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Abstract: Linear cases of Bragg-Hawthorne equation for steady axisymmetric incompressible ideal
flows are systematically discussed. The equation is converted to a more convenient form in spherical
coordinate system. A new vorticity decomposition is derived. General solutions for 12 out of 16 cases
of linear equation are obtained. These solutions can be specified to gain new vortex flows, as
examples demonstrate. A lot of well-known solutions like potential flow past a sphere, Hill's vortex
with and without swirl, are included in these solutions as specific cases. Special relations between
some solutions are also explored.

Keywords: axisymmetric flow; Bragg-Hawthorne equation; Grad—Shafranov equation; Euler
equations; Beltrami flow; spherical vortex

1. Introduction

Bragg-Hawthorne equation [!! (or “B-H equation” in short) plays a central role in study of
axisymmetric steady flow of incompressible ideal fluids. Due to complexity of the equation
however, analytically solvable cases are rare. With special assumptions/restrictions for Bernoulli
function and the azimuthal velocity, the equation reduces to a linear one. Most of the known

analytic solutions so far are for such linear cases.

In this paper, an attempt is made to explore the linear cases in a systematic way. First, the
equation is rewritten in spherical coordinate system and the variable of polar angle is changed
from 0 to cos 6. This gives a new form of the equation that is more convenient to solve in most
cases. Following that, series of assumptions for Bernoulli function and the azimuthal velocity
that make the equation linear are listed. These assumptions lead to 16 combinations, each
associated with a special linear case of the equation. Majority of these 16 cases (except for 4) are
then solved, mostly by separate variable method. The results are series of general solutions with
special functions and constants. Many well-known solutions, including the potential flow around
a sphere, Hill’s vortex with and without swirl [?» ], Bogoyavlenskij’s solution of Beltrami
flow!¥], the Fraenkel-Norbury family of vortex rings P} ] etc., can be obtained from these

general solutions when constants are set to certain values.



Some linear cases of the equation have close relation, so do their solutions and the related
flows. For example, Hill’s vortex without swirl can be considered as a uniform flow plus an extra
velocity. Hill’s vortices with swirl can be considered as the Beltrami spherical vortex (the
eigenvector field of curl operator in spherical coordinate system, discussed in Section 7) plus a

special rotation. These are discussed in detail with the stream functions and velocities.

A new decomposition of vorticity is also derived. This decomposition applies to all flows
(that follow B-H equation) and helps to understand the impacts of Bernoulli function and the

azimuthal velocity to vorticity and to the flows.

The rest of this paper is organized as follows. In Section 2, we briefly recall the derivation of
B-H equation, especially the form in spherical coordinate system. In Section 3, series
assumptions for Bernoulli function and azimuthal velocity are listed and briefly discussed.
Section 4 is about the vorticity decomposition. Section 5 to Section 10 are devoted to solving

different cases of the equation. Section 11 offers a summary table and some further discussion.

2. Bragg-Hawthorne equation in spherical coordinates

For incompressible ideal fluids, the steady motions are described by (steady) Euler

equations, which can be written as
V-v=0 (2.1)
{vx(va) =VH (2.2)
where v is velocity and H is the Bernoulli function. LHS (left-hand side) of (2.2) is also known
as the Lamb vector, denoted as

L=vXx(VXxv)=vXw (w=7VXwisthe vorticity).

For (2.2) to stand, VV X L = 0 is required (and is sufficient, assuming the flow is in a simply
connected domain). A (non-irrotational) flow meeting this requirement is a generalized Beltrami

flow 7). (or is further a Beltrami flow if L = 0 in the whole domain %)),

In axisymmetric case, it is possible to define the Stokes stream function 1 and an

independent function C so that

_ 1 oY _ 1 oY _cC
Ur = o730 V0 = — 550 © = o
r2sinf 060 rsinf or rsin @

(2.3)
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in spherical coordinate system (7, 8, ¢), or

10y

_C ., 1
b = paz,v¢—p,vz—pap (2.4)
in cylindrical coordinate system (p, ¢, z).

With the stream function, (2.1) is automatically satisfied. Taking the spherical coordinate

case as example, as all derivatives with respect to azimuthal angle ¢ vanish, vorticity is

_ 1 ac 1 ac 1 9%y cosé 9y 1 9° 1p)
w_(rzsin969)er+( rsin96r)ee+( rsin@ 6r2+r351n29 060 r3sinf 062 (p(2 5)

and the three components of Lamb vector are

1 9 1 92 cos@ 9 1 92 C 1
Le=(-—=2)(-—=22+- 222 2N _ () (-==%) 26
rsin@ or rsinf or? r3sin20 080 r3sin6 002 rsinf rsin@ or

_C 1 9cy 1 93y 1621p cos6 P 162_1,0
Le " rsind (r2 sin @ 69) r2sinf 060 ( rsin@ ar2 ' r3sin20 00 risin@ 692) (2'7)
__ 1 (awac_ayac
Ly = r3sin2 0 (ar 96 a8 ar)' (2.8)
As the flow is steady, each of H and C is a function of ¥ only ). Thus, we have the
following “chain rules” for H(y) and C(y):
oH _ dHy dH _ dH @y oc _ dcaw oc _ dcay 2.9)
ar  dy ar’ 90  dy 90’ dr dy ar’ 80  dy 98’ )
In this case, the Lamb vector components in (2.6) ~ (2.8) simplify to
_ _ 1 9%y  cos@ oY | 193%*Y oY
Ly = r2sin2 0 (67'2 72sin0 00 T 72902 T € ) or (2.10)
_ 1 62_1,0 __cos@ 9y i oY
7 Lo _r3sin29(6r2 r2sin6 90 + 2962 +Cd1,b) (2.11)
(L, =0 (2.12)

Equation (2.2), if rewritten with (2.9) and (2.10) ~ (2.12), becomes an identity in e,

direction (both sides vanish) and two identical scalar equations in e, and ey direction, both read

% _ cosh oY 10% _ 2 G2gdH  ~dC
0r2  r2sinf 00 12062 resin gdtp Cd¢ (2.13)



This is the Bragg-Hawthorne equation ! (in spherical coordinate system). It is also referred

to as Hicks equation ['% or Squire-Long equation !''}-112]. The Grad-Shafranov equation in ideal

magnetohydrodynamics also has the same form [13}[14],

Changing the variable from 6 to cos 8, we have %~ _sing—2_and v _
’ 26 d(cos 6) 262
.2 a*y Y
sin“ 0 3cos8)? €08 0 3cos 8" (2.13) becomes
62_1.[) sin? 0 621,0 2 a2 d_H _ d_C
ar? 7z o(cosoyz | oM 0 iy dy (2.14)

Compared to (2.13), LHS of (2.14) only has 2 terms. Considering sin? § = 1 — cos? 6,
(2.14) has a simple form with respect to the variable cos 8. This is convenient. A lot of solutions

in this paper are based on this form of the equation.

The above derivation of the equation also applies to the case in cylindrical coordinate

system (p, ¢, z). In that, equation (2.13) or (2.14) takes the well-known form as

0w _ 10y 0 _ paH _ dc
dp2 pap+az2_p dy dy (2.15)

This equation, either in the form of (2.13), (2.14) or (2.15), is the governing equation for
ideal incompressible axisymmetric steady flows. For a specific case of the functions H (1) and

C(y), if we can find the stream function vy satisfying the equation, velocity can be calculated

and Euler equation (2.2) is solved.

In general, however, this could be difficult. Mathematically, H (1) and C (1)) can be
arbitrary (smooth) functions of Y. They can make the equation complicated. Nevertheless, when

H(y) and C(y) are in certain forms, the equation can be linear and solvable.

3. Linear cases of Bragg-Hawthorne equation

LHS of the equation, either in (2.13), (2.14) or (2.15), is linear with respect to the stream

function. If the two terms on the RHS are also linear, the equation is linear.
Assuming Hy, Yy, A, A1, 45, a and ay, a4, a,, as are constants, for the first term on RHS to
be linear, we have

dH _
dy

24H _

(Hi): H = H,, (then r% sin? 8 0,p =

0),
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(H2): H = Hy + Ay, (then 72 sin? 0 Z—Z = Ar?sin? 0, p? Z—Z = 1p?),
(H3): H = Hy + AY?, (then 2 sin? 3—; = 2Ar?sin? 0, p? Z—Z = 21p%Y).
Ha): H = Hy + A, + .92, (then r2 sin? 8 2L = 24,72 sin? 9 + A,r% sin? @,
ay
dH
p* oy = 2hap*b + A1p%).
For the second term to be linear, we can have

(C1): C = aipy, (then Cz—:; = 0),

(C2): C = ay/ o + ay 1, (then CZ—S) = %a%az = %a, re-denoting a = a?a,),

(C3): C =y + aap, (then cj—; = a% + ay),

d
(Ca): C = al\/lpoz + a, ¥ + az?, (then Cﬁ = a?azy + %a%az = ay + ay, re-
denoting a = a?as, ay = %a%az).

Mathematically, some constants in the list can be absolved or combined. But keeping them

in the above format will make it convenient for discussion.

Constant 1 in Ci1, Cz2 and Cs does not impact the equation, thus has no impact on the
solutions. But when C is interpreted linking to azimuthal velocity, 1, can bring big difference
for azimuthal velocity and for the flow. For Cs, most of the feasible cases require 1, = 0. But to
maximize generality, Y, is kept here as a constant, and the different impacts of Y, = 0 and

Yo # 0 will be discussed specifically.

The cases in the list are not always independent. For example, Hi can be considered as a
special case of H2 (when 4 = 0); Ha is a “combination” of H2 and Hs. But the equations and
solutions for these cases are so different and are worthy to be discussed separately. For this

consideration, they are listed as separated cases.

Cs and Cs actually give the same form of equation (with different denotation for the
constants). So, they would share the same stream function as mathematical solution of the

equation. However, when the same solution is respectively interpreted for Cs and Ca, the flows



can be significantly different (on velocity, vorticity and physical feasibility, etc.). For

completeness consideration, they are treated as two separated cases in the list.

In a more general view, when the two terms on RHS of the linear equation are expanded,

they can become up to four terms, which can be written on RHS of the following “model

equation”:

92y | sin20 9%p . .

o7 T 7 stcosey = M sin® 0 4+ Agr®sin® 6 — Agih — Ag €AY
or in cylindrical coordinates

0%y 19y . %Y

— ———+ > =Ap*Y + Agp® — A — A (3.2)

ap2 pap 0z2

A4, Ay, A1 and A, here represent certain form of the constants in the list. Different cases of

function H and C are associated with presentation/absence of these 4 terms.

Obviously, with Hi ~ H4 and Ci ~ Ca, there are 16 combinations, each making (2.13), (2.14)
or (2.15) a linear equation of ¢ (i.e., each is related to a combination of the A4, Ay, A; and A
terms in the model equation). For convenience, we will denote these 16 combinations as HmCn

(m, n = 1,2,3,4) in the rest of this paper.

4. Vorticity decomposition and flow properties

Before moving to solutions of particular cases, it is worthy to further investigate impacts of

the two functions, H and C to vorticity and to the flow.

Cc
rsin@

Recalling (2.3) and (2.4), we have v, =

(or vy = % in cylindrical coordinates).

Function C is indeed the linear azimuthal velocity multiplied by distance to the z-axis. 2nC is
often considered as circulation along a circle around z-axis. From another angle of view, C can
also be considered as the “azimuthal velocity moment” with respect to z-axis. As mass density is
a constant in incompressible fluid, C is also representing angular momentum density of the fluid

(with respect to z-axis).

In any of these considerations, an assumption (or a restriction) on C is basically an

assumption (restriction) on azimuthal velocity related to the stream function . In other words, C



indicates how the fluid is moving around the symmetric axis. It is intuitive to expect that C has

close relation with vorticity of the flow.

Bernoulli function H, on the other hand, is the inverse gradient of Lamb vector, which is just
the cross-product of velocity and vorticity. It is also natural to expect that H is closely related to

vorticity.

With (2.3), (2.9) and (2.13), vorticity in (2.5) can be rewritten as

w—ﬂ( L W L e, +—CS ¢ )—rsin@d—He
" dy \r2sin0 a9 " rsin6 or 4 ay ¢
which is also
dac . dH
w=—v—rsinf—e 4.1

Same relation exists as well in cylindrical coordinates, where we have

w vV—p—ey 4.2)

T

Either (4.1) or (4.2) indicates that vorticity w can be split into two portions. One is in the

ac

velocity direction, proportional to velocity with a scale factor ™

. The second portion is on the

. o . . . d . .
azimuthal direction, with magnitude proportional to ﬁ (and to the distance to z-axis).

In such a sense, it can be considered that functions H and C construct vorticity, or more

: o C c , . o
specifically, derivatives of H and C compose vorticity in the flow. " decides vorticity in the
o ., dH | . C o o
direction of velocity; e decides vorticity in azimuthal direction. Although these two directions
in general are not orthogonal, these two components make up vorticity at each point in the flow.

(4.1) or (4.2) thus can be consider as a decomposition of the vorticity. It applies to all flows

that B-H equation stands (i.e., all axisymmetric steady flows of incompressible ideal fluid).

Actually, the relations of H and C to the vorticity components are obvious and are often
implied in derivation of equations (see, e.g., Batchelor [9], §7.5). But explicitly putting them in
the form of (4.1) or (4.2) straightforwardly shows the impacts of H and C to vorticity and to the

flow.



. . dc ., dH
For convenience, we will further denote wp = Ev, wy = —rsinf we(p (orwy =

dH . g : : - :
—P 3y € 0 cylindrical coordinates), and call wg and w4 Beltrami vorticity and azimuthal
vorticity, respectively. Total vorticity then is sum of these two vectors, i.e., ® = wp + wWy.

As Beltrami vorticity wp is in parallel to velocity, it does not impact Lamb vector. We can

just count on the azimuthal vorticity w4 when calculating Lamb vector. In other words,

. dH dH .
regardless of wg, we always have L = v X w4 = —7r sin Hﬁv X e, (orL = PV X eg in
cylindrical coordinates).

This is consistent with the fact that (in ideal incompressible axisymmetric steady flows)
Lamb vector is always perpendicular to the azimuthal direction (except for points in the
symmetric axis). Following this is also the corollary that Lamb vector is always coplanar with

the symmetric axis in such flows.

Applying this decomposition to flows in the list in Section 3, for the HiCn cases, as 2—; =0,

azimuthal vorticity w4 vanishes. Total vorticity contains solely the Beltrami part wg. Lamb

vector thus vanishes as well. For HiC1, wpg also vanishes, so does the total vorticity. It is hence

aiaz

—————v. Vorticity is in
2\/Yo+azyp

an irrotational/potential axisymmetric flow. For HiC2, w = wg =

parallel to velocity with a non-constant coefficient. This is a non-linear Beltrami flow (i.e., the
velocity field is a non-linear Beltrami field). For HiCs, we have @ = wp = av. Vorticity is in

parallel to velocity with a constant coefficient. This is linear Beltrami case. HiC4 on the other

hand, is non-linear Beltrami flow again, as w = wg = GlG:t2a51)
2J¢m2+a2¢+a3w2
In the H2Cn family, azimuthal vorticity w, = —Ar sin6 e, (or w4 = —Apegy in cylindrical

coordinates). It is proportional to the distance to z-axis. For H2Ci1, wg vanishes. Total vorticity is
made up solely by w4, thus is proportional to the distance to z-axis as well. This is actually the
assumption of the Fraenkel-Norbury family of vortex rings P+ 1! (including the Hill’s vortex
without swirl). As can be expected, the general solution of H2Ci will include Hill’s vortex as a
special case. H2C3 is adding the Beltrami vorticity part wg = av to H2Ci. This is actually the

case of Hill’s vortex with swirl, which will be discussed in Section 9. For H2C2 and H2C4, both



Beltrami vorticity wp and azimuthal vorticity w4 present in the total vorticity, and the flows

have more complicated dependency to H and C.

d . . . . .
In the H3Cn and H4Cn cases, as ﬁ explicitly contains 1, azimuthal vorticity is now directly

tied with 1 (in opposite to HiCn or H2Ca where 1 is not explicitly involved in the expression of
azimuthal vorticity). The equation is still linear, but this azimuthal vorticity brings an extra term
with the unknown function 1 to the equation and makes the solutions complicated. These cases

will be further discussed in Section 10.

As an aside, the second term on RHS of the B-H equation, C %, has a notable property of
symmetric. This can also be analyzed by applying the vorticity decomposition.

Mathematically, function C can change to the opposite sign without impacting the equation.
If ¢ is a solution of the B-H equation related to C(y), ¥ is also a solution of the equation
related to —C (). Physically, this implies that flows governed by B-H equation are “two-way

flows”. The azimuthal velocity v, = ﬁ or vy = % can change to the opposite direction and

the flow still satisfies the same equation. Equivalently speaking, for each flow as a solution of B-
H equation, there exists its chiral symmetric flow (with opposite azimuthal velocity) to form a
pair.

From vorticity decomposition point of view, when C (1) changes sign (and 1 remains the
same), velocity

1 % 1 % C

T 12sin@ a6 "  rsinfar 2 ' rsing @

changes chirality (i.e., from (vr, Vg, v(p) to (vr, Vg, —v(p)), but Beltrami vorticity

_dC( 1o, 1w, c )

Wp = — —

r2sin@ 90 T rsinf or 9+rsinee§0
undergoes a half-round rotation along e, direction without changing chirality (i.e., from
(a)Br, Wgg, a)Bq,) to (—a)BT, —Wpgg, ngo)). At the same time, azimuthal vorticity w4 =

., dH
—7rsinf . e

 remains unchanged. Total vorticity @ = wp + w4 thus changes to a new vector

that in general is neither rotational symmetric nor chiral symmetric to the original vorticity

before C changes sign. Despite the change on vorticity however, Lamb vector remains the same.



5. Axisymmetric potential flow (H1Cy)

Combination (H1C1) is the simplest one in the list. As discussed in Section 4, all flows in

this case are axisymmetric potential flow.

As both terms on RHS of B-H equation vanish, (2.14) becomes

az_w sin29 9%y
ar2 r2 9(cos)? (5.1)

Let Y = R(r)O(cos 0) and apply variable separation method. With the separation constant

denoted as n(n + 1), the two separated questions are
r?’R—n(n+ 1R =0 (5.2)
sin?0 +n(n+1)0 =0 (5.3)
Solution of (5.2) is R = k7™ + kyr™™.

kq, k,, n here, as well as ks, k4, ks, k¢, ko, k and K, in expressions later in this paper are
independent constants. Mathematically, they can be arbitrary real numbers, or theoretically even
be imaginary numbers in some cases. However, to have the stream function and velocity

physically meaningful, restrictions may apply to them.

In this paper, we will consider a flow (from a solution of the B-H equation) with no singular
velocity (i.e., no infinite nor discontinuous velocity) in a domain as “physically feasible”. When
the domain is not the whole space, the boundary conditions can be provided by solid boundary,
or by other flows outside the domain. In the latter case, the flows inside and outside the domain
should have zero normal velocity and continuous tangential velocity at the boundary.
Equivalently, this requires inside and outside flows to have constant (normally zero) stream

function and continuous stream function gradient on the boundary.

For (5.3), @ is function of cos 6, and derivative @ is with respect to cos 6. If we replace the

. . . . ... d(sin8) _ _ cos 6
unknown function @ (cos ) with sin 8 T'(cos 6) and apply the identities 2ot — smg’
d*(sing) _ 1 2 . 1 _ ..
Acos0) — smie (5.3) becomes sin“ 8T —2cosO T + [n(n +1) - 0] T = 0. This is an

associated Legendre equation of T'(cos €), thus is solved by linear combination of the associated
Legendre function of the first and second kind, Bl (cos 8) and Q2 (cos 8). Solution of (5.3) hence

can be written as

10



O(cos 0) = sin B [k3PL(cos 0) + k,Qk(cos0)]. (5.4
Combining it with solution of (5.2) gives the general solution of (5.1) as
Y = (k™ + kyr™) sin 6 [k3Pl(cos ) + k,QL(cos 9)]. (5.5)

With special settings for the constants, stream function i can be in simple forms. For
example, whenn = 1, k, =0, k; = —1, k, = 0, (5.5) gives Y = k72 sin? §. This is a uniform
flow with velocity U = 2k in z-direction.

If k, and k, are both non-zero, the radial portion in (5.5), R(r) = k;r™*1 + k,r " has a

1
ky\ 2n+1 . .. .
zeroatr =1y = (— k—z) "™ In the case that such 7y is a positive real number, stream function 1
1

is zero at surface of the sphere r = ;. The flow outside the sphere is a potential flow around that

sphere (while the flow inside the sphere is singular at r = 0, thus is not physically feasible.)

3
In this case, if we further have n = 1, k, = 0, we have ¢ = %rz (1 - 2—3) sin? @ (where

U=—-2kiks,a=1,=(— :—j)l/ 3 ). This is the well-known potential flow past the sphere r = a.

When n > 1, the associated Legendre functions in (5.5) can give more complicated potential
flows around the sphere. Some examples can be found in Section 7 (see equation (7.8b) and Fig.

5).

As a property of the C; flows (i.e., flows in any HnCi case), as long as function C is a

constant, its value does not impact the equation, thus will not impact the solution. Azimuthal

velocity v, = — hence is independent to the solution. In principle, velocity (v, vg) in the

meridian plane derived from solution of an HnCi equation can be with any azimuthal velocity

c : . . . :
Vp =5 a8 long as C is a constant. When C # 0, this v, introduces a circular movement with
uniform angular momentum density with respect to z-axis. This is an “irrotational rotation” (as it
does not impact the vorticity). In this sense, constant C brings a rotation to HnCi flows without

impacting vorticity nor impacting velocity in the meridian plane.

Such a rotation has singular velocity at z-axis, though. It is physically feasible only for
special cases (e.g., in a domain that is not overlapping z-axis. An example can be found in

Section 8, which is the swirled case of Fraenkel-Norbury solutions.)

11



Case HiCi can also be solved in cylindrical coordinates. Equation (2.15) for HiCi is

0%y 109 0% _
907 p6p+622_0 (5.6)

Let Y (p,z) = P(p)Z(2), (5.6) can be separated to two equations as pP — P + kpP=0 and
Z — kZ = 0 (k is the separation constant). The latter one is solved by Z(z) = ks eVkz 4
k4e“/EZ. The former one can be converted to a Bessel equation of F(x) (of order 1) by further

replacing P(p) by xF (x) (with x = Vkp), thus is solved by linear combination of the Bessel

function of the first and second kind, J; and Y;. Overall, the general solution of (5.6) is
¥ = [kap)y(Vkp) + kap¥s (V)] (Rse 2 + keye V¥ 2) (5.7)

When k > 0, the section related to z is unbounded on one side (or both sides, depending on
k5 and k,) of z when z — +oo, thus the feasible flow only can exist in a domain excluding upper
or lower “end” of z-axis. When k < 0, the flow is periodic (and bounded) along the whole z-

axis.

In passing, ¥ = k; p? + k,z + k5 is also a solution of (5.6). This is not from variable
separation method, thus is not included in (5.7). When k, = 0 and k3 = 0, it converts to P =

k, p?, which is equivalent to the special form of (5.5), i.e., the uniform flow = k72 sin? 6.

6. Axisymmetric non-linear Beltrami flow (H;C>)

The solution of HiCi can be “extended” to solve HiCz. Taking the spherical coordinates case

first, equation (2.14) for HiCz is

9%y | sin’6 0% _  a

or2 r2 9(cos)2 2 (6.1)

This can be considered as the homogeneous equation (5.1) plus a constant inhomogeneous

term on the RHS. It thus can be solved by adding a particular solution, * = — %rz to general

solution of (5.1). This gives
Y = (k™ + kyr ) sin 6 [k3P(cos ) + k,QL(cos )] — %rz (6.2)

Compared to (5.5), the particular solution Y * brings new features for the flow of (6.2). It

actually turns the potential flow in (5.5) into a non-linear Beltrami flow.

12
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Fig. 1. vy in x-z plane brought by y* for HiCz flow

If we calculate the velocity from (6.2) and compare it to velocity from (5.5), 1* does not
impact v,., but it brings an addition vy = > S?n 5 to the polar velocity vg. In the meridian plane,
this v, represents a “rotation” around the origin point, with different magnitudes at different

polar angles (and is singular on z-axis). Fig. 1 shows this v, in x-z plane (when a = 1).
= 2¥otazd o non-

The impact of 1* to azimuthal velocity is more complicated. As v, = ing

linear function of 1, the impact of Y* to v,, is not simply a linear addition.

Theoretically, (6.2) can be specified to various of flows depending on the constants.
However, most (if not all) of them may inherit the singularity from v, thus need to be within a

domain excluding z-axis. Besides, for v,, to be real, it is required that 1 + a,y = 0. This may

add more restrictions to the flow.

As an example of the feasible HiCz cases, when k; = % andn=1,k, =0,k; =-1,k, =

0, stream function (6.2) becomes ¢ = — %rz cos(26). This is a combination of the uniform flow

of (5.5) with U = a in z-direction (i.e., ¥ = %7”2 sin? 6) and the rotation of v shown on Fig. 1

(that is brought by the particular solution y* = — %rz).
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2.2
143 2
.. . . a cos(26 a1J¢0— 74 cos(20) .
Velocity in this case is v, = acos 8, vy = —#, Uy = 2 (as defined in
2 sin@ rsinf
2
1

2
4a2 r2 cos(268) > 0. When

a

Section 3, a = a?a,, Y, is a constant). A real v, Tequires P, —

Yo < 0, this requirement is satisfied outside of the revolution-solid defined by hyperboloid

4

r2 cos(20) = azll; ¢ This is the domain the flow exists (as shown in Fig. 2). Velocity has no
1“2

singularity in this domain. On surface of the hyperboloid, ¥ is a constant, v,, is zero and velocity
is tangential to the surface.

The requirement of 1, < 0 is critical to ensure feasibility of the flow. If Y, > 0, the

a?a? ) .
14 212 cos(20) = 0) intersects z-axis.

hyperboloid has two sheets. The domain (in which 1y —

In that z-axis segment, vy and v,, are singular and the flow is not feasible.

Similar to the spherical coordinate case, HiCz in cylindrical coordinates,

3y 10y 0% _ _a
a_p2 - ;5 + 52 3 (6.3)
can be solved by adding a particular solution ¥* = — %zz oryp* = % p2(1 — 21np) or their

combination 1* = kog p*(1=2Inp) — (1 — ko) 2% t0 (5.7).

Fig. 2. An HiC2 flow outside a hyperboloid
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7. Beltrami spherical vortex (H:C3)

As discussed in Section 4, for HiCs, as @ = av, velocity field is a linear Beltrami field.

Velocity in this case is eigenvector of the curl operator (and a is the eigenvalue).

In [15] or [16], a solution of velocity field for this case is given by directly solving w = v
with variable separation method (i.e., without employing stream function). As flows in this case
have some significant properties and are important for further discussion, here we will re-solve it

in stream function form.
General case of C3 is C = ay) + 1. For convenience, consider 1, = 0 first. Equation (2.14)
in this case is

R sin?9 92
Py st 0 _ oo
ar2 r2 9(cos )2

(7.1)

Lety = R(r)@(cos ), (7.1) can be separated to the following 2 equations (with n(n + 1)
being the separation constant):

r?R + [a’r? —n(n+ 1)]R =0 (7.2)

sin?6 @ +n(n + 1)0=0 (7.3)

(7.2) can be converted to a spherical Bessel equation of F(x) by replacing R(r) by xF (x)
(with x = ar). Thus, it is solved by linear combination of the spherical Bessel function
Jn+1/2(ar) and Yy 5 (ar). (7.3) is the same as (5.3), and hence is solved by (5.4). Combining
these gives the general solution of (7.1) as

W = 12[kiJpi1/2(ar) + kY1 2(ar) | sin 6 [k3Bl(cos 6) + kuQr(cos6)]  (7.4)

Ifweseta=1, k, =0,and k3 = 1, k, = 0, consider the case when n is a positive integer,

and re-denote constant k; as —K,,, we have the special case of (7.4) as
Y = —Kpr'/?],41/2(r) sin 6 Bl (cos ) (7.5)

Submitting this into (2.3), the velocity can be found the same as in [15] and [16]:

v, = Kpn(n+ D)r=3/2], .1/, (r)B,(cos ) (7.6a)
Vg = Knr_l/2 Un—l/z (T) - n]n+1/2 (T‘)/T]Pnl (COS 9) (7-6b)
Vp = —Kut 2] 54172 (r)Pi (cos 0) (7.6¢)
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Beltrami Spherical Vortex Beltrami Spherical Vortex Beltrami Spherical Vortex
Stream Function Contours. n=1 Stream Function Contours. n=2 Stream Function Contours. n=6

Fig. 3. Stream function contours of some Beltrami spherical vortices (in x-z plane)

This is a family of multi-layer spherical vortices, indexed by n (and will be referred to as
Beltrami spherical vortices in this paper). As descripted in [16], the field is split by zeros of
Jn+1/2(r) (i.e., zeros of v, and v,,) into homocentric spherical layers. Inside each layer, there are
n count of vortex rings, separated by the surfaces Pl (cos ) = 0 (i.e., vy = 0, vy = 0). Fig. 3
shows contours of stream function when n is 1, 2 and 6. Examples of velocity field (when n =

1, 2, 3) can be found in Section 15 of [16].

As shown by the contours, the zero surfaces of J,41,,(r") and P, (cos 6) (i.e., zero surfaces
of ) split the whole field into axisymmetric and coaxial cells that each contains one vortex ring.
On the zero surfaces, velocity is only on the tangential direction. Hence, the fluid inside each cell

is contained within that cell all the time.

From (7.5) and (7.6), stream function and velocity have no singularity in the whole space.
Thus, such a Beltrami vortex theoretically can steadily exist by itself in the whole space. In other
words, it does not have to be moving in a potential flow (like Hill’s vortex) or to be surrounded

by other flow outside a restricted domain to be physically feasible.

Nevertheless, it is also possible to assemble a Beltrami vortex with potential flow outside a

sphere, similar to the case of Hill’s vortex.

For the first order vortices in the family (i.e., n = 1), at the spherical interfaces between

layers, where J;,11/, () = 0 thus ¢ = 0, both v, and v, vanish, and the polar velocity vy is
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proportional to P} (cos 8) = — sin 6. This exactly matches the case of irrotational flow past a
sphere. Thus, we can have this Beltrami vortex inside the sphere and match it with a potential
flow outside.

Specifically, in this case, the stream function can be written as

sinr

Y =K; ( — cosS r) sin?@, (r < D, D is one of the solutions of r = tanr) (7.7a)

"
Y = %Kl cosD (r2 — DTg) sin0, (r = D). (7.7b)

Obviously, in this case the inside and outside flow both have vanished stream function on

the surface of sphere r = D, and gradience of stream function is continuous on that surface.

Depending on which solution of r = tan r parameter D is set to, the vortex inside the sphere
can have single or multiple layers. Fig. 4 shows 2 examples of such vortices with 1 layer (D =

4.49) and 3 layers (D = 10.90), respectively.

When n > 1, v, and v, still vanish on the interfaces between spherical layers, but the
tangential velocity vy at these interfaces has more complicated dependency to 8 (rather than just
being proportional to sin 8 when n = 1). Even in this case, theoretically it is still possible to

match the vortex inside a sphere by a (high order) irrotational flow outside.

1-Layer First Order Beltrami Spherical Vortex 3-Layer First Order Beltrami Spherical Vortex
With Irrotational Outside Stream With Irrotational Outside Stream

20

]

@

IS

)
o

N

-10 -5 0 5 10 -20 -15 15 20

X X

Fig. 4. 1-layer and 3-layer first order Beltrami spherical vortices
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Note that for HiC1, stream function (5.5) has the same polar angle section as in (7.4). With
constants properly selected, a high order (i.e., n > 1) axisymmetric potential flow of (5.5)
outside a sphere can match the same order of Beltrami vortex of (7.4) inside that sphere with
zero stream function and continuous stream function gradient at the interface. This is an

extension of the “assembled flow” of (7.7).
In this case, the stream function is
Y = KoY 311/, (r) sin@ Bi(cos 8), (r < D, D is one of the zeros of J,41/2(1))  (7.8a)

Jn-1/2(D)
2n+1

Y =K, (D~m+1/2pntl _ pnt3/2-1) 5in @ Pi(cos @), (r = D). (7.8b)

When n = 1, (7.8) simplifies to (7.7) (with some constants re-denoted). Two examples of
(7.8) are shown in Fig. 5. Note that when n > 1 the outside flow has unbounded velocity in far
field. Such a vortex is more of a theoretical model, as physical feasibility is limited due to the

outside flow.

(7.5) is only a special case of the general solution of (7.1). Setting constants in (7.4) to other

values will give other kinds of flows.

3rd-Order Beltrami Spherical Vortex (2 Layers) 5th-Order Beltrami Spherical Vortex (1 Layers)
With Irrotational Outside Stream With Irrotational Outside Stream

©

-15 -10 -5 0 5 10 15

Fig. 5. High-order Beltrami spherical vortices surrounded by potential flow
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' 3 i . 0% | sin’6 3%y
When iy, # 0 in C = ayp + 3, the equation for HiCs is P 3(cos 0)2

=—a’yP +

ay,. This is equation (7.1) plus a constant inhomogeneous term ay, on the RHS. It is solved by
Yo

adding the particular solution Y* = — to (7.4). (Another way to solve this equation is to replace

Ybyyp — % so to convert it to the same form as (7.1). This gives the same result.)

In this case, the particular solution Y* = — % brings to the flow an additional azimuthal

velocity, which is singular at z-axis. Such an HiCs flow with Y, # 0 is feasible only when it is

inside a domain not overlapping z-axis.
In cylindrical coordinates, when Y, = 0, equation (2.15) for HiCs3, is

0 _ 100 0% _
252 pap+azz_ a“y (7.9)

This can be solved the same way as that for (5.6). The solution is in the same form as (5.7),

with constant k in the P(p) or in Z(z) section of (5.7) biased by a?. That is,
¥ = [kap)y (Vkp) + kap¥y (VEp)] (kae K= 7 + kyeVima7) (7.10)

Same as in the spherical coordinates case, adding p* = — % to (7.10) gives the solution to
the 1, # 0 case for HiCs in cylindrical coordinates.

Mathematically, HiC4 and HiC3 have the same form of equation, thus they share the same
solutions. They also have the same v, and vg (or same v, and v, in cylindrical coordinates), but
as these 2 cases have different function C, azimuthal velocity v, and vorticity are different. As

discussed in Section 4, the flow in HiCs is a non-linear Beltrami flow (rather than a linear

Beltrami flow for HiC3).

8. Hill’s vortex and extension (H>C;)

For Hill’s vortex [?], or a bigger group, the Fraenkel-Norbury family of vortex rings [°}- [6}-[8]
the flow in the “core region” is featured by (a) swirl free and (b) vorticity is proportional to

distance to the symmetry axis. In terms of B-H equation, feature (a) requires v, = 0, thus C = 0.

Considering the vorticity decomposition, vorticity by (4.1) becomes @w = —r sin 8 Z—Z e, (orw =
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dH . g : : dH
—P 3y € 0 cylindrical coordinates). In this case, feature (b) translates to = constant. Flows

meeting (a) and (b) hence can be described by H = Hy + Ay and C = 0. Obviously, this is a
subset of H2Ci.

As discussed in Section 5, for any HnC1 case, value of constant C is independent to the
equation. Mathematically, a solution in such case is compatible with arbitrary constant C. A non-
zero C brings non-zero v, which is an irrotational rotation around the z-axis (and is singular in
the z-axis, thus is feasible only in a region not intersecting z-axis). Theoretically speaking (i.e.,

regardless of the singularity), feature (b) does not have to be paired with feature (a) in a flow.

For any flow of H2C1, (b) is always valid. In this sense, the inner flow in Fraenkel-Norbury
family can be considered as the swirl-free subset of H2C1 (while Hill’s vortex is a special case in

the Fraenkel-Norbury family).
Equation (2.14) for H2C1 is

62_1,0 sin? 0 62'4} _ 2 2
32 T 7 3tcos0)? = Ar©sin“ 0 (8.1)

This is equation (5.1) plus an inhomogeneous term on the RHS. A particular solution for

@.Disy* = %r‘* sin? 8 + 1. Adding it to the solution of (5.1) gives the solution of (8.1) as

Y = (kyr™ + kyr™) sin 6 [k3Pl(cos 0) + k,Qk(cos )] + lior‘* sin?@ +vy, (8.2)

Similar to the case of HiCa, as per (2.3) velocity in radial and polar directions are linear with
respect to the stream function 1, the particular solution ¥* in (8.2) is linearly adding an extra

velocity v* in meridian plane to the flow of (5.5). This extra velocity can be calculated from y*
as vy = %rz cos 0, vy = —%rz sin 6. Fig. 6 shows such a v* when A = 1. It is this extra

velocity that turns the potential flows of (5.5) into H2C1 flows whose vorticity is proportional to

distance to the symmetry axis.

By itself v* is unbounded in far field. As vorticity is proportional to distance to z-axis,
vorticity is also unbounded when p = r sin 8 approaches infinity. To avoid such infinite velocity
and vorticity, a physically feasible H2Ci flow in general should be inside a bounded region, with
proper boundary conditions provided by another flow outside (or by a solid boundary). This is

the case of the Fraenkel-Norbury vortex solution.
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Fig. 6. Extra velocity in x-z plane brought by y* for H2C1 flow

To better discuss, we can consider a more general situation that an H2Ci flow (i.e., solution
(8.2)) exists inside an axisymmetric domain, A, that (i) on the boundary dA the stream function
1y vanishes, and (ii) outside A (i.e., in domain R3 — A) exists an axisymmetric flow whose ¥ and
Vi are continuous with that of the inside flow at dA, and (iii) the inside flow has no singularity

in A, the outside flow has no singularity in R — A (including r = o0).

Obviously, such an “assembled flow” is a candidate for Fraenkel-Norbury vortex ring
solution. In other words, we can consider a flow meeting (1)/(i1)/(ii1) as an extended or
generalized Fraenkel-Norbury vortex solution. In this case, the inner flow does not have to be
swirl-free, and the outside flow does not have to be vorticity-free. These make it more general

than the original Fraenkel-Norbury solutions.

In general, such a flow could be complicated. But when n = 1, (8.2) can be in simple form

and we have a chance to study the inside flow explicitly.

To avoid singularity, we can further set k, = 0, k3 = 1 and k, = 0. With that (8.2) becomes
Y= (Lt — kyr?) sin? 0 + 9, (8.3)

This is a combination of a uniform flow with U = —2k; in z-direction (i.e., Y =

—k,7? sin? 0 as a special case of (5.5)) and the extra velocity v* shown in Fig. 6. The polar
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angle factor, sin? , is the same as in the axisymmetric potential flow (5.5) when also with k, =
0 and n = 1 (i.e., the potential flow past a sphere).
Boundary of the region, dA, is defined by 1 = 0. That is 12 (k1 — f—orz) sin? @ = 1. This

definition is equivalent to the definition by Fraenkel and Norbury in [5] and [6], which appears
as Y = k (k is a constant). As 1, is a free constant in the solution, Y, can be set to zero then i

is a constant on dA. In this sense, 1, here is equivalent to —k in [5] or [6].

By this definition, dA is significantly impacted by 1,. Without losing generality, assume
A >0, k; > 0. Fig. 7 shows some cross sections of dA with different values of 1y (when 41 = 1,
k1 = 1)

When 1, = 0, 0A is surface of the sphere r = %kl. When 1, > 0, A becomes a “donut

.. 5k? - . .
shape” inside the sphere. When 1, = 2—/11, JA reaches the extreme case of a “thin core circle” in

x-y plane, defined by r = /% ,0 = % The case Y, < 0 is not feasible as dA (shown by the

dot-line in Fig. 7) then encloses the whole z-axis and velocity is unbounded.

gIZC1, Cross section of core region

W0=0 A

Fig. 7. Cross sections of core region of H2Ci flow



5k2 . - . o .
When 0 < ¢y < 2—/11, as the core region is avoiding z-axis, the flow inside the core region

).

can have any irrotational rotation (i.e., with any non-zero € and azimuthal velocity v, = "

This is a swirled case of the (generalized) Fraenkel-Norbury solutions.

The case of Y, = 0 is actually Hill’s vortex. With i, = 0, if we further denote A = A and
k= 1% a?, (8.3) becomes P = 1%7,2 sin? 8 (r? — a?). This is the well-known stream function of
Hill’s vortex (in spherical coordinates).

In this case, as a segment of z-axis is involved, there should be no irrotational rotation in the
core region (so to avoid singular velocity). In other words, Hill’s vortex (as the solution of H2Ci
with spherical core region) is always swirl-free. In comparison, the case of Hill’s vortex with
swirl, found by Moffat [*!, is actually a solution of H2C3, which will be discussed in next section.
In that case, vorticity is no longer proportional to distance to z-axis, thus it does not belong to the

Fraenkel-Norbury family of vortex rings.

When 1, > 0, the outside flow with 1 and Vi) matching the inside flow at the donut-shape
boundary could be complicated. But when 1), = 0, as dA is a sphere surface with polar angle
factor sin? @ for stream function, a potential flow past that sphere matches well the inside flow.

That forms the well-known case of Hill’s vortex surrounded by uniform potential flow.

Recall that the first order Beltrami vortex (7.7a) also has polar angle factor sin? 8 on the
layer interfaces. It is also possible to match Hill’s vortex on dA with a “hollow” Beltrami vortex

outside. In that case, the stream function can be written as

Y =K; (Si:r — cos r) sin?@, (r = D, D is one of the solutions of r = tanr), (8.4a)
Y = —K, 7 r2sin29(D? —r?) (r < D). (8.4b)

Fig. 8 shows an example of such assembled vortices (with K; = 1 and D = 4.49).

The stream function contours in Fig. 8 appear to be similar to that of the first order Beltrami
spherical vortex (Fig. 3). But certain properties are quite different inside and outside the interface
(shown by the dark line in Fig. 8). Vorticity inside is only in azimuthal direction, with magnitude
proportional to distance to the z-axis; vorticity outside is in parallel to velocity at each point,

with magnitude proportional to magnitude of velocity. On the interface, outside flow has

23



vorticity (and velocity) tangent to the sphere surface (i.e., in the azimuthal direction only). This
matches vorticity of inside flow and provides a continuous vorticity at the interface. Another
obvious difference between the inside and the outside flow is, one is swirl-free and the other one

is with swirl.
Switching to cylindrical coordinates, equation for H2Ci,

0% _ 109 0% _ ) o
252 pap+az2_’1p (8.5)

is the inhomogeneous case of equation (5.6). Adding a particular solution, Y* = Y, +

A

mpz(ksp2 + kgz?) to (5.7) gives the solution of (8.5) as

¥ = [kap/,(Vkp) + kap¥s (V)] (kse V2 + keye ™02 ) g + p*(ksp? + kez®) (8.6)

2(4ks+kg)

When ¢, = 0 and ks = 1, kg = 1, the particular solution becomes * = 1/1—0p2(p2 + z2).
If we consider the special solution of (5.6), ¥ = k; p? (see the note in Section 5 following (5.7)),

and add to it with particular solution y* = % p%(p? + z?), we can also get the Hill’s vortex

solution i = :;Opz(az — p? — z%?) by re-denoting A = —A and k; = 1%0(2.

Hill Vortex (no swirl) with Beltrami Spherical Vortex outside

-10 S 0 5 10

Fig. 8. Hill’s vortex (without swirl) with hollow Beltrami spherical vortex
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For H2C2, another inhomogeneous term, — %, is added to RHS of the H2C1 equation (8.1) or
(8.5). In spherical coordinates that leads to

8%y  sin20  9%yP
or2 2 9(cos0)?

= Ar?sin? 6 — g (8.7)

and in cylindrical coordinates, that is

2 2
0% 1% 0 _ 42 ¢ (8.8)

dp2 pdp  9z2 P 2

These are still inhomogeneous equation of (5.1) and (5.6), respectively. The particular
solutions for (8.7) can be found by combining the particular solution of (6.1) and the particular

solution of (8.1). That gives
P =1/1—0r4‘ sin? @ —%rz + Y. (8.9)

Similarly, particular solution for (8.8) can be found by combining the particular solution of

(6.3) and the particular solution of (8.5). That yields
. pl
V' = g PoUesp® + kez®) + kogp?(1—2Inp) = (1= ko) 322 + 9 (8.10)
Adding (8.9) and (8.10) respectively to (5.5) and (5.7) gives the general solutions of (8.7)
and (8.8).

For H2C, vorticity is neither proportional to distance to z-axis, nor in parallel and
proportional to velocity. According to decomposition (4.1) and (4.2), vorticity in this case has
non-zero Beltrami vorticity part and non-zero azimuthal vorticity part. Thus, it is in a combined
direction of azimuthal direction and direction of the velocity.

Compared to the HiC2 or H2C case, the restriction in H2Cz for velocity and vorticity to be
bounded and for C = alm to be real is tighter. A feasible flow in this case would be in

a more restricted region compared to that of HiCz or H2Ci flow.

9. Hill’s vortex with swirl (H.C3)

The Hill’s vortex with swirl, discovered by Moffatt 31 and Hicks ['% is a solution of the B-H
equation with C = ap, H = Hy + A. This is the case of H2C3 (with Y4 = 0 in C3).
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In spherical coordinates, the equation for H2C3 is

92y  sin26 9%y
ar? r2 09(cosB)?

= Ar?sin? 6 — a®yY + ayp, 9.1

Obviously, this is the inhomogeneous case of (7.1), i.e., the equation of HiCs. A particular
solution of (9.1) is Y* = %rz sin? 6 + % Adding it to (7.4) brings the solution of (9.1) as
1
Y =12[kyJns1/2(ar) + kyYni1/2(ar)] sin @ [ksPi(cos ) + k4Qi (cos 6)] + %rz sin? 6 + %

(9.2)

The same procedure can be employed to solve the H2C3 equation in cylindrical coordinates,

2 2
%% 10y % _

502 " 5o T on2 Ap? — a*yP + ay,. (9.3)

A 2 Yo

With general solution (7.10) and the particular solution y* = =Pt solution of (9.3) is

Viz) | A
¥ = [kph,(VaZ + kp) + kop¥s (Va2 + kp)] (ke V*7 + kyeVR7) + S p2 + 22 (9.4)

Alternatively, there is a more straightforward approach to solve (9.1). It can be described by
the following statement (as a theorem): if 1* is solution of (5.1), and v is solution of (7.1), then

Y = + 1" is solution of the following equation

62_1/; sin? @ 621/J — 20 2
or2 + r2 d(cos@)2 a“y a“y ©.5)

The proof is straightforward. As 1" is solution of equation (5.1), Y = )™ is a particular
solution of (9.5). Thus ¥ = 1 + ¥* solves (9.5).

This theorem is valid for the cylindrical coordinates case as well. In that case " is solution

of (5.6), 1 is solution of (7.9) and 1 = 1 + " solves the corresponding equation of (9.5) in

cylindrical coordinates, which is

2y 10y 3% _ ok 2
252 pap+azz—al[) a“y (9.6)

Solution of (5.1) and (5.6) can be in many different forms. Each of them will bring an
equation in form of (9.5) or (9.6) (not necessarily a B-H equation). Theoretically, this theorem

enables an approach to solve these equations.
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Equation (9.1) happens to be an example of (9.5). When we take y* = %rzsinze + % as

solution of (5.1) and apply the theorem, we obtain (9.2). Similarly, (9.3) as an example of (9.6)
Yo

when we take Y* = % p? + - as solution of (5.6). Applying the theorem leads to (9.4).

As discussed in Section 7, solution (7.4) represents a family of Beltrami spherical vortices.

Y™ in (9.2) is adding to them an extra velocity v*, which by (2.3) can be calculated as

* _21 * 21 . * A 1 wo 1
vj = 50560, v5 = = sin6 v, = Zrsin + 12— G-

1 . 22 . o
In a meridian plane, v, and v, form a constant velocity U = —inz direction. v, has two

terms. The first term —7sin 0 is related to a rigid rotation around z-axis; the second term is the

irrotational rotation discussed previously, which has singularity on the z-axis. As the flows
discussed in this case are mainly the vortices centered at r = 0, to avoid the singularity, we will

assume Y, = 0 (i.e., without the irrotational rotation) hereafter in this section.

In this case, the extra velocity v* represents a special spiral movement: uniform velocity in
z-direction and a rigid rotation around z-axis. Adding this to the linear Beltrami flows of (7.4)

yields the H2Cs flows in (9.2).

With 1y = 0, whenn = 1, k; = Aa®/?, k, = 0, k3 = —1, k, = 0, (9.2) is exactly the inner

flow of Hill’s vortex with swirl, presented by Moffatt [*! as
_ 3 3/2
Y =1r?sin?6 [; + A (%) J3/2 (ar)] (9.8)

Setting constants to other values finds other forms of solutions (9.2).

As nature of rigid rotations, azimuthal velocity vy, is unbounded in far field. As a result of
that, a feasible H2Cs flow should be inside a bounded region with proper condition on the
boundary. When n = 1 (and k, = 0), (9.2) has a polar angle factor sin? . This is the same as
the irrotational flow past a sphere. Thus, that irrotational flow can provide the boundary

conditions.

Taking (9.8) as the special case of (9.2) and matching it with the irrotational flow outside,

with some constants re-denoted, the stream function can be written as
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i 2 .
Yy=A [% — cos(ar) + Erz ] sin?@, (r < D), (9.9a)

in(ar)

. o . yl .
(D is a positive solution ofsT — cos(ar) + Erz = 0 as an equation of ),

P = [% + A%sin(aD)] (r2 - D;) sin?@, (r = D). (9.9b)

Note that % — cos(ar) + ﬁrz = 0 can have multiple positive solutions (depending

on the value of A%). Each solution represents a spherical interface of a closed layer. Fig. 9a

shows the flow of (9.9a) in the whole domain when A = 1, a = 1 and 4 = 0.01. Two closed
layers exist near the center in this case. Outside of the second layer, the flow is no longer

contained in close layers, and velocity increases (unboundedly) as r increases.

The flow inside any closed interface can be matched by a potential flow outside. In other
words, it does not have to be the first interface from the center. In the case D in (9.9a) is set to
solution other than the first one from the center, the inner vortex can have multiple layers. Fig.
9b shows the central section of Fig. 9a with 2 layers (D =~ 7.18) surrounded by potential flow
(9.9b).

2-layer of Hill Vortex (with swirl) and Petential Flow outside

w

&

-10

(a) Hill’'s Vortex with swirl in whole space (b) 2-Layer Hill vortex with swirl in potential flow

Fig. 9. Multi-layer of Hill’s vortex with swirl
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Similar to Hill’s vortex without swirl in (8.4), the inner vortex with a polar angle factor
sin?@ can also be matched by a hollow Beltrami Spherical vertex (similar as in Fig. 8). In this
case, the inner flow is still the same as (9.9a), and the outer flow is from (7.4) with dedicated

constants to have stream function and its gradience matching the inner flow at the interface:

A .
(Y= [Sm(:r) — cos(ar) + A—azrz ] sin?@, (r < D), (9.10a)

S()

A .
(D is a positive solution of ——= — cos(ar) + Erz = 0 as an equation of ),

=K [% - cos(br)] sin%@, (r > D), (9.10b)
3AD 1n(bD)

L K= bsm(bD) COS(bD) = 0).

—+ad sm(aD)] b is a solution of

An example of such vortices is shown in Fig. 10. (withA =1,a=1and 1 =0.01,D =
7.1798, b = 1.0760).

Similar as for HiC4/Hi1C3, the H2C4 case has the same equation as H2Cs, thus share with
H2Cs3 the solution (9.2) (or (9.4) in in cylindrical coordinates). Feasibility and properties of the
H2C4 flow, however, are quite different than the H2Cs flow even when they are from the same

stream function.

52-Iayer Hill Vortex with swirl and hollow Beltrami Vortex outside

Fig. 10. Hill’s vortex (with swirl) with hollow Beltrami vortex
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10. Z-periodic axisymmetric flows (H3C, and H4C,)
Some physical background of the H3Cs case can be found in, e.g., [17] and [18].

For these two families (i.e., H3Cn and H4Ch), as H is quadratic function of 1, (homogeneous
part of) the first term on RHS explicitly contains 1. Moreover, in the spherical coordinates case,
two coordinate variables, 7 and 8, are explicitly coupled with ¥ in this term (i.e., 2A%2r2sin?0).
This makes it difficult for variables to be separated. In cylindrical coordinates, this term (i.e.,
212 p?1p) involves only one coordinate variable p. This allows variable separation method to

work on the equation.

In the rest of this section, we will concentrate on possible solutions in cylindrical

coordinates. The approach to solve the equation in spherical coordinates is yet to be explored.

For H3Cs with i, = 0 in Cs, equation (2.15) is

P _10y 9% _ )0
952 2 p +— 59z = = 2Ap*Y — a?y (10.1)

This is the basic homogeneous equation for the two families. We will start the discussion

with this equation.

Let ) = P(p)Z(z) and denote the separation constant by k, (10.1) could be separated to two
equations: pP — P — (2Ap? + k — a®)pP = 0, Z + kZ = 0. The former one is solved by

kol 4, 2,\21p%) + k,

2 —\/ZPZ
P(p) = pte V¥ [laMC

U(\/_+12\/_p )| (10.2)

where M (a, b, x) and U(a, b, x) are Kummer’s confluent hypergeometric functions of the first

and second kind, respectively [*]

General solution of (10.1) thus is

l/)=pze_\/%p2[k1 +1,2,V22p%) + kUCSE +1,2,32202) | (kse*7 + kye™E?)

mEL UG

(10.3)

Similar to (5.7), in (10.3) the section related to z is periodic along z-axis when k < 0 (and is
unbounded on one side of z-axis when z = too if k > 0). For this reason, most of the feasible

flows in these 2 families are periodic along z-axis.
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H3C4 with 1y = 0 has the same form of equation as (10.1), thus is also solved by (10.3)

(with some constants re-denoted).

When a = 0, (10.1) reduces to equation of H3C1 as

% _ 10y %% _ 54 2
952 2 p + 59z = 2Ap~Y (10.4)

and (10.3) reduces to solution of (10.4) as

Y = pze_\/%p2 [k1 +1,2,v22p%) + k, +1, Z,Mpz)] (k3e\mz + k4e‘\mz)

k k
MG UGy

(10.5)

Equation (10.1) can also be solved by a method developed by Bogoyavlenskij!'7!. It is a
variable separation method with series of variable replacements. The solution is a special case of

(10.3) when variables are properly replaced and constants are properly set.

For H3C2, a constant inhomogeneous term is added to RHS of (10.4). Equation (2.15) thus is

%% _ 1w 2., _ @
302 59p azz = 24p°Y (10.6)

Mathematically, a particular solution of (10.6) can be found by solving ¥*(p) as a function

of p in the following equation

d?y*(p) 1d¢ (p)
S =207 (p) —

The solution can be written with hyperbolic functions and hyperbolic integrals as

Y* = [k, cosh(o) + k, sinh(o)] + \/_ [chi(o) sinh(o) — shi(o) cosh(o)], (g = \/%pz )
(10.7)
Adding (10.7) to (10.5) gives the solution for (10.6).

For H4C1 and H4C2, a non-constant inhomogeneous term, A, p? appears on the RHS as well.

For H4C1 the equation is

9? 10
% pa‘[f+ L = 20,07 + Myp? (10.8)

and for H4C: the equation is
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2y 10y 0%y a
52 2op + Py 2M,p% + A p?% — > (10.9)

By replacing the unknown function ¥ (p, z) with ®(p, z) — 2/171, the inhomogeneous term
2

A1 p? will disappear, and equations (10.8) and (10.9) convert to equation of ®(p, z) in the same
form as (10.4) and (10.6), respectively, thus they can be solved the same way as for (10.4) and
(10.6).

Actually, the cases discussed so far in this section (H3C1, H3C2, H4C1, H4C2, H3C3 with
Yo = 0, H3C4 with a, = 0) are the only cases in H3Cn and H4Cn families with known solution in
this paper. For the rest of cases in these two families, i.e., H3Cs with ¥, # 0, H3Cs with ay # 0,
HaCs, and H4Cl4, due to difficulty on finding the pedicular solutions, the equations are still un-

solved in this paper.

Considering these 4 cases with the model equation (3.2) in Section 3, on the RHS, both of
the homogeneous terms, A; and A, exist, together with one or both of the inhomogeneous terms,
Ay and A,. Solution of the homogeneous equation with A; and A, (i.e., equation (10.1)) has been

obtained as (10.2). So, the question is to find the pedicular solution in these cases.
Actually, by replacement Y (p, z) = ®(p,z) — %, the Agp? term will disappear; by
1

replacement Y (p,z) = ®(p,z) — i—‘l’, the A, term will disappear. By these, one of the two

inhomogeneous terms (but not both) can be eliminated. If we have an approach to find the
pedicular solution for the equation with both A; and A; terns and either of A, and A, terns,
adding that pedicular solution to (10.3) will solve that equation (and hence solve all the four

cases). However, the approach to find such a pedicular solution is still lacking in this paper.

11. Summary and Discussion

As discussed in Section 3, any equation for an HnCn case can be written in (3.1) or (3.2)
form. With that, when A, and A, terms both vanish, the equation is homogeneous (and is solved
by variable separation mothed). When at least one of A, and A, terms is non-zero, the equation
is inhomogeneous and is to be solved by adding a pedicular solution to solution of the related

homogeneous equation. Basically, this is the approach taken in this paper.
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For convenience, a summary is given in Table 1 for the combinations of these 4 terms and

the related forms of function H and C, as well as the known solution of each case.

In the table, presentation/absence of the four terms are indicated by “1”/”0” on the “RHS
terms” column. ¥* is representing the particular solution for each inhomogeneous equation. As
o in C3 and C4 has big impacts on the equation and solution for the Hi, H3 and H4 families,
cases of Py = 0 and ¢y # O are listed separately. With that, there are totally 20 cases in the

table, of which 4 (in the last 4 rows) are still unsolved.

By nature of the variable separation method, solutions can be different when variables are
separated in different ways (e.g., in different coordinate systems). Thus, other ways to separate
variables may find other solutions. The solutions obtained so far in this paper are not expected to

cover all possible solutions.

H/ C RHS spherical coordinates cylindrical coordinates
function terms
(HnCn)  |A; Ayg A Ap| Equation Solution Equation Solution
HC 0000 1 (5.5) (5.6) (5.7)
HiC» 00 0 1 6.1 G5+ =62 63 5.7)+*
H/Cs, P, =0[0/0 1 0] (7.1) (7.4) (7.9) (7.10)
HiCs, Yo #0[0 0 1 1|(7.)+ay, (7.4)+y* (7.9) (7.10) + ¢
HiCsap=0]0 0 1 0| (7.1) (7.4) (7.9) (7.10)
HiChag#0]0 0 1 1|7.)+ayp, (7.4)+y* (7.9) (7.10) + ¢
H,C, 0100 @& G5+ =82 85 (5.7) +* = (8.6)
H,C» 0101 (8.7) (5.5) + (8.9) (8.8) (5.7) +(8.10)
H,Cs 01 11 ©.1) TH+yp =02 9.3 (7.10) + * = (9.4)
H>Cs 01 11 ©.1) T4+ =02 ©9.3) (7.10) + * = (9.4)
H;C; 1000 (10.4) (10.5)
H;C» 1001 (10.6) (10.5) + (10.7)
HiCs, o =0[1/0 1 0 (10.1) (10.3)
HiCi g =0]1 0 1 0 (yet to be solved) (10.1) (10.3)
H.C; 1100 (10.8) (10.5)
H.C» 1101 (10.9) (10.5) + (10.7)
HiCs, Y #0111 11
HsCsyapg =01 1 11 10.10) or 10.5) +*(?
H4C§)3 1111 (yet to be solved) ((10.1)1) Uk (is yet)to lé}e(fo)und)
H4C4 1111

Table 1. Summary of equation forms and solutions
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As the major attention in this paper is on general mathematical solutions, only a few obvious
specific flows were discussed as examples. By setting constants to other values, there could be
more specific flows of interest. However, physical feasibility (and stability) of them is to be

carefully investigated, especially for those “assembled vortices”.
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