

Mysteries of a Variable Star:

β Cas, a Time-series Spectroscopical Analysis

Ana-Maria Stanciu Under the supervision of Prof. Dr. Konstanze Zwintz BRITE & BRITE-Related Science Meeting, 12 July 2021

Fig. 1: Cassiopeia constellation

- Spectral type: F2 (end of main sequence lifetime);
- Retired main sequence A type star;
- Initially: monoperiodic pulsator;
- Extremely fast rotator: 92% of critical speed

Parameter		err ₁	err ₂	Che et al. (2011)		Gray et al. (2003)
				Model 1	Model 2	
$T_{\rm eff}$ [K]	6920	35	140	6825	6897	6915
$\log g$ [dex]	3.53	0.16	0.58	3.57	3.59	3.49
[M/H]	-0.11	0.04	0.12			-0.02
$v_{\rm e} \sin i [{\rm km s^{-1}}]$	73.6	8.1	7.0	72.4	79.8	
$v_{ m mic}$ [km s ⁻¹]	4.1	0.4	0.5			3.1

Fig. 2: Beta Cas stellar parameters, Zwintz et al., 2020

Fig. 3: BRITE frequencies of Beta Cas, Zwintz et al., 2020

Fig. 4: TESS light curve of Beta Cas, Zwintz et al., 2020

Fig. 5: TESS frequencies of Beta Cas, Zwintz et al., 2020

- Data obtained through the BRITE spectropolarimetry survey;
- Zeeman-Doppler Imaging technique, on data from Narval;
- Poloidal magnetic field (65% of the energy is in poloidal modes);
- Rotational period: 0.868 d.

Fig. 6: Magnetic field maps of Beta Cas, Zwintz et al., 2020

SONG observations

- SONG telescope @ Tenerife (Proposal by Beck, Zwintz et al. 2018)
- 497 spectra obtained from Nov. 16th to Nov. 30, 2018
- Total time base: 15 days;

• Range of observations: 4350 \mathring{A} to 6850 \mathring{A} .

Spectroscopical Point of View

Mode ID, ideal scenario:

- Deep, narrow lines;
- Unblended lines, but no H or He;
- SNR > 200;
- R > 40000.

Mode ID, β Cas scenario:

Wide, shallow lines;

Unblended Ca I & Fe I;

 \bigotimes

- SNR > 200;
- R > 40000.

Spectroscopical Point of View

Fig. 7: Cut-out spectral lines

FAMIAS Analysis

- Search for periodicities: Fourier Parameter Fit method (Zima, 2006) and Moment method (Aerts & Briquet, 2003);
- FPF moderate to fast rotators (vsini > 40 kms⁻¹);
- MM slow rotators (vsini < 40 kms⁻¹);
- Frequencies are taken into account ONLY if the SNR > 4, for each of the found peaks (3.5 for harmonics or combinations);
- The found prominent frequency peaks will then be subjected to a LSF algorithm, which allows the improvement of amplitude, phase and, for the line profiles, the frequency, as well.

FAMIAS Analysis - MM

Fig. 8&9: Line moments Fourier fit, order 32

FAMIAS Analysis - Mode ID

Line	Frequency		m
Ca I ($\lambda_c = 5581,965 \text{\AA}$)	16.5026d ⁻¹	0,1,2,3	-2,-1,0,3
Fe I $(\lambda_c = 5579,023 \text{\AA})$	38.9769d ⁻¹	0,1,2,3	[-3,3]
Fe I (_{λ_c} = 5579,023Å)	-1 14.5257*d	0,1,2,3	[-3,3]
Fe I $(^{\lambda}_{c} = 6065, 48 \text{\AA})$	_	_	_

FAMIAS Analysis - Conclusions

- Che et al. (2011) determined the inclination angle of β Cas as $19.9^{+1.9}_{-1.9}$ degrees;
 - Beta Cas is seen nearly pole-on;
- Rotational broadening complicates spectroscopic analysis of pulsation frequencies;
- A longer data set might expose more of the star's behaviour (?).

FAMIAS Analysis - Conclusions

Fig. 10: Beta Cas, interferometry imaging (Che et al., 2011)

Thank you!

FAMIAS Analysis - FPF

- Computes the intensity of each wavelength bin across the line profile;
- No upper limit for mode ID;
- Fit done with synthetic line profiles;
- Computes the "goodness of fit" through a χ^2 statistical test;
- Relies on the pixel-by-pixel method.

FAMIAS Analysis - FPF

Fig. 8&9: Pixel-by-pixel Fourier fit, order 32

FAMIAS Analysis - MM

- Better suited for slower rotating stars;
- Uses a discriminant, computing the mode ID using information from the 1st (radial velocity) and 2nd (line width) line moments;
- The MM fitting in FAMIAS is done using existing theoretical models;
- Uses a χ^2 fit to determine the significance of the mode ID.

FAMIAS Analysis - MM

Fig. 10&11: Line moments Fourier fit, order 32

Fig. 14&15: Line moments residual data set, Fourier fit, order 32

FAMIAS Analysis

Order	Line Element	FPF (PBP) Analysis	Significant frequencies	Insignificant frequencies	MM (LPV) Analysis	Significant* frequencies	Insignificant frequencies
30	Cal	yes	none	yes	yes	$16.5026d_{-1}^{-1}$ 38.9769d	yes
31	Fe I	yes	none	yes	yes	none	yes
32	Fe I	yes	none	-1 8.9614d	yes	14.5257d ⁻¹	yes
39	Fe I	yes	none	yes	none	none	yes

* - the frequency is, first of all, significant when it comes to its SNR(> 3.5) and discovered in the 1st of 2nd line moment.