
Deploying TESTAR to Enable Remote
Testing in an Industrial CI Pipeline:

A Case-Based Evaluation

Fernando Pastor Ricós1(B), Pekka Aho2(B), Tanja Vos1,2(B),
Ismael Torres Boigues1,2,3(B), Ernesto Calás Blasco1,2,3,

and Héctor Mart́ınez Mart́ınez3

1 Universitat Politècnica de València, 46002 Valencia, Spain
ferpasri@inf.upv.es

2 Open Universiteit, Heerlen, The Netherlands
{pekka.aho,tanja.vos}@ou.nl
3 Prodevelop, Valencia, Spain

{itorres,info}@prodevelop.es

Abstract. Companies are facing constant pressure towards shorter
release cycles while still maintaining a high level of quality. Agile devel-
opment, continuous integration and testing are commonly used qual-
ity assurance techniques applied in industry. Increasing the level of test
automation is a key ingredient to address the short release cycles. Testing
at the graphical user interface (GUI) level is challenging to automate,
and therefore many companies still do this manually. To help find solu-
tions for better GUI test automation, academics are researching script-
less GUI testing to complement the script-based approach. In order to
better match industrial problems with academic results, more academia-
industry collaborations for case-based evaluations are needed. This paper
describes such an initiative to improve, transfer and integrate an aca-
demic scriptless GUI testing tool TESTAR into the CI pipeline of a
Spanish company Prodevelop. The paper describes the steps taken, the
outcome, the challenges, and some lessons learned for successful industry-
academia collaboration.

Keywords: Automated testing · GUI level · TESTAR · CI ·
Technology transfer

1 Introduction

The development of cost-effective and high-quality software systems is getting
more and more challenging for SMEs. Modern systems are distributed and
become larger and more complex, as they connect multitude of components
that interact in many different ways and have constantly changing and different
types of requirements. Adequately testing these systems cannot be faced alone
with traditional testing approaches.
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 543–557, 2020.
https://doi.org/10.1007/978-3-030-61362-4_31



544 F. P. Ricós et al.

New techniques for systematization and automation of testing are being
researched in academia. To help the industry to keep up with the increasing
quality requirements, it is important to guarantee the successful transfer of new
techniques into use.

Unit tests are widely automated, especially if test-driven development process
is followed. However, testing through graphical user interface (GUI) is more
challenging to automate [1]. The most common way to automate GUI testing is
based on scripts that are defined before the test execution. Manually recording
or writing test scripts for all the possible paths of the GUI takes simply too much
effort to be practical, and even if the test cases are built with keywords and a
proper architecture, so many test scripts would result in serious maintenance
issues [6]. To address this challenge, the academics are researching scriptless
GUI testing to complement the script-based approach. In scriptless GUI testing,
the test cases are generated during the test execution, based on observing the
run-time state of the system under test (SUT).

The rest of this paper is structured as follows. First, in Sect. 2, we describe the
context of this study. In Sect. 2.1, we describe TESTAR, an open source scriptless
test automation tool developed in academia. In Sect. 2.2, we describe a Spanish
company Prodevelop, their software product Posidonia that is used as the system
under test (SUT) in this collaboration, and their continuous integration (CI)
process. In Sect. 3, we describe the goals and the objectives to consider that the
transfer of knowledge has been achieved. In Sect. 4, we describe the development
improvements made into TESTAR in terms of functionality belonging to the
tool. We discuss the results in Sect. 5 and summarize the lessons learnt about
academia-industry collaboration in Sect. 6. Finally, we conclude in Sect. 7.

2 Context

The work described in this paper has been carried out within the context of the
European ITEA3 TESTOMAT project1. Both the private company Prodevelop
and the academic partners are funded through this project.

2.1 The TESTAR Tool

TESTAR2 [14] is an academic open source tool for automated testing through
the GUI currently being developed by the Polytechnic University of Valencia
and the Open University of the Netherlands, funded by various national and
European initiatives.

TESTAR is a tool for scriptless testing, meaning that it does not require
the creation, use and maintenance of scripts to test and explore the SUT from
the user’s perspective. It is open source under BSD3 license and available on
Github3.
1 https://www.testomatproject.eu/.
2 https://testar.org/.
3 https://github.com/TESTARtool/TESTAR dev.



Deploying TESTAR for Remote Testing 545

Fig. 1. TESTAR functional flow

The underlying principle of this testing approach is as follows (see Fig. 1):
generate test sequences of (state, action)-pairs by starting up the SUT in its
initial state and continuously select an action to bring the SUT in another state.
The action selection characterizes the most basic problem of intelligent systems:
what to do next. The difficult part is optimizing the action selection [ázar2018]
to find faults, and recognizing a faulty state when it is found.

The default action selection of TESTAR focuses on random exploration of
the SUT through processing of the state information extracted before and after
each executed action. This way TESTAR can analyze the robustness of the SUT
in a generic way and automate the testing of what we call Non-User Stories,
detecting failures by implicit test oracles that check the violation of general-
purpose system requirements, such as:

– the SUT should not crash,
– the SUT should not find itself in an unresponsive state (freeze), and
– the UI state should not contain any widget with suspicious titles like error,
problem, exception, etc.

Implementing support for various technical APIs enables TESTAR to inter-
act with different kinds of SUTs (desktop as well as Web). The modular archi-
tecture of TESTAR allows customizing and enriching the system specific pro-
tocol, for example, changing the action selection algorithms to take different
exploratory paths, or defining system specific inputs or test oracles.

In addition to the SUT-specific protocol defining the behavior of TESTAR
tool in terms of widgets interaction, actions exploration and test oracles, another
set of configuration parameters is required to indicate how to connect to the
desired SUT, define suspicious title patterns for SUT-specific test oracles or
change between different protocols if these are customized to explore different
parts of the SUT.



546 F. P. Ricós et al.

The configuration options for TESTAR are by default read from a local file,
which allows to read and write the desired protocol implementation to adapt the
functionality with the SUT requirements. For beginners and learning purposes,
or facilitate the first SUT inspection and configuration of TESTAR, a GUI is
offered to highlight the visibility of the most important configuration options.
When changed, the GUI overwrites the local file with the new configuration.

As TESTAR obtains the information from the SUT about existing widgets,
states, and available actions to execute, it selects and executes these actions
generating the TESTAR test sequences. All the information obtained is stored
in different formats and types of files creating output results for every sequence.
After each executed action, TESTAR applies all the implicit and defined test
oracles to obtain a verdict to determine whether the latest state of the sequence
contains failures.

Every sequence creates the following types of files:

– Logs including step-by-step textual information about the executed actions,
target widgets, and the verdicts from test oracles.

– Screenshots of each state and target widget on which an action is going to be
executed, taken along the test sequence.

– HTML reports of each generated test sequence, including step-by-step screen-
shots and textual information about existing widgets and available actions of
every state, and the executed action over the target widget.

– Binary files, used for saving the information about the executed actions in a
form that allows a sequence to be replayed later.

2.2 Prodevelop

Prodevelop4 is a Spanish company located in Valencia with an extensive network
of clients in Europe, Africa, America and Oceania. From the beginning, Prode-
velop has specialized on Geographic Information Systems and its application to
the maritime transportation, especially in port domain.

The SUT used in this study is Posidonia Management, a web-based port
management application developed and maintained by Prodevelop. Posidonia
Management is conceived and designed to fulfil the management needs of differ-
ent Port Authorities. The increasing port traffic and high competitiveness of the
international market lead to increasingly complex systems. It is in this context
that Posidonia Management, as a complete management system, can improve
the efficiency, productivity, and competitiveness of a Port Authority.

Until a few years ago, Prodevelop followed the waterfall development cycle,
but in the last few years, encouraged by the TESTOMAT Project, Prodevelop
has oriented its development practices towards a more agile development cycle,
with more frequent product deliveries, weekly in some products.

Continuous integration [8,10] (CI) is a process that focuses on increasing
the client value through developing, updating, building and testing the software
product as often as possible, for example after each code commit or once a day.
4 https://www.prodevelop.es.



Deploying TESTAR for Remote Testing 547

The continuous integration process of Prodevelop is made up of a series of
linked and interrelated steps, illustrated in Fig. 2. The process begins when the
Quality Assurance (QA) team configure the automatization orchestrator server
Jenkins5, a free and open source automation server that can be used to build,
test and deploy software, facilitating continuous integration.

In parallel, the Business Analyst will gather the project requirements and
analyse them to obtain the specification of the system. Based on this spec-
ification, on one hand, the testers will use TestLink6 to define the Accep-
tance/Functional test, and on the other hand, the Developers will develop the
system and create the Unit Tests. These tests will be evaluated by the task of
Jenkins that performs the build of the deliverables.

Fig. 2. Prodevelop CI/CD Pipeline

This automated process starts each time the Developers make a commit of
source code to the repository. When a project that is assigned to a continu-
ous integration environment receives an update of the source code, the Jenkins
application will execute software code testing tasks: Static analysis, build and
unit testing, to validate and compile the new source code.

If the build tasks in Jenkins end with the result “OK”, the new version of the
application will be deployed in the Quality Assurance (QA) environment, and
the acceptance/functional tests are executed manually. If the tests are passed,
the application will be deployed in the User Acceptance Test (PRE) and/or

5 https://www.jenkins.io.
6 http://testlink.org/.



548 F. P. Ricós et al.

Production (PRO) environment, which are located in the Client’s own environ-
ments. The number of environments and deployment procedures are subject to
the specific requirements of the Client.

In the case that any of the tasks that should be executed in Jenkins ends
with “NOK” results, Jenkins informs the Developers detailing which test or tests
have failed. In addition, Jenkins will generate an Incident-Ticket in Jira7, an issue
tracking and project management software, with all the necessary information,
including also the phase of the process and specifically the test that fail, so that
the Project Manager follows-up until the incident is resolved.

To ensure the quality of the software, Prodevelop relies mainly on functional
testing. The QA staff assigned to a project defines functional test cases for each
requirement and scenario using TestLink tool. These test cases are manually
executed by the QA team when a new release is ready. A report with the results
is generated and sent to the project manager to decide actions to be taken. On
the other hand, developers are in charge of defining unit and static tests that
are executed automatically.

The manual execution of functional tests is very time consuming as they have
to be executed on each new delivery. The automation of these tests is one of the
short-term objectives of Prodevelop. Another important issue to be improved is
the time needed to solve an error. Since Posidonia is a large product with several
million lines of code, and with several developers involved throughout the life of
this product, a lot of time is spent looking for the origin of the problem.

To facilitate error detection and root cause analysis, the Posidonia Manage-
ment application is instrumented with the intention to detect and debug all
behaviour that is identified as an exception. All these exceptions are written to
a log file with the information about the method where it occurred (the specific
class and package it belongs to) and details about the exception that has been
detected. This internal error information is added incrementally in the back-
ground log using local timestamps.

3 Objectives of the Study

From the academic point of view, the main goal of this collaboration was to eval-
uate the academic TESTAR tool on another real case in an industrial testing
environment. TESTAR has already been evaluated in other industrial environ-
ments [2–4,7,9], and in order to be able to generalize these results based on
individual cases [15] we need to study as many cases as we can and focus on
their similarities. All the case studies so far shared one common aspect: before
the introduction of TESTAR, GUI testing was done manually. For these studies
we could see that TESTAR was considered a useful complement to the existing
testing practices and interesting failures were found.

From the industrial point of view, Prodevelop is trying to achieve a high level
of software quality by innovating its development processes. As indicated, the
functional tests that are executed manually involve a high cost of running the

7 https://www.atlassian.com/es/software/jira.



Deploying TESTAR for Remote Testing 549

tests. For this reason, only a subset of them is executed in each release. So the
objective of the study is clear: integrate TESTAR into the current CI pipeline
to automatically test Posidonia when the life cycle requires it and evaluate the
performance.

With TESTAR integrated into the CI pipeline, every time a new version is
released and a nightly build is made, the following steps are taken:
– First, it will be checked whether there are failure sequences from previous

versions, and in that case replay TESTAR test sequences to verify that errors
were solved in the new release.

– Second, new test sequences will be generated with TESTAR to explore and
verify the robustness of the application using the desired oracles and proto-
cols. Depending on the configuration used, TESTAR can be steered to explore
specific parts of Posidonia.

– Third, if a failure is detected, Prodevelop must verify that it is not a false
positive, inspecting the sequence that found the failure. If it is not, all the
logs generated during the test run should be filtered by the timestamps of
the failure finding sequence, saved in a database and documented in TestLink.
Then, a Jira ticket will be created with linked information about these results
to be reviewed in the future.

To start the integration, Posidonia was tested with the default set-up of
TESTAR to generate: test sequences, TESTAR logs, HTML test reports and
GUI screenshots. All these artefacts generated by TESTAR were analyzed by
Prodevelop. It was found that before the integration into CI could be realized,
the following TESTAR extensions and improvements had to be implemented
first:

1. Enable invocation of TESTAR through the CLI (Command Line Interface).
This means that the configuration dialog should be disabled, and, instead of
passing the test settings in a local file, they should be passed as parameters
of the CLI command.

2. Enable TESTAR to correctly detect SUTs that have multiple processes han-
dling the GUI, or that the GUI process change at run-time. Posidonia runs
in a browser that starts with two main processes to which we should connect
to properly verify the defined oracles.

3. Enable distributed execution of TESTAR by providing a remote API. This
feature is fundamental if we want to integrate TESTAR into the CI method-
ology, or any other distributed process for that matter.

4. Improve the functionality of TESTAR Replay mode to observe changes
between a previously executed and saved sequence and a newly executed
test sequence.

5. Enable the synchronization of the logs produced by Posidonia with those of
TESTAR. In order to find the root cause of the errors, it is important to
be able to analyse the logs generated by Posidonia together with TESTAR
logs. This information is needed by Prodevelop developers to understand and
replicate the error.

These TESTAR adaptations will be described in the next section.



550 F. P. Ricós et al.

4 Extending TESTAR for the Case Study

This section describes the changes that had to be implemented into TESTAR
to meet the requirements of Prodevelop and to be able to test Posidonia with
TESTAR in the CI pipeline of Prodevelop.

4.1 Executing and Configuring TESTAR Through CLI

To allow TESTAR tool to be integrated into a CI pipeline, a new configuration
option was added in addition to local settings files. When starting TESTAR
through a CLI, the configuration can be passed on as parameters. This way any
configuration setting can be overwritten through CLI, also disabling the GUI.
This feature makes it easier to put TESTAR configuration into the settings of
the CI job that starts TESTAR execution and change it from the CI tool.

4.2 Supporting SUTs with Multiple GUI Processes

By default, the execution of a SUT is started up by TESTAR using the path that
contains the executable file, or in the case of web applications, by indicating the
browser executable with the desired web URL. In case of running the SUT on
Windows, first, we use this path to invoke a Windows function that will return
the process handle of the SUT process that allow us to obtain the identifier of
the SUT process, pid. However, to obtain the GUI state information (i.e., the
widget tree and all the widget properties) through the Windows Accessibility
API plugin, we need the window handle. To find the corresponding window han-
dle, we probe all the existing window handles that are children of the Windows
Desktop, to find the one that has the same pid as our SUT process.

The SUT in this case study, Posidonia, does not run in a single process.
Instead, it starts execution with two GUI related processes. Some elements of one
of these processes use warning pop-ups or lists of items. This prevented TESTAR
from recognizing all the widgets. Therefore, TESTAR had to be changed to deal
with SUTs that start with multiple GUI processes or launch new GUI handling
processes at run-time. When a SUT starts up multiple processes, we do not have
one main pid, but we have a list of pids (i.e., including the child pids of this main
pid). In such cases we need to iterate over all the elements in the list to be able
to get the GUI properties and information for each pid and merge them into one
widget tree.

Supporting multiple GUI processes improved TESTAR’s interaction with the
SUT of the case study, making it possible to obtain the GUI information of both
GUI handling processes. In addition to this, we also added a possibility to check
whether there are new running processes in the environment after launching the
SUT. If we find them, we save the pids. This way we are able to use different
Windows API functions to check whether the process pid of the window handle
that is in the foreground exists in our internal processes list. This makes it
possible to iterate and create a widget tree also for this new visible window
handle.



Deploying TESTAR for Remote Testing 551

Fig. 3. Integration of TESTAR through an API in a distributed environment

4.3 Distributed TESTAR Execution with a Remote API

In order to integrate TESTAR into the Posidonia CI test cycle, the next step was
to design a CI architecture [8,11] in which TESTAR can be invoked remotely
in a distributed manner. First, suitable technologies were required for the com-
munication between the: (1) CI server that launches the test execution, (2) the
server that contains TESTAR, and (3) the server that executes the SUT.

Thinking about future deployments and enabling TESTAR execution in a
test server environment, a Spring boot application was developed with an Apache
Tomcat servlet that provides an API for TESTAR settings. Prodevelop offered
the initial version of the API that was updated by the TESTAR developers
with other necessary requirements, such as new settings parameters for remote
login (instead of coding the user login inside the TESTAR Java protocol), and
additional configuration options for the initialization of the GUI state model
that is built during testing.

With the default implementation, the web API instance should be running in
the same directory as the TESTAR tool. Subsequently, when receiving a POST
request that is compatible with the TESTAR settings from the CI orchestrator,
the contents of the web parameters will be parsed into CLI instructions using
the configuration functionality described in 4.1. The flow of the invocation from
the CI pipeline is depicted in Fig. 3. The main steps of the functionality are:

1. Upon receiving a web POST request, Posidonia CI orchestrator will send the
desired configuration settings to run TESTAR. Only a couple of parameters
were needed in the request payload.

2. The remote API is running in the same directory with TESTAR binaries to
receive the requests and transform the parameters into a TESTAR configu-
ration that is executed through the CLI.

3. If all the parameters were correct, TESTAR execution will start and a
response will be sent back with the output information printed by TESTAR



552 F. P. Ricós et al.

on the CLI, which includes the test results, the path of the generated sequence
and a timestamp to indicate when the sequence began.

4. If more detailed information about any sequence is required, a request will
be sent indicating which sequence we want to obtain the resources from.

5. Then a response with the desired resources will be sent back.

4.4 Replay Mode

The objective of TESTAR Replay mode is to offer testers the possibility to
re-execute a sequence of actions that has already been executed. This allows
testers to verify and debug a sequence for which TESTAR reported finding a
failure during automated unattended execution. It is also possible to use this
mode to verify that a correct sequence of actions also does not throw any failure
in the new SUT versions. Alternatively, we can use it to show that, after a bug
fix, the sequence does no longer produce the failure.

A new sequence is started when TESTAR starts the SUT, and executed
actions are saved in a Java object stream of the ongoing sequence every time
TESTAR executes an action. Information about which action was executed is
ready to be replayed, and the state of the SUT does not have to be used for
deriving and selecting an available action. The discovered issue of the Replay
mode was that TESTAR was not verifying if the SUT is changing between the
desired states that we want to follow again by replaying a sequence.

To improve the Replay mode, the information related to the widget in which
the action was executed and about the SUT states found, should be stored in
the object stream associated with the action executed.

4.5 Output Results and the Structure of TESTAR Logs

The various logs and resources created by TESTAR could offer a large amount
of information about the different GUI elements detected by TESTAR in the
different states that conform the SUT. However, these files were not stored in
a suitable structure for the case study. All the resources were stored in their
corresponding directory (logs, sequences, HTML reports, screenshots), but they
were stored incrementally according to the sequence number without taking into
account the execution of TESTAR. With this structure the objective of synchro-
nizing Prodevelop and TESTAR logs could not be achieved, and therefore, it had
to be changed.

The solution was the creating an index log and restructuring the output direc-
tories according to the timestamp in which TESTAR was launched, in addition
to the sequence number. This index can then be used by Posidonia every time it
needs to obtain GUI information from TESTAR logs. Using its own logs and its
own timestamps, Posidonia will filter the desired sequence in the TESTAR index
and will be able to obtain the resource path with all the required information.

In Fig. 4 we can see that Posidonia creates its own logs based on its internal
state. If an error occurs, a timestamp will be used to find the matching event
from the TESTAR index log to obtain all existing resources and verify which
front-end GUI action produced the back-end error.



Deploying TESTAR for Remote Testing 553

Fig. 4. Posidonia and TESTAR Logs Structure

5 Results

When doing academia-industry collaborations, there are several types of results.
On the one hand, the academic tools have improved, they have successfully been
adopted in an industrial context, and new ideas are generated for future research.
On the other hand, the academic results are validated in an industrial context,
and data shows that this improves the quality of the testing practices in the
company. Naturally, our goal was to achieve all of these, but unfortunately the
second part was not entirely achievable.

Due to various circumstances, the SUT Posidonia evolved into “maintenance
only” phase, and Prodevelop decided not to make any changes to their existing
testing processes because there are hardly any changes to the SUT anymore.
This meant that, unfortunately, we could not really evaluate the performance of
TESTAR in a real CI environment.

To try and get some data, we simulated a test with Posidonia by running
TESTAR during 4 nightly builds for 12 h with random action selection protocol
and a configuration of 30 sequences of 200 actions each night. Unfortunately, the
SUT did not change in between, so the outcome of the runs could only differ due
to the randomness of TESTAR. The runs showed that the CLI adaptions, the
detection of multiple processes and the distributed execution did not fail during
long unattended runs.

This outcomes of the test runs were:

– a total of 24000 actions in 120 test sequences
– 15 sequences resulting in suspicious titles (all found during the first run)
– 6 sequences resulting in unexpected close (all found during the first run)
– 0 sequences resulting in unresponsiveness

Analyzing these faulty sequences using the HTML report revealed that:

– 12 of the found suspicious titles-failures all lead back to a database connection
error in Posidonia when TESTAR executed actions related to querying a port
registry.



554 F. P. Ricós et al.

– the other 3 suspicious titles-failures lead to another database connection error
in Posidonia trying to generate and obtain the expedient of a port activity.

– the 6 unexpected close-failures were all false positives related to the fact that
TESTAR tries to bring the SUT to the foreground.

The two errors that were found executed different database requests, and
both were related with an error in the Posidonia database connection. Prodevelop
was aware of these glitches in the software, but decided not to fix them.

To validate the log synchronization, TESTAR and Posidonia logs were com-
pared to check that the failure sequences found by TESTAR could be mapped to
the internal error-logs from Posidonia. The mapping was found correctly and the
names of the methods and classes that provoked the exception in Posidonia were
meaningful in respect to the properties of the web elements on which the actions
were executed. However, there was a delay of 5–10 s between timestamps. This
is attributed to the time needed for the internal process to represent and detect
the data at GUI level.

The mapping did not only help to verify the synchronization of errors after
the execution of a sequence, but also motivated us to investigate the possibility
of synchronizing TESTAR with other possible internal logs in order to find a
way to improve the action selection based on the available internal methods.

6 Academia-Industry Collaboration

The fact that we could not validate the work completely in a real environment
made us reflect again about the academia-industry collaboration. What went
wrong here? Why did we find out that the company had stopped active develop-
ment of the system we planned to test when we were ready with the adjustments
to our tool to support their environment?

A myriad of articles [5,12,13] have been written with lessons learned from
technology transfer. A simple Internet search with keywords such as university
companies, academia industry, collaboration, cooperation, etc, will result in a
massive number of hits discussing the issue. Looking at the factors mentioned
in the literature, we had them covered (at least that is what we thought):

– we had funding through an European research project,
– that gave us the possibility to have regular meetings,
– as well as the approval and commitment of the management to do the study
– some practitioners at the company had been previously employed at a uni-

versity, so we had their support and a collaboration champion on site
– the objectives of this collaboration were defined to address both the needs

from academia as well as that of the company
– we worked in agile sprints due to the nature of the funded research project
– we allowed solutions to emerge from the needs of the company (e.g., the log

synchronization, the multiple processes, the distributed execution) that were
added to TESTAR to fulfill the requirements of the company)



Deploying TESTAR for Remote Testing 555

Academics about industry: Industry about academics:

- think all problems are solved by
increased ROI
- keep no track of data
- talk lots of waffle
- are short term focused
- desperately need our solutions
but do not (want to) understand
this

- are single focused
- have no eye for application
- are stuck in theory
- cannot write a catchy story
- have no sense of urgency
- only want to write papers
- work with you for the funding but will not
really give you a solution

Fig. 5. Preconceptions industry and academia have about each other

– a team of academics was enthusiastic and committed to contribute to the
industry needs and had previous experience with working together with sim-
ilar companies

We started a discussion round with the involved people to figure out what
went wrong during the process that lead us to this situation and distill lessons
learned for the next time.

We found out that it was mainly the preconceptions industry and academia
have about each other, sometimes without even knowing it. These hindered the
communication. Everybody thought we were on the same track, but we were
not. Many of the preconceptions we detected are in Fig. 5. While the academics
thought the company really needed their tool and because of that were working
on the case study, the practitioners actually thought the academics only wanted
to try this out for the sake of the project on some industrial system and so they
provided us one. They were not really looking ahead to the future where the
solution would be really used (before the system would go into maintenance).

Successful innovation transfer is about effective communication and emo-
tional intelligence. Both soft skills should receive more attention in computer
science curricula.

7 Summary, Conclusions and Future Work

We have presented a case-based evaluation of the academic TESTAR tool on
the industrial SUT Posidonia. In order to do this, we integrated TESTAR into
the existing CI pipeline of Prodevelop to automatically test Posidonia when the
release cycle required it.

The results of this study are threefold. First, TESTAR has been extended
with five new valuable features that will be useful also for other test environments
(i.e., CLI invocation, multiple processes, distributed testing, replay mode and log
synchronization). Second, it was shown to be a useful complement to the existing
testing practices and find failures. Third, we learned some lessons on what went
wrong during our seemingly perfect collaboration.



556 F. P. Ricós et al.

Although the collaboration was not without problems, both parties have
shown mutual effort in understanding the cause of the problems with the intent
to improve. Both parties are currently researching new ways to collaborate and
improve their tools. Prodevelop has started the development of a new web appli-
cation where modern web frameworks and technologies will be used. We intend
to continue collaborating in this project. Having already integrated the TESTAR
tool into a similar CI environment, the future work will additionally focus on:

1. Improving the visualization of HTML reports. Prodevelop already gave some
initial proposals to improve the structure and aesthetic design of the infor-
mation that TESTAR tool is currently generating.

2. Improving test oracles. In addition to searching for generic suspicious titles,
such as error, exception, warning, and HTML error codes like 404, 40X, etc. at
GUI level, we aim to define and analyze the usefulness of preparing TESTAR
oracles more focused at the web level.

3. Evaluating the recently developed TESTAR functionality for automatically
learning GUI state models capturing all the information found in the SUT.

4. Use these state models to optimize the action selection strategies, to auto-
matically measure the GUI coverage, to find the shortest path to reproduce
found failures, or to compare two state models from different versions of the
same SUT to automatically detect changes at the GUI level.

Acknowledgment. This work has been funded through the ITEA3 TESTOMAT
project (www.testomatproject.eu), the EU H2020 DECODER project (www.decoder-
project.eu), the EU H2020 iv4XR project (iv4xr-project.eu) and the ITEA3 IVVES
project (ivves.weebly.com).

References

1. Aho, P., Vos, T.: Challenges in automated testing through graphical user interface.
In: 2018 IEEE International Conference on Software Testing. Verification and Val-
idation Workshops (ICSTW), pp. 118–121. IEEE Computer Society, Los Alamitos,
April 2018

2. Aho, P., Vos, T.E.J., Ahonen, S., Piirainen, T., Moilanen, P., Ricos, F.P.: Contin-
uous piloting of an open source test automation tool in an industrial environment.
Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD) 1–4 (2019)

3. Bauersfeld, S., de Rojas, A., Vos, T.E.J.: Evaluating rogue user testing in industry:
an experience report. In: 2014 IEEE Eighth International Conference on Research
Challenges in Information Science (RCIS), pp. 1–10, May 2014

4. Bauersfeld, S., Vos, T.E.J., Condori-Fernández, N., Bagnato, A., Brosse, E.: Eval-
uating the TESTAR tool in an industrial case study. In: 2014 ACM-IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, ESEM
2014, Torino, Italy, 18–19 September 2014, p. 4 (2014)

5. Beckman, K., Coulter, N., Khajenoori, S., Mead, N.R.: Collaborations: closing the
industry-academia gap. IEEE Softw. 14(6), 49–57 (1997)

6. Coppola, R., Ardito, L., Torchiano, M.: Fragility of layout-based and visual GUI
test scripts: an assessment study on a hybrid mobile application. In: Proceedings



Deploying TESTAR for Remote Testing 557

of the 10th ACM SIGSOFT International Workshop on Automating TEST Case
Design, Selection, and Evaluation, A-TEST 2019, pp. 28–34. ACM, New York
(2019)

7. Chahim, H., Duran, M., Vos, T.E.J., Aho, P., Condori Fernandez, N.: Scriptless
testing at the GUI level in an industrial setting. In: Dalpiaz, F., Zdravkovic, J.,
Loucopoulos, P. (eds.) RCIS 2020. LNBIP, vol. 385, pp. 267–284. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-50316-1 16

8. Fowler, M.: Continuous integration (2006). https://www.martinfowler.com/
articles/continuousIntegration.html. Accessed 12 Dec 2019

9. Martinez, M., Esparcia, A.I., Rueda, U., Vos, T.E.J., Ortega, C.: Automated local-
isation testing in industry with test∗. In: Wotawa, F., Nica, M., Kushik, N. (eds.)
ICTSS 2016. LNCS, vol. 9976, pp. 241–248. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47443-4 17

10. Meyer, M.: Continuous integration and its tools. Softw. IEEE 31, 14–16 (2014)
11. O’Connor, R.V., Elger, P., Clarke, P.M.: Continuous software engineering: a

microservices architecture perspective. J. Softw.: Evol. Process. 29(11), e1866
(2017)

12. Rovegard, P., et al.: The success factors powering industry-academia collaboration.
IEEE Softw. 29(02), 67–73 (2012)

13. Sandberg, A., Pareto, L., Arts, T.: Agile collaborative research: action principles
for industry-academia collaboration. IEEE Softw. 28(4), 74–83 (2011)

14. Vos, T.E.J., Kruse, P.M., Condori-Fernández, N., Bauersfeld, S., Wegener, J.: TES-
TAR: tool support for test automation at the user interface level. Int. J. Inf. Syst.
Model. Des. 6(3), 46–83 (2015)

15. Wieringa, R., Daneva, M.: Six strategies for generalizing software engineering the-
ories. Sci. Comput. Program. 101, 136–152 (2015). Towards general theories of
software engineering


