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Liver manifestation associated with COVID-19 

(Literature review) 

Manifestación hepática asociada con COVID-19 (revisión de la literatura) 

he World Health Organization (WHO) named 

the 2019-nCoV virus on January 12, 20201. 

Subsequently, in a short period of time, Novel 

Coronavirus Infected Pneumonia (NCIP) spread around 

the world, and on January 30, 2020, the WHO declared 

NCIP an international public health emergency2. On 

February 11, 2020, it was renamed Coronavirus Disease 

2019 (COVID-19)3. 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS- 

CoV-2), which has been described as a form of the beta 

coronavirus cluster, is the cause of the pandemic and has 

79.6% sequence identity with SARS-CoV4. COVID-19 is 

generally a self-limiting disease, but it can also be fa- 

a Organización Mundial de la Salud (OMS) 

nombró al virus 2019-nCoV el 12 de enero de 

20201. Posteriormente, en un corto período 

de tiempo, la neumonía infectada por el nuevo corona- 

virus (NCIP) se extendió por todo el mundo, y el 30 de 

enero de 2020, la OMS declaró a la NCIP una emergencia 

de salud pública internacional2. El 11 de febrero de 2020, 

pasó a llamarse Enfermedad por coronavirus 2019 (CO- 

VID-19)3. Síndrome respiratorio agudo severo El corona- 

virus 2 (SARS-CoV-2), que se ha descrito como una forma 

del grupo de coronavirus beta, es la causa de la pande- 

mia y tiene una identidad de secuencia del 79,6% con el 

SARS-CoV4. COVID-19 es generalmente una enfermedad 

tal: China’s death rate is around 2.3 percent5, from 5.8 

percent in Wuhan to 0.7 percent in the rest of China6. 

autolimitante, pero también puede ser fatal: la tasa de 
mortalidad en China es de alrededor del 2,3 por ciento5, 

The proportion of serious or fatal infections that can be 

attributed to specific infected populations may vary by 

country and region. A certain percentage of deaths oc- 

curred in elderly patients or comorbid conditions (obesity, 

hypertension, diabetes, cardiovascular disease, chronic 

lung disease and cancer)5;7;8. 

These results were also found in critically ill patients re- 

ferred to the intensive care unit, indicating that adequate 

liver oxygen supply is provided by compensatory mecha- 

nisms, including in cases of severe respiratory failure dur- 

ing COVID-19 disease9-17. 

Keywords: COVID19, viral hepatitis, SARS-CoV-2, liver 

damage, cytopathic action 

desde el 5,8 por ciento en Wuhan hasta el 0,7 por ciento 
en el resto de China6. La proporción de infecciones gra- 

ves o mortales que pueden atribuirse a poblaciones infec- 

tadas específicas puede variar según el país y la región. 

Un cierto porcentaje de muertes ocurrieron en pacientes 

de edad avanzada o enfermedades concomitantes (obe- 

sidad, hipertensión, diabetes, enfermedades cardiovas- 

culares, enfermedades pulmonares crónicas y 

cáncer)5,7,8. Estos resultados también se encontraron en 

pacientes 

críticamente enfermos derivados a la unidad de cuidados 

intensivos, lo que indica que los mecanismos compensa- 

torios proporcionan un suministro adecuado de oxígeno al 

hígado, incluso en casos de insuficiencia respiratoria grave 

durante la enfermedad por COVID-199-17. 

Palabras clave: COVID19, hepatitis viral, SARS-CoV-2, 

daño hepático, acción citopática 
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atients with COVID-19 have liver dysfunctions 

of varying degrees of severity. Liver damage can 

be multifactorial and heterogeneous in its etiol- 

ogy. In the context of COVID-19, the clinician needs to 

determine if liver damage is related to an underlying liver 

disease, the drugs used to treat COVID-19, direct expo- 

sure to the virus, or a complicated course of the disease. 

Recent studies have proposed several theories about po- 

tential mechanisms of liver damage in these patients. 

Changes in liver function tests within the framework of 

cytolytic and / or cholestatic syndrome are observed in 

almost half of patients with COVID-19 infection; these 

changes (elevation of ALT and AST in particular) correlate 

with the severity of COVID-19. The risk is increased if the 

patient has preexisting liver disease and advanced age. 

Another factor is the use of hepatotoxic drugs and drug 

combinations that increase their total hepatotoxicity, in- 

cluding antiviral ones. 

SARS-CoV-2 can directly bind to ACE2-positive cholangio- 

cytes and cause liver damage with a pattern of acute viral 

(coronavirus) hepatitis. Often this damage is accompanied 

by the development of acute pancreatitis with an increase in 

amylase levels and impaired endocrine pancreatic function. 

The activation of the immune system and the “cytokine 

storm” can contribute to the immune-mediated process 

of liver damage in COVID-19, especially if we understand 

that the synthesis of acute phase proteins under the in- 

fluence of pro-inflammatory cytokines occurs precisely in 

hepatocytes (in addition to macrophages). 

Objective of the study: To study the features of liver dam- 

age in COVID19 and its consequences. 

Research objectives: 

1. To study and give clinical and laboratory characteristics 

of liver damage in moderate-severe and severe CO- 

VID19 

2. To study the clinical picture and substantiate the diag- 

nostic criteria for acute viral hepatitis caused directly 

by SARS-CoV-2 

3. Differentiate liver damage in patients after suffering 

COVID19, associated with the reactivation of hepatitis 

B and other hepatotropic viruses and study the fea- 

tures of the clinical course 

Expected results: 

1. Options for the involvement of the liver in the patho- 

logical process in COVID19 and their frequency will 

be determined: associated with the direct cytopathic 

effect of the virus; the development of a “cytokine 

storm” - damage mediated by the action of cytokines 

and acute phase proteins; 

2. A characteristic of the clinical and laboratory picture of 

the involvement of the liver in the acute inflammatory 

process with the threat of ARDS in the acute period of 

COVID19 will be given. 

3. Criteria and risk factors on the part of the patient for 

the development of acute coronavirus hepatitis are 

highlighted, clinical and laboratory characteristics of 

its course and outcomes are given 

4. Variants of hepatitis B reactivation in patients after suf- 

fering COVID19 will be studied 

 
 
 
 

Background 

A number of unexplained pneumonia cases have been 

recorded in Wuhan, Hubei Province, China, since Decem- 

ber 2019. The Chinese Center for Disease Control and 

Prevention (CCDC) reported a novel coronavirus from a 

patient’s throat swab on January 7, 202018, which was 

called the 2019-nCoV virus by the World Health Organi- 

zation (WHO) on January 12, 20201. Subsequently, in a 

short period of time, novel coronavirus-infected pneumo- 

nia (NCIP) spread to the world, and on January 30, 2020, 

WHO announced NCIP as an international public health 

emergency2. On 11 February 2020, it was renamed 

Coronavirus Disease 2019 (COVID-19)3. 

Severe acute respiratory syndrome coronavirus 2 (SARS- 

CoV-2), which has been described as a form of beta 

coronavirus cluster, is responsible for the pandemic and 

shares a 79.6 percent sequence identity with SARS-CoV4. 

COVID-19 is a self-limiting disease in general, but it can 

also be lethal, with a fatality rate in China of around 

2.3 percent5, ranging from 5.8 percent in Wuhan to 0.7 

percent in the rest of China6. The proportion of serious or 

fatal infections that may be associated with separate 

populations of infection may vary by country and region. 

Patients of elder age or underlying medical comorbidities 

(obesity, hypertension, diabetes, cardiovascular disease, 

chronic lung disease and cancer) had more fatal 

cases5;7;8. 

Suddenly, the COVID-19 pandemic posed an immense 

burden of treatment19 and raised medical ethics con- 

cerns20, since, to date, specific treatments and/or vac- 

cinations have been lacking. COVID-19 can manifest itself 

in various ways. There may be several subjects that re- 

main asymptomatic21, but the exact number is still un- 

known. For example, in certified nursing facilities where 

more than half of residents with positive test results were 

asymptomatic at the time of testing and most likely con- 

tributed to transmission, particular settings may promote 

the spread of infection22;23. Stage I (early infection), 
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stage II (pulmonary phase), and stage III (hyperinflam- 

mation phase) are included in the proposed three-stage 

classification scheme of potential increasing severity for 

COVID-19 infection24. Although the most common and 

important clinical presentation is secondary to lung in- 

volvement (fever, cough), SARS-CoV-2 virus infection can 

lead to systemic and multi-organ disease25, including 

nausea/vomiting or diarrhea of the gastrointestinal 

tract25-27. The second organ involved, after the lung28- 30, 

tends to be the liver. 

The spectrum of liver involvement in COVID-19 

COVID-19 associated liver injury is characterized as any 

liver damage occurring in patients with or without pre- 

existing liver disease during the course of disease and 

treatment of COVID-199-11,31-34. This includes a broad 

range of possible pathomechanisms, in- cluding direct 

cytotoxicity due to active viral replication of SARS-CoV-2 

in the liver35;36, immune-mediated liver damage due to 

extreme inflammatory response/systemic inflammatory 

response syndrome (SIRS) in COVID-1937 hypoxic 

changes due to respiratory failure, coagulopathy- related 

vascular changes, endotheliitis, or coagulopathy- related 

hypoxic changes. The prevalence of elevated liver 

transaminases (ALT and AST) ranges from 2.5 to 76.3 per- 

cent in COVID-19 patients. Well9;34;38;39. The combined 

prevalence for AST and ALT outside the reference range 

was 20 percent-22.5% and 14.6 percent-20.1 per- cent 

respectively in a recent meta-analysis9;40. 

SARS-CoV-2 uses the angiotensin-converting enzyme 2 

(ACE2) receptor to achieve cellular entry into the human 

lower respiratory tract, which has also been shown to be 

highly expressed in gastrointestinal epithelial cells41;42. 

While patients usually present respiratory symptoms such 

as cough, dyspnea, and shortness of breath, gastrointes- 

tinal manifestations such as diarrhea, nausea, vomiting, 

and abdominal pain have been documented in multiple 

cases of diagnosed COVID-19 patients43;44. A study 

found that in 83.3% of patients with a mild infection, 

SARS-CoV-2 RNA can be detected in feces for up to a 

month, raising doubt of the gastrointestinal tract as a 

further site of viral replication44. In addition, another 

research showed that 53.4 percent of 73 COVID-19 pa- 

tients were found to have viral RNA existing in their stool; 

23.3 percent of those patients had positive stool samples 

even after the viral RNA was removed from their respira- 

tory tract [45]. As such, these features have clinical con- 

sequences for the careful treatment of infected persons, 

the possible fecal-oral route of transmission and success- 

ful preventive control of infections. In up to 35% of cases, 

these anomalies may be followed by significantly elevated 

total levels of bilirubin9;34;38;39. While cholestatic liver 

enzyme elevations [alkaline phosphatase (ALP) and gam- 

ma glutamyl transferase (γGT)] were initially considered to 

be rather uncommon7;31;46;47. Latest systemic studies 

have highlighted ALP and γGT elevations in 6.1% and 

21.1% of COVID-19 patients, respectively9;40. 

In addition, a biphasic pattern was identified with initial 

transaminase raising followed by cholestatic liver en- 

zymes, which may represent hepatocellular/canalicular 

SIRS-induced cholestasis or more serious bile duct damage 

at the later stage of the disease48. 

While SARS-CoV-2 liver injury has been recorded to be 

mild, a considerable proportion of patients, particularly 

those with a more serious course of illness, may be af- 

fected. Hepatic dysfunction can affect the multi-system 

manifestations of COVID-19, such as ARDS, coagulopathy 

and multi-organ failure, given the central role of the liver 

in the synthesis of albumin, acute phase reactants and co- 

agulation factors31;49-54. 

In addition, the liver is the human organism’s key meta- 

bolic and detoxifying organ, and even a mild loss of liver 

function could alter the safety profile and therapeutic ef- 

ficacy of liver-metabolized antiviral drugs. It is therefore 

important to consider in more detail the causes of SARS- 

CoV-2-associated liver injury. Systematic data on underly- 

ing histopathological modifications is scarce so far. Hepat- 

ic steatosis and activation of Kupffer cells tend to be fre- 

quently observed in liver of COVID-19 patients deceased, 

along with vascular changes including intrahepatic portal 

vein branch derangement, typically mild lobular and por- 

tal inflammation, ductular proliferation, and necrosis of 

liver cells36;48;55-57. 

Examination of liver biopsies of a cohort of 48 deceased 

patients with COVID-19 showed substantial portal and 

sinusoidal luminal thrombosis, along with portal fibrosis 

convoyed by major activation of pericytes57. 

 
 
 
 

Direct viral Infection of hepatocyte 

(SARS-CoV2 hepatitis) 

Quantitative reverse transcription Polymerase chain reac- 

tion (QRT-PCR) has lately been shown to have SARS-CoV-2 

viral RNA in the liver and several other organs outside the 

respiratory system58. While the exact cellular replica- 

tion site remained unspecified because nucleic acids were 

separated by homogenization of the entire tissue. In situ 

hybridization study, however, revealed SARS-CoV-2 virions 

in vessel lumens and endothelial cells of COVID-19 liver 

specimen portal veins57. In addition, electron micro- 

scopic inspection of liver samples from two deceased of 

SARS-CoV-2 patients with elevated liver enzymes showed 

that intact viral particles were present in the hepatocyte 

cytoplasm35. 

Based on recent, but still restricted, findings35;57;58 of 

hepatic tropism for SARS-CoV-2 and direct cytopathic 

effects, the possible mechanism of liver injury associated 

with COVID-19 should be considered, although a classic 

hepatic image has not been recorded35;48;55-57. For a 

particular tissue, the availability of viral receptors on the 

host cell surface is a significant determinant of viral tro- 
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pism59. Fundamentally, the entry of SARSCoV-2 in cells is 

regulated by the virus’ S protein, which interacts directly 

with host ACE2 and TMPRSS2. Human Protein Atlas is 

used to analyze the expression pattern of human ACE2 

and TMPRSS2 proteins to understand whether SARS- 

CoV-2 could be capable of infecting liver cells. Interesting- 

ly, in the intestine and gall bladder, the expression levels of 

the two proteins are highest, but they tend to be virtually 

absent in the liver. Such data may be incomplete or lack 

sensitivity, because the expression of ACE2 in the Human 

Protein Atlas often tends to be absent in the lungs, where 

infection is certainly known to occur. 

In a recent review, Chai and colleagues applied single-cell 

RNAseq to healthy human liver samples and stablished 

that bile duct epithelium (cholangiocytes) levels of ACE2 

expression are similar to those of alveolar cells in the 

lungs, while hepatocellular ACE2 expression is little but 

still detectable60. Important expression of ACE2 and 

TMPRSS2 in liver parenchymal cells is further confirmed by 

bioinformatics studies from the single-cell transcriptome 

database Single Cell Portal61. Remarkably, according with 

past findings, sinusoidal endothelial cells tend to be 

ACE2-negative62. This discovery may be significant given 

recent reports of large intrahepatic vessel endothe- liitis 

caused by COVID-19 disease55;63 and excessive 

expression of ACE2 in other endothelia, including central 

and portal veins, which might also become infected with 

the virus57. 

Studies in both mice and humans showed increased he- 

patic ACE2 expression in hepatocytes under fibrotic/cir- 

rhotic conditions in the liver64;65. As pre-existing liver 

damage might thus worsen SARS-CoV 2 hepatic tropism, 

this result could be of great relevance. In addition, hypoxia 

has been revealed to be a significant regulator of hepato- 

cellular ACE2 expression, which is a common trait in ex- 

treme COVID-19 cases64. This could explain why extra- 

pulmonary distribution of SARS-CoV-2 is found primarily 

in patients with ARDS and other hypoxic conditions. Im- 

portantly, ACE2 expression may also be upregulated by 

inflammatory conditions/diseases in the liver as seen for 

other organs66;67. While drug-induced liver injury (DILI) in 

COVID-19 patients may lead to liver damage68, it may 

be of interest to investigate whether hepatic ACE2 over-

expression is induced by DILI or specific drugs. 

In vitro studies have also shown that the S protein of 

lineage B beta-coronaviruses substantially increases its 

receptor affinity when it is pre-incubated with trypsin, 

i.e., when it is activated proteolytically69 because liver 

epithelial cells express trypsin70 and a plethora of other 

serine proteases that constantly reshape the extracellular 

matrix71, the expression of ACE2 necessary for SARS- 

CoV-2 target and liver recognition may be lower than in 

other tissues with decreased extracellular proteolytic activ- 

ity72. According to these observations, it has recently 

been found, that the S protein of SARS-CoV-2 carries a 

furin-like proteolytic site never seen before in other coro- 

naviruses of the same lineage73. Surprisingly, furin is 

mainly found in organs suggested to be permissive for 

SARS-CoV-2 infection, like salivary glands, kidneys, pan- 

creas, and liver61. 

Lastly, other variables, such as ganglioside (GM1)74, 

may affect the interaction of S protein-ACE2. Therefore, 

to gain new molecular and therapeutic perspectives, study 

should also investigate the S protein-ACE2 interactome 

more thoroughly. Ou and colleagues tested pseudovirions 

containing the SARS-CoV-2 S protein in a new study for 

their ability to infect various cell lines. It is important to 

note that HuH7 cells, a hepatocyte cell line, and Calu3 

cells, a human lung carcinoma cell line, remained more 

effectively transfected than control pseudovirions by viral 

vectors carrying the SARS-CoV-2 S protein75. In addi- 

tion, these researches have shown that viral entry can rely 

on the endocytotic pathway of PIKfyve-TCP2. A cross- 

check in the Human Protein Atlas discovered that both 

PIKfyve and TPC2 are expressed at a level similar to that 

of the lung in the liver and gall bladder, demonstrating 

the possible relevance of this pathway to hepatic tropism, 

which consequently extends from basic targeting and 

identification to intracellular viral replication support. 

Letko and colleagues took benefit of HuH7 cells as a le- 

nient model for SARS-CoV and SARS-CoV-2 binding and 

recognition67, additional proving SARS-CoV-2 tropism for 

hepatocytes, in an attempt to develop a new and suc- 

cessful functional viromics screening method aimed at 

predicting the probability of zoonotic events of known 

lineage B betacoronaviruses. Notably, after pulmonary 

(Calu3) and intestinal (CaCo2) cell models67, the latter 

representing organs with histopathologically established 

SARS-CoV-2 infection, HuH7 cells were classified as the 

third most permissive cell line in this research. 

Nevertheless, the capacity to bind and internalize viral 

particles does not unavoidably mean that successful viral 

replication is also permissible for the cell type under study. 

In this context, both Chu and colleagues and Harcourt et 

al have shown that HuH7 cells support viral replication of 

SARS-CoV-276;77. Hepatocyte cell lines are now such a 

proven type of permissive cell for infection with SARS- 

CoV and SARS-CoV-2 that HuH7 cells have also lately 

been used as a positive control for immunostaining SARS- 

CoV-278. 

While hepatocytes are identified as putative hosts for 

SARS-CoV-2 in the above-mentioned observations, it is 

important to note that all data are derived from studies in 

which cancer cell lines have been used. The ACE2 protein 

expression in HuH7 cells should be contrasted with that of 

primary human hepatocytes in order to explain the trans- 

lational potential of these observations. In addition, future 

studies are required to discover the molecular changes 

caused by SARS-CoV-2 infection in hepatocytes. 

Recent research by Yang and colleagues, who established 

SARS-CoV-2 hepatocyte tropism using organoids derived 

from human pluripotent stem cell (hPSC) hepatocytes and 
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primary adult human hepatocytes, provides a valid source 

of knowledge79. Pseudovirions expressing SARS-Cov-2 S 

protein were capable of to infect human hepatocytes in 

these systems, while infection with SARS-CoV-2 led to 

vigorous viral replication79. Analyses of gene expres- 

sion have also shown that primary hepatocytes infected 

with SARS-CoV-2 over-express pro-inflammatory cyto- 

kines whereas downregulating main metabolic processes, 

as mirrored by the inhibition of expression of CYP7A1, 

CYP2A6, CYP1A2 and CYP2D679. 

In a recent study, Wang and colleagues have applied 

electron microscopy imaging to liver samples of two de- 

ceased patients with COVID-19 and found hepatocyte 

viral structures that are strikingly similar to SARS-CoV-2 

virions36. This increases the possibility that the histo- 

pathological changes observed in these patients may be 

due to the direct cytopathic effects of SARS-CoV-237, 

although there seems to be a lack of a standard hepati- 

tis pattern37;47;55-57. On the other hand, in order to 

validate these preliminary observations of hepatocellular 

SARS-CoV-2 involvement, further researches with larger 

biopsy/autopsy cohorts and combined imaging (including 

immune electron microscopy) may be required. 

Cholangiocytes are involved in the synthesis and flow of 

bile and in the immune response79. Preservation of 

ACE2 and TMPRSS2 expression was shown by single-cell 

sequencing of human long-term liver ductal organoid 

cultures80. Cholangiocytes experienced syncytia forma- 

tion after SARSCoV-2 infection, and the quantity of SARS- 

CoV-2 genomic RNA increased dramatically 24 hours 

after infection. Similar findings have been gained when 

SARS-CoV-22 infects adult human cholangiocyte organ- 

oids79. These findings indicate that in vitro human liver 

ductal organoids may be prone to SARS-CoV-2 infection 

and propose that in vivo bile duct epithelium viral replica- 

tion may also happen. 

On the other hand, even with considerably higher ACE2 

expression compared with hepatocytes, no clear evidence 

of cholangiocellular SARS-CoV-2 infection in patients by 

COVID-19 has been stated to date. Since bile is predomi- 

nantly formed by hepatocytes and cholangiocytes, the de- 

tection of SARS-CoV-2 viral RNA or proteins in bile may be 

indirect evidence of SARS-CoV-2 cholangiocellular infec- 

tion due to the persistent and direct interaction among 

biliary fluids and the cholangiocellular apical membrane. 

These differences may be based on the fact that through- 

out the surgical resolution of bile duct obstruction, the 

positive-checked bile sample was found81, while the 

negatively tested bile was gotten from 48h post-mortem 

autopsies82;55. 

Tight junctions enable cholangiocytes from noxious bile 

constituents to serve as a defensive barrier for parenchy- 

mal liver cells. SARS-CoV-2 viral infection reduced mRNA 

expression of cholangiocellular tight junction proteins 

for instance claudin 1 in vitro80, suggesting decreased 

cholangiocyte barrier activity. This consequently, may 

cause liver damage by leakage into the periductal space 

and adjacent liver parenchyma of potentially noxious bile. 

Noteworthy, expression of SLC10A2/ASBT bile acid carri- 

ers and ABCC7/CFTR chloride channel was substantially 

decreased by SARS-CoV-2 infection80. Bile acid sens- 

ing/signaling through cholangiocytes and bicarbonate se- 

cretion can be affected by negative regulation of these 

hepatobiliary transporters, ultimately leading to biliary 

variations seen in SARS-CoV-2 infection55. In addition, 

SARS-CoV-2 virus-infected cholangiocytes upregulated in- 

flammatory pathways, describing the activation of a reac- 

tive phenotype of cholangiocytes79. Future research will 

need to open whether and how SARS-CoV-2 can change 

pro-inflammatory and pro-fibrogenic cytokine secretion 

and play a role to the ‘reactive cholangiocyte phenotype’ 

that could spread inflammation and fibrosis83. 

Antecedent chronic liver diseases tend to be independent 

risk factors for pitiable SARS-CoV2 infection outcomes, 

and the degree of cirrhosis has been identified as a mor- 

tality indicator in COVID-19 patients84. The instigation of 

hepatic stellate cells is a major factor as the key cellular 

source of fibrosis in the developement of chronic liver dis- 

ease85 and is promoted by pro-inflammatory and pro- 

fibrotic signals for instance angiotensin II, developed as 

part of the pro-fibrotic branch of the renin-angiotensin 

system by the catalytic action of ACE86. Noteworthy, by 

generating anti-inflammatory and anti-fibrotic angio- 

tensin-(1-7) and thus reducing the angiotensin II/angio- 

tensin-(1-7) ratio, ACE2 frustrates ACE action86. ACE2 

expression, nevertheless, was not observed either in qui- 

escent or fibrogenic/activated hepatic stellate cells64;87-9. 

These results indicate that SARS-CoV-2 could be a very 

non-permissive host for these cells. However, the pro- 

inflammatory environment produced by direct or indirect 

hepatocellular and cholangiocellular damage associated 

with SARS-CoV-2 infection can smooth the path of the 

activation and subsequent induction of fibrosis of hepatic 

stellate cells. In patients which have underlying CLD, for 

example NAFLD, the prospect may be even more impor- 

tant. While available evidence indicate that SARS-CoV- 

2-related liver damage is mild and temporary, enduring 

follow-up researches would be needed to rule out hepatic 

fibrosis, particularly in the attendance of pre-existing liver 

diseases, as a possible long-term results of SARS-CoV-2 

infection disease. 

Monocyte derived macrophages (MoM) and alveolar mac- 

rophages are accepted to express ACE291;92 and there is 

evidence of SARS-CoV92 and SARS-CoV-2 alveolar 

macrophage infection with immunohistochemistry find- 

ing of viral protein82;83. A histopathological examina- tion 

of the distribution of ACE2 tissues, though, showed no 

staining in Kupffer cells and further hepatic immune 

cells62, while proliferation of Kupffer cells is usually ob- 

served in COVID-19 patient livers35;55. More in-detail 

research upon ACE2 expression and de novo single-cell 

RNAseq analysis were further provoked by the recent 

SARS-CoV-2 pandemic60, as was also shown in silico 

evaluations of RNAseq databases93;94 that Kupffer 
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cells do not express ACE2. Nevertheless, it must be held 

in mind that all the evidence mentioned relates to normal 

human liver samples. thus, to gain conclusive insights into 

macrophage ACE2 expression patterns, quantification of 

ACE2 expression in samples attained from patients with 

underlying chronic liver disease or acute liver damage may 

be appropriate. 

Noteworthy, MoM can attack the liver and effectively re- 

plenish the hepatic resident macrophage population after 

liver damage and/or Kupffer cell depletion95-97 (and 

reviewed in depth in)98. Although in vitro studies have 

shown that MoM does not support successful SARS-CoV 

(and most likely SARS-CoV-2) replication, infected MoM 

can function as carriers of the pathogen, preferring ACE2- 

expressing cell infection in the attack organ99. In addi- 

tion, activation and proliferation of Kupffer cells are com- 

monly observed as a result of systemic inflammation, and 

activation of Kupffer cells has been documented in liver 

samples of deceased SARS-CoV-2 infected patients35;55. 

Therefore, even though Kupffer cells do not express ACE2, 

by propagating inflammatory stimuli, monocytic cells can 

play a key role in COVID-19-mediated liver injury. 

Hepatic Steatosis by SARS-CoV-2 Infection 

In liver autopsies of novel coronavirus infection, microve- 

sicular and macrovesicular steatosis have been detected as 

the only risk factor for liver damage and SARS-CoV-2 he- 

patocellular infection has been confirmed in certain 

cases35;55. It is necessary to distinguish hepatic lipid 

accu- mulation due to SARS-CoV-2 infection from pre-

existing NAFLD, which has been presented to increase 

the risk of poor result in patients with COVID-1956. 

Substantial contributors to the production of hepatic 

steatosis in COVID-19 could be deregulated in host lipid 

metabolism and mitochondrial function due to possible 

direct SARS- CoV-2 cytopathic effects and/or cytokine 

storm-induced immunopathology along with drug side 

effects (e.g., cor- ticosteroids). 

Genetic or acquired mitochondrial β-oxidation defects 

usually cause microvesicular steatosis100. Preliminary 

findings indicate that mitochondrial function is impaired 

by SARSR-CoV-2101. In addition, a study also reported 

mitochondrial crista abnormalities in patients with CO- 

VID-19 liver specimens35. Excitingly, impaired mito- 

chondrial function has also been involved in NAFLD/NASH 

pathogenesis102. Therefore, infection with SARS-CoV-2 

could also exacerbate the metabolic condition and aggra- 

vate these processes with pre-existing NAFLD. 

It is understood that endoplasmic reticulum (ER) stress 

induces de novo lipogenesis in hepatocytes103. In the 

induction of ER stress, some researches have included the 

infection of SARSCoV. For example, major up-regulation 

of glucose-regulated protein 78 (GRP78) and GRP94 ER 

stress indicators has been detected in several cell lines for 

SARS-CoV infection104-106. The protein of the coro- 

navirus S tends to be a significant burden for the host ER 

and may play a critical role in inducing ER stress104;105. 

Readjustment of intracellular membranes throughout 

SARSCoV-2 infection by huge reduction of lipid constitu- 

ents from the ER can also lead to ER stress107. In ad- 

dition, in vitro SARS-CoV infection overactivates the ER 

stress-related PERK-eIF2-alpha pathway108. Lastly, elec- tron 

microscopy studies that have demonstrated hepato- 

cellular SARS-CoV-2 infection have documented patho- 

logical ER dilatation in infected hepatocytes35, most 

likely causing ER stress. Generally, such data could show 

that, like other coronaviruses, SARS-CoV-2 induces ER 

stress on infection, and that de novo lipogenesis induced 

by ER stress can also lead to the production of steatosis in 

patients with COVID-19. 

The mammalian target of rapamycin (mTOR)109, which is 

also the key regulator for autophagy, also induces de 

novo lipogenesis110. SARS-CoV has formerly been 

shown to hijack the autophagy pathway via processes ex- 

tremely conserved in novel corona virus that depend on 

viral non-structural protein 6 (nsp6)111-113. In addition, 

mTOR hyperactivation and inhibition of the mTOR 

signaling pathway by rapamycin inhibiting viral replication 

have been saw in MERS-CoV-infected HuH7 cells114. 

Considering the recent findings that autophagy is limited 

by SARS-CoV-2 infection115, it is tempting to thik that 

SARS-CoV-2, SARS-CoV and MERS-CoV share a common 

mechanism of infection based on mTOR. In addition, sub- 

stantially increased mTOR activity was seen in IL-6 stimula- 

tion116. Therefore, SARS-CoV-2 infection could result in 

hyper-activation of hepatic mTOR signaling through direct 

hepatic cell infection or indirect systemic IL-6-dependent 

cytokine storm-related effects that could pay out for the 

steatotic phenotype in patients with COVID-19 liver injury. 

Induction of host lipogenesis may be necessary for the 

SARS CoV-2 life cycle, but detrimental for the host. Cer- 

tainly, improved de novo lipogenesis could provide ad- 

equate quantities of lipids for the virus to produce the 

vesicular systems necessary for viral replication and exo- 

cytosis. In addition, mTOR-mediated protein synthesis 

promotion117;118 and autophagolysosome formation 

inhibition119;120 can favor viral replication whereas 

preventing viral degradation and sufficient immune re- 

sponse ignition. Since insulin and glucose signaling posi- 

tively control the function of mTOR in the liver121;122, 

essential overactivation of mTOR in patients with obesity 

and diabetes mellitus123;124 could at least partially explain 

their increased risk of worse COVID-19 outcomes. 

Cytokines storm 

A main contributing factor may be the cytokine storm 

feature of SARS-CoV-2-associated viral sepsis125, as 

cytokines for instance TNF-alpha, IL-1 and IL-6 can cause 

hepatocellular cholestasis by down-regulating hepatobi- 

liary uptake and excretory systems126;127, which are 

close to the pathomechanisms observed in sepsis-induced 

cholestasis126-130. Additional research would have to 

investigate whether serum bile acids, alike to sepsis, 
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may be important prognostic parameters in SARS-CoV-2 

infection as the most reliable markers of cholestasis127- 131. 

continued IL-6 systemic signaling triggered by infec- tion 

with SARS-CoV-2 provokes a suppression of albumin 

synthesis based on C/EBPβ 132. Cholestasis in SIRS due to 

repressed hepatobiliary excretory activity, in addition to 

hypo-albuminemia, may be considered as part of the 

negative acute phase response in COVID-19. 

Hepatic inflammation encompassing inherent immune 

cell activation and cytokine release is a well-established 

awakening of multiple causes of liver damage133. An 

association was found between lymphopenia and liver in- 

jury in some of the presented case series of SARS-CoV-2 

infection, and CRP 20 mg/L and a lymphocyte count 

<1.1x109/L were independent risk factors for liver dam- 

age. In particular, lymphopenia in the SARS-CoV-2 infec- 

tion research was stated to be more prone to fatal out- 

comes in 63 percent to 70.3 percent of patients and those 

with lesser lymphocyte counts134. 

Along with hepatocellular characteristics, bile duct modi- 

fications have been perceived in postmortem researches, 

for example ductular proliferation55. IL-6 is a dominant 

mitogenic cholangiocellular factor135 and provokes a 

proliferative and pro-inflammatory phenotype83;136. 

Consequently, bile ducts of patients with SARS-CoV-2 in- 

fection may be subjected to a ‘triple hit’ from (I) respira- 

tory failure hypoxia (potentially exacerbated by peribiliary 

arterial plexus obliteration by vascular/thrombotic chang- 

es); (ii) systemic SIRS lead to a reactive cholangiocyte phe- 

notype or secretory phenotype linked with senescence, 

thereby actively spreading inflammation along with fibro- 

sis and (iii) expected cholangiocyte viral infection itself. As 

a result, the hepatobiliary system can come to be a sig- 

nificant target for SARS-CoV-2 infection long-term liver 

complication. Critical Sclerosing Cholangitis (SSC-CIP) is 

an uncommon but clinically important complication in se- 

riously ill patients with serious trauma, burn injury, severe 

respiratory failure or vasopressor therapy because of he- 

modynamic instability [137;138]. The key causes for the 

degradation of the biliary epithelium in SSC-CIP are mal- 

perfusion and hypoxia along with repeated inflammatory 

stimuli127, both conditions existing in serious patients 

with COVID-19. 

Longstanding hepatic follow-up for SARS-CoV-2 infected 

survivors who have undergone a serious course of illness, 

for instance ARDS with ECMO and elongated ICU admis- 

sion, may also be considered. timely diagnosis is impor- 

tant for the best management of SSC-CIP symptoms and 

disease progress that might be counteracted with anti- 

cholestatic, cholangio-protective drugs like UDCA or new- 

er norUDCA139-141. 

Pre-existence Hepatitis B re-activation 

Reactivation of pre-existing hepatitis B is one of the major 

complications of SARS-CoV-2 infection in the liver. A re- 

cent research showed that patients co-infected with novel 

corona virus and HBV with liver damage are more likely to 

have a worse outcome and a poor prognosis142. 

Hepatitis B reactivation was characterized as sudden re- 

emergence of HBV-DNA viremia in patients with HBV in- 

fection that was before inactive or resolved, or abrupt and 

quick increase of HBV-DNA levels by at least 2 log10 in 

patients with HBV-DNA previously measurable. 

As discussed earlier, SARS-CoV-2 induces cytokine storms 

in the body. consequently, special procedures are used to 

inhibit the immune system from hyperactivating. One of 

these therapies is the use of corticosteroids, which, owing 

to the lack of favorable clinical and analytical success of 

other approaches, has become a preferred weapon. 

Corticosteroids, like all immunosuppressant drugs, are 

not risk-free and can contribute to certain complications. 

Reactivating pre-existing infections, especially hepatitis B 

viruses, is one of the hazards of taking corticosteroids. 

In a case study, Aldhaleei et al, identified the reactivation 

of the hepatitis B virus (HBV) caused by SARS-CoV-2 in 

a young adult with impaired mental status and serious 

transaminitis. The patient’s aspartate aminotransferase 

(AST; 4,933 U/L), alanine aminotransferase (AL T; 4,758 

U/L) and total bilirubin (183.9 mmol/L) levels were very 

high143. 

A further retrospective review of 347 patients with CO- 

VID-19, including 20 patients with chronic HBV infection 

and 327 without chronic HBV infection, revealed 3 reacti- 

vations of pre-existing inactive hepatitis B infection. 

On the other hand, a research conducted by Yu et al 

showed that the effects of SARS-CoV-2 on the dynamics 

of chronic HBV infection did not seem clear. In these peo- 

ple, SARS-CoV-2 infection will not be the cause of HBV 

reactivation144. 

As can be seen, research into the effect of the SARS-CoV-2 

on reactivation of the hepatitis B virus is limited. Existing 

researches also are contradictory, with some emphasiz- 

ing that the SARS-CoV-2 activates inactivated hepatitis B, 

but some explain that COVID-19 has no effect on chronic 

hepatitis B virus reactivation. Therefore, it is needed more 

research in this area. 

Hypoxic Hepatitis due to SARS-CoV2 

Multifactorial causes of hypoxic hepatitis are present. Gen- 

erally, more than 90% of all cases are due to heart failure,  

sepsis, and respiratory failure145-148. Furthermore, due to 

increased central venous pressure, right-sided heart 

failure has been shown to worsen liver damage due to 

liver congestion145-151. Hypoxia cause in hepatic cell 

death in cases of long-lasting hemodynamic and/or respi- 

ratory failure, which is histopathologically characterized as 

centrilobular necrosis152. 

ARDS is the most common complication of COVID-19 

disease which needing critical care management, envolv- 

ing invasive ventilation, elevated positive end-expiratory 

pressure (PEEP) and vasoconstrictor therapy in the case of 

hemodynamic instability153-156. These causes can be 
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followed by right ventricular dysfunction due to high vas- 

cular pulmonary resistance due to hypoxaemia and ARDS 

hypercapnia157;158. 

In addition, COVID-19 lead to a hyper-coagulate condi- 

tion with a substantial incidence of pulmonary thrombotic 

complications that worsen acute right-sided heart failure 

and thus liver congestion159. In most cases, neverthe- 

less, SARS-CoV-2-related liver injury was usually mild and 

did not reach >5 times the upper limit of reference, so 

it did not meet the diagnostic requirements for hypoxic 

hepatitis9. 

These results have also been found in critically ill patients 

referred to the ICU, indicating that sufficient oxygen sup- 

ply to the liver is guaranteed by compensatory mecha- 

nisms, including in cases of serious respiratory failure dur- 

ing COVID-19 disease [9-17]. 

Drug-Induced Liver Injury 

At the onset of SARS-CoV-2 outbreak, Evidence-based 

treatment was not existing. Several studies have been 

conducted over time, enabling us to provide scientifically 

based guidelines for the treatment of COVID-19 disease. 

Different antiviral (remdesivir, lopinavir/ritonavir), antibiot- 

ic (macrolide), antimalarial/antirheumatic (hydroxychloro- 

quine), immunomodulating (corticosteroids, tocilizumab) 

and antipyretic (acetaminophen) medications have been 

used in clinical or off-label trials in the meantime. 

Hepatotoxic potential has previously been established in 

in vitro/in vivo trails and their respective registration re- 

searches for several of these drugs (e.g. ritonavir, remde- 

sivir). In addition, corticosteroid treatment, which is now 

suggested by the WHO in patients with serious infection 

with SARS-CoV-2 160, is specifically linked with steatosis or 

glycogenosis161. 

The first event of tocilizumab-associated DILI in a SARS- 

CoV-2 infected patient has lately been identified70 To- 

cilizumab has limited hepatic metabolism, and interaction 

with the IL-6 pathway, which plays a vital role in the heal- 

ing of the liver, is the most possible etiology of its hepato- 

toxic impact162. 
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on reactivation of the hepatitis B virus is limited. Existing 
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ing that the SARS-CoV-2 activates inactivated hepatitis B, 

but some explain that COVID-19 has no effect on chronic 
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