 Tested gestures

To test the virtual Acousmonium, some of the gestures that
Annette Vande Gorne [7] identifies were used. Through the
automation of the faders, two gestures have been coded in
order to test the system:

• Le fondu enchaîné (crossfade): slow or impercepti-
ble transition between two pairs or groups of speak-
ers. The gesture must be carefully performed in or-
der not to dig a "sound hole". Between the two
groups of speakers, begin to gradually increase the
first one, decrease the second one finding a balance
point. Musical function: reinforcement of a cross-
fade already pre-existing in the work. Change depth
plane. Trace a path through successive crossfades
if, for example, this sound evokes a moving object
(ball, car, plane, etc.);

• La vague (wave): round trip that crosses, through
cross fades or subsequent unmasking, a series of in-
line speakers, for example from the backstage to-
wards the front stage, all sides, the back. Musical
function: moving mass effect and predictable uni-
directionality. This movement has the advantage of
joining a known agogic archetype.
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5.2 Interpretations

The tests were carried out by automating five chosen in-
terpretations of each gesture in the Virtual Acousmonium
with binaural spatialization: these automations are gen-
erated through different combinations of fade movements
that closely approximate the desired interpretation of the
gesture.

The tested gestures are Crossfade and Wave. The inter-
pretations, described through macro areas of the Virtual
Acousmonium, are as follows:

Crossfade (crossfading areas reported):

1. back left, near right - back right, near left;
2. far right - far left;
3. sides far - sides near;
4. back left, near back right - back right, near back left;
5. front near - front far.

Wave (paths reported):

1. front far, front near, sides near;
2. back, all sides, front near;
3. far back, back, near back;
4. far, sides near, above;
5. left, front, right;

5.3 Preliminary evaluation

In order to collect data for future developments, we run a
preliminary evaluation with five students in electronic mu-
sic composition, one Bachelor’s and four Master’s. They
have various degrees of experience with acousmatic music,
but all can be effectively considered as expert listeners.

Every tester run the evaluation with their own equipment.
They were sent three of the five interpretations for each
gesture, six audio files in total, and a questionnaire. The
audio files were labeled with the name of the gesture and
an incremental number (e.g. Crossfade 1). The question-
naire reported the gestures’ descriptions, as in Paragraph
5.1, and a list with the five descriptions of the interpreta-
tion as in Paragraph 5.2. For each audio file, we asked them
to i) pair it with one of the interpretations, and ii) evaluate
their confidence in matching the audio with the description
through a Likert scale from 1 to 5, where 1 is the minimum
and 5 is the maximum of confidence.

These gestures have been tested on an acousmatic com-
position of one of the authors. The binaural audio of each
of the interpretations is accessible on GitHub 5 .

Every interpretation has been evaluated by three testers.
In Table 1 and Table 2 we report the number of correct
matches for each interpretation (min = 0, max = 3), and the
average confidence for the correctly matched ones (min =
1, max = 5).

The results obtained from the virtual implementation of
the Acousmonium can be considered moderately satisfac-
tory: in particular, the movements that include the side
speakers (internal, external crown and far/near effect) are

5 https://github.com/StefanoCatena/
VirtualAcousmonium/tree/master/Audio

Crossfade Correct Confidence AVG.
1 1/3 2
2 2/3 4.5
3 1/3 2
4 1/3 4
5 1/3 4

Table 1. Evaluation of the five interpretations of the ges-
ture Crossfade. Correct matches (0 to 3), and average con-
fidence (1 to 5).

Wave Correct Confidence AVG.
1 1/3 5
2 0/3 //
3 0/3 //
4 0/3 //
5 3/3 3.7

Table 2. Evaluation of the five interpretations of the gesture
Wave. Correct matches (0 to 3), and average confidence (1
to 5).

very effective and have been recognized consistently by the
testers.

Gestures that include a front/rear movement, instead,
have been confusing for the testers, as shown by the results
of their questionnaire. The unclear distinction between
back and front, however, is typical of binaural technol-
ogy: this confusion is often a problem of these renders due
to ambiguous interaural cues and therefore relying only
on monoaural spectral differences [15]. Moreover, given
the individual morphological difference in pinnae, each
tester would experience the front/rear movements differ-
ently: this problem can be minimized by choosing the cor-
rect binaural render for the corresponding pinnae’s shape.
Some testers have pointed out how it is harder to recog-
nize certain movements at first glance, while it takes some
time to get used to the binaural rendering. This is espe-
cially true for the front/rear movements: while the direc-
tionality of the movement has been easier to identify, it was
much harder to recognize the difference between front and
back. This is also shown by the fact that all testers have
misidentified Wave 1 with Wave 4 and, in fact, nobody
has correctly recognize Wave 4. This can be attributed
to the similarities in the gestures, but also on the fact that
both rely on frontal movements and are prone to confu-
sion with rear movements. It is also noticeable how all
the testers have recognized correctly Wave 5, where only
lateral movements are present.

6. CONCLUSIONS AND FUTURE WORKS

This paper presented the development of a virtual Acous-
monium and a first approach to the study and automation of
musical gestures in space applied to this system. This tool
is not intended in any way to replace the Acousmonium,
but to be a tool to help students, teachers and acousmatic
composers interested in this area of interpretation.

In addition to interesting compositional applications, the



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

344

possibility of automating gestures allows the system to be
configured also for educational purposes. In particular, it
can be effective for:

• training in the listening of gestures, in the form of
ear training;

• the possibility of imitating and practicing gestures,
displaying them through its GUI, with the aim of ac-
quiring them for later use in performance.

In this sense, the use of this system by students who
wish to learn more about the practice of acousmatic per-
formance may be desirable, especially if they are unable
to access the physical Acoumonium. In this case it is ex-
tremely important to configure the virtual Acousmonium
with its control console as similar as possible to the real
life performance situation: the arrangement of the faders
and which speakers they control, the desired spatial con-
figuration, the amount of reverberation etc.

From an implementation point of view, the use of Am-
bisonics to replace real speakers is a significant limitation:
it is difficult to simulate the irradiation diagram and the di-
rectivity of the individual speaker. Physical speaker cabi-
nets have nonlinear radiation pattern, which are impossible
to reproduce in a virtual environment with Ambisonics [9].

In the future other improvements will be introduced: the
implementation of a spectrogram and general improvement
of the GUI, the implementation of a unified system for the
creation, editing and use of virtual speaker configurations,
a tool for visualizing the speakers in the space for visual
feedback; the possibility of recording a performance, or
parts of a performance, so that it can be objectively lis-
tened back to; possibly to intelligently automate a whole
performance.

In addition, a more thorough testing of the system will
be performed: a larger number of testers, different binau-
ral renders and new gestures and movements. It will be of
relevant interest to realize these tests with quadraphonic or
octophonic reproduction systems, in order to evaluate the
Virtual Acousmonium’s efficiency in more diverse situa-
tions as well.
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ABSTRACT

Squidback is a participatory and contemplative experience,
a collective generative soundscape without a central pre-
ferred point of view, whose sound sources are the audi-
ence’s smartphones or computers working as audio feed-
back generators. The work aims at creating a ritual space
to explore fields of play between being performer and au-
dience, situating control, affect and listening in between
human/machine and machine/environment ecosystemic in-
teractions.

Squidback is implemented as a browser-based app,
hosted on the Internet as a perennial web installation [1].
The code is open-source and available online [2]. Evalu-
ation has been done by examining activities in which the
system has been used, and comments from artists who in-
cluded it in their works.

1. GENERAL CONCEPT

Squidback is a technological system and a concept for a
participatory performative installation. Its generative pro-
cess is based on audio feedback (also known as Larsen
Effect [3]). Thus, it is naturally responsive to everything
surrounding participants’ devices, from their acoustic en-
vironments to objects and people nearby. It features a cus-
tom adaptive filter that adjusts itself autonomously, thereby
avoiding users’ direct interaction with parameters. Instead,
it promotes a contemplative attitude, inviting them to find
other ways to affect the process, for example by moving
in the room, by creating shapes with their hands around
the device, or by approaching other participants and their
devices.

No centralized control strategy is implemented: the par-
ticipants/devices become an ensemble of independent in-
stances of the same process, each giving different results
and thus composing a collective, generative, spatialized
soundscape. Furthermore, sound spatialization and feed-
back are in mutual interplay through the decentralization of
the system: participants’ movements affect sound genera-
tion, which in turn affects the spatialized soundscape even
if the participants are still; by moving, participants change
what they hear (which region of the collective soundscape)
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and the sound they produce, realizing a further layer of
mutual influence between collective and individual dimen-
sions.

Squidback has been originally used as a native smart-
phone application, for performances where participants
shared the same room, and later was made available as a
web application, featuring remote online participation. It is
thus currently possible to combine these settings by having
groups of people, each sharing the same space, performing
together online.

2. BACKGROUND

This work was first developed as part of the first au-
thor’s practice-based research project Becoming Program,
Becoming Performance at the Rytmisk Musikkonservato-
rium, Copenhagen (Aug 2017-Jun 2019), which focused
on designing and performing with different systems: com-
puter programs, machines, ensembles of musicians and di-
rections for improvisation; in composition, improvisation
and production settings. It binds together the main topics
informing the first author’s general research frame: gener-
ative music, decentralized systems, sound in space, and re-
lations between acting and listening during performances.

Squidback was at a later stage ported to a Web Audio ap-
plication for two reasons: to exit from smartphone-native
apps’ commercial distribution circuits, and to unify the
codebase, ceasing to have two different versions for An-
droid and iOS.

Finally, a real-time audio sharing feature was imple-
mented (using WebRTC [4]), to allow participants to per-
form together without being in the same room. This
opened new possibilities in terms of Squidback’s signifi-
cance as an experienced, reflecting more of the ongoing
cultural transformations connected to digital life and com-
munications.

3. RELATED WORKS

The presented work relates closely to three categories
of past works: feedback-based resonant assemblages [5]
[6], smartphone-based participatory techniques [7] [8] and
ecosystemic works [9].

3.1 Feedback generation

As a system and performative installation concept, Squid-
back fits into the description of Hybrid Resonant Assem-
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blages coined by Bowers and Haas [5], which features: in-
volvement of different materials and media (sound, lights
and objects/textures in the room); immanent sound gen-
eration (feedback); transient performative gestures (i.e.
the room-system’s construction, deconstruction and explo-
ration) inviting to a gathering and to rethink wider notions
of touch and instrumentality.

Squidback’s sound process is based on feedback sup-
pression systems (a survey is provided by Waterschoot
and Moonen [10]), but instead of completely eliminat-
ing feedback frequencies upon detection, exploiting them
as musical material. With the piece Pea Soup [6] Nico-
las Collins was doing this already in 1974, using at first
dedicated hardware, and then moving to software emula-
tions. The piece is closely related to Squidback, because it
was also produced in both concert and installation format.
The difference with Squidback is the array of audience-
owned devices, creating a spatialized sound system, bring-
ing the process closer to participants and breaking down
the boundary between performers, audience and installa-
tion as a completely autonomous and self-standing entity.

3.2 Smartphone-based participation

Among works for smartphone, we can distinguish between
implementations which envision devices as instruments for
performers to play (like much of the works from Stanford
Mobile Phone Orchestra [8]) and others that are meant to
be run by the audience, almost always including some form
of centralized orchestration, or networked operations (like
Tate Carson’s A More Perfect Union or Andrey Bundin’s
Concert For Smartphones). A survey of smartphone-based
audience participation strategies is provided by Oh and
Wang [7], focusing on the relationship between audience
and a “master performer”, with audience-audience com-
munication as an emergent property.

Compared to these works, Squidback’s approach stands
for a decentralized aesthetics, whose unifying force and
compositional effort is the development of a singular sys-
tem that will be run by independent instances, these af-
fecting each other only by sending and receiving sounds
through the rooms and/or the Internet. Distributed music as
a performance practice has been reviewed by Taylor [11].

3.3 Ecosystemic organization

In his inspiring article “Sound is the Interface”, Agostino
Di Scipio [9] defined an ecosystemic approach to inter-
action which differs from the most widely implemented
paradigm, turning compositional attention from interactive
composing to composing interactions, and from a question
of exerting the proper control over a separate sound gener-
ator to the interrelationship between system and environ-
ment. The topic has been further elaborated by Pirró [12],
first by considering such mutual influences as a central
cognitive mechanism, in relation to enaction, and on the
other hand through the mathematical language of dynami-
cal systems.

Fitting in Di Scipio’s definition, Squidback is an ecosys-
temic work as much as it is “a dynamical system exhibiting

an adaptive behaviour to the surrounding external condi-
tions, and capable to interfere with the external conditions
themselves”, where man/machine interactions are situated
in a system of machine/environment ones. In avoiding cen-
tralized control and control interfaces, Squidback reduces
the predominance of humans as control agents, allowing
the participants more explorative and contemplative roles.
However, human activity is still a central component in this
work’s performative concept, as it is left to the participants
to decide both their degree and mode of activity while lis-
tening to and exploring the performative space.

4. DESIGN

The main goal of the current design is to generate a va-
riety of frequencies from feedback, avoiding a single fre-
quency becoming dominant for too long, while maintain-
ing ecosystemic interactions within the space where the
system is situated. This achieves a balance between its au-
tonomy and users’ physical agency. The feedback process
is controlled through a bank of peaking filters, wherein in-
dividual band gains are automatically adjusted according
to the balance of the incoming sound’s spectral magnitudes
over time. Not being a purely technical problem, it is ap-
proached empirically, designing and tuning the process and
its reactivity, to follow aesthetic intuition in dialogue with
technical insights and theories.

On a high level, Squidback as a single process is depicted
in the graph in Fig.1. Sound read from an input device is
analyzed for frequency magnitudes, which are stored into a
history buffer recording magnitude values from the last M
analyzed frames. This historical data is used together with
statistics about the most recently analyzed spectrum, to
compute individual band gains of a bank of filters process-
ing the input. The last stage of the process is an automatic
overall gain adjustment, after which the processed sound
is fed to the output mixer, where it’s sent to remote peers,
and is mixed with their incoming sounds. The choice of not
feeding sound from remote peers to the analysis and filter-
ing process is meant to keep the algorithm focused on local
input (especially the auto-gain), otherwise sounds from re-
mote peers would decrease its reactivity to the local user’s
agency.

Naturally, putting a filter bank in between a feedback
chain is adding feedback to feedback, thus affecting the
generative process. In other words, the system becomes
an important part of the room, and it was not a focus of
this work to tell apart the instrument (Squidback, and the
device itself) from the “measured phenomenon” (the room
and its resonances).

5. TECHNICAL IMPLEMENTATION

The application logic was developed in Javascript, using
only the Web Audio API [13]. At the time of writing, Web
Audio’s most modern features, namely Web Assembly and
AudioWorklets, were supported only by the latest versions
of some major browsers. Therefore, a choice was made not
to rely on them.
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Figure 1. Squidback process diagram

DSP parameters and control strategies were chosen and
tuned empirically through several tests on different de-
vices, in accordance with the first author’s aesthetics. As
Squidback doesn’t offer any parametric control interface,
all values are hardcoded, and the following subsections re-
fer to the setup chosen at the time of writing, which may
well be subject to changes.

5.1 Analysis

5.1.1 FFT

Spectral analysis is performed by calculating the input’s
FFT, using Web Audio’s AnalyserNode. Window size was
set at 2048 frames, to provide enough perceptual resolution
at low frequencies. Web Audio does not overlap frames,
but linearly interpolates magnitudes over time by a factor
of 0.8 (default) [14].

5.1.2 Mel-Frequency Filter Bank

In order to more closely match the system’s reactivity to a
perceptual dimension of pitch, FFT magnitudes are then
passed through a bank of triangular filters, to compose
their values into a number nFilters of mel-frequency bands,
within a frequency range between minFreq (twice the low-
est fft bin’s center frequency) and maxFreq (10kHz). Al-
though nFilters could be variable, a fixed number of 30
filters was chosen to provide some variety and still not be
too computationally heavy, especially on a mobile device’s
CPU. The effect of mel-frequency mapping on the pro-
cess’ reactivity is a mitigation of the over-representation of
high pitches, due to the linearity of FFT bin center frequen-
cies distribution. Mel-frequency mapping was chosen over
Constant-Q Transform (CQT) because it was found to be
easier to implement in Javascript without relying on We-

bAssembly, like Javascript CQT implementations 1 com-
monly do to apply Brown and Puckette’s spectral kernels
method [15].

5.1.3 Reduction calculation

On the most recent mel-frequency spectral frame, mini-
mum, maximum and average magnitudes are calculated.
Then, for each bin k, a magnitude difference is calculated:

∆𝑘[𝑛] = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒[𝑛] −𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝑘[𝑛] (1)

Where n is the index of the most recent analyzed frame.
Then, the system takes into account spectra from past
frames, to calculate different corrections whether each
band has been increasing, decreasing or stayed within
a small range of magnitude values. Historical data is
recorded as a weighted average of successive magnitude
variations for each band. Magnitude differences across the
last M frames (slopes) are considered to be zero (and the
band to be constant) if their absolute value is less than a
chosen threshold. Then each band gets a score depending
on the sign of its slope: on each frame, if the band wasn’t
constant, its score increases or decreases by one corre-
sponding to whether its magnitude was rising or falling.
For constant bands, the cumulative score increases by the
opposite of its own sign, bringing it one step closer to 0.
Deltas are then adjusted according to the score, in order to
stabilize the intensities of each band.

∆𝑘[𝑛] =

{︃
0.5∆𝑘[𝑛], for 𝑠𝑐𝑜𝑟𝑒𝑘[𝑛] > 0

−0.5∆𝑘[𝑛], for 𝑠𝑐𝑜𝑟𝑒𝑘[𝑛] < 0

}︃
(2)

Before the last calculation phase, coefficients are pre-
vented from being positive, so as to disallow positive gains,
and linearly smoothed by a factor 𝜆:

∆𝑘[𝑛] = 𝑚𝑖𝑛(∆𝑘[𝑛], 0)

𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑘[𝑛] = 𝜆(∆𝑘[𝑛− 1]) + (1 − 𝜆)(∆𝑘[𝑛])
(3)

It was found that the system tends to resonate at a small
number of dominant frequencies, if nothing changes in its
environment. So, to help the system to change shape over
the time of a performance, prioritizing the emergence of a
variety of new tones, it is beneficial to gradually penalize
frequencies that have already been reduced, even further.
Therefore, a fraction m of the computed reduction is stored
in memory as a persistent correction, independently of live
spectral data, so that each band that has been reduced ac-
cumulates a trace of this activity.

𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑘[𝑛] = 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑘[𝑛] + 𝑚𝑒𝑚𝑘[𝑛]

𝑚𝑒𝑚𝑘[𝑛] = 𝑚(𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑘[𝑛− 1]) + 𝑚𝑒𝑚𝑘[𝑛− 1]

(4)

Finally, the minimum reduction across all frequencies is
calculated, to remove any constant gain factor applied to all
frequencies, thus letting the filter work more on frequency

1 https://github.com/mfcc64/showcqt-js
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balance than on absolute values. This is achieved by cal-
culating the total frequency response of the filter bank, and
subtracting its maximum value from each gain.

5.2 Filter

A bank of peaking biquad filters is created by using Web
Audio’s BiquadFilterNode, corresponding to the frequency
scale used by the mel-frequency part of the analysis pro-
cess. The first, lowest frequency filter, is set to be a low-
shelf type, and the last, highest frequency filter is set to
high-shelf. For aesthetic reasons, only reductions are al-
lowed, as it was empirically found that gains applied to
individual bands would result in smoothing out too much
of the desired Larsen effect’s roughness.

5.3 Auto Gain

At the end of the chain, gain applied to the signal is con-
trolled by monitoring the signal’s amplitude, so that the
magnitude of the loudest bin in the analyzed spectrum,
smoothed across subsequent frames, approximates a set
threshold. At the time of writing, the smoothing factor was
set to 0 (no smoothing), with a threshold at -20 dB and a
maximum possible applicable gain of 20 dB.

5.4 Remote Participation

Remote connections are achieved through WebRTC [4],
where each client is a peer in a mesh network, and a server
is used only to facilitate discovery among clients. Connec-
tions among clients are then peer-to-peer.

Figure 2. Visualization

5.5 Visualization

Squidback has a visual output: it displays spectral mag-
nitudes as analyzed by the mel filterbank, overlayed with
corresponding filter gain reductions. The current imple-
mentation draws a white rectangle originating from the
bottom of the screen representing energy in each spectral
band, and a black one from the top representing reductions
for each filter. Filter graphs are obtained as frequency re-
sponses for each band, and their total sum, through Web
Audio’s BiquadFilterNode.getFrequencyResponse(). The
background is colored depending on pitch class 2 and the
octave of the loudest bin in the mel-spectrum. While other
options (such as more or less smoothed curves) were also

2 https://en.wikipedia.org/wiki/Pitch_class

implemented, the choice of using rectangles is both for ef-
ficiency and aesthetics reasons. To this regard, the visual-
ization provided is not conceived to attract users’ attention
too much, but to provide some intuitive insights into how
the system works, as a complementary experience during
performances.

6. PERFORMANCE

Squidback can be played as a participative performance,
which participants join at the same time, or as an installa-
tion, which participants can enter, join, and leave as they
wish. Both forms can be played by participants sharing the
same physical space, or online on the Internet, or in any
combination of the two.

6.1 Physical

A typical performance starts with participants gathering at
the entrance of the chosen performative space, which can
consist of a single or multiple rooms, preferably indoors to
exploit the reflective properties of closed walls. To begin,
the first author typically explains how the system works
and how to get it and run it. It is important to briefly inform
participants of what feedback is, in order for them to form
an intuition of how it works, and what they might do to
affect it by moving the device and acting on their physical
environment. If there aren’t strict requirements about the
performance’s duration, the participant are told that they
can stop the process and/or leave the performance when-
ever they want; otherwise participants will be informed
that when it’s time to stop, they will receive a signal from
either a person or a change of lights in the room. A typ-
ical performance duration is between 20 and 60 minutes.
After the spoken introduction, participants are invited to
explore the performative space and to choose a location
where to start the application. Spaces can optionally be
prepared with speakers to which participants can connect
their devices if they want, to enjoy a wider and/or louder
output spectrum, or with objects/musical instruments to in-
teract with. Albeit not strictly required, such setups can of-
fer additional performative approaches to participants, and
associate Squidback more tightly with the specific place
where it’s being performed, by including whatever objects
are available there.

6.2 Online

As mentioned in section 5.4, peer-to-peer audio sharing
over the Internet can be used to run networked Squidback
performances. It has been found beneficial in this situa-
tion, to gather participants on a third-party web conferenc-
ing platform immediately before the actual performance,
to give them an introductory explanation and eventual as-
sistance as has been done in “physical” performances. It
is not strictly necessary though, as instructions can be em-
bedded on Squidback’s website. Such performances can be
described as participatory live-streaming concerts, where
participants are at the same time attending to a shared pro-
cess over which they can exert limited control, and more or
less intentionally and recognizably influencing it. Sound
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contributions are also richer and more differentiated when
participants join from their private space, allowing them-
selves to use more of their voices, sounds from other media
(e.g. televisions, radios, music players) and even musical
instruments.

6.3 Installation

As a standalone physical installation, Squidback is just an
empty, dark room, with written indications (distributed as
program notes, or present as the installation’s description
outside the room) functioning as the initial verbal explana-
tion does for a performance. People can come and go, in
any number, as they wish, but are invited to start the appli-
cation before entering the room, to further characterize the
installation as a performative occasion.

Squidback is also available on the Internet [1], where it is
present as a permanent web installation. Differently from
online scheduled performances, users can connect and dis-
connect at any time, and choose whether or not to share
their sounds with other potentially connected users.

Figure 3. First public physical performance

7. EVALUATION, RECEPTION AND
OBSERVATIONS

The process of producing artistic work is a dialogue be-
tween technological and artistic domains, for which the
outcome is not measurable analytically in terms of effi-
ciency/efficacy in solving a technical problem. Outcomes
of this work are identified in activities in which the sys-
tem has been used. Our preferred means of evaluation is
to examine the work as an artistic process, observing per-
formance experiences, and the receptions and comments
by other artists who incorporated Squidback into their own
artworks.

7.1 As a performance

Squidback has been performed several times in its prior
implementation as a smartphone-native application. A
short video edit from early testing stage [16], and docu-
mentation of the first public performance [17] are available
online.

During these performances participants exhibited differ-
ent ways to relate to devices, each other and the space
through different degrees of activity, energy, mobility, so-
ciality, collaboration and individuality. Typically, partic-
ipants begin by actively engaging with their devices, then
with other people, the space, its surfaces and objects. After
around thirty minutes into a performance, it becomes more
contemplative as people often lay down to listen to their
device and the environment, intermittently changing posi-
tion. 45 minutes tends to be an optimal duration, allowing
for enough time to explore curiosity, excitement, boredom,
relaxation and contemplation.

Each participant’s own device is most often kept close
to its owner, acting as a ’soloist’ voice, thereby being
most perceptible against the environment’s background. It
should be noted that leaving their devices alone somewhere
in the room in order to have them ’join the choir’ however,
is not something most participants have been willing to do
spontaneously.

7.2 As an instrument

The first author has been playing with Squidback since
its first prototyping stages, performing improvised music
solo and ensemble concerts as part of mixed electronic and
electro-acoustic setups. In such settings, the system acts
as an instrument with an autonomous generative quality,
providing drones, harmonies, loud piercing frequencies,
and/or a resonant reverberation effects. Its consistency and
reliability as a standalone module is a strong standpoint
for it to enter relationships with other instruments (e.g. no-
input mixers). The lack of parametric control interfaces
invites performative actions to undertake a dialogic qual-
ity, requiring receptivity for the system’s own properties
and developments. It also invites exploration of a control
space that extends to the physical space where the perfor-
mance is situated, affected by acting physically on the de-
vices and nearby objects. As both a native and web-based
application, Squidback is portable and has minimal techni-
cal requirements: a smartphone or a computer is sufficient
to play it. Such a simple setup has facilitated its usage not
only for staged performances, but also for more sponta-
neous and less planned performative actions.

7.3 As part of other artists’ work

In its first incarnation as a smartphone-native application,
Squidback was integrated into works by different artists.
The comments below explain how Squidback fit their work
and research.

7.3.1 Francesco Toninelli

Francesco Toninelli is a Copenhagen based composer, per-
cussionist and improviser. He writes:

My experience with Squidback starts right af-
ter its release in spring 2019, when I first
tried to extend its use with bluetooth speak-
ers and percussion instruments. After some
testing I ended up with a system where a con-
tact speaker was connected to the smartphone
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via Bluetooth and laid on the top of a kick
drum (placed vertically on a support). This
way the feedback generated by the app was af-
fected not only by the room but also by the in-
ner acoustics of the drum (as a combination of
drum skin and wooden resonant body): need-
less to say, it was a very suggestive instrument
capable of great complexity and diverse appli-
cations, such as installations or live concerts,
also because of how easy it could be to ac-
cess one or more smartphones and carry them
around.

The experiments on the instrument thus in-
volved both tuning of the drum and use of dif-
ferent rooms or open spaces.

As the time passed I started to be more and
more focused on the harmonic material gen-
erated by the instrument, finding patterns of
behavior. This brought me to create an instal-
lation then presented in Tempo Reale Festival
2020 (Florence, Italy) where three Squidback-
kick drums were placed in an open space, as
distant as possible from each other, to find a
central point where one could hear all of them
and create a small walk exploring the interac-
tion of chords and its mutations.

A recording of Francesco Toninelli’s work for Tempo
Reale is available online [18].

7.3.2 Federico Corsini

Federico Corsini is a musician and dancer, based in Copen-
hagen. He writes:

Limitation is invitation.

When there is no control interface, that is the
control interface. It comes from punk and im-
provisation: you play with what is there, you
make a performance out of what is available.
Feedback has an intrinsic property of uncon-
trollability, and even if not having knobs is
a different thing, you accept both as episte-
mological truths. And it has another prop-
erty: sound changes waves morphology and
tone depending on dimensions and distances
between speaker, microphones and the room,
and also on the objects present in the room.
My body in between speaker and microphone
affects qualities of both my body and sounds.

Squidback allows to focus on the relationships
to objects and (their) movements in space.
More than focusing on my body movement,
I focus on objects’ movements within the per-
formative space. Adding a bluetooth speaker
gives you now two objects you can move
around (the speaker and the phone). I tried
to interact with those movement and my body
in space, at the different physical levels (floor,
standing, objects above my head), accepting

and reacting to information created by the
feedback process.

I’m fascinated by creating dynamics I’ve
never explored before, or experiences I’ve
never tried or rehearsed, to be explored only
during a performance, and not to be studied
academically.

A short video from Federico Corsini’s work with Squid-
back is available online [19].

7.3.3 Dasha Lavrennikov

Dasha Lavrennikov is a choreographer who used Squid-
back in her work during an artistic residency in Copen-
hagen. The work was an outdoors guided walk which fea-
tured a solo performance with Squidback while exploring
the surface and depths of a rocky landscape.

Using the app really opened a place of inqui-
sition - questioning around the notion of feed-
back, in sound and movement. It was a su-
per rich finding in my research around space
- sound / space - movement / sound - move-
ment, this triangle of information in the pro-
cess of improvisation.

In particular, it felt like the most relevant and
possible space of sound-movement manifesta-
tion at this point in the walk that I shared... as
the possibility to question physical space and
architectural space, the infinite and its limits,
and how through sound and the body we ex-
perience these limits, contours, borders, and
what that generates in terms of the concrete
and the phantasmagorical.

The work in question was shared with a limited number
of people as a private performance, of which there’s no
publicly available documentation.

8. CONCLUSION

The absence of control interfaces calls the controller
paradigm into question, inviting for a more fluid relation-
ship between individuals, the adaptive technological pro-
cess and the environment. Attention flows through explo-
ration and contemplation, curiosity and experimentation,
affect and inspiration, activity and passivity. Each partic-
ipant can choose a different mix between being more of a
performer or an audience at any time, blending these two
roles in lack of a clearly defined separation, enabling a di-
versity of approaches to unfold. The decentralized sys-
tem also contributes to these dynamic relations by making
each participant a creative agent on the collective sound-
scape, wherein their acoustic situation and movements af-
fect sound contributions and perceptions at the same time.
Participants create a multi-faceted soundscape, thereby lis-
tening to a particular selection and mix within the ecosys-
tem developed between individuality and interdependence
across actions and perceptions.
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Squidback also works as an inspiring tool for artistic pro-
duction, primarily in the fields of installation sound-art and
contemporary dance. Its limited scope, generative possibil-
ities and reactivity to space and movement, together with a
relative ease of adoption and integration, have been strong
points reported by artists who have used it in their works.

8.1 Future directions

Future directions will on one hand attempt to make Squid-
back a more accessible development platform for experi-
mentation with feedback, by exposing a public API to the
browser window so that every part of the process can be
controlled via Javascript code from a browser’s console,
including the ability to plot graphs of historical and com-
puted data. Also, the WebRTC implementation is still very
simple, and further research could be dedicated to improv-
ing its stability and elaborate on possible processing strate-
gies for sounds from remote peers.

The latest version of Squidback is currently a web appli-
cation, and is thus able to bypass the two main commercial
smartphone App Stores. However, the field of web appli-
cations is still heavily influenced by browser implementa-
tions, where the major players are the same operating com-
mercial App Stores. As much as the authors are looking
forward for more advanced features to be widely supported
(primarily AudioWorklet support), Squidback still situates
itself in a delicate field, where it is intended to exploit de-
vices that people already have, but at the same time it has
a strong dependency on their software updates. It could
be interesting in the future to explore the construction of
embedded devices.
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ABSTRACT

Sonification using audio parameter mapping involves both
aesthetic and technical challenges and requires interdisci-
plinary skills on a high level to produce a successful re-
sult. With the aim to lower the barrier for students to enter
the field of sonification, we developed and presented We-
bAudioXML at SMC2020. Since then, more than 40 stu-
dent projects has successfully proven that the technology is
highly beneficial for non-programmers to learn how to cre-
ate interactive web audio applications. With this study, we
present new feature for WebAudioXML that also makes
advanced audio parameter mapping, data interpolation and
value conversion more accessible and easy to assess. Three
student projects act as base for the syntax definition and by
using an annotated portfolio and video recorded interviews
with experts from the sound and music computing commu-
nity, we present important insights from the project. The
participants contributed with critical feedback and ques-
tions that helped us to better understand the strengths and
weaknesses with the proposed syntax. We conclude that
the technology is robust and useful and present new ideas
that emerged from this study.

1. INTRODUCTION

Audio parameter mapping is a commonly used approach
in a wide range of applications spanning from data sonifi-
cation projects to physical, digital instruments with knobs
and sliders. Common for these applications is that vari-
ables, e.g., statistical data or the value of a knob on a syn-
thesizer, are used to shape or control the playback of a
sound.

Sonification using audio parameter mapping involves
both aesthetic and technical challenges and requires inter-
disciplinary skills on a high level to produce a successful
result. The process includes data preparation, sound syn-
thesis, mapping parameters and finally listening and tuning
the settings [1] to produce a meaningful result. It also re-
quires an understanding of auditory perception [2], sound
design, and musical composition. Studies show that the
relationship between the original data and the auditory do-
main is far from being a simple linear link [3] and even if
there have been attempts at trying to formalize ways of de-

Copyright: c○ 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

scribing those relationships [4] there is still a great poten-
tial for further research. Various programming languages
have been developed aiming at meeting those needs, in-
cluding CSound [5] Max/MSP [6], Pure Data [7], Super-
Collider [8] and ChucK [9]. There are also tools avail-
able for creating sonifications like xSonify [10], Toolkit
for Sonification [11], SonifYer [12] and SoniPy [13] but
most available tools arguably requires both programming
and audio synthesis skills.

At The Royal College of Music (KMH) and the KTH
Royal Institute of Technology in Stockholm we teach soni-
fication, sound design and sound synthesis to both music
producers and engineers, which has led to the development
of the new coding environments WebAudioXML [14] and
iMusic [15], as well as an online sonification toolkit [16].
Our research projects are often tightly connected with the
pedagogical activities of ongoing courses [17] and point
out that there is a great potential for audio tools that are
easy to use in order for the students to express their cre-
ativity rather than stumbling on technical challenges [18].

Many of our courses are aimed at building bridges be-
tween art and technology as we want knowledge and prac-
tices to be shared between the disciplines. While most of
the students at KMH have no prior knowledge of program-
ming, we have been challenged to find ways for them to
get into coding as easy as possible. Most of our students
have a basic understanding of HTML and as the web has
become an increasingly important platform for sharing not
only static content but also interactive online audio appli-
cations, we have decided to explore Web Audio API [19]
as the platform for our experiments. We particularly ap-
preciate that web technology is open source and that the
applications we build are cross platform, online accessible
and require no installations for the end user.

During our sonification classes, we have also discovered
the potential for a standardized way of describing the var-
ious parameter mappings used in an application to en-
courage shared knowledge, flexible program architectures,
open plugin structures with common libraries of sounding
objects, mappings and data manipulations. We aim for
solutions that make configurations and mappings explicit
to encourage readability and easy assessment to avoid the
“black box”-phenomenon that often can be said about soni-
fication applications.

This study contributes to the community of sound and
music computing with a proposal for a descriptive XML
syntax for parameter mappings in audio applications in
general and for web audio applications in particular. We
have developed a working example and aim at a better un-
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derstanding of the strengths and weaknesses of such a syn-
tax.

1.1 Background

Since the presentation of WebAudioXML [14], we have
supervised more than 40 student projects using the tech-
nology with promising results. WebAudioXML is a frame-
work that uses XML to abstract an audio configuration
for Web Audio API. The declarative syntax has proven to
make Web Audio application development accessible for
creators and opens up possibilities for students with little
or no prior programming experience to turn interactive, au-
dio application ideas into reality. We have also developed
WebAudioXML Sonification Toolkit [16] – an online tool
for exploring mappings between statistical data and audio
parameters – that has been tested by students with no prior
experience in either sonification, programming or audio
synthesis. The evaluation points towards the need for the
creators to access an audio configuration on a meta-level
rather than having to understand and control all low-level
parameters in a complex audio object.

The initial focus for WebAudioXML was to offer an
XML-syntax that described audio connections and con-
figurations. The first version supported mapping external
variables to audio parameter but the solution was limited
in many aspects. The mappings were defined individually
for all audio parameters, only one external variable could
control an audio parameter and the mapping was restricted
to one pair of in-values and out-values with only one set-
ting for interpolations. While the old version has proven to
inspire creativity, it has also indicated a great potential for
new features like the ones presented in this study.

1.2 Design Process

This study builds upon earlier experiences from the devel-
opment and evaluation of WebAudioXML. It covers a fur-
ther development of parameter mapping in the syntax and
introduces a new variable object that offers a standardized
way of specifying parameter mappings including scaling,
quantization and conversion of values. We use three cases
springing from student projects as a driving factor for the
design and document the process of developing the syntax.
The code is finally tested and published with online ex-
amples 1 and discussed with three technically experienced
music artists.

1.3 Design Goals

WebAudioXML offers a simple syntax with a hierarchical
structure that aims at shifting focus from the technological
to the artistic in the making of interactive audio appli-
cations. The intention with the current study is to stay
true to the same design goals while introducing more
complex and flexible parameter mapping solutions. It
shares the logical approach to parameter mappings with
graphical environments like Pure Data, it is readable
like a text based language as SuperCollider, and it uses

1 https://github.com/hanslindetorp/WebAudioXML/
wiki/Parameter-Mapping

a spreadsheet-like approach for data bindings to make
mappings more explicit. There are different approaches to
the use of XML: One is to use elements for encapsulating
all data and another is to use elements for the hierarchical
structure but store the data using attributes. In this study
we want to stay true to the path set out in WebAudioXML
where the audio nodes are represented by elements and
their parameter values are specified using attributes. This
arguably makes the code more compact and easy to write
even if attributes are less flexible than elements. We
are, for the continued development process, interested in
testing how snippets of code and logic for parameter map-
ping can blend with the current hierarchical structure for
audio routing in WebAudioXML. Before building a proto-
type we set out a few design rules to steer the development:

Platform:
The syntax shall integrate with and become a part of
WebAudioXML

Language:
The syntax shall use XML to declare variables and
mappings using elements and attributes

Flexibility:
The syntax shall allow for flexible mapping and conversion
of values

Readability:
The syntax shall be readable and comprehensible with
focus on hierarchical structures and dependencies

1.4 The spreadsheet approach

An important influence for the current project is the ap-
proach used in spreadsheet applications like Excel. We
value the affordances of spreadsheet applications for non-
programmers to create logic and visual representation of
data. The syntax proposed in this study borrows from that
approach by offering XML elements and attributes to de-
fine variables and formulas in a similar way to data and
formulas in a spreadsheet application. The difference is
that the result of the calculation causes an audio parameter
to change rather than a visual graph to update, see Fig. 1
and Listing. 1.

Figure 1. Spreadsheet formula and graph.

The example in Listing 1 shows how the new syntax pro-
posed in this study uses XML elements and attributes to
emulate a behaviour similar to the example from Excel in
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Fig. 1. The syntax is explained to a greater detail in Section
2.

<var name="var1" value="0.5"></var>
<var name="var2" value="1.0"></var>
<var name="avg" value="($var1+$var2)/2"></var>

<OscillatorNode>
<frequency
value="$avg"
convert="Math.pow(10,x*3)">

</frequency>
</OscillatorNode>

Listing 1. Code example for the Spreadsheet approach.

2. DEVELOPMENT PROCESS

Our aim with this study, in addition to the software de-
velopment, is to gain more knowledge about strengths and
weaknesses of the proposed syntax. We defined three cases
as a starting point for the new specification and used an
annotated portfolio [20] to collect insights from the design
and development process. We also invited three experts
from the field of sound and music computing to discuss the
concept during the development process. Two participants
are PhD students and one is a Postdoc, and all have ex-
tensive experience of using audio programming languages
like Pure Data and SuperCollider in their artistic profes-
sions, and also in teaching the platforms at universities.
They were interviewed individually and gave their consent
for us to video record, analyse and use the results for re-
search purposes. The interviews were between 30 and 60
minutes long where the participants contributed with both
personal reflections and answers to prepared questions re-
garding clarity, strengths, weaknesses, potential, and chal-
lenges for the proposed syntax.

The three cases used as a starting point for this study
spring from artistic sonification ideas formulated in our
current student projects and act as a requirement specifi-
cation for the syntax development. Below is a description
of the three cases including the proposed syntax to solve
them.

2.1 Case 1 – The Meta Knob: One-to-Many

In the first case, we identified a need for a complex audio
configuration to be controlled on a meta level in a simi-
lar way as synthesizers can have a single knob for con-
trolling multiple parameters at the same time. This makes
it straightforward to build instrument plugins that can be
used in sonification applications by developers without
knowledge of how the instrument operates on a low-level.
The first case requests variable objects anywhere in the
XML-structure that can be read by multiple audio parame-
ters on a lower level, see Fig. 2.

The <var>-element is similar to a cell in a spreadsheet-
application. It can contain anything from simple data to
complex formulas and mapping definitions for calculat-
ing and converting its value according to external variables
(e.g. user interaction data) or other <var>-elements.

In Listing 2, the <var>-element named “param” contin-
uously follows “$relX” which is a global variable referring

frequency frequency * 2

$relX

in

out

2000

20
0 100

$param

OSC filter

Figure 2. Systematic sketch for Case 1 with one-to-many
mapping.

to the current horizontal position of the pointer. “$relX” is
mapped exponentially from a value between 0 and 100 to
a value between 20 and 2000 before it is stored in the vari-
able object “$param”. Finally, the Oscillator and Biquad-
Filter nodes continuously update their frequency using the
value of “$param” where the filter follows the same fre-
quency value as the oscillator but one octave above.

<Chain>
<var name="param"
value="$relX"
mapIn="0, 100"
mapOut="20, 2000"
curve="exp">

</var>

<OscillatorNode frequency="$param">
</OscillatorNode>

<BiquadFilterNode frequency="$param*2">
</BiquadFilterNode>

</Chain>

Listing 2. Code example for Case 1 (see Fig. 2).

2.2 Case 2 – The Flexible Scale: Many-to-One

A common strategy for mapping values to frequencies is
to quantize them to a musical scale, which is demonstrated
in the second case. In traditional music though, the scale
is rarely used without variation, and alterations typically
occur depending on the direction of a phrase or the cur-
rent harmony in the arrangement. The second case thus
requests a solution where the state of multiple variables af-
fect the frequency of an oscillator.

This case requires a new feature where an attribute of
a <var>-element can follow the value of another <var>-
element or external variable. Listing 3 illustrates how the
pointer direction on the X-axis (“$dirX”) is mapped to the
<var>-element “$third” causing it to have a value of either
3 or 4. This value is used in the <var>-element “$pitch”
and refers to the number of semitones above the root note
specified by the attribute “steps”. The variable “$pitch” is
here continuously following the pointers position on the X-
axis (“$relX”) and is mapped from values between 0 and
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osc frequency

$relX

in

out
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36
0 100

0

MIDI -> Frequency

$dirX

mapin -> mapout
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convert
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or 
4

12

$pitch$third

in

out

4

3
-1 +1

Figure 3. Systematic sketch for Case 2 with many-to-one
mapping.

100 to a value between 36 to 72. After being quantized to
a scale step (dynamically updated by “$dirX”), it is con-
verted to a frequency in Hertz before the value is used to
set the frequency of the OscillatorNode.
<var name="third" value="$dirX"
mapin="-1, 1" mapout="3, 4">

</var>

<var name="pitch" value="$relX"
mapin="0, 100" mapout="36, 72"
steps="0, 2, $third, 5, 7, 8, 10, 12"
convert="MIDI->frequency">

</var>

<OscillatorNode type="sine" frequency="$pitch">
</OscillatorNode>

Listing 3. Code example for Case 2 (see Fig. 3).

2.3 Case 3 – Complex Interpolation

In the third case we look for a non-limited way of defining
interpolation curves for mapping an input value to a desti-
nation value. The metaphor we apply is the “automation”-
feature typically found Digital Audio Workstations and
graphical animation tools. Typically, this feature would
map a time position to an audio or graphical parameter
value using defined interpolation curves, but it could as
well be used to describe any non-linear relationship be-
tween a variable and an audio parameter. To make this pos-
sible, the third case requires a syntax which supports mul-
tiple values for incoming values, outgoing values, curve
shapes, steps and conversion functions.

While this case opens up for very complex mapping con-
figurations, the addition to the WebAudioXML is fairly
simple. The new feature supports multiple values for all
attributes of a <var>-element or an audio parameter, see
Listing 4 including “mapin”, “mapout”, “curve”, “con-
vert” and “steps”. They can all be specified as one or
several comma separated values with a few exceptions
and restrictions: There has to be at least two “mapin”-
values and typically the same number of “mapout”-values.
More “mapout”-values will be ignored and fewer will be
repeated. The number of “curve” and “convert”-values
should be either a single or one less than the number of
“mapin”-values to specify the interpolation between two
values. If there are fewer “curve” or “convert”-value than

$time

in

out

0

-40
0s      10s      20s      30s      40s      50s     60s

gain

-30

-20

-10

dB->power

GainNode

Figure 4. Systematic sketch for Case 3 with interpolation
curves.

“mapin”-values, they will be repeated and used for multi-
ple interpolation ranges.

In addition to presets such as “lin” and “exp”, curves can
also be specified as a mathematical expression in javascript
like Math.pow(x, 2) where “x” is the mapped value
scaled to a range of 0–1. There is also an extensive list with
preset curves 2 with more intricate shapes including “ea-
seIn”, “easeInOut”, “easeInOutQuad” etc. inherited from
animation tools. These presets typically mimic behaviors
in the physical world and can make a parameter interpo-
late from a linear variable in a way that e.g. accelerates
in the lower part and retards in the upper. 3 While the
curve-attribute affects the value before it is mapped to the
mapout-value, the “convert”-attribute is the last step before
the value affects the audio parameter. It can, similar to
the curve-attribute take any javascript-expression to con-
vert the value between different domains and also offers
presets like “MIDI->frequency” and “dB->power”.

The following code illustrates how the gain parameter can
be controlled over time using different values and interpo-
lation curves. The “$time”-variable refers to a user vari-
able controlled from an external timer or slider using the
javascript API webAudioXML.setVariable(“time”,

x).
<GainNode>
<gain value="$time"

mapin="0, 10, 20, 30, 40, 50, 60"
mapout="-40, -30, 30, 0, -30, -30, -40"
curve="easeInOut,lin,lin,easeOut,lin,exp"
convert="dB->power">

</gain>
</GainNode>

Listing 4. Code example for Case 3 (see Fig. 4).

3. RESULTS AND IMPLICATIONS

We present the result organized according to the design
goals mentioned in Section 1.3. We also point out pos-
sible implications for further development related to each
design goal.

2 https://github.com/hanslindetorp/WebAudioXML/
wiki/Parameter-Mapping

3 https://easings.net/
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3.1 Platform

The syntax shall integrate with and becoming a part
of WebAudioXML.

The first proper tests of the new features was success-
ful and proved the new syntax to be robust and straight-
forward to use with the WebAudioXML parser. The par-
ticipants responded very positively to the potential on how
Web Audio in general and WebAudioXML in particular
can make audio applications easy accessible. One of them
expressed that “it passes the grandma-test” when he real-
ized that he could send someone a URL to a project and
that it would run on any device without any installations.
They also pointed out that the low entry style without the
need for external classes makes it attractive for didactic and
pedagogical purposes.

3.2 Language

The syntax shall use XML to declare variables and
mappings using elements and attributes.

The first observation is that the new features merged into
the previous syntax easily, while the implementation of
them into the WebAudioXML-parser exposed some lim-
itations and mistakes in the code design. The participants’
response to the choice of XML for programming audio ap-
plications varied from being slightly surprised to heavily
questioning. One participant objected to the use of XML
for anything else but storing data and argued that the lan-
guage loses its main purpose (“the only thing XML is good
for”) when the data is written using attributes with long
strings rather than using the basic element tags. On the
other hand, they agreed on that the hierarchical structure in
XML is easy to understand as long as the configuration is
limited to the constrains it provides.

The critique is interesting and raises the question about
who the potential audience for a programming language
is. WebAudioXML is primarily targeted towards web de-
velopers and should by design appeal more to that audience
than to experts from the sound and music community. The
critique regarding using XML for anything else than stor-
ing data is important and questions where the line should
be drawn between storing data and logic. In this study we
have explored the potential of implementing parts of the
logic into the audio configuration model and to use the
same language and file format for both. It promotes the
building of reusable blocks in a similar way to that HTML
has taken with custom elements but might be further dis-
cussed in terms of usability. The discussion also points
towards a bigger question about what an application is and
how it should be built. Similar to a spreadsheet application,
WebAudioXML might not be the platform for a commer-
cial products but rather offers new ways for prototyping
ideas.

3.3 Flexibility

The syntax shall allow for flexible mapping and
conversion of values.

All challenges from the three cases were solved and tested
successfully. The new features also contributed to an up-
date of old features like the possibility to write formulas
directly into an attribute of an audio-element. The par-
ticipants recognized several similarities with the proposed
solution for parameter mapping to objects in other audio
programming environments. UGens in SuperCollider and
abstractions in PureData both offer similar functionality
with inlets, outlets and a way of processing the value in-
between. The experts perceived the platform as relatively
limited in terms of possibilities and suggested a way of ex-
tending the format with a plugin-structure for adding any
user-created audio object into the configuration.

Another idea that came up as a result of discussing flexi-
bility was to let small blocks of data (e.g., a series of num-
bers specifying a musical scale) to be stored in a separate
file. This would arguably make the code easier to read
and the data more reusable and might work extra well for
Case 3 above where the amount of data potentially could
grow large. One of the participants also mentioned sup-
port for the Open Sound Control protocol [21] to make the
platform even more flexible.

3.4 Readability

The syntax shall be readable and comprehensible
with focus on hierarchical structures and dependen-
cies.

The participants were in general very appreciative regard-
ing the accessibility and the descriptive language in We-
bAudioXML. They pointed out that the proposed naming
conventions and coding strategies were clear and easy to
understand. This being said, they were more skeptical re-
garding the use of long strings to express complex map-
pings. They argued that it shared similarities with old mu-
sic programming languages like CSound and that the long
strings used in attributes might be a bit scary for many de-
velopers. They also asked for contextual documentation as
they would expect from a coding environment. While they
expressed appreciation for the clear, hierarchical structure
and relations between objects, parameters, and variables,
they also pointed out the potential problem when audio sig-
nals and parameter mappings are set to break those struc-
tures and suggested a graphical interface to get a better
overview.

We find the discussion about a graphical interface espe-
cially intriguing; it is easy to lose flexibility in favor for
the usability a graphical interface can offer. One possible
compromise that both stays true to the text-based concept
of XML and offers contextual guidance in some XML ed-
itors is the use of a well-designed XSD-file. 4 One feature
that was discussed by all participants was case 3 and the
complex relation between multiple input and output val-
ues. Even if they thought the syntax was clear, all of them
mentioned that the feature was hard to visualize without a
graphical tool available.

4 https://www.w3.org/XML/Schema



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

357

3.5 Other observations

The annotated portfolio from the development process also
contributes to important insights. It was obvious that the
addition of the new features to the parser challenged sev-
eral design decisions made in the beginning of the WebAu-
dioXML development. Some of them were updated during
this process but there is still a need for a few new class def-
initions. The parser also contains some non-recommended
solutions like eval(expression) that work well for a
prototype but is a potential security risk if put into produc-
tion. Furthermore, the “value”-attribute replaced the old
“follow”-attribute. Its approach with any type of expres-
sion from a single target variable to a complex mathemat-
ical expression containing multiple variables proved to be
a more flexible way to receive data.

One feature we struggled with during the implementation
was the sequence of the mapping steps inside a variable
object. Even if the attributes themselves can be defined in
any order in the XML-element, we decided to make them
always operate in the following order, and if any attribute
is missing, that step will be bypassed.

value->mapin->curve->mapout->steps->convert

We also got new ideas for further development. One is
to implement the structure used in case 2 for all attributes
in a variable object, including mapout, curve and values in
a convert expression. Another is to add built-in features
for statistical evaluation in a variable and map the data ac-
cording to the result. This could e.g. make it easy to send
peak values to an audio parameter when the incoming data
is near the confidence limits of a normally distributed data-
set.

Finally, we think that it would be a great addition if the
variable object could have built-in support for derivative
and second order derivative which would be useful for ap-
plications aiming for physical interaction.

4. CONCLUSION AND FUTURE DIRECTION

The proposed syntax for audio parameter mapping has
been designed, discussed and implemented into the lat-
est version of WebAudioXML. The participating experts
pointed at several promising features of the development.
First, they confirm that the proposed solutions match the
design goals that were set out. Second, they confirm the di-
dactic and pedagogical value and potential of the WebAu-
dioXML framework. Third, we noticed that attitudes to-
wards XML would influence their immediate understand-
ing, both positively and negatively. It is quite clear that
the experts don’t regard themselves as primary users of the
framework, which is both expected and intentional. As
such, the ambition of creating this system and its scope
have been met.

We were particularly encouraged by the participants to be
consequent in naming variables and to find ways for con-
textual help with syntax explanation and suggestions. The
suggested need for and solution to case 3 was generally
more difficult for them to grasp than cases 1 and 2, and

would require a graphical interface to become useful. It
was stated that syntax and concepts borrowed from other
languages were easy to understand and that the concept of
external files with top-level parameters exposed to the par-
ent object was an expected feature relating to object ori-
ented programming in general and “abstractions” in Pure
Data in particular.

Forthcoming studies involving students in our courses
will target parameter mappings in particular. Then, both
the pedagogical potential and the syntax itself will be sys-
tematically evaluated with regards to what the students
choose to create and how they will use WebAudioXML
to accomplish their artistic goals.
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ABSTRACT

In this paper, we introduce the Gramophone, a Digital Mu-
sical Instrument programmable with the FAUST program-
ming language. The Gramophone has been designed as
part of the Amstramgrame project which aims at facilitat-
ing the teaching of STEM disciplines through audio pro-
gramming. The Gramophone is completely standalone and
it hosts a wide range of sensors to control sound synthesis
parameters. Its programming is carried out through a ped-
agogical web platform. A total of 160 Gramophones were
produced as part of Amstramgrame and are now touring in
French public schools. This paper presents the design pro-
cess that lead to this instrument, its implementation and
evaluation, as well as future directions for this work.

1. INTRODUCTION

STEAM 1 projects have become popular in recent years,
taking different approaches combining the teaching of Sci-
ences with the Arts. The field of music technology has
been acting as a natural platform for the development of
this type of project [1–4]. iMuSciCA [5] is very repre-
sentative by aiming at facilitating the teaching of sciences
through music technology via a Web platform [6] where
students can design their own musical instruments using
physics and mathematics principles, visualize the physical
parameters of a sound in the prospect of making a compo-
sition, etc.

While most STEAM projects in the field of music tech-
nology focus on the combination of Sciences with the
Arts, fewer emphasize computer programming. In that
context, we recently launched the Amstramgrame project
2 [7] which aims at facilitating the teaching of maths
and physics through the programming of a physical Dig-
ital Musical Instrument (DMI): the Gramophone (see Fig-
ure 1).

The Amstramgrame website plays a central role serving
both as:

1 Science, Technology, Engineering, Arts, and Mathematics
2 https://www.amstramgrame.fr/

Copyright: c○ 2021 the Authors. This is an open-access article distributed un-
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original author and source are credited.

Figure 1. The Gramophone.

∙ a pedagogical platform for teachers and students
providing pre-written lessons,

∙ an environment to program the Gramophone.

A typical Amstramgrame module begins with a maths or
physics teacher, leads to the development of an audio DSP
algorithm that in turn, is used to program the Gramophone
to make a custom musical instrument. Finally, students
work with a composer to improve their instrument and to
write a piece that is performed by the class during a final
performance.

The Gramophone was specifically developed for Am-
stramgrame to provide a platform to make the program-
ming of audio DSP 3 algorithms (and hence, of math-
ematical concepts studied in class) more tangible. It
is lightweight, completely standalone (it hosts a built-in
rechargeable lithium battery and a speaker), robust, and it
can be programmed using the FAUST programming lan-
guage 4 [8] through a web platform. A 9 DoF motion sen-
sor as well as a physical button and rotary potentiometers
can be used to control the parameters of the synthesized
sound. The Gramophone was designed to be held in one
hand and can be easily moved around by the performer
thanks to its strap (see Figure 1).

In this paper, we first present the early prototypes of the
Gramophone that lead to its final design. We then describe

3 Digital Signal Processing
4 https://faust.grame.fr
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the hardware and software implementation of this instru-
ment before providing information on its diffusion as well
as the results of an evaluation conducted on about 180 stu-
dents and over 160 gramophones. We finally reflect upon
future directions for this project.

2. EARLY PROTOTYPES

The development of the Gramophone was initiated in Jan-
uary 2019. We wanted this instrument to meet a certain
number of requirements by being:

∙ standalone (e.g., battery powered and host a built-in
speaker),

∙ programmable with FAUST,

∙ playable with one hand,

∙ quick at booting,

∙ robust and durable (and hence adapted to primary
and middle school students).

Given the size constraints, the immediate boot time, and
portability requirements, we decided to build this instru-
ment around a microcontroller powerful enough to carry
out real-time audio DSP. The best candidate at the time
was the Teensy 3.6, 5 which provided unparalleled com-
putational power (180 MHz) and support for real-time au-
dio processing through the Teensy audio library 6 as well
as an “audio shield” 7 (audio codec sister board). In that
context, we implemented faust2teensy [9], a command
line tool allowing for the programming of the Teensy with
FAUST for real-time audio DSP applications.

Our initial prototype (see Figure 2) was designed to be
held as a stick and looked a little bit like a rattle (or a pan).
The only continuous controller was a 9 DoF motion sen-
sor as well as a button mounted on the handle of the in-
strument. Its shape potentially limited the orientation that
could be given to the object and mobilized all the fingers
of the hand to hold the device.

The second iteration of the Gramophone (see Figure 3)
solved this issue and gave access to a joystick that could
be controlled by the thumb of the hand holding the instru-
ment. A photoresistor was also added to the handle.

Both designs implied the use of an external battery charg-
ing circuit (“battery boost”) connected to the Teensy as
well as a small amplifier for the speaker. The battery boost
tended to create ground issues with the Teensy resulting
into background noise. All in all, we hoped for a all-in-one
solution where the microcontroller, the motion sensor, the
amplifier, and the battery charging circuit could all be inte-
grated in the same board. This was a big concern since we
were planning on making a fairly large number of Gramo-
phones for Amstramgrame (we were thinking of at least
100 at the time), so the design had to be as optimized as
possible.

5 https://www.pjrc.com/store/teensy36.html
6 https://www.pjrc.com/teensy/td_libs_Audio.

html
7 https://www.pjrc.com/store/teensy3_audio.html

Figure 2. The initial prototype of the Gramophone.

3. THE GRAMOPHONE

3.1 Overview

Only a few months after the first Gramophone prototypes
were completed, LilyGO released a new ESP-32 based
board: the TTGO TAudio. 8 For only $15, this board hosts
an ESP-32 microcontroller (with built-in WiFi and Blue-
tooth and a dual core processor operating at 240 MHz),
a 9 DoF motion sensor, a battery charging circuit, and an
audio codec with a built-in amplifier. We therefore saw
it as a way to solve many technical problems that we had
with using the Teensy to make our instrument. In that con-
text, we developed faust2esp32 [10], a command line
tool to program ESP32 based boards with FAUST, making
this language the only alternative to C++ to program this
platform.

The final version of the Gramophone is built around a
LilyGO TTGO TAudio board (see Figure 4 for the initial
prototype of the final version, Figure 1 for the final dis-
tributed version, and Figure 6 for a detailed view of the
different features of the Gramophone). It fits in one hand
and can be easily moved around thanks to its strap. A pho-
toresistor lands directly under the thumb of the performer.
Similarly, a button finds its place under the middle finger.
A rotary potentiometer can be controlled with the left hand
of the performer. The Gramophone benefits directly from
the built-in 9 DoF sensor of the TTGO TAudio board. All
these sensors can be assigned to sound synthesis parame-
ters directly from the FAUST program (see §4).

The Gramophone is charged and programmed through a
micro USB cable which connects to the corresponding port
on the TTGO TAudio board. A 2.05 Ah lithium battery
ensures an extended autonomy for the Gramophone which

8 http://www.lilygo.cn/
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Figure 3. The second prototype of the Gramophone.

Figure 4. The third prototype of the Gramophone.

can be played for about 24 hours in battery mode (with
a standard use). A microphone can be used to process
sound in real-time. A dedicated rotary potentiometer can
be used to control the volume of the instrument. Finally, a
rotary encoder allows the performer to cycle around differ-
ent FAUST programs installed on the Gramophone.

3.2 The Gramophone Case

The Gramophone case was entirely designed in Open-
Scad 9 and Inkscape 10 (through Inkscape2scad 11 ). Since
we never intended to sell the Gramophone, we wanted to
make sure that it could easily be reproduced (and/or mod-
ified) using tools accessible to everyone. The source files
of the Gramophone case as well as the corresponding STL

9 https://www.openscad.org/
10 https://inkscape.org/
11 https://github.com/grame-cncm/faust/tree/

master-dev/tools/physicalModeling/inkscape2scad

files can be found on the Amstramgrame GitHub. 12 Since
a large number of Gramophones had to be made for Am-
stramgrame (over 160), the 3D printing of their case was
outsourced.

3.3 Electronics and Assembly

Beside its TTGO TAudio board, the Gramophone relies
on fairly simple electronic components (i.e., speaker, bat-
tery, potentiometers, buttons, etc.). An exhaustive video
tutorial on how to assemble a Gramophone can be found
on the Amstramgrame website. 13 Assembling a Gramo-
phone from scratch takes about three hours. To make the
160 Gramophones of Amstramgrame, we hired an “assem-
bler” for a period of five months whose role was also to test
each Gramophone before shipping.

4. SOFTWARE ENVIRONMENT

4.1 Programming Environment

The Amstramgrame website contains dozens of Gramo-
phone program examples spread across a wide range of
tutorials. Each example can be edited in a simplified ver-
sion of the FAUST Web IDE [11] specifically designed as
part of Amstramgrame. 14 The sound corresponding to
a Gramophone FAUST program can be heard and proto-
typed directly in the web browser. A “Gramo” button can
be pressed to generate the firmware corresponding to the
FAUST program ready-to-be-installed on the Gramophone.

The GramoLoader 15 (see Figure 8) is a software tool
designed as part of Amstramgrame acting as a bridge be-
tween the FAUST Web IDE and the Gramophone. It takes
the firmware generated when pressing the “Gramo” but-
ton and installs it on the Gramophone. Once the firmware
has been selected once, it will be automatically installed

12 https://github.com/amstramgrame/amstramgrame
13 https://www.amstramgrame.fr/en/gramophone/

making/
14 https://faustide.grame.fr/?mode=amstram
15 https://www.amstramgrame.fr/gramophone/

loader/
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Figure 5. Overview of the components of the Gramophone.

Figure 6. The various elements of the Gramophone.

Figure 7. The Amstramgrame FAUST Web IDE.

on the Gramophone every time the “Gramo” button will be
pressed. The GramoLoader is written in Python, is avail-
able for Windows, MacOS, and Linux, and it is completely
open source.

4.2 Programming the Gramophone

4.2.1 Mapping Controllers to DSP Parameters

A Gramophone program can be as simple as:

import("stdfaust.lib");
f = hslider("freq[knob:2]",

440,50,1000,0.01) : si.smoo;
t = button("gate[switch:1]") : si.smoo;
process = os.osc(f)*gate;

In that case, the frequency of a sine wave oscillator is
controlled by the rotary potentiometer of the Gramophone
and sound can be triggered by pressing the button under
the middle finger. In other words, any FAUST parameter

Figure 8. The GramoLoader.

(i.e., declared with a slider, a nentry, a button, etc.)
can be mapped to a Gramophone controller using a meta-
data. Standard FAUST motion sensors (i.e., gyroscope, ac-
celerometer, etc.) metadatas can be used to map the 9 DoF
sensor of the Gramophone to FAUST parameters. An ex-
haustive list of the Gramophone FAUST metadata can be
found on the Amstramgrame website. 16

4.2.2 MIDI Bluetooth

MIDI Bluetooth support has recently been added to the
Gramophone. A Bluetooth device name can be declared
using the btmidi_device_name general metadata. Stan-
dard FAUST MIDI metadatas 17 can then be used.

16 https://www.amstramgrame.fr/gramophone/about/
#metadatas-de-programmation-du-gramophone

17 https://faustdoc.grame.fr/manual/midi/
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In the following examples:

declare btmidi_device_name "Gramophone";
f = hslider("freq[midi: ctrl 0]",

440,50,1000,0.01) : si.smoo;
t = button("gate[switch:1]") : si.smoo;
process = os.osc(f)*gate;

the frequency parameter of the sine wave oscillator is con-
trolled using MIDI CC 0 and sound is triggered by pressing
the button on the Gramophone.

In the previous example, Bluetooth pairing has to be initi-
ated by an external device (e.g., a smartphone, a computer,
etc.) but the Gramophone itself can be configured to ini-
tiate pairing by specifying the name of the target with the
btmidi_remote_name general metadata. E.g.,:

declare btmidi_remote_name "External MIDI
Keyboard";

This also can be used to connect two Gramophones to-
gether to potentially synchronize them, etc.

4.2.3 Limitations

The programming limitations of the Gramophone are di-
rectly linked to that of the TTGO TAudio board [10]. For
instance, the limited amount of RAM (about 1MB) has a
significant impact on the kind of DSP algorithms that can
be ran on the Gramophone. For instance, long delays and
echos or complex reverbs will likely not work on this in-
strument. The same is true for table-based oscillators, but
the FAUST compiler now integrates a system to automati-
cally adapt table sizes when using embedded systems re-
quiring small memory footprints.

Computational power is less of an issue and the dual core
processor of the TTGO TAudio board running at 240 MHz
is powerful enough to run a wide range of DSP algorithms.

5. DIFFUSION AND EVALUATION

Over 160 Gramophones were produced as part of Am-
stramgrame to constitute “Gramophone backpacks” con-
taining 30 Gramophones each. A “Gramophone assem-
bler” was hired for a period of five months to carry out this
task (see §3.3). All Gramophones are owned by the Am-
stramgrame project: we currently do not sell them since
this would be too complicated for us from a legal stand-
point.

The pilot phase of Amstramgrame (see Figure 9) ended in
March 2021 and was carried out in two different schools,
targeting a total of eight classes (middle and high school
level) corresponding to about 180 students for a total of
eighty hours of Amstramgrame sessions [7]. From a tech-
nical standpoint, the Gramophones and their tool-chain
proved to be relatively stable. Only 4 Gramophones broke
during this period (and were immediately and easily fixed).
The web platform never stopped working and both stu-
dents and instructors made positive comments about all the
tools used as part of Amstramgrame. Gramophones ended
up being adapted to most hands (large or small) and hav-
ing satisfying ergonomics. A large number of users high-
lighted their good sound quality and loudness.

Figure 9. An Amstramgrame session at the Cité scolaire
du Cheylard (Ardèche, France) – with social distancing.

Now that the pilot phase of the project is over, Amstram-
grame will be implemented at a larger scale in a wide range
of schools of the Auvergne-Rhône-Alpes region in France.
The scope of the project had to be slightly limited/adapted
due to the Covid-19 pandemic though.

6. FUTURE WORK

At this point, we consider that the Gramophone reached
a certain level of stability and we don’t plan to make any
modifications to it in the future. However we do believe
that its programming tool-chain could be improved. For
instance, we would like to get rid of the GramoLoader to
replace it with a system fully integrated in the Web browser
(a bit like the Arduino Create Platform 18 ). Indeed, the fact
that the GramoLoader is platform-dependent and requires
an installation can be a significant problem in schools that
don’t have a permanent system administrator (which is of-
ten the case in France). Having a comprehensive web so-
lution would solve this problem and make Amstramgrame
more portable.

We’re currently working on an adapted version of the
FAUST Playground 19 allowing for the programming of the
Gramophone. Unlike in the FAUST Web IDE, FAUST pro-
grams can be assembled using a graphical patching envi-
ronment in the FAUST Playground, making it more acces-
sible to younger students.

Our ambition is to add a hardware prototyping aspect
to Amstramgrame by offering the possibility to substitute
Gramophones with kits allowing students to make their
own instrument using sensors and cardboard (in a simi-
lar way as Nitendo labo 20 ). The programming tool-chain
would remain the same as for the Gramophones. The de-
velopment of these kits was recently initiated.

7. CONCLUSIONS

Amstramgrame gave us the opportunity to (i) develop a
DMI from scratch: the Gramophone, (ii) produce it at a
fairly large scale, and (iii) evaluate its use by a large group

18 https://create.arduino.cc/editor
19 https://faustplayground.grame.fr/
20 https://labo.nintendo.com/
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of people. We believe that it fulfilled its initial objective
which was to provide a platform to make more tangible
the various scientific concepts approached in class in the
context of Amstramgrame.

While the use of the Gramophones has been limited so far
to pedagogical purposes, we plan to take advantage of the
fact that we own a large number them to use this instrument
in the context of professional music productions to create
a “Gramophone orchestra.”
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ABSTRACT

In the last few decades, robots have fostered unique pos-
sibilities for musical performance and composition, al-
lowing novel interactions with musicians and memorable
experiences for the audience. Robotic musicians can be
built in many shapes and have diverse functionalities, mak-
ing robot musicianship a fertile research field. However,
building physical robots requires access to electrical and
mechanical components, as well as laboratory equipment,
which can make them financially unfeasible in peripheral
countries. Moreover, building physical experimental de-
vices quickly raises the problem of disposing of broken or
outdated parts. Finally, the COVID-19 crisis has decreased
access to laboratories and forced social isolation, which
further harms physical robots’ development. In this posi-
tion paper, we argue that the current technology for robot
simulation can be used to provide most aspects of physical
robots, with considerable advantages related to the finan-
cial cost, the environmental impact, and the possibility of
testing and sharing robots using the Internet. We also dis-
cuss previous work on virtual presence, which indicates
that both the performers and the audience can feel being
present in the same space as the virtual robots. Lastly,
we anticipate challenges and research opportunities in this
field of research.

1. INTRODUCTION

Robots are an important category of musical agents
[1] and have been used in music-making for a few decades
now [2–6]. Robotic musicians [7] use sensors, actuators,
and electronic devices, bringing a diversity of new perspec-
tives when compared to piano players and other mechani-
cal actuators, like the visual cues that relate to their move-
ments and sound qualities [8], and the possibility produc-
ing realistic sounds from physical movements [8].

Musical robots can also benefit from sensing their mu-
sical surroundings [9–11], which allows them to automati-
cally respond to specific cues. Shimon [12], for instance, is
a robotic marimba that is capable of interacting with a hu-
man musician in real-time. These autonomous responses

Copyright: © 2021 the Authors. This is an open-access article distributed un-
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can help mitigate the inevitable, even if short, actuator de-
lays [13]. Bear in mind, that robotic musicians have me-
chanical delays caused by electromechanics components.
Thus, these robots need to compensate them to keep in
time. Dealing with delays and synchronization issues in
robotic music performance is quite a challenge [14]. Also,
autonomous musical cue anticipation can allow slower,
more expressive gestures that allow human musicians to
create expectations towards the robot’s behavior [15].

However, robotic musicianship has some drawbacks.
First, the cost of high-quality electronic parts in peripheral
countries that can quickly make robot-making economi-
cally unfeasible [16]. Such a cost hinders the development
of musical robots, and, consequently, of their surrounding
elements: musical composition and performance, gesture
and interaction design, and device building and control.
Then there is the environmental impact of importing elec-
tronic goods from abroad and all the electronic waste that
is produced during the process [17]. Finally, due to the
social isolation enforced by the COVID-19 sanitary crisis,
the access to the electronic laboratories and music studios
has been compromised, as well as the possibility to col-
laborate in person with the multidisciplinary team that is
required to build such robots.

In this paper, we propose using virtualization to enable
robotic musicianship and their surrounding developments.
For such, we use a simulator to devise robots and their be-
haviors. Then, musicians can interact with the robots in
the same way as they would with hardware-based robots,
which can be contradictory statement since robots, by def-
inition, are indeed physical machines [18].

The idea of using virtual robots has been used in the
past. In special, we note a marimba player designed within
SolidWorks [19], and a virtual drummer that helps in music
therapy for rehabilitation [20]. However, we are not aware
of initiatives towards building virtual robot musicians for
music production, research, and performance.

It is noticeable that recent technologies on physical sim-
ulation have allowed simulating realistic behavior that can
be used either for games or for practicing real-life situa-
tions [21]. Also, recent developments in sound processing
algorithms and hardware have allowed realistic sound syn-
thesis and binaural spatialization. These conditions allow
virtual robots to have a consistent behavior, which can lead
to highly engaging and immersive experiences.
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Virtual robots have the obvious advantage of overcom-
ing economic costs, which is greatly relevant in peripheral
countries. Also, they can be immediately replicated, al-
lowing to create unlimited-size orchestras. They can be
shared between developers and musicians in different lo-
cations, which greatly facilitates the interaction, in special
during the pandemics and they have a smaller ecological
footprint.

Following, we further discuss the challenges and oppor-
tunities related to virtual robotic musicianship.

2. PROBLEMS RELATED TO PHYSICAL ROBOTS

Non-human devices for music making have been part of
the human imaginary since centuries-old legends like the
singing harp of Jack and the Beanstalk. Real devices capa-
ble of playing music can be found in Leonardo DaVinci’s
sketches for mechanical drums, and, more recently, in the
player pianos from the 19th Century. In the second half of
the 20th Century, robots became increasingly present in a
diversity of musical applications

Musical robots are now present in art, industry, academia,
and in hobby projects, but their development is far from
trivial. Building and using musical robots requires a se-
ries of skills that span between Engineering and Music,
that is, the robot-building team must be skilled in a num-
ber of topic such as electronics, mechanics, programming
microcontrollers, designing musical interactions, compos-
ing music, and playing music.

The development in electronics and mechanics requires
special machinery, such as oscilloscopes or turnstiles,
which can be inaccessible outside institutional laborato-
ries. Also, each development cycle can require the acqui-
sition of new electronic parts, which have a cost of their
own. This makes the development cycle of physical robots
considerably slow and expensive, in special in developing
countries [16].

The need for a team and laboratory is a problem of its
own during the COVID19 pandemic. In this context, social
isolation calls for the temporary closing of working envi-
ronments, and the impossibility of working together makes
it unfeasible to join a team with all necessary skills.

Even in non-pandemic times, despite their expensive and
time-consuming development, physical robots can quickly
become outdated or malfunctioning, as any experimental
electronic device. The constant development of musical
robots generates clutter, which has an inherent problem
related to the disposal of electronic components. Some
parts of malfunctioning robots can be disassembled for
usage in future experiments, and some robot components
can be built from reclaimed hardware such as old printers
or smartphones [22] [23] but others – especially malfunc-
tioning electronics, soldered components, and 3D-printed
parts – are simply discarded, which further contributes to
already complicated environmental issues [17].

All of these difficulties can be overcome, as they have
been, with an aim to bring to life the musical automatons
that have long resided the human imaginary. However,
we note that current technology allows simulating realis-
tic physics and sound production, which has enabled, for

example, virtual reality in games and other applications.
This means that all of these difficulties can be mitigated
by using virtual counterparts of physical robots, in a path
that resembles the migration from physical synthesizers to
virtual ones. Furthermore, we can have virtual (software)
robots, which can be stored in hard drives, shared over the
Internet, and built as a massive collaborative effort.

Next, we discuss the potential impacts of virtual robots in
the context of musical performance.

3. PRESENCE AND VIRTUAL ROBOTS

Physical robots have been shown to provide a diversity of
possibilities in musical creation and performance. Musi-
cians and the audience are present in the same space as the
robots. This section discusses the concept of Presence and
the subsequent potential for using virtual robots in musical
performance.

In literature, Presence is often referred to as telepresence,
virtual Presence, or mediated Presence. In general, Pres-
ence can be understood as a psychological state or subjec-
tive perception in which an individual’s experience medi-
ated by technology, in part or whole, fails to accurately
recognize the role of technology in his individual expe-
rience [24]. For Slater and Usoh [25], Presence can be
defined as the virtual reality users’ suspension of the dis-
belief that they are in a different world from where their
bodies are physically located. We understand it is possible
to use virtual robots in interactive music performances us-
ing the Presence concept. Thus, we foresee a virtual com-
munity implemented in mixed reality, inhabited by physi-
cal, remote, and virtual robots. This community raises the
fundamental question of if such a virtual environment can
generate and mediate real-time musical performances.

The term "Telepresence" was first defined by Marvin
Minsky [26], who emphasized the possibility that humans
could feel the sensation of being physically immersed or
transported to a remote workspace through teleoperation
systems. However, the definition coined by Minsky pro-
jected the development of high-quality simulation refine-
ments and sensory feedback technologies. He predicted
using telepresence in dangerous activities, the develop-
ment of telemedicine technology, and the possibility of
home office work – which anticipated the intense use of
virtual technologies induced by the COVID19 pandemics.
Further, Misky [26] defines social Presence as when users
feel they are with other people locally or remotely, and co-
presence as when someone feels that they are co-located
elsewhere with other people and are related to physical and
social Presence.

Sheridan [27] used the term "Virtual Presence" to de-
scribe the feeling of "being present" caused by virtual
reality technologies. When defining this term, Sheridan
claimed to be possible to make a clear difference between
virtual Presence (e.g. the sensation of Presence in a vir-
tual environment), with the notion of telepresence, which
is associated with teleoperation systems, as Minsky ini-
tially approached it. The delivery of Presence is closely
tied to an understanding of consciousness and, in particu-
lar, of the interplay of implicit and explicit factors in the
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construction of human behavior and their relation with vir-
tual space. Presence is constructed by the brain and ex-
presses the consistency between the world model the brain
maintains and the cues it is exposed to.

Presence has long been a critical concept in teleopera-
tion and virtual reality (VR) and has been defined as the
"sense of being in a virtual environment" [28]. However,
it is not clear how this "sense" is generated, and it is not
uncommon to see it explained with the notion of "the sus-
pension of disbelieve", coined in the early 19th Century
by the poet and philosopher Coleridge. In recent litera-
ture, the notion of Presence results from the interplay of
both central and peripheral factors and that it should be
assessed through many convergent measures that include
measures of the subjective, physiological and behavioral
state of the user [28, 29]. Therefore, Presence, induced by
virtual or physical sources of stimulation, is governed by
several principles that underlie human experience, creativ-
ity and discovery.

The constructions of a meaningful relationship between
agents and environmental stimuli in a virtual space and
the exploration of their interactions can be anchored on the
proposition that "interactive media within mixed reality en-
vironments induces an agent coupling with the space and
it is defined as the sensing of Presence" [30]. Presence can
also be studied as the relation between the implied identity
of an organism/agent and its environment within the fol-
lowing perspectives: i) self-environmental (the agent ex-
ists in relation to the environment); ii) virtual objects (the
object exists in relation to the agent); iii) social (the other
agents exist in relationship to the agent). Physical Presence
is when someone feels they are physically somewhere.

Presence also indicates that there are essential inputs for
the construction of self-referral agencies. Thus, it is essen-
tial to deploy methodological efforts focusing on interac-
tive media within a mixed reality environment to study the
constructions of meaningful relationships between agents
and virtual stimuli [31, 32]. The assumption is that the in-
teraction of an agent or group of agents with an immer-
sive space, using various interactive devices, indicates how
these processes affect their behavior and the meaning that
they construct. Such experience was approached by the in-
teractive installation Ada: intelligent space developed and
exposed at the Swiss National EXPO.02 [33].

Therefore, it is possible to project that the audience
and musicians can feel present in the same space as
the virtual robots. The challenge of devising a human-
accessible mixed reality environment where humans and
virtual robots are performing music together is that the in-
teractions within such an environment dynamically shape
musical performance. Thus the musician’s virtual Presence
is affected by the virtual robotic behavior. Both environ-
ments (virtual and physical) can access and influence each
other, establishing an interaction. This possibility gives
equal importance to both the physical and the virtual place
in the performance outcome. In this exchange, the virtual
world provides for limitless expression, and the real world
defines physical grounding and the boundaries of interpre-
tation. The virtual robots act in the virtual space, generate

and react to sounds and human gestures. The musicians,
in turn, generate meaning in the acoustic space and virtual
one from these interactions with the virtual robots.

For our article’s purpose, we will refer only to the term
"Presence." In our case, we discuss the possibility of de-
veloping systems in which virtual robots interact with live
musicians. We intended to study how such interaction af-
fects the notion of real-time performance and how the in-
clusion of virtual robots can also enlarge musical aesthetic
possibilities. In this way, virtual robots can be seen as a
way to move from the notion of interactive performance
to the concept of performance in a mixed reality in which
musicians and virtual robots participate in a symbiotic pro-
cess. We project that such experience would a) create a
unified experience where virtual robots and musicians are
merged in the virtual performance space (i.e. a mixed re-
ality experience); b) the sound material generated by both
evolve coherent in time; c) the resultant performance ex-
plore and exploit both implicit and explicit cues from mu-
sicians in their individual and collective interaction with
the virtual robots; d) the use of novel multi-modal sensing
and effector systems to boost interaction with and under-
standing of the dataflow generated during virtual robots-
musicians interplay. In these processes, we also acquire
that the virtual robots act as an adaptive sentient agent that
helps humans explore creative spaces and discover novel
patterns driven by both their implicit and explicit interac-
tions.

Finally, it is important to notice here that the nature of
musicians’ interaction with digital technology involves be-
havior, perception, manipulation, and interaction. Percep-
tion leads musicians to identify and interpret acoustic and
spatial relationships (e.g., among others) with the techno-
logical objects they are experiencing. For example, in live
electroacoustic music, there is technological manipulation
by the interpreters in other to sound processing. Otherwise,
when someone changes the spatial location of an object in
a virtual game, there is a level of experience in which the
gamer perceives and acts on the virtual space. If users and
virtual objects affect each other, the experience expands
the physical world; therefore, the interaction occurs be-
tween these two domains, physical and virtual.

Thus, in our article’s proposal, the musical interaction
with virtual robots provides the exchange of musical in-
formation in real-time and induces responsive actions be-
tween robots and musicians. In this way, we project such
musical experience to bring new meanings to performance
experiences, such as a mixed music concert with the Pres-
ence of virtual robots.

As we discuss in this section, virtual robots can provide a
sense of Presence, similarly to physical robots. This makes
virtual robots a rich field for exploring interactions, which
can foster – without physical parts – musical interactions
similar to those provided by physical robots. Next, we dis-
cuss the current technological tools that can help achieving
virtual robotic musicianship.
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4. CURRENT TECHNOLOGY FOR VIRTUAL
MUSICAL ROBOTS

The design of musical robots can be divided into three
parts: a) establishing/developing the controlling interfaces,
which ultimately supports the interaction between the mu-
sicians and the robots; b) designing the communication
strategy, such as the protocols, redundancies, bandwidth,
etc; and finally, c) designing and building the musical robot
itself. Each of these aspects is discussed in a separate sub-
section, as follows.

4.1 Controlling robots

The interaction design for a particular robot is unique.
It is virtually impossible to anticipate all the features a
robot will have.

Interfaces to control musical robots can vary from
custom-build software, wearable devices, MIDI-
controllers, APIs, up to live programming languages
- the latter with a very interesting application to real-time
music performance. An important aspect to be considered
is that programming languages specialized for sonic
purposes, such as those that manipulate oscillators, filters,
and other electronics for sound production, might not be
the ideal candidate for the job, even though it usually
provides OSC support. The reason behind this idea, is that
musical robots do not manipulate sound signal directly
ally. Usually, it does by manipulating the mechanics that
produce the acoustic signal, meaning that controlling
robots in more similar to conducting an orchestra than the
usual electronic music live-coding. While the first activity
uses gestures to communicate musical actions (musical
terms) the latter use commands to manipulates the signal
itself. In other words, robotic music performance has
particularities that mimic human music performance. In
that sense, the Octopus Music API [34], written in Java, is
a viable option beacuse it models the performance using
musically-related terms.

Octopus provides classes within three categories: a) mu-
sical data structures; b) musical data interpreters (perform-
ers); c) instrument classes. The musical pieces are struc-
tured using the classes of the musical data structures, sim-
ilarly to a musical score. Such "object" is then played by
the different levels of interpreters. A Musician is the Inter-
preter of the highest level, meaning that it "knows" how to
play the piece in its crude form. A Guitarist is an exam-
ple of an low-level Interpreter, meaning that it adapts the
piece (in its persistent form) to their own capabilities, in-
cluding restrictions of the its Instrument, in that case, the
Guitar (instrument category). This metaphor is adequate to
a Robotic performance, because, in this scenarion, a Robot
can be seen as an instrument.

A major drawback of using an Java API such as Octopus
is that the developed algorithm must be "compiled" before
the program make any sound. In addition, Java is known to
be a verbose language so, even if it possible to run in real-
time using a REPL console (jshell), adjustments must be
made to improve writability and make it more user-friendly
to the final user (i.e. musicians) and this has been done us-
ing a musicality centred approach to the interaction design.

4.2 Communication protocols

The RoboMus framework [35] covers the whole musical
robot production but has a special focus on its communi-
cation side. The RoboMus framework uses a predefined
musical message format, built over the OSC protocol, to
enable robot control and mutual collaboration.

It goes further by proposing macro and micro synchro-
nization strategies by the use of a Musical Message Syn-
chronization Server (MMSS) and onboard algorithm, re-
spectively. Synchronization is particular sensitive matter
considering that multiple robots are generally used in real-
time music performance [14], and each robot takes a dif-
ferent time to react to its controller’s inputs.

In order to support the interaction with all sort of musical
robots, even those yet to be built, the RoboMus Framework
used a handshake approach that allow the robots to intro-
duce themselves to their human-performer by communi-
cating all the "actions" they can perform using Open Sound
Control (OSC), thus, any "client" that supports it could be
used. This is as far as the RoboMus can go but it does not
necessarily guarantee a good user experience in controlling
the robots in musical activities. This, however, is out of the
scope of this paper.

4.3 Robot design and physical simulation

Current physical modelling engines have proven powerful
tools for real-time simulation and gaming. Tools specifi-
cally catered for robotics have added other functionalities
to it, such as directly simulating specific types of engines,
joints, and sensors. They have the advantage of corre-
sponding to real-world objects, henceforth their behavior
is predictable and understandable.

We give special attention to the Webots [36,37], which is
an open-source and multi-platform software. It provides a
large asset library with pre-built robots, sensors, actuators,
objects, and materials. Also, Webots allows programming
the simulations in many languages: C, C++, Python, Java,
MATLAB, or using a Robot Operating System API. Be-
cause it allows programming in several languages, it can
use their libraries to send and receive information to and
from the simulation using usual musical protocols, such as
OSC or MIDI.

We used Webots to create a musical simulation to eval-
uate some of its possibilities. In this simulation, whose
environment in shown in Figure 1, a generic robot moves
within a limited space with objects. When it collides with
an object, a sound is played. This robot musicality is simi-
lar to that found in Roboser [6].

We used a virtual sensor to measure the impact force, so
that stronger collisions can generate stronger sounds. This
measured impact force is sent to a SuperCollider script,
which in turn synthesizes sounds using a physical model.

This short simulation raises an interesting dichotomy re-
garding the virtual robots: they are simulated within a
physical modelling toolbox, which emulates realistic be-
havior; however, their output depends on musical compo-
sition and sound design, which can be (or not) realistic
depending on the composer’s intentions. Realism could
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Figure 1. Robot simulation. The mobile robot (blue cylin-
der) navigates through the environment, and when it col-
lides with an obstacle (brown boxes), the system emits a
sound.

be even improved by using acoustic virtual reality tech-
niques [38], which allow emulating object positioning in a
sound scene that can be reproduced either via headphones
or loudspeakers. In other words, this allows us to raise
questions about bringing to the realistic physical model,
and then the ability to enjoy artistic freedom, since the
accessibility provided by virtuality cross barriers of real-
ity, but allow verisimilitude even with non or ultra-realistic
artistic options.

Next, we present concluding remarks.

5. CONCLUSION

In this position paper, we discuss the difficulties and possi-
bilities brought by using virtual robots instead of physical
ones in the context of musical performance. Nowadays,
this change is possible because of the technologies related
to physical simulation, and it can be greatly facilitated by
previous work on tools for robotic musicianship.

Virtual robots can be effective as musical performance
tools because they can foster Presence, that is, the sense
that humans and virtual robots share the same environ-
ment. This happens because the feeling of Presence hap-
pens due to particular fluxes of consciousness, which do
not necessarily depend on a physical presence. This phe-
nomenon has been greatly explored in the last few years in
the context of virtual reality, and it could be used to foster
meaningful experiences in virtual robotic musicianship.

Also, nowadays, there are many tools and techniques that
can help building virtual musical robots. These tools range
from robot simulators to specific frameworks for music,
and they can be explored even faster because the develop-
ment of virtual robots is much faster and cheaper than that
of physical ones.

Virtual robots are, also, more economically viable and
environmentally-friendly than their physical counterparts.
They do not require buying high-quality parts or finding
ways to dispose of old ones. Moreover, they do not wear

off with time, and they can be easily upgraded if needed.
Finally, because they exist as software, they allow collab-

orative work even during the social isolation required by
the COVID19 pandemic. Furthermore, they allow larger,
world-wide collaborations to happen, as it is the case of
any piece of software. Furthermore, the technology stack
used for the virtual robots can be revisited, and solutions
different from those discussed in Section 4 can be used in
a more integrated way than the one shown in this work.

For this reason, we propose that virtual robots can be ef-
fective tools for music making, and can be more viable
than physical ones. Virtual robotic musicianship draws
challenges of their own, such as questions regarding main-
taining the environment’s verisimilitude, designing the in-
teractions and sounds synthesis related to the robot, or
evaluating the sense of presence they could foster in musi-
cal interactions. All of these questions can be prolific fields
for future explorations in art and research.
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