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Since the first reports of a novel SARS-like coronavirus in December 2019 in Wuhan, China, 

there has been intense interest in understanding how SARS-CoV-2 emerged in the human 

population. Recent debate has coalesced around two competing ideas: a “laboratory 

escape” scenario and zoonotic emergence. Here, we critically review the current scientific 

evidence that may help clarify the origin of SARS-CoV-2. 

  

Evidence supporting a zoonotic origin of SARS-CoV-2 

Coronaviruses have long been known to present pandemic risks. SARS-CoV-2 is the ninth 
documented coronavirus that infects humans and the seventh identified in the last 20 years1,2. 
All previous human coronaviruses have zoonotic origins, as have the vast majority of human 
viruses. The emergence of SARS-CoV-2 bears several signatures of these prior zoonotic events. 
It displays clear similarities to SARS-CoV that spilled over into humans in Foshan, Guangdong 
province, China in November 2002, and again in Guangzhou, Guangdong province in 20033. 
Both these SARS-CoV emergence events were associated with markets selling live animals and 
involved species, particularly civets and raccoon dogs4, that were also sold live in Wuhan 
markets in 20195 and are known to be susceptible to SARS-CoV-2 infection6. Animal traders 
working in 2003, without a SARS diagnosis, were documented to have high levels of IgG to 
SARS-CoV (13% overall and >50% for traders specializing in civets7). Subsequent serological 
surveys found ~3% positivity rates to SARS-CoV related (SARSr-CoV) viruses in residents of 
Yunnan province living close to bat caves8, demonstrating regular exposure in rural locations. 
The closest known relatives to both SARS-CoV and SARS-CoV-2 are viruses from bats in 
Yunnan, although animals from this province have been preferentially sampled. For both SARS-
CoV and SARS-CoV-2, there is a considerable geographic gap between Yunnan and the location 
of the first human cases, highlighting the difficulty in identifying the exact pathway of virus 
emergence and the importance of sampling beyond Yunnan. 
 
SARS-CoV-2 also shows similarities to the four endemic human coronaviruses: HCoV-OC43, 
HCoV-HKU1, HCoV-229E, and HCoV-NL63. These viruses have zoonotic origins and the 
circumstances of their emergence are unclear. In direct parallel to SARS-CoV-2, HCoV-HKU1, 
which was first described in a large Chinese city (Shenzhen, Guangdong) in the winter of 2004, 
has an unknown animal origin, contains a furin cleavage site in its spike protein, and was 
originally identified in a case of human pneumonia9. 
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Figure 1 | Phylogenetic and epidemiological data on the early COVID-19 pandemic in Wuhan. 

(a) Phylogenetic tree of early SARS-CoV-2 genomes sampled from Wuhan during December 2019-

January 2020. The split between lineages A and B is labelled with the coordinates and base of the 
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two differentiating nucleotide mutations. Cases with a known association to the Huanan or other 

markets are denoted by symbols (reported in ref. 10). (b) Map of districts of Wuhan showing the 

location of markets, the BSL-4 campus of the Wuhan Institute of Virology (where the coronavirus 

work of Dr. Shi Zhengli is performed) and the earliest known cases. (c-e) Location of recorded 

COVID-19 cases in Wuhan from 8th December to 31st December 2019. Cases with a home address 

outside of Wuhan city are not shown. (f-h) Map of districts of Wuhan indicating the first record of 

excess deaths due to pneumonia (shaded green) from 15th January 2020. Case and excess death 
data were extracted and redrawn from figures provided in ref 10. For more details see 

supplementary information. Map data copyright ©OpenStreetMap contributors.  

 

Based on epidemiological data, the Huanan market in Wuhan was an early and major epicenter 
of SARS-CoV-2 infection. Two of the three earliest documented COVID-19 cases were directly 
linked to this market selling wild animals, as were 28% of all cases reported in December 201910. 
Overall, 55% of cases during December 2019 had an exposure to either the Huanan or other 
markets in Wuhan, with these cases more prevalent in the first half of that month10. Examination 
of the locations of early cases shows that most cluster around the Huanan market, located north 

of the Yangtze river (Fig. 1a-e). These districts were also the first to exhibit excess pneumonia 

deaths in January 2020 (Fig. 1f-h). There is no epidemiological link to any other locality in Wuhan, 

including the BSL-4 campus of the Wuhan Institute of Virology (WIV) located south of the Yangtze 
and the subject of considerable speculation. Although some early cases do not have a direct 
epidemiological link to a market10, this is expected given high rates of asymptomatic 
transmission and undocumented secondary transmission events, and was similarly observed in 
early SARS-CoV cases in Foshan3. 
  
During 2019, markets in Wuhan – including the Huanan market – traded many thousands of live 
wild animals including high-risk species such as civets and raccoon dogs5. Following its closure, 
SARS-CoV-2 was detected in environmental samples at the Huanan market, primarily in the 
western section that traded in wildlife and domestic animal products, as well as in associated 
drainage areas10. While animal carcasses retrospectively tested negative for SARS-CoV-2, these 
were unrepresentative of the live animal species sold, and specifically did not include raccoon 
dogs and other animals known to be susceptible to SARS-CoV-25.  
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The earliest split in the SARS-CoV-2 phylogeny defines two lineages - denoted A and B11 - that 

likely circulated contemporaneously (Fig. 1a). Lineage B, which became dominant globally, was 

observed in early cases linked to the Huanan market and environmental samples taken there, 

while lineage A contains a case with exposure to other markets (Fig. 1a,b) as well as with later 

cases in Wuhan and other parts of China10. This phylogenetic pattern is consistent with the 
emergence of SARS-CoV-2 involving one or more contacts with infected animals and/or traders, 
including multiple spill-over events, as potentially infected or susceptible animals were moved 
into or between Wuhan markets via shared supply chains and sold for human consumption5. The 
potential emergence of SARS-CoV-2 across multiple markets again mirrors SARS-CoV in which 
high levels of infection, seroprevalence and genetic diversity in animals were documented at 
both the Dongmen market in Shenzhen4,12 and the Xinyuan market in Guangzhou13,14. 
  
Viruses closely related to SARS-CoV-2 have been documented in bats and pangolins in multiple 
localities in South-East Asia, including in China, Thailand, Cambodia, and Japan15,16, with 
serological evidence for viral infection in pangolins for more than a decade17. However, a 
significant evolutionary gap exists between SARS-CoV-2 and the closest related animal viruses: 
their genetic distances of approximately 4% (~1,150 mutations) equates to decades of 
evolutionary divergence18. Widespread genomic recombination also complicates the assignment 
of which viruses are closest to SARS-CoV-2. Although Rhinolophus bat virus RaTG13 collected 

in Yunnan has the highest average genetic similarity to SARS-CoV-2, a history of recombination 
means that three other bat viruses – RmYN02, RpYN06 and PrC31 – are closer in most of the 
virus genome (particularly ORF1ab) and thus share a more recent common ancestor with SARS-
CoV-215,16,19. None of these closer viruses were collected by the WIV. This demonstrates beyond 
reasonable doubt that RaTG13 is not the progenitor of SARS-CoV-2, with or without laboratory 
manipulation or experimental mutagenesis. 

  

Although no bat reservoir nor intermediate animal host for SARS-CoV-2 has been identified to 
date, initial cross-species transmission events are very likely to go undetected. Most SARS-CoV-
2 index case infections are unlikely to have resulted in sustained onward transmission20 and only 
a very small subset of spillover events from animals to humans result in major outbreaks. Indeed, 
the animal origins of many well-known human pathogens, including Ebola virus, Hepatitis C 
virus, poliovirus, and the coronaviruses HCoV-HKU1 and HCoV-NL63, are yet to be identified, 
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while it took over a decade to discover bat viruses with >95% similarity to SARS-CoV and able 
to use hACE-2 as a receptor21.  

Could SARS-CoV-2 have escaped from a laboratory? 

There are precedents for laboratory incidents leading to isolated infections and transient 
transmission chains, including SARS-CoV22. Aside from the 1977 A/H1N1 influenza pandemic 
that likely originated from a large-scale vaccine challenge trial23, there are no documented 
examples of human epidemics or pandemics resulting from research activity. 

  

The emergence of SARS-CoV-2 differs markedly from documented laboratory escapes that, with 
the exception of Marburg virus24, have been of readily identifiable viruses capable of human 
infection and associated with sustained work in high titer cultures25–27. No previous epidemic has 
been caused by the escape of a novel virus and there is no data to suggest that the WIV—or any 
other laboratory—were working on SARS-CoV-2, or any virus close enough to be the progenitor, 
prior to the COVID-19 pandemic. Viral genomic sequencing without cell culture, which was 
routinely performed at the WIV, represents a negligible risk as viruses are inactivated during RNA 
extraction28 and no case of laboratory escape has been documented following the sequencing 
of viral samples. 
 
Known laboratory outbreaks have been traced to both workplace and family contacts of index 
cases and to the laboratory of origin25–27,24. Despite extensive contact tracing of early cases 
during the COVID-19 pandemic, there have been no reported cases related to any laboratory 
staff at the WIV and all staff in the laboratory of Dr. Shi Zhengli were reported to be seronegative 
for SARS-CoV-2 when tested in March 202010. During a period of high influenza transmission 
and other respiratory virus circulation29 reports of illnesses would need to be confirmed as 
caused by SARS-CoV-2 to be relevant. Epidemiological modeling suggests that the number of 
hypothetical cases needed to result in multiple hospitalized COVID-19 patients prior to 
December 2019 is incompatible with observed clinical, genomic, and epidemiological data20.  
 
The WIV possesses an extensive catalogue of samples derived from bats and has reportedly 
successfully cultured three SARSr-CoVs from bats, all of which are genetically distinct from 
SARS-CoV-230–32. These viruses were isolated from fecal samples through serial amplification in 
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VeroE6 cells, a process that consistently results in the loss of the SARS-CoV-2 furin cleavage 
site33–39. It is therefore highly unlikely that these techniques would result in the isolation of a 
SARS-CoV-2 progenitor with an intact furin cleavage site. No published work indicates that other 
methods, including the generation of novel reverse genetics systems, were used at the WIV to 
propagate infectious SARSr-CoVs based on sequence data from bats. Gain-of-function research 
would be expected to utilize an established SARSr-CoV genomic backbone, or at a minimum a 
virus previously identified via sequencing. However, past experimental research using 
recombinant coronaviruses at the WIV has used a genetic backbone (WIV1) unrelated to SARS-
CoV-232 and SARS-CoV-2 carries no evidence of genetic markers one might expect from 
laboratory experiments40. There is no rational experimental reason why a new genetic system 
would be developed using an unknown and unpublished virus, with no evidence nor mention of 
a SARS-CoV-2-like virus in any prior publication or study from the WIV32,41,42, no evidence that 
the WIV sequenced a virus that is closer to SARS-CoV-2 than RaTG13, and no reason to hide 
research on a SARS-CoV-2-like virus prior to the COVID-19 pandemic. Under any laboratory 
escape scenario SARS-CoV-2 would have to have been present in a laboratory prior to the 
pandemic, yet no evidence exists to support such a notion and no sequence has been identified 
that could have served as a precursor. 

 

A specific laboratory escape scenario involves accidental infection in the course of serial 
passage of a SARSr-CoV in common laboratory animals such as mice. However, early SARS-
CoV-2 isolates were unable to infect wild-type mice43. While murine models are useful for 
studying infection in vivo and testing vaccines, they often result in mild or atypical disease44–48. 

These findings are inconsistent with a virus selected for increased pathogenicity and 
transmissibility through serial passage through rodents. Although SARS-CoV-2 has since been 
engineered49 and adapted by serial passage50–52, specific mutations in the spike protein,  
including N501Y, are necessary for such adaptation in mice51,52. Notably, N501Y has arisen 
convergently in multiple SARS-CoV-2 variants of concern in the human population, presumably 
being selected to increase ACE2 binding affinity53–56. If SARS-CoV-2 resulted from attempts to 
adapt a SARSr-CoV for study in animal models, it would likely have acquired mutations like 
N501Y for efficient replication in that model, yet there is no evidence to suggest such mutations 
existed early in the pandemic. Both the low pathogenicity in commonly used laboratory animals 
and the absence of genomic markers associated with rodent adaptation indicate that SARS-
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CoV-2 is highly unlikely to have been acquired by laboratory workers in the course of viral 
pathogenesis or gain-of-function experiments. 
 

Evidence from genomic structure and ongoing evolution of SARS-CoV-2 

Considerable attention has been devoted to claims that SARS-CoV-2 was genetically engineered 
or adapted in cell culture or “humanized” animal models to promote human transmission57. Yet, 
since its emergence, SARS-CoV-2 has experienced repeated sweeps of mutations that have 
increased viral fitness58,59. The first clear adaptive mutation, the D614G substitution in the spike 
protein, occurred early in the pandemic60,61. Recurring mutations in the receptor binding domain 
of the spike protein, including N501Y, K417N/T, L452R, and E484K/Q—constituent mutations of 
the variants of concern—similarly enhance viral infectivity54,55,62 and ACE2 binding53,63, refuting 
claims that the SARS-CoV-2 spike protein was optimized for binding to human ACE2 upon its 
emergence56. Further, some pangolin-derived coronaviruses have receptor binding domains that 
are near-identical to SARS-CoV-2 at the amino acid level40,64 and bind to human ACE2 even more 
strongly than SARS-CoV-2, showing that there is capacity for further human adaptation65. SARS-
CoV-2 is also notable for being a host generalist virus66, capable of efficient transmission in 
multiple mammalian species, including mink, tigers, cats, gorillas, dogs, raccoon dogs, ferrets, 
and large outbreaks have been documented in mink with spill-back to humans67 and to other 
animals68. Combined, these findings show that no specific human “pre” adaptation was required 
for the emergence or early spread of SARS-CoV-2, and the claim that the virus was already 
highly adapted to the human host57, or somehow optimized for binding to human ACE2, is 
without validity. 
  
The genesis of the polybasic (furin) cleavage site in the spike protein of SARS-CoV-2 has been 
subject to recurrent speculation. Although the furin cleavage site is absent from the closest 
known relatives of SARS-CoV-240, this is unsurprising as the lineage leading to this virus is poorly 
sampled and the closest bat viruses have divergent spike proteins due to recombination15,16,18. 
Furin cleavage sites are commonplace in other coronavirus spike proteins, including some feline 
alphacoronaviruses, MERS-CoV, most but not all strains of mouse hepatitis virus, as well as in 
endemic human betacoronaviruses such as HCoV-OC43 and HCoV-HKU169–71. A near identical 
nucleotide sequence is found in the spike gene of the bat coronavirus HKU9-172, and both SARS-

CoV-2 and HKU9-1 contain short palindromic sequences immediately upstream of this sequence 
that are indicative of natural recombination break-points via template switching72. Hence, simple 
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evolutionary mechanisms can readily explain the evolution of an out-of-frame insertion of a furin 

cleavage site in SARS-CoV-2 (Fig. 2).   

  
Figure 2 | Evolution of the furin cleavage site (FCS) in the spike protein of 

betacoronaviruses. (a) Sequence alignment of the region around the FCS in SARS-CoV-2 (NCBI 

accession MN908947) and bat coronavirus RaTG13 (NCBI accession MN996532) showing that 

the former was the result of an out-of-frame nucleotide sequence insertion. (b) Amino acid 

sequence alignment of the FCS region in representative members of the different subgenera of 

betacoronaviruses, highlighting the evolutionary volatility of this site and that the relevant amino 
acid motif (RRAR) in SARS-CoV-2 is functionally suboptimal. The residues predicted to be O-

linked glycans are also marked. For more details see supplementary information. 
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The SARS-CoV-2 furin cleavage site (containing the amino acid motif RRAR) does not match its 
canonical form (R-X-R/K-R), is suboptimal compared to those of HCoV-HKU1 and HCoV-OC43, 
lacks either a P1 or P2 arginine (depending on the alignment), and was caused by an out-of-

frame insertion (Fig. 2). The RRAR and RRSR S1/S2 cleavage sites in feline coronaviruses (FCoV) 

and cell-culture adapted HCoV-OC43, respectively, are not cleaved by furin69. There is no logical 
reason why an engineered virus would utilize such a poor furin cleavage site, which would entail 
such an unusual and needlessly complex feat of genetic engineering. The only previous studies 
of artificial insertion of a furin cleavage site at the S1/S2 boundary in the SARS-CoV spike protein 
utilized an optimal ‘RRSRR’ sequence in pseudotype systems73,74. Further, there is no evidence 
of prior research at the WIV involving the artificial insertion of complete furin cleavage sites into 
coronaviruses.  
 
The recurring P681H/R substitution in the proline (P) residue preceding the SARS-CoV-2 furin 
cleavage site improves cleavage of the spike protein and is another signature of ongoing human 
adaptation of the virus75. The SARS-CoV-2 furin site is also lost under standard cell culture 
conditions34,76, as is true of HCoV-OC4373. The presence of two CGG codons for arginines in the 
SARS-CoV-2 furin cleavage site is similarly not indicative of genetic engineering77. Although the 
CGG codon is rare in coronaviruses, it is observed in SARS-CoV, SARS-CoV-2 and other human 
coronaviruses at comparable frequencies77. Further, if low-fitness codons had been artificially 
inserted into the virus genome they would have been quickly selected against during SARS-CoV-
2 evolution, yet both CGG codons are more than 99.8% conserved among the >1,800,000 near-
complete SARS-CoV-2 genomes sequenced to date, indicative of strong functional constraints 

(supplementary information, Table S1).  

 

Conclusions 

As for the vast majority of human viruses, the most parsimonious explanation for the origin of 
SARS-CoV-2 is a zoonotic event. The documented epidemiological history of the virus is 
comparable to previous animal market-associated outbreaks of coronaviruses with a simple 
route for human exposure. The contact tracing of SARS-CoV-2 to markets in Wuhan exhibits 
striking similarities to the early spread of SARS-CoV to markets in Guangdong, where humans 
infected early in the epidemic lived near or worked in animal markets. Zoonotic spillover by 
definition selects for viruses able to infect humans. The laboratory escapes documented to date 
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have almost exclusively involved viruses brought into laboratories specifically because of their 
known human infectivity. 
  
There is currently no evidence that SARS-CoV-2 has a laboratory origin. There is no evidence 
that any early cases had any connection to the WIV, in contrast to the clear epidemiological links 
to animal markets in Wuhan, nor evidence that the WIV possessed or worked on a progenitor of 
SARS-CoV-2 prior to the pandemic. The suspicion that SARS-CoV-2 might have a laboratory 
origin stems from the coincidence that it was first detected in a city that houses a major 
virological laboratory that studies coronaviruses. Wuhan is the largest city in central China with 
multiple animal markets and is a major hub for travel and commerce, well connected to other 
areas both within China and internationally. The link to Wuhan therefore more likely reflects the 
fact that pathogens often require heavily populated areas to become established20. 
  
We contend that there is substantial body of scientific evidence supporting a zoonotic origin for 
SARS-CoV-2. While the possibility of a laboratory accident cannot be entirely dismissed, and 
may be near impossible to falsify, this conduit for emergence is highly unlikely relative to the 
numerous and repeated human-animal contacts that occur routinely in the wildlife trade. Failure 
to comprehensively investigate the zoonotic origin through collaborative and carefully 
coordinated studies would leave the world vulnerable to future pandemics arising from the same 
human activities that have repeatedly put us on a collision course with novel viruses. 
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