A Web service for executable research
compendia enables reproducible publications and
transparent reviews in geospatial sciences

Daniel Niist?

nstitute for Geoinformatics (ifgi), University of Minster, Germany (daniel.nuest@uni-muenster.de)

Preprint published on Zenodo at https://doi.org/10.5281/zenodo.5108218 under CC-BY-4.0 license. This version was compiled on 2021-07-15 based on git commit £228110e from

the repository https:/zivgitlab.uni-muenster.de/d_nues01/architecture-paper.

The executable research compendium (ERC) is a concept for packag-
ing data, code, text, and user interface configurations in a single unit
to increase transparency, reproducibility, and reusability of computa-
tional research. This article introduces the ERC reproducibility service
(ERS), which supports publication workflows enhanced by ERCs. The
ERS connects with existing scientific infrastructures and was deployed
and tested with a focus on data and visualisation methods for open
geospatial sciences. We describe the architecture of a reference im-
plementation for the reproducibility service, including the created Web
API. We critically discuss both the project set-up and features of ERC
and ERS, and we examine them in the light of various classifications for
reproducible research. The ERC and ERS are found to be a powerful
tool to improve reproducibility and, thereby, enable better investigation
and understanding of computational workflows during peer review. We
derive lessons learned and challenges for future scholarly publishing
of computer-based geospatial research.

reproducible research | reproducibility | open science | executable research com-

pendium | ERC | research infrastructure | research compendia | containerisation

1. Introduction

As computers and algorithms infuse all scientific disci-
plines, Open Science and reproducibility are enormous
challenges for research in geography and geosciences
(David et al., 2016; Niist and Pebesma, 2020), and the
typical scientific paper falls short of communicating the
actual scholarship (Brammer et al., 2011; Marwick, 2015;
Gil et al.,, 2016). The relevance of openness and re-
producible, reusable research are undisputed, but the
problems in applying them in daily work and the chal-
lenges around reproducibility in digital scholarly publish-
ing workflows are real (e.g., Davison, 2012; Freire et al.,
2016). Software failures have led to wrong results and
retractions (Miller, 2006; Gronenschild et al., 2012), and
“the lack of reported failures from geography and geosciences
is not reassuring” (Nist and Pebesma, 2020).

Reproducibility in geospatial sciences, similar to most
scientific disciplines, is low (e.g., Konkol et al., 2019a;
Niist and Pebesma, 2020; Yan et al., 2020; Niist et al.,
2018). Although progress is being made on openness in
geospatial sciences, reproducibility has not been system-
atically addressed, and more stringent reproducibility re-
quirements for publication have only recently been imple-
mented (Minghini et al., 2020; cf. Peng and Hicks, 2021).
Thus, further development of infrastructure for support-
ing reproducibility is needed (Peng and Hicks, 2021).

To achieve sufficient openness and reproducibility, all
aspects of science take on the common goal of changing
the existing culture. Only a general broad change can sup-
port and motivate researchers to shift towards good Open

https://doi.org/10.5281/zenodo.5108218

Science and reproducible research practices. Examples
for areas where change is needed are (i) requirements es-
tablished by funders and journals (cf. Hardwicke et al.,
2018, and Stodden et al. (2018); Niist et al., 2018), (ii)
mechanisms to award recognition to all types of research
outputs (Piwowar, 2013), and (iii) education and tools,
so that all stakeholders have the means, i.e., resources,
time, and knowledge, to create, examine, review, and pub-
lish reproducible open scientific workflows. To facilitate
change on these levels, we have conceptualised and im-
plemented an infrastructure to lower the barriers for cre-
ating, sharing, and reviewing reproducible publications.
This work’s main contribution is a detailed description of
that infrastructure and a demonstration of its functional-

ity.

We present a Web service for open and reproducible
publications for computational research in geography and
geosciences: the ERC reproducibility service (ERS). The
ERS is connected with the existing processes, services,
and platforms of scholarly publications and serves the
particular needs of geospatial data sciences. Examples
and applications are taken from these domains, i.e., data-
based workflows using observational data of the Earth.
The ERS focuses on the third area of cultural change, edu-
cation and tools, by putting the concept of the executable
research compendium (ERC, Niist et al., 2017) into prac-
tice as part of the scholarly publication process. Locating
the ERC at the centre of scholarly communication enables
communicating, sharing, and collaborating on the actual
scholarship, as it includes data, software, and documen-
tation (cf. Buckheit and Donoho, 1995; Davenport et al.,
2020). As previous work has presented the ERC’s benefits
for authors and readers (Konkol et al., 2019b), here we de-
scribe the technical background and implementation of
the ERS, and how it provides a missing functionality in
scholarly publishing infrastructure.

In the remainder of this work, we first present related
initiatives and approaches. Then we introduce a techni-
cal specification for the ERC followed by an architecture
and reference implementation for a Web service for ERC
creation and examination, which is connected with the ex-
isting landscape of scholarly publication infrastructures.
Finally, we discuss limitations and lessons learned, and
we conclude with a summary and an outlook on future
work.

ERC Web service | July 15,2021

1-21

https://orcid.org/0000-0002-0024-5046
https://www.uni-muenster.de/Geoinformatics/
mailto:daniel.nuest@uni-muenster.de
https://doi.org/10.5281/zenodo.5108218
https://zivgitlab.uni-muenster.de/d_nues01/architecture-paper
https://doi.org/10.5281/zenodo.5108218

2

2. Related work

Containerisation is widely adopted as a technology to cap-
ture general computing environments around computa-
tional workflows (Boettiger, 2015), but it can also be used
more specifically for academic papers (Liu and Salganik,
2019) and for research infrastructures (Konkol et al.,
2020). The common drivers behind using containers are
the need to capture data, code, and the computational en-
vironment, ideally in an automated fashion; portability,
e.g., between researchers’ computers and cloud infrastruc-
tures; and ease of use, i.e., abstracting away the complex-
ities of managing the environment, enabling use by re-
searchers. Workflow tools can automate the process of
capturing experimental details required for reproducibil-
ity (Davison et al., 2014; Wolstencroft et al., 2013), but
they are not directly connected with scholarly review and
publishing procedures.

The approaches available for capturing environments
are manifold, and once the respective package exists,
portability is a given. However, the approaches do vary
considerably in their usability and accessibility.

One approach, Binder (Project Jupyter et al., 2018),
uses common configuration and dependency manage-
ment files from different programming languages as part
of its Reproducible Execution Environment Specification
(REES) speciﬁcationl. The user cannot access the cre-
ated container specification or image; instead, the project
promises to consistently create images that remain simi-
lar enough over time. In the Whole Tale project, a related
underlying technology is used to create and share repro-
ducible computational research (Chard et al., 2019). The
project provides a multi-user platform, which goes well
beyond 02r’s scope and uses references to code and data,
but core steps are very similar to the ERS, e.g., publishing
a tale to repositories and allowing for interactive examina-
tion for reproduction and verification. Tales are published
in a format extending DataONE Data Packages (Mecum
et al., 2018), which rely on Baglt for serialisation.

ReproZip (Chirigati et al., 2016) is a prominent exam-
ple of tools that use tracing of system calls to create Re-
proZip packages, which can be extracted into different
environments, e.g., a container. Umbrella (Meng and
Thain, 2015) is another tracing-based tool with a par-
ticular focus on high-performance computing. These so-
lutions, however, are less portable and require the au-
thors to execute them, being overall slightly less acces-
sible than requiring just a notebook-based workflow. The
Popper (Jimenez et al., 2017) convention, therefore, gives
authors a lot of flexibility by allowing them to combine
software from the DevOps toolbox. The convention pro-
vides generic domain-independent templates for project
structure, but it also requires that authors are familiar
with a number of complex tools. In one work, Chuah
et al. (2020) bridge between tracing and declarative ap-
proaches and also generate Dockerfiles for workflows,
but by using log files and for C/C++ and Python-based
workflows. For the tracing, they use a command-line only
tool, Sciunit (That et al., 2017), developed by the same

1 https://repo2docker.readthedocs.io/en/latest/specification.html

https://doi.org/10.5281/zenodo.5108218

group. Science Capsules (Ghoshal et al., 2021) and the
Cloud of Reproducible Records® capture end-to-end work-
flows, but they emphasise on collaboration and their re-
spective scientific disciplines, and are not connected to
scientific publishing. Similarly, RENKU is a platform for
creating workflows with interlinking of artefacts, like the
ERC, yet with a focus on collaboration and providing inter-
active environments, not with preserving a specific state.
Occam (Oliveira et al., 2018) focuses on preserving the
full source code to mitigate shortcomings of only saving
executable binaries. Boutiques (Glatard et al., 2018) is
an application description frameworks for packaging CLI
tools. The REANA platform (imko et al., 2019) enables
the creation and manipulation of reproducible computa-
tional workflows of complex large-scale analyses that go
beyond the computational notebooks at the core of the
ERC. Maneage (Akhlaghi et al., 2021) focuses on the lin-
eage aspect of computational workflows, for example cap-
turing contributions pre-publication and extensions post-
publication relying on GNU Make, but it requires famil-
iarity with low-level tools. Finally, Encapsulator (Pasquier
et al., 2018) creates time capsules for reproducible code,
capturing the computational environment in a virtual ma-
chine using Vagrant (Wikipedia contributors, 2021h). En-
capsulator generates a Vagrant file and can be used with
a command line interface.

Earlier approaches similar to the ERC and ERS include
Paper Mdché (Brammer et al., 2011), which uses virtual
machines for capturing papers and defines a format quite
similar to the ERC, the Paper Maché file (.pm). This file
can be inspected using an online workbench or can be
downloaded and executed on a local computer. The main
differences are the capturing of reviewer comments and
ratings within the .pm file and the use of VMs. Another
tool, Inkling (Castleberry et al., 2013), has own file for-
mats for documents and workflow configuration based
on LaTeX and for creation of the required CLI commands,
which is much less accessible for non-technical users than
R Markdown.

The ActivePapers project (Hinsen, 2015) describes a
platform for publishing and archiving computer-aided
research by turning the scientific contents of software
into so-called pure computations (Hinsen, 2015). Hin-
sen presents extensive requirements, two prototypical im-
plementations, and important lessons learned. Similar to
ERC and ERS, ActivePapers demonstrates the feasibility
of packaging reproducible research, but with a different
approach without containerisation. That works’s strong
theoretical base and implementation from the ground up
are a counterweight to the more practical approach of the
ERS, which largely adapts general-purpose tools. Each ap-
proach has its own limitations. Hinsen (2015) concludes
with the idea that computational models and methods
should be separated from software tools for better preser-
vation. However, this requires researchers to more deeply
and more often delve into the tools, and, thus, represents
a more long-term change than the current scope of the
ERS.

None of these related projects and ideas have found

2 https://www.nist.gov/programs-projects/cloud- reproducible-records

Nst

https://repo2docker.readthedocs.io/en/latest/specification.html
https://www.nist.gov/programs-projects/cloud-reproducible-records
https://doi.org/10.5281/zenodo.5108218

considerable uptake outside of specific groups or commu-
nities; this is also true for the ERC and ERS. What could
help to close the adoption gap are author guidelines by
journals and publishers. Several journals have established
processes to execute workflows that belong to submitted
manuscripts. Some of these processes rely on communica-
tion between reviewers and authors to ensure that the re-
producing party can execute a workflow (Niist and Eglen,
2021; Heroux, 2015), while others partner with commer-
cial platforms (cf. Konkol et al., 2020; Editorial, 2018),
and others develop their own formats for reproducible
articles, most prominently eLife’s ERA (Guizzardi et al.,
2021). Only few publishers actually recommend specific
tools®. One of the exceptions is the journal GigaScience,
which suggests multiple tools, including ERA and Gigan-
tum, giving authors a lot of flexibility* and reducing the
risk of betting on the wrong approach.

3. Executable research compendium: technical
specification

3.1. Design. A research compendium® is made up of
parts, namely (i) data, e.g., collected or simulated inputs
and calculated outputs, (ii) software, i.e., a fully auto-
mated or “scripted” computational workflow using, e.g.,
scripts, source code projects, and programming language
libraries/modules, and (iii) text and graphics for con-
sumption, e.g., instructions, a full manuscript, or figures.
The term was coined by Gentleman and Lang (2007),
reused by Stodden et al. (2015) and extended to an exe-
cutable research compendium (ERC) by Niist et al. (2017).
The ERC extends the parts of a compendium in several
respects: (i) It adds a further part allowing interaction,
the UI bindings (Konkol et al., 2019b); (ii) it extends the
generic idea of software with a well-defined runtime en-
vironment based on containerisation; and (iii) it requires
a literate programming (Knuth, 1984) document as the
main document to execute the workflow. Figure 1 gives
an overview of the ERC components. Based on these ex-
tensions, ERCs realise a portable and executable snapshot
of a computational workflow with all documentation and
presentation files and can be used as the core building
block within scholarly publishing.

More practically, the ERC technical specification
should support the goals of the ERC as described in Niist
et al. (2017) and serve as the foundation for the imple-
mentation of a Web service for creating, examining, and
finding ERCs. The realisation is guided by several design
goals. All these goals intend to be “preservation friendly”,
in the sense that preservation is never something that can
be completed but is an ongoing activity.

1. Simplicity and convention over configuration. The
specification should not re-do something which already
exists, e.g., in the form of an open specification or tool,
and should not duplicate metadata unnecessarily. The
risk of scattering information is mitigated by clear doc-
umentation and outweighed by the advantages of reuse.

3Cf. ACM SIGMOD's reproducibility initiative recommending ReproZip, http:/reproducibility.sigmod.org/.
4htlp://gigasciencejournal.com/blog/gigantum—joins—giga— reproducibility-machine-learning-toolkit/

5For a full list of publications on research compendia see https://research-compendium.science/.

Nust

Furthermore, it must be possible to create a valid and
working ERC manually, and every researcher should be
able to fully understand how ERCs work. Therefore, ERCs
should generally be text-file based, e.g., no embedded
database or binaries unless needed. Supporting tools
should be used to cover typical use cases with minimal
required input by a creating user. We must also acknowl-
edge that most ERCs will be created “post hoc”, meaning
before submission or after completing a research project.
While it would be beneficial to steer researchers’ work-
flows on a highly reproducible track from the beginning,
because it provides a basis for real collaboration (White-
house, 2019), this is unrealistic because of researcher free-
dom, diversity in previous knowledge, and the evolution-
ary slow change of habits and practices. The majority of
cases should be covered by following regular conventions,
whereas special cases should be supported with configu-
ration.

2. Nested containers. We acknowledge the existing stan-
dards for packaging a set of files and capturing computing
environments. To be able to reuse these formats, the ERC
has an outward facing packaging, where all components
of the ERC are put into, but also contains a composite com-
ponents which themselves package complex contents. Fig-
ure 1 shows how we distinguish these containers into the
inner (or “runtime”) container, which holds the software
dependencies of a particular workflow, and the outer con-
tainer, which holds the inner container and all other text,
data, and code files. Using the four layers of software
stacks in scientific computing from Figure 1 in Hinsen
(2018), the outer container contains project-specific code,
and the inner container contains domain-specific tools,
scientific infrastructure, and non-scientific infrastructure.
The outer container can be used for content-unaware val-
idation and more easily adheres to established preserva-
tion practices. The nesting gives a separation that, in the
long-term as computing environments are likely to evolve
and likely break, maintains access to the core files for a
specific workflow. This also means that data and control
code is not (only) within the inner container so that one
barrier to access, e.g., data in a PDE is not replaced with
another, e.g., data in a binary container image®. The inner
container should also be created transparently based on
an actionable text file. The duality of an executable run-
time container and a recipe ensures transparency and a
fallback option (Niist and Hinz, 2019). The nesting also
supports the idea of “layered reproducibility”” to handle
different levels of dependencies in a used software stack.
The outer container can contain a language-specific code
package, e.g., for R or Python, enabling reusability and
understandability, whereas the inner container captures
the system dependencies. Users with different skill sets
may interact with the layers differently, and layer useful-
ness may change over time.

3. Transparency, stability, and openness. All configu-
rations and, as much as possible, also the content should
be based on plain text files. Plain text files are usable

6A problem pointed out by Greg Wilson on Twitter at https:/twitter.com/gvwilson/status/

1164240321028534274.
Concept introduced by Noam Ross in an online discussion thread on rOpenSci at https:/
discuss.ropensci.org/t/creating- a- package-to-reproduce-an-academic-paper/1210.

7

ERC Web service |

July 15, 2021

3

http://reproducibility.sigmod.org/
http://gigasciencejournal.com/blog/gigantum-joins-giga-reproducibility-machine-learning-toolkit/
https://research-compendium.science/
https://twitter.com/gvwilson/status/1164240321028534274
https://twitter.com/gvwilson/status/1164240321028534274
https://discuss.ropensci.org/t/creating-a-package-to-reproduce-an-academic-paper/1210
https://discuss.ropensci.org/t/creating-a-package-to-reproduce-an-academic-paper/1210

4

Executable Research Compendium

— part of outer container ——

workflow scripts
& control code

Ul bindings

project libraries

documentation and packages
I
inner container
software = —

language libraries
T and packages

sytem dependencies

data & low-level libraries

container runtime
0S kernel

Fig. 1. Executable research compendium. Detailed look at software components and
the inner container, with language libraries and system dependencies, and the outer
container, with Ul bindings, documentation, data, workflow code and project libraries.

by both humans and computers, ensure that ERCs are ac-
ceptable by users with varying backgrounds and levels of
expertise, guarantee that ERCs remain understandable in
the future, and enable ERCs to be easily extended. If pos-
sible, “old” technologies are also preferable, as they are
tested and stable, and are likely to outlive innovative for-
mats®. It is therefore possible to both create and examine
an ERC manually, i.e., without any supporting infrastruc-
ture or tools. All specifications and tools are published
under open permissive licenses.

4. Multiple entrypoints. Both humans and machines
need to act on ERCs. Human users need a convenient
and efficient way to interact with the substance of the re-
search that is described in publications, which Marwick
and Pilaar Birch (2018) describe with the useful “bottle-
opener” metaphor. For machines, we need a “one-click”
(Pebesma, 2013) command that can be used to execute
and rudimentarily validate a full workflow. For users, we
need a file that can be opened manually, or be shown to
usersy as the default document by tools when opening
an ERC. The literate programming paradigm, or compu-
tational notebooks, can support both these needs, giving
authors flexibility, readers accessibility, and machines a
well-definedness.

The specification is accompanied by guides for users,
namely for readers and preservationists, and developers,
which comprise the background on goals, design deci-
sions, and the development process. The specification
document uses technical language to clearly identify re-
quirements and optional features, but it is also enriched
with examples and introductory texts.

3.2. The specification. The specifications is published un-
der a Creative Commons CCO 1.0 Universal License at
https://02r.info/erc-spec/spec/ in HTML and PDF format,

8As argued by Wilson et al. (2017), in deference to the saying: “What’s oldest lasts longest.”

https://doi.org/10.5281/zenodo.5108218

is developed openly in an online repository’, and is
archived in Niist (2021). This section summarises the
ERC specification—see the online specification for details.

An ERC must include a main file and a display
file. The main file follows the literate programming
paradigm (Knuth, 1984) and can be executed to create
the display file. Both files should be named accordingly
main.extension and display.extension, using cor-
rect file extensions and media type to use convention over
configuration. The ERC specification encourages R Mark-
down (Allaire et al., 2021a; Xie et al., 2018) as the format
for R-based analyses, and it includes details for modelling
metadata in the YAML front matter of R Markdown files,
and for ensuring reproducibility by not using any caching
features. These two files provide the entrypoints for hu-
man readers and executing tools.

Alternative names for main file and display file may be
configured in the ERC configuration file erc.yml, which
is the third required file in an ERC. The ERC configuration
must include a globally unique identifier for the ERC, and
the version of the used ERC specification. Authorship in-
formation is expected to be present in the main file and is
therefore not repeated in the ERC configuration file. How-
ever, due to the lack of alternatives, the licenses of the core
components or ERC can be explicitly modelled in the con-
figuration file.

The final content of an ERC is the runtime environ-
ment, which is represented by two files: an executable
runtime image, which includes all base software and li-
braries to execute the packaged analysis, and a runtime
manifest, which documents the images and contents as a
self-contained complete recipe in an actionable format to
create the executable runtime image. This approach uses
containerisation, and the runtime environment is the in-
ner container. Due to Docker’s standing as a de facto stan-
dard, the ERC specification further defines the runtime
environment, and how tools are expected to interact with
the manifest and image, based on Docker. For example,
the image file should be saved from a cache-less container
build and must be tagged matching to the ERC ID. To en-
able controlling the workflow through tools, the default
commands of the image must render the main document,
and the working directory must be fixed so that files from
the ERC can be connected into the runtime environment
correctly, i.e., mounted into the container. The specifica-
tion describes how these mounts are to be used to full
executions of workflows, but also for substituting specific
files between ERCs. Finally, the specification requires im-
ages to have an image tag with the ERC identifier.

The following files are an example of the payload for a
minimal ERC using R Markdown and Docker:

main.Rmd
display.html
Dockerfile
image.tar
erc.yml

An example ERC configuration file is as follows:

9 https://github.com/o2r-project/erc-spec/

Nst

https://creativecommons.org/publicdomain/zero/1.0/
https://o2r.info/erc-spec/spec/
https://github.com/o2r-project/erc-spec/
https://doi.org/10.5281/zenodo.5108218

id:
spec_version: 1
main:
display:
licenses:
code:
data:
text:
metadata:

"data_licenses_info.pdf"

The ERC bundles multiple parts to make a computa-
tional workflow and its documentation accessible, but it is
itself also a digital artefact that can be distributed, shared,
and archived. Therefore, the specification ends with sec-
tions on interacting with ERCs, preservation of ERCs, and
checking ERCs. For interactivity, the ERC configuration
file can include metadata about the ERC’s Ul bindings
(see Konkol et al., 2019b). For preservation, the outer
container of an ERC is a “Bag” following the Baglt specifi-
cation (Kunze et al., 2018). Baglt ensures reliable storage
and transfer through file checksums and ensures compat-
ibility with established preservation workflows in form of
bitstream preservation. The descriptive metadata of the
bag also labels an ERC as such. A draft for a possible
Baglt profile is included in the specification. This pro-
file could make required metadata more explicit, and, for
example, disallow usage of the “fetch” feature to require
self-contained bags for ERCs. To reduce the risk of infor-
mation loss, the specification deviates from the goal to
not duplicate information and instead suggests to store
metadata in all formats that specific use cases may need
within the ERC. This secondary metadata are copies of
the main metadata, e.g., the required fields and encoding
of the data repository used for ERC storage, and increase
the likelihood of at least some metadata being accessible
in the unforeseeable future. One example for such sec-
ondary metadata is Zenodo record metadata in a JSON
format. For checking ERCs, the specification defines a pro-
cedure that ERC-supporting tools can implement. An ERC
check comprises the execution of the workflow and the
comparison of the ERC’s files after the execution. The im-
portant file in the comparison set is, naturally, the display
file, because differences can point to meaningful devia-
tions in a workflow’s results.

4. Opening reproducible research system archi-
tecture

4.1. Structure. The architecture for a publishing work-
flow enhanced by ERC describes a system for open-
ing reproducible research as part of a scholarly publi-
cation process— the o2r architecture. It is developed
in an online repository'®, published online at https:/
o2r.info/architecture/ in HTML and PDF format, follows the
arc42 Documentation template!!, and is archived in Niist
(2021). The arc42 template mandates a number of sec-
tions and contents, not all of which are described here—
see the online architecture for details.

4.2. Goals. The o2r architecture describes the relation-
ship between the reproducibility service, i.e., the ERS, and

10 https://github.com/o2r-project/architecture/

11

https://docs.arc42.org/home/

Nust

other services from the context of scientific collaboration,
publishing, and preservation. Together, these services can
be combined into a new system for transparent and repro-
ducible scholarly publications. As one part of such a sys-
tem, the ERS must not replicate already existing functions
but instead, inspired by the Unix philosophy (Wikipedia
contributors, 2021g), do only one thing, but do it well;
namely, provide a reliable way to create and examine
packages of computational research, i.e., ERCs as repro-
ducible publications. Existing functionalities, such as stor-
age, authentication, or persistent identifiers must be con-
nected via APIs. Creation comprises uploading of a re-
searcher’s workspace with code, data, and documentation
to the ERS, where a reproducible runtime environment is
captured. This runtime environment forms the basis for
examination, i.e., discovering, inspecting details, and ma-
nipulating workflows on an online platform. For users, it
is important that these features are provided in a guided
process with excellent user experience, without too much
exposure of the underlying complex technology. Technol-
ogy is more successful when it is easy to get things done
(Bouffler, 2019). At the same time, the system must be
transparent, so it can be scrutinised and will not put the
rigorousness of the actual ERCs into question.

The considered stakeholders in the architecture are
the author (scientist), who publishes an ERC as part of a
scientific publication process to build a convincing argu-
ment, the reviewer or editor (scientist), who examines an
ERC during a review process to assess reproducibility and
validity of results, the reader (scientist), who views and
interacts with an ERC on a journal website to understand
methods and build upon results, the publisher, who offers
ERC-based publishing to increase the quality of publica-
tions, the curator or preservationist, who ensures research
is complete and archivable using the ERC, the operator,
who provides infrastructure to researchers at their own
university or the publisher to communicate high-quality
research using an ERC, and the developer, who uses and
extends the tools around ERCs. For the remainder of this
section, a focus lies on the author, reviewer, publisher, and
preservationist.

4.3. Scope, context, and solution strategy. The system
scope and business context are summarised in Figure 2
and describe the relations between infrastructures and
services for communicating scientific computational work-
flows. The stakeholders interact with a number of plat-
forms (leftmost column), but not directly with the ERS
(second column). The publishing platforms, which au-
thors and reviewers use, connect with the ERS through
its API. Publishing platforms, such as journal submission
and review systems, allow users to upload or create ERCs,
track the submission status and access rights, e.g., for re-
viewers, and eventually expose published ERCs through
their search results and journal websites. The ERS may re-
trieve files from collaborations platforms, where authors
collaborate on data, code or text, if authors submit links
instead of directly uploading files, and it can use registries
to both harvest and publish metadata. These registries
power catalogues and search portals directly and medi-

ERC Web service | July 15,2021

5

https://o2r.info/architecture/
https://o2r.info/architecture/
https://github.com/o2r-project/architecture/
https://docs.arc42.org/home/

ately via data repositories and archives, and, thereby, en-
able users to discover ERCs. The ERS offers ERC cre-
ation and examination services and uses different sup-
porting services (third column) to authenticate users, to
retrieve software artefacts, to store runtime environment
images, to execute workflows, and to store ERCs. Using
an existing ID provider frees the ERS from storing au-
thentication data securely and from ensuring that users
are real persons. The execution infrastructure is accessed
through containerisation tools based on the HTTP pro-
tocol and, thus, is scalable, e.g., when deployed in a
distributed cloud-based infrastructure. Software repos-
itories provide software artefacts during ERC creation,
e.g., installing software libraries from a programming lan-
guage’s package distribution infrastructure, and can also
provide standardised APIs to store to containers of the
executable runtime environments. Data repository pro-
vide content to the reproducibility service for ERC cre-
ation but they can also store the completed ERCs. In
turn, the data repositories may connect to archives and
digital preservation systems (rightmost column) for long-
term storage. These archives employ extended data and
metadata management because of their scope, e.g., the
archives must ensure long-term access rights or technical
accessibility. Therefore, these preservation concerns are
relevant for the ERS even though it does not directly con-
nect to archives, as the ERS should ensure a smooth trans-
fer of created ERCs from storage to archives. The support-
ing services also connect with each other; for example, the
execution infrastructure can access trusted data reposito-
ries to download data that, for reasons of storage size, are
not included within an ERC. All of these systems are con-
nected through Web protocols.

The solution strategy of the architecture is described
by the architectural decisions. First, the developed so-
lution is set in an existing system of services, and first
and foremost, it must integrate well with these systems,
focusing on the specific missing features of building and
running ERCs. These features are provided via a well-
defined Web API in the ERS. Second, internally, a mi-
croservice architecture is used to allow dynamic devel-
opment, e.g., independent development and deployment
cycles, and, to support the large variety of skills avail-
able on the academic development team. This architec-
ture comes at the cost of increased application complex-
ity when it comes to testing and deployment. The appli-
cation state is shared between microservices through a
database, whereby the database’s operation log is used
for notifications and events across microservices, e.g., for
enabling real-time updates of the user interface based on
WebSockets. Third, the ERS itself does not provide a re-
liable storage solution. The microservices simply share a
common pointer to a local file system path, which should
be regarded as ephemeral. Fourth, the client applica-
tion manages the control flow of all user interactions and
ensures the Web API operations are executed in the re-
quired order. Finally, generic functions should be devel-
oped as standalone tools with a command-line interface
(CLI). The CLI allows for both integration into microser-

can be packaged in container images and executed as con-
tainers by the microservices, which ensures easy distribu-
tion through a container registry and independent updat-
ing from the microservices themselves, but they also allow
running tools either next to the microservices or in an in-
dependent container cluster, thus providing scalability.

4.4. Building block view. The arc42 template defines ar-
chitectural components in alternating layers of a black
box, where only the outside appearance and interaction
options are described, and a white box, where internal
details are given. A white box layer then includes com-
ponents described as black boxes, etc. In this work, we
single out the white box view on the ERS as shown in
Figure 3. The ERS itself consists of a web server to dis-
tribute incoming API calls to the microservices as a reverse
proxy and to serve the static files of the user interface.
The web server also manages secure communication via
HTTPS. The microservices run in containers. They use
containerised tools, namely containerit (Niist and Hinz,
2019) and o2r-meta'?; connect to a MongoDB document
database for ERC metadata, users, and session informa-
tion; connect to an Elasticsearch search index for full-text
search and advanced queries; and access a local shared
file storage that is mounted into every microservice con-
tainer. The web server as well as the databases also run as
containers. The microservices are implemented in multi-
ple programming languages, namely JavaScript (Node.js),
R, and Python. Each microservice is generally responsible
for one endpoint in the API or for larger sets of features,
such as live notifications or exporting of ERCs.

4.5. Runtime view. The two main scenarios of ERC cre-
ation and ERC examination are described with sequence
diagrams in Figure 4 and Figure 5, respectively. In the
ERC creation sequence, the author creates an ERC from
their workspace of data, code, and documentation. The
author can provide these resources as a direct upload, but
a more comfortable process is loading the files from a col-
laboration platform, e.g., from a public share created at
a cloud file storage provider. After the files are available,
the o2r-meta tool tries to extract metadata from the avail-
able files, so the user does not have to fill out all fields
manually. In the same step, the metadata is translated
into multiple file formats, broker metadata, and saved so
that exported ERCs are more likely to include metadata
understood by other services, such as archives. The ERC
is now a non-public candidate compendium, until the the
users has checked and possibly updated metadata, which
triggers a metadata validation, i.e., if all mandatory fields
are provided, and possible a further brokering. Then the
compendium is saved. If users want to provide access
to a candidate compendium, they can also create a pub-
lic link that gives read-only access and allows execution
(option not included in diagram). Next, a user can start
jobs for a published compendium, i.e., execute the work-
flow. Part of the job execution is to automatically create
missing configuration files, i.e., the erc.yml, and the run-
time environment manifest and image. This relies on the

vices and standalone use cases. These generic functions !Zntps:github.com/o2r-projectiozr-meta

https://doi.org/10.5281/zenodo.5108218

Nst

https://github.com/o2r-project/o2r-meta
https://doi.org/10.5281/zenodo.5108218

Nust

Clients
(publishing platforms,
collaboration platforms,
registries, ...)

02r Busines Context

Fig. 2. Business context. Full-scale image online at https://o2r.info/architecture/#31-business-context.

create,
inspect,
manipulate &
substitute ERC

Reproducibility Service

interact with

X

live updates,

Webserver (HTTPS)

execute ERC
(build, inspect,
manipulate)

Execution

download software

Infrastructure

CRUD runtime images.

fetch content

Software
Repositories

authentication

ul
manage compendium and job files
Microservices
manage
users,
sessions,
compendia,
use| fobs
Ephemeral
Tools Databases file storage

save/load ERC

Data
Repositories

Fig. 3. Reproducibility service. Full-scale image online at https://o2r.info/architecture/#527-whitebox-reproducibility-service.

ERC Web service

July 15, 2021

7

https://o2r.info/architecture/#31-business-context
https://o2r.info/architecture/#527-whitebox-reproducibility-service

containerit tool and the execution infrastructure. The pri-
mary means to create a complete manifest is executing the
whole workflow. Alternatively, containerit also detects ex-
isting computing environment information that is stored
in the provided workspace, namely a sessionInfo ob-
ject for R saved in a file sessionInfo.Rda. As the last
step of a successful job, the runtime environment image
is exported into the ERC. If configuration file and runtime
environment are already present, the step for generating
them is skipped. Finally, the user starts a shipment, i.e., a
deposition of the ERC to a data repository. For this step,
the ERC is packaged as a Bag. To allow the user to check
that the ERC is correctly uploaded to the repository before
publication, the use must take an extra action to publish
the shipment.

In the ERC examination sequence, the user initiates
the opening of an existing ERC by providing a reference
such as a DOI or URL. The ERS retrieves the ERC, saves
the files locally, and loads the contained metadata. Then
the user can start a new job for the compendium. The
user’s client can use the ID to connect to the live logs as
the job runs through all steps (see Section 5.1 for details
about the job steps). The job starts with creating a copy
of the compendium’s files for the job. The copy allows the
ERS to compare the original output, i.e., the display file,
with the newly created one. A copy-on-write file system
is advantageous for this step. Then the archived runtime
image is loaded from the file in the compendium into a
runtime repository. This repository may be remote and ei-
ther public or private, e.g., based on the Docker Registry
or a GitLab instance, or simply the local image storage.
Then all files except the runtime image archive are packed
so they can be sent to a container runtime. The con-
tainer runtime can be local, e.g., the Docker daemon, or a
container orchestration infrastructure such as Kubernetes.
The container run provides log updates as a stream to the
microservices, which update the database, whose changes
trigger updates of the user interface. When the container
is finished, the microservice compares the created outputs
with the ones provided in the compendium using the erc-
checker! tool. The result is a display file with highlighted
differences both in text and graphics, which is shown to
the user as can be seen in Figures 6 and 8. Based on these
aids, the reader, e.g., the reviewer, can quickly determine
whether deviations in the outputs are relevant or not, e.g.,
if they are only graphical artefacts or acceptable numeri-
cal variation as in Figure 6, or incorrect results as in Fig-
ure 8.

5. Reproducibility service

5.1. APL. The ERS exposes its functionality via a REST-
ful HTTP API. The API is specified using the OpenAPI
model (Wikipedia contributors, 2021f). It uses WebSock-
ets (Wikipedia contributors, 2021i) for push-based notifi-
cations from server to client and encodes requests and
responses in JSON. It is developed in a public reposi-
tory'#, hosted online at https://02r.info/api/, and archived in

13
14

https://o2r.info/erc-checker/

https://github.com/o2r-project/api- spec/

https://doi.org/10.5281/zenodo.5108218

15

Niist (2021). The website provides access to the machine-
readable specification in YAML format!® and an HTML
rendering for reading.

The API provides several endpoints to manage compen-
dia and their metadata, compendium execution (jobs, and
links for authentication-free execution), compendium
substitution, compendium shipments, and users and their
authentication and access levels. For full examples of
resources, e.g., for ERC metadata, please see the demo
server and reference implementation (Section 5.2). The
management operations use matching HTTP verbs for cre-
ating (POST), listing or retrieving (GET), updating (PUT),
and deleting (DELETE) resources. Different user levels al-
low or prevent certain operations only for specific users;
most importantly, only “known” users (who undergo a
manual check following registration) are allowed to cre-
ate and examine ERCs. User authentication is based on
the OAuth 2.0 protocol (Hardt, 2012), and operation au-
thentication against the API uses a session cookie. The
API includes a version in the URL path and provides index
responses to support client side construction endpoints
and stability. The following JSON documents are the re-
sponses to the /api/ and /api/v1 endpoints. The latter
document lists all resources of the API that must be com-
bined in sequence, controlled by the client-side, to realise
the runtime interactions described in Section 4.5.

{
"about": "https://o2r.info",
"yversions": {
"current":

nyqn,

}

"/api/v1i",
”/api/vl”

"auth": "/api/v1/auth",

"compendia": "/api/v1/compendium",
"jobs": "/api/v1l/job",

"users": "/api/vl/user",

"search": "/api/vl/search",

"shipments": "/api/v1/shipment",
"recipients": "/api/vl/recipient",
"substitutions": "/api/vi/substitution",
"links": "/api/v1/link"

Complex compound resources, such as
../compendium, also provide sub-resources to ac-
cess parts or related resources more conveniently,
e.g., ../compndium/abcl2/jobs to access related
jobs. Query parameters on selected resources are
provided to filter the results. For example, the
URL ../job? limit=10&compendium_id=abc12
&status=success&fields=user (spaces added for
readability) returns at most 10 jobs which succeeded, in-
cluding the users who started them, for the compendium
with identifier abc12. The . ./users resource facilitates
user management and ../search facilitates the discov-
ery of ERCs and jobs. As these are common API features,
they are not described in detail here. Konkol et al.
(2019b) describes the concepts of user interface bind-
ings and how to create new ERCs through substitution,
modelled in the ../bindings and ../substitution
resources, in detail.

https://o2r.info/api/o2r-openapi.yml

Nst

https://o2r.info/api/
https://o2r.info/erc-checker/
https://github.com/o2r-project/api-spec/
https://o2r.info/api/#section/User-levels
https://o2r.info/api/o2r-openapi.yml
https://doi.org/10.5281/zenodo.5108218

Nust

"loader" Collaboration "meta" ephemeral
User . . - Database
microservice Platform tool file storage
T T T T
! ! ! !
- ! ! !
! ! !
! ! !
M ! !
get contents of share | !
create compendium I
from public share |
i
J analyse contents |
!
!
!
i
one of !
- download ZIP file H
- download directory !
i
save files i
unzip and check encodings
[desernmig
(validate if yes)
I save raw metadata
extract metadata L
load raw metadata
broker metadata load raw metadata
broker
save o2r metadata
|
load 02r metadata |
save candidate compendium
retum D
T T
| |
! !
! !
! !

open candidate compendium

check metadata

read compendium metadata

-]

update metadata

start job

save o2r metadata

return job result
including check

get recipients

start shipment

"shipped” status

validate metadata
read metadata
validation
broker metadata LT save metadata
(various formats)
load metadata (various formats)
T save compendium
|
Create job !
|
start exectution i
create a copy of fles for job
detect bag, validate if yes
. L
< 10ad or generate configuration file i
Execution |
Infrastructure |
; validate configuration file |
T !
' !
i !
execute containerised workfiow (_containerit) =
save runtime manifest
build runtime image
start container from runtime image
save output files
T
check output generated by job !
i
save runtime image as archive D
"shipper" Data
microservice Repository
T
|
o
create packaging (BagIt) read metadata
h

create deposit, upload files, submit required metadata

check deposit

-l

publish shipment

“published” status

publish deposition

read data

update shipment

Fig. 4. Runtime view. ERC Creation; full-scale image online at http:

/o2r.info/architecture/#61-erc-creation.

ERC Web service

July 15, 2021

9

https://o2r.info/architecture/#61-erc-creation

. . Data Runtime ephemeral Execution
User microservices - . - Database
Repository Repository file storage Infrastructure
T T T T
! | | |
ui ! ! !
load ERC | | |
get compendium | 1
1
!
save compendium files. ’, i
5 !
§ |
return compendium 1D
start job il
z check request and user rights save Job
return job ID. E start execution
continuously update jog log
£
5| update with changes
£ create a copy of files for job
live updates (WebSockets) [—| | L]
validate Baglt bag
load configuration file and validate compendium
load runtime image
push runtime image
package container payload
!
K send payload and
| run container
N \ j
< 5 :
H rovide run lo | |
(saved to database by muncher, |
user updates by informer) |
pull runtime image |
container exit code
7
|
check job output r :
L update job

return check result

Fig. 5. Runtime view ERC examination; full scale image online at https:/o2r.info/architecture/#62-erc-inspection.

<« CG @& ozruni-muenster.de/#/erc/UXig0 @ i H
02 r otose
Original results Reproduced results Differences between original and reproduced results
W Bemnpoae = =) T B W Bwmnprees ® =) B < W Bemnprmes m =) T B
NF Namberoffon, = 5 2 NF Nomerotfon - Al 2 N Nemerotlom - Al 2
W inertoorteight a - s W et gt - - 5 W et gt - o 5
B B bt B v = B Bt b ™ 0 = B Bascoco b - v)
G Cromafouriew m B [G Gromatooret n B o G Gromafoorie [B or
B Bwmnion =) TR B B o . “oi-wus B B o 0 TR
- Deted e - Dot e
W B o B . W Bungage - 2 Semdeheanonse 1 W Budegoe - 2 Semvdeocieanonse 1
- Aparmc s - Apamen o
B Buiding s [ER e — B Buiking e L R ooocrse
R Fengien L P oxm [] o
(is boilingquliy) 2 e bibg i) - medhn : e bilng gl - - medim B
B 12k
w o
[— " [P — V- et i IR — V- et m
Uil L
W Newdowne - W Verdommee - v W vewdommeie - o i
™ Hostogspiemdiariuion T Hoso e dibuion i ™ eting e i] Tt
i Hearing system ype - 2: pavement T Heating sysiem type - 2 pavement T Heating sysiem ype - 2 pavement aFL- 1
Building damage Building damage
g [m demegetotal g amage toial
g | m ceanp S |m coann —
g 8 moval
g = Srrar
g o @ . | @ mshngwo
a 8 = 8 | ® sysems / /
g8 g8 / //—‘
5 £ =
s g] = i
f’ ﬁ)j
§ B g i - __ —
. — . —
T T T T T T T T T T T T
0 1 2 a 4 H o 1 2 3 4 s
Water depth () Water dapth ()
Figure 1: Example of INSYDE damage functions considering the following event Figure 1: Example of INSYDE damage functions considering the following event Figure 1: Example of INSYDE damage funcions considering the folowing event
vasiables: flow velocity = 2.0 mis , flood duration = 24 h, sediment conceniration = 0.05, ariables: flow velocity = 2.0 ms , flood duration = 24 h, sediment conceniration = 0.05 variables: fow velocity = 2.0 /s , lood durafion = 24 b, sediment concenration = 0.05
and water quality = presence of poliutants (1=yes, 0=no). Damage functions for entire and water quality = presence of poliutants (1=yes, 0=no). Damage functions for entire and water quality = presence of pollutants (1=yes, 0=no). Damage functions for entire
building and diflerent buikding components. buiding and diflerent buiding components. buikding and different building componerts

Fig. 6. Screenshot of the ERS user interface showing the result of a failed job execution due to differences in a figure. Left column: display file provided by the author; middle column:
display file generated by the ERS; right column: display file with highlighted difference generated by erc-checker.

10 | https:/doi.org/10.5281/zenodo.5108218 Nust

https://o2r.info/architecture/#62-erc-inspection
https://doi.org/10.5281/zenodo.5108218

The execution of a compendium consists of a fixed se-
quence of job steps. The steps can have one of multi-
ple statuses: success, failure, and running. The over-
all job status is a combination of the steps’ statuses—if
at least one step is a failure or running, so is the job.
Some steps can be skipped because the job for executing a
complete compendium and executing a workspace to cre-
ate a complete compendium share some steps that should
be readily reused in implementations of the API. The job
metadata captures logging messages and start/end time
separately for each step. Because jobs are computation-
ally intensive operations, users must be logged in to start
a job. The job steps are as follows (cf. Section 4.5):

1. Validate the bag (skipped if workspace)
2. Generate compendium configuration (skipped if
present)
3. Validate compendium
4. Generate inner container manifest (skipped if
present)
5. Prepare image payload archive (to build and run the
image on remote hosts; possibly costly operation)
6. Build image and add image tag erc:<erc
identifier>
. Execute container
8. Check the display file of the job against the com-
pendium’s baseline
9. Save image to tarball (skipped if check failed)
10. Cleanup (implementation specific)

~

An editor or admin, but not users themselves, can cre-
ate a link with the resource ../link, which provides a
second identifier for a specific compendium which allows
users to execute a compendium without logging in. Such
link identifiers may be short lived or dynamic.

The process of exporting a compendium to a storing
repository is called shipment (cf. Section 4.5) and is mod-
elled in the two endpoints . . /recipient, which lists sup-
ported services, and ../shipment, which controls the
possibly costly and irreversible operation. To allow val-
idation in the receiving service, the export is a two-step
process: First the new shipment is created, then the actual
publishment can be triggered.

5.2. Reference implementation. The microservice archi-
tecture results in numerous projects within the o2r code
organisation'®. For easier evaluation and reproducibility,
all microservices are integrated in one single code repos-
itory reference-implementation!’ using git submod-
ules, which is archived in Niist (2021). The online demo
server is available at https://o2r.uni-muenster.de.

The following instructions require Docker (Wikipedia
contributors, 2021c) (tested with version 20.x) and GNU
Make (Wikipedia contributors, 2021e) (tested with ver-
sion 4.1). The commands must be executed in the base
directory of the reference-implementation. If Make is
not available (e.g., on Windows OS), then the instructions
of make targets in the Makefile may be executed manu-
ally on a command line. The target reproduce loads the

16htlps://gi1hub.ccvm/02r»projecl/

17htlps://gnhub.com/oZr»projecl/reference-imp\ememation

Nust

18
19

images saved to tarballs and executes them in a configura-
tion suitable for local testing and development based on
docker-compose (Docker Inc., 2019). The demonstra-
tion project includes a small OAuth provider so that users
can log in with different user levels with a single click.

To use the images from Zenodo, download all files form the
Zenodo deposit, then:
make reproduce

To build from the source code in the git repository and

run the ERS:

clone https://github.com/o2r-project/reference-implementation
cd reference-implementation

make local

5.3. Examples. A number of example ERCs have been
published on the demonstration platform of the o2r
project—see Section 5.2 and on GitHub'®. These exam-
ples include over a dozen scientific articles reproduced as
part of Konkol et al. (2019a). One ERC was part of a pilot
collaboration with the Copernicus Journal ESSD, which
conducts open reviews. The referee report (Gonzélez Ava-
los, 2020) mentions the ERC positively.

A complete minimal example is given by the ERC
configuration file above (see Section 3.2) and the fol-
lowing four documents. The minimal example is pub-
lished at hitps://o2r.uni-muenster.de/erc/q7Eje. The data
file, data.csv, provides simple statistics about cargo
ships'?:

"year","capacity"

"1980",11
"1985",20
"1990",26
"1995",44
"2000",64
"2005",98
"2010",169
"2014",216
"2015",228
"2016",244

The Dockerfile defines the computational environ-
ment (extra line breaks for readability).

FROM rocker/geospatial:3.4.4
LABEL maintainer="o2r"
Packages skipped because in base image: [shortened]
WORKDIR /erc/
CMD ["R", "--vanilla", "-e",
"rmarkdown: :render (input = \"/erc/main.Rmd\",
output_format = rmarkdown::html_document(),
output_dir = \"/erc\", output_file = \"display.html\")"]

Because this example is contrived, it installs no soft-
ware into the base image. The final line configures the
command to be run when the ERC is executed. The
Dockerfile and erc.yml are generated by the ERS, en-
suring that the rendering command matches the way that
the ERS mounts the ERC’s files from the outer container
into the inner container. The other files are created by the
author.

The source of the HTML display file, display.html,
shown in the left-hand side of Figure 7, is not included

https://github.com/o2r-project/erc-examples/
I Statista 2017, Source: https:/www.statista.com/statistics/267603/capacity- of-container-ships-in-the-
global-seaborne-trade/.

ERC Web service | July 15,2021

1

https://o2r.uni-muenster.de
https://github.com/o2r-project/
https://github.com/o2r-project/reference-implementation
https://o2r.uni-muenster.de/erc/q7Eje
https://github.com/o2r-project/erc-examples/
https://www.statista.com/statistics/267603/capacity-of-container-ships-in-the-global-seaborne-trade/
https://www.statista.com/statistics/267603/capacity-of-container-ships-in-the-global-seaborne-trade/

12

Capacity of container ships in
seaborne trade from 1980 to 2016 (in
million dwt)*

Daniel Nist

2015 2005 2000 2016 2014 1980 1985 1995 2010 1990

(¢) Statista 2017

This statistic portrays the capacity of the world container ship fleet from
h ainer

Fig. 7. Screenshot of ERC examination view in the ERS. The left hand side shows
the display file rendering in HTML, the right hand side allows to inspect the source
RaMarkdown document and the input data.

here. The display file can serve as the baseline for assess-
ing whether the reproduction was successful. The R Mark-
down document includes metadata and a simple plot func-
tion to show the input data:

title: "Capacity of container ships in seaborne trade from 1980
to 2016 (in million dwt)x*"
author:
- name: "Daniel Niist"
affiliation: o2r team
date: "2017"
output: html_document
abstract: |
Capacity of container ships in seaborne trade of [shortened]

doi: http://dx.doi.org/10.5555/666655554444

“**{r plot, echo=FALSE}
library(knitr)
opts_chunk$set (dev="png", dev.args=list(type="cairo"), dpi=96)

data <- read.csv(file = "data.csv")

data <- data[sample(nrow(data)),]

barplot (height = data$capacity, names.arg = data$year,
ylab = "capacity", sub = "(c) Statista 2017")

[shortened for inclusion in paper]

Note the use of the sample(..) function, which ran-
domises the order of the data to demonstrate the display
of the check, shown in Figure 8. The R Markdown front-
matter could include additional information, such as a
licenses element or keywords, which are used by the
ERS to pre-fill the ERC creation form. The doi can link
to a related publication in case the ERC is created as a
supplement.

This example also demonstrates that creating an
ERC is possible by hand. None of the generated files
(Dockerfile, erc.yml) are more complex than the main
file authored by a researcher, but researchers would have
to educate themselves on how to create and test them
(cf. Niist et al., 2020). To create the outer package, com-

https:/doi.org/10.5281/zenodo.5108218

20

2

g resus

Reproduced ress

Dierences between orgnal and eprodced resuts

Capacity of container
ships in seaborne trade
from 1980 to 2016 (in
million dwt)*

Daniel Nast

2017

Capacity of container
ships in seaborne trade
from 1980 to 2016 (in
million dwt)*

Daniel Nast

Capacity of container
ships in seaborne trade
from 1980 to 2016 (in
million dwt)*

Daniel Niist

crteam

2017

Cape

This statistic portrays the capacity of the world This statistic portrays the capacity of the world ‘This statistic portrays the capacity of the world

Fig. 8. Partial screenshot of ERC check result in the ERS. Three columns compare
the display file provided by the author (left hand side) with the display file generated by
the ERS (middle). The right hand side column adds a visual highlight to show the differ-
ences between the two plots, in this case quite exaggerated in the columns, but small
differences, e.g., in the figure margins, could be easily judged by a human examiner as
irrelevant.

mand line tools such as bagit?® can be employed. Fi-
nally, the ERC also demonstrates that manual examina-
tion is feasible. First, the outer package can be unzipped.
Then, the ERC configuration file defines the main docu-
ment, which a reader can use as an entrypoint to inspect
the workflow code, and the display file to open for read-
ing. The workflow code is trivial in this example but in
complex workflows can spread across multiple files. The
commands in the Dockerfile can be used to recreate the
computational environment manually, with the complica-
tion that the base image must be available to dig out the
commands used to create it from the image layer meta-
data.

6. Discussion

This work presents one specific implementation of how
computational reproducibility can be connected with
scholarly review and publishing. Naturally, a single im-
plementation of an API used only by one project team has
severe limitations and experiences are not generalisable,
not in the least because of the confining context of a re-
search project. Nevertheless, the implementation points
out important aspects and taught valuable lessons, which
can help to adapt concepts, specifications, or even soft-
ware for a productive infrastructure.

6.1. Project set-up, maintainability, and security. On the
project setup and maintainability, the presented web ser-
vice does fulfil the need for an extensible trustworthy soft-
ware by being an open, FOSS project itself, prohibiting
vendor lock-in and standards lock-in, and ensuring the
crucial option to examine the platform itself. The ERS
focuses on one specific problem: creating and examin-
ing ERCs for aiding scholarly peer review so that code
central to claims made in a submission can be evaluated
(cf. Hawkins, 2019). It does not solve data curation?! or
storage, nor does it have measures to evaluate quality of
data, software, or scientific merit. This narrow aim, even

https://libraryofcongress.github.io/bagit- python/
1To get a glimpse of the curators’ perspective, take a look at the first draft for a GeoJSON curation
primer, a file format probably deemed “simple” be geospatial data researchers["14].

Nst

https://libraryofcongress.github.io/bagit-python/
https://doi.org/10.5281/zenodo.5108218

though the internal tools are complex, improves the us-
ability and extensibility of the ERC and ERS.

The complexity introduced through the many microser-
vices was good at the start, as it provided flexibility, but
the need for consolidation for sustainability has led to re-
integration of some services since their inception. The
ERS itself uses containers and is, therefore, readily in-
stalled in various infrastructures. Furthermore, the ERS
as such is not limited to geospatial sciences at all, but
the communication within the community and the test-
ing and demonstrations with examples need to be tai-
lored towards a specific audience to increase chances for
adoption. This is partly an explanation for the numer-
ous, seemingly redundant tools presented in Section 2.
On the long-term maintainability of the project, the indi-
vidual software components have a bus factor (Wikipedia
contributors, 2021b) of 1, at most 2, which is of course
bad. One mitigation that would work, at least until the
ERS itself breaks, could be the integration of the ERS with
repo2docker (cf. Project Jupyter et al., 2018), so that
an ERC saved to a repository can be loaded into Binder-
Hub, where the erc.yml triggers the Binder to be opened
with the ERS and o2r user interface. Regarding security,
containerisation offers good mechanisms for controlling
unknown code with respect to used resources, and the
container sandbox should be further hardened for produc-
tive systems, e.g., using AppArmor (Wikipedia contribu-
tors, 2021a). The ERS could also be extended to only ex-
amine ERCs created by itself through signing ERCs. This
gives the ERS control over the image build process, es-
pecially the base image and the allowed software repos-
itories. The main security feature are the real user pro-
files through the user login based on ORCID. The ORCID
project has measures to identify fake accounts, and users
are given the rights to create ERCs manually by ERS ad-
ministrators.

Finally, at this point the ERS is fully dependent on
the Docker container runtime—a technology that while
stable at its core and subject to standardisation itself??,
could be reduced considerably in its features to provide
a stabler footing tailored to research and preservation
requirements. More modern and less vendor-specific al-
ternatives, including rootless Docker or plain OCI-based
tools for building and running images, should also be ex-
plored. Beyond the sandboxing of Docker and the con-
trolled user access, no further security measures have
been explored. The more that containers are used in re-
search, the more likely it will become that a special con-
tainer and image specification, which can be maintained
long term and tested with preservation strategies (cf. Em-
sley and De Roure, 2018; Rechert et al., 2017), will be
developed, e.g., based on Singularity Image Format?® or
on OCI Image Format?*. Besides preservation, specialised
container runtimes can also provide provenance meta-
data, improve performance, and enable composition into
pipelines (Youngdahl et al., 2019; Molenaar et al., 2018).
These adoptions are needed to resolve the conflict be-

22 https://opencontainers.org/

23
24

https://github.com/hpcng/sif

https://github.com/opencontainers/image-spec

Nust

tween reproducibility and tools that are largely driven by
requirements for scalable cloud computing, which were
not designed with preservation in mind®®>. An alterna-
tive mitigation could be multiple (cf. Glatard et al., 2018)
container engines, which as of yet could not be realised
for the ERS. Furthermore, the lessons learned from alter-
native approaches, such as ActivePapers (Hinsen, 2015),
should be critically evaluated and translated into improve-
ments for the next generation of the ERC and ERS. Finally,
the many diverse approaches for sharing reproducible
workflows (cf. related work) are important to explore al-
ternatives and serve specific needs, but there certainly is
also potential for standardisation and consolidation that
would be beneficial for long-term maintenance of the ERS
or other platforms (cf. Mecum et al., 2018).

6.2. Understandability and usability. The ERC is not an
abstraction that hides uncertainty. Instead, it is sim-
ple enough that it should be understandable by all re-
searchers using computational methods. The core con-
cepts of computational notebooks and containerisation
are becoming more widespread across researchers, im-
proving the reproducibility of their works, such that the
combination of both these approaches into the ERC is
likely to be understandable and usable, too. One can
examine ERCs without the reproducibility service?®, and
the ideas of multiple entrypoints and nested containers
are quickly explained. However, it is more realistic to re-
quire that researchers use R Markdown than to ask them
to learn metadata standards and become proficient in con-
tainerisation. The price for a stable capturing of the com-
putational environment—executing the workflow once—
is therefore acceptable. The tedious task of capturing rele-
vant metadata is also automated as much as possible and
ensures high user friendliness for authors. The organisa-
tion of the ERC contents beyond the entrypoints are lie
with the authoring researchers. The ERS makes sure the
ERC is not a black box, but the author makes sure the
contents are understandable. More expressive modelling
of the workflow could be beneficial, and related specifica-
tions do it, but the flexibility does have advantages when
it comes to adoption and adaptability for different com-
munities. Authors may choose to use, e.g., digital scien-
tific notations (cf. Hinsen, 2018) that are suitable for their
work, as long as the full workflow is executed from the
main document. The used template or structure can be
exposed transparently in the ERC metadata via a resolv-
able identifier. Notably, the ERC is not a collaboration
format. We expect collaborating researchers to work on
the level of notebooks and workflow pipelines, which they
can then wrap in an R Markdown document when submit-
ting their study. Finally, the ERC and Web service need
to be evaluated from a user perspective with a larger pi-
lot (cf. product-based approach and focus on user needs
as argued in Whitehouse, 2019) to complement the inter-
nal reflections presented here. Some specific challenges
could already be identified, such as the lack of an explicit

25See for example the challenges around the tar format used in container images:

www.cyphar.com/blog/post/20190121-ociv2-images-i-tar

https://
26hnps://o2r.info/erc—spec/user—guide/examinalion/#manua\

ERC Web service | July 15,2021

https://opencontainers.org/
https://github.com/hpcng/sif
https://github.com/opencontainers/image-spec
https://www.cyphar.com/blog/post/20190121-ociv2-images-i-tar
https://www.cyphar.com/blog/post/20190121-ociv2-images-i-tar
https://o2r.info/erc-spec/user-guide/examination/#manual

14

configuration of the time zone, which led to check fail-
ures because times were off by one hour between original
and reproduced display file. In that case, the environment
variable TZ=CET in the original workflow could resolve the
issue. However, only an exposure to various types of users
and workflows can harden the processes enough against
edge cases.

One core challenge is the proper modelling and docu-
mentation of licenses. This is quite complex for an aggre-
gated artefact like the ERC, though it naturally works best
with open data/methods/source software/text licenses, if
it can be made to work with non-open licenses or pro-
prietary software at all, which was not considered for
this work. The current specification and implementation
merely scratch the surface with individual licenses for the
main components, but they also go further as other repro-
ducibility formats in explicitly modelling them. This is
a compromise to at least provide compatible licenses for
important parts, but does not do enough justice ti high-
lighting the importance of software citation (Katz et al.,
2021) and giving contributors credit. The redistribution
of full software stacks, however, should be less of a licens-
ing issue, as free and open source software licenses explic-
itly allow this, especially for unaltered software. Software
and data citation remain a challenge for all aggregating
reproducibility packages, yet the ERC could have the po-
tential to derive machine-readable metadata for automat-
ing parts of workflow citation networks.

For developers and operators, we see the usability of
the API as reasonably good for a version 1, though it might
be helpful to more clearly distinguish between the loading
of workspace and the opening of an ERC, which currently
is realised with requests to the same API endpoint. The in-
tegration of ERS into publishing systems has not been re-
alised, e.g., regarding user authentication; the only imple-
mented authentication provider is ORCID?’, which may
not work for interested publishers. Furthermore, the pro-
cedural integration with publishing platforms is still un-
der development, with a focus on the Open Journal Sys-
tems (OJS). The performance of the ERS was investigated
with a bespoke load test script which simulated paral-
lel ERC creation and examination sessions. The sessions
included a small randomness and relatively long pauses
where use interaction, e.g., reading a paper or filling out
a form, can be expected, and a fixed execution time of the
actual process. Using the existing demo server, the wait
times during tests were found to be generally acceptable,
given that the user is aware of rather complex operations
happening. A detailed report on the load tests is part of
the ERS API documentation®®. The custom load testing
code is very well suited for evaluating ERS deployments
and their scalability in different infrastructures. Finally,
the sustainability of the implementation is, naturally for
a research prototype, unclear. While several developers
have worked on the platform, which increases trust in doc-
umentation and maintainability, the microservice-based
approach also led to some fragmentation with multiple
used programming languages (Node.js, Python).

27hltps://www.orcid.0rg/
28

https://o2r.info/api/evaluation/load_test.html

https:/doi.org/10.5281/zenodo.5108218

6.3. Capabilities and features. Regarding the capabilities
and features, the ERS can serve an important purpose for
integrating workflow reproductions into peer review. The
ERS allows for taking snapshots at the point of submission
and making these snapshots available to peer reviewers
do they can assist examination of manuscripts in sev-
eral ways: First, the visual comparison of the display files
created by the authors and the ERS itself; second, the
UI bindings interact with specific parts of the workflow;
and third, the substitution of individual files in an ERC
with files from a second ERC, or, in the future, with locally
available files, enables creation new workflows and even
deeper examination. The ERS can, thereby, assist the hu-
man, who needs to be in the loop to make judgement calls
about how close something has to be to the original result
to be deemed a reproduction, i.e., a margin of acceptable
discordance or “zone of reproducibility” that helps to sep-
arate reproducibility from validity (ter Riet et al., 2019).
Hinsen (2018) distinguishes reproducibility as a software
challenge from a challenge in human-computer interac-
tion (HCI). The latter perspective focuses on usage and
reasoning, which is more important for verifiability. In
the same sense, UI bindings aid verification on the basis
of a reproducible computation.

One part of the potential for assisting researchers that
is largely untapped is the area of research discovery
based on ERC. While the search endpoint of the API had
been implemented using a powerful search index, Elastic-
search, the support was dropped because (i) it made the
reproducibility service development and installation more
complex, and (ii) discovery through the reproducibility
service is not a long-term solution, as it only offers short-
term storage of ERCs. Leveraging the connections be-
tween the ERC’s parts and the exposure of the main docu-
ment and software stack for search and discovery should
be placed at the repositories storing ERCs.

The ERC as a snapshot is naturally a compromise be-
tween reliability—something that works now for a spe-
cific purpose—and reusability—something that can be ex-
tended and built upon. An “active maintenance” (Peer
et al., 2021), where workflows are constantly tested with
new software releases and fixes are applied, would be
more sustainable and more powerful to enable extensi-
bility and reuse. However, the ERC as a snapshot is in
line with the common rhythm of term-based funding and
paper publications as scientists’ main means of communi-
cation (cf. Peng and Hicks, 2021).

The “closed” self-contained approach of an ERC has ad-
vantages for many workflows and can fit anything that
works on a researcher’s regular machine, but it needs to be
revisited with an increasing number of big datasets, sen-
sitive data, and complex computations, e.g., in remote
sensing or tracking data. Authors may already choose the
most suitable level of detail and preprocessing needed to
communicate their work effectively, and widely known
and standardised steps may be skipped. Also, higher-level
integrated data of more manageable size, e.g., analysis-
ready data [ARD; Frantz (2019)], may help to reduce ERC
sizes. Going beyond steps that individual authors can
take to support big data science, the idea to support an

Nst

https://www.orcid.org/
https://o2r.info/api/evaluation/load_test.html
https://doi.org/10.5281/zenodo.5108218

allowlist of trusted data repositories and computing ser-
vices (cf. Niist and Schutzeichel, 2017), which may be
contacted by ERCs during creation and execution through
a controlled network channel, is currently under develop-
ment. For example, a journal may allow a collaborating
repository or a reliable open computing infrastructure to
be used by an ERC’s workflow. The long-term feasibil-
ity could be improved if a journal critically picks these
services and prefers open APIs, such as openEO for in-
tegrating external computing resources (Schramm et al.,
2021). These allowed connections must be made trans-
parent in the ERC configuration to allow reproducibility
services to be able to decide whether they can create or
examine a particular compendium. Recording outside
communication during the initial execution and replay-
ing for future examinations could also be a way to create
a backup of external resources, similar to a performance-
enhancing cache. However, the nature of secured commu-
nication leads to these backups being black boxes and they
are therefore challenging for open research and preserva-
tion. Moreover, external connections may also be a solu-
tion to the following problem: The ERC and ERS do not
have a build-in option to handle privacy or sensitive data,
though the file-based substitution mechanism could be ex-
tended to replace synthetic public data with protected real
datasets. Furthermore, the ERS could be extended with
existing approaches for controlled access both during and
after peer review (cf. Niist and Pebesma, 2020).

At first glance, the ERS seems to be severely limited by
the focus on R Markdown for the main file and HTML
for the display file. Yet, R is the lingua franca of statis-
tics and is used more and more over proprietary alterna-
tives, but more importantly, using R Markdown as a com-
mon ground format for reproducible research is second to
none when it comes to creating publication-ready display
documents. It supports citation management, templates,
both Web and print output formats (i.e., PDF), and trans-
parency due to its plain text nature?’. R Markdown also
supports more programming languages than just R, and,
if nothing else works, a quite short and simple R Mark-
down notebook could be used as a wrapper for starting
the actual process. Such wrapping may even be auto-
mated (cf. Glatard et al., 2018), and templates can lower
entry barriers. Even authors used to common word pro-
cessors can participate in collaborations thanks to round-
trip conversion tools with support for tracking changes
using the prototypical redoc package (Ross, 2021). Tem-
plates for R Markdown could be provided by publishers,
though today most are community maintained (Allaire
et al., 2021b). However, adopting R Markdown as the
core internal format may be too high of a hurdle for pub-
lishers, despite the problems that copy-editing poses for
detailed reproducibility. Publisher-led approaches such as
ERA (Guizzardi et al., 2021) that connect computational
notebooks with standardised publishing formats could be
easier to adopt, but they lack some of the ERS’s features.

The second broadly used notebook format, Jupyter Notebook, is actively developing similar capabilities,
e.g., using Jupytext (https:/jupytext.readthedocs.io/), nbconvert (https://nbconvert.readthedocs.io/),
and Jupyter Book (Executable Books Community, 2020). With these tools, the ERC concept of trans-
parent main document and display file could be implemented.

Nust

6.4. Extent of capturing and ERCs’ lifespan. The ERC cap-
tures all building blocks of a given piece of research. It
clearly distinguishes between workflow-specific files and
the required runtime environment through its concept
of nested containers. The ERC specifically attempts to
capture relevant metadata for reproducibility, such as au-
thors, the used libraries, or the UI bindings, and provides
these metadata in multiple encodings. Also, not only the
extent but also where parts are captured is crucial for re-
assuring accessibility. In the ERC, the actual workflow
scripts and data are captured in the outer container be-
cause data is more long-lived than software®°, and it will
be accessible even when the ERS and the inner container
break. The ERS procedures allow for capturing these de-
tailed metadata with very limited user interaction, e.g.,
the metadata extraction capabilities for geospatial extent.
Nevertheless, the interaction with the actual code session,
which is used to capture the computing environment, is
yet to be tapped for even better metadata. The inner con-
tainer explicitly does not capture the operating system
kernel. This limitation is acceptable—the kernel almost
never introduces breaking changes. Furthermore, the
ERC does not capture hardware, which makes sense, but it
should better document the required hardware. Contain-
ers can very well be connected to accelerated computing
infrastructures, such as GPUs (Haydel et al., 2015), and
the ERC configuration file could be extended to document
this.

The limitations of the ERC’s self-containedness were
discussed above. With respect to the extent of capturing,
the ERS could be enhanced to support the often service-
based GIScience and geospatial data science by not only
containing a single runtime environment for the workflow,
but by including multiple containers for running the re-
quired APIs. These containers would have to be orches-
trated, e.g., using docker-compose (Docker Inc., 2019),
for ERC examination. Examples are scientific data storage
and processing capabilities using services such as SciDB
(Appel et al., 2018) or OGC WPS implementations (Diaz
et al., 2008). While many of these services use geospatial
libraries that could also be directly used in a workflow,
capturing them as-is and keeping the client-side workflow
code could reduce overheads for authors. How much this
could be automated would depend on the openness of the
used third-party services, but manual ERC creation seems
likely to be required. Furthermore, limitations concerning
scalability might arise, though data subsets for demonstra-
tion could mitigate this problem.

Regarding the ERC’s lifespan, making research repro-
ducible forever is not a wise goal. The lifespan is dis-
cussed here while disregarding general ignorance of how
quickly digital resources and free services may decay or
disappear®!. First, we cannot imagine today what com-
puters will look like in 50 or 60 years. Yet, science
historians might still find a lot of valuable information
in ERC. Second, even though some software (e.g., FOR-
TRAN, GNU Make) has been around a long time, for the

30
31

Cf. http://www.activepapers.org/
This XKCD comic illustrates the fragility of what we just assume will still work next year: https:
/Ixked.com/1909/.

ERC Web service | July 15,2021

15

https://jupytext.readthedocs.io/
https://nbconvert.readthedocs.io/
http://www.activepapers.org/
https://xkcd.com/1909/
https://xkcd.com/1909/

majority of research workflows it is reasonable to assume
that after not being actively maintained (Peer et al., 2021)
for a while, a re-implementation based on the logic, which
will still be readable within the source code, is more fea-
sible than making a workflow executable again. At the
same time, we do not expect pieces of software that are
relevant and useful to simply disappear within a few years
and only be preserved in ERCs. Therefore, the benchmark
should be whether a snapshot of an often fragile software
stack is executable for around the same time that is cur-
rently required for data to be kept available—around 10
years. We think the ERC and the ERS, both using current
containerisation technology, can achieve that, and an or-
ganisation (e.g., a publisher) which bases their workflow
on ERCs could reasonably support a software system for
at least that time frame. The longevity of ERS and ERC
could be increased with a specialised container runtime
that may reduce the feature set but focuses on long-term
execution of containers. At this point, however, this as-
sumption cannot be tested but should be checked in a few
years. Then, “old” ERCs could be revisited to learn more
about the preservation of computational workflows, e.g.,
how to ensure the “deep integrity” of fully containerised
workflows. ERCs could be recreated regularly with cur-
rent versions of the computing environment (re-capturing
of the inner container) in a fully automatic way to iden-
tify both when dependencies break and when the infras-
tructure breaks. We acknowledge a half life of computa-
tions and “exact repeatability”, but the medium-term ex-
ecutability of ERC is already a huge improvement over
the current state of already a declining availability of data
(Vines et al., 2014).

Peng (2017) suggests introducing limiting principles
so that practical implications do not stall the goals of re-
producibility. He discusses the audience (Reproducible for
Whom?) and time span (For How Long?) and comes
up with the idea of an endowment for reproducible pub-
lications with an author-pays model, which would fit
grant-based research because of a single payment. Peng’s
back-of-the-napkin calculation for data storage of just
10 GB easily reaches costs higher than many of today’s
APCs. The same considerations need to be explored for
ERCs, and reasonable limits may very well be required
for widespread adoption.

6.5. ERCs in the spotlight. In this section, we critically dis-
cuss the ERC concept and the ERS implementation against
a number of scales and terms for reproducibility. The clas-
sifications are ordered by year of publication and stem
from all scientific disciplines.

Vandewalle et al. (2009) distinguish six degrees of re-
producibility, of which an ERC could reach the highest
level, five, because an independent researcher can use the
ERS as a free tool and with minimal effort. The require-
ment to spend “at most 15 min”, however, depends on
the packaged data and method, and the author’s decision
of whether to package, e.g., a reduced example and pre-
processed data.

Peng (2011) defines the spectrum of reproducibility as
ranging from the irreproducible “publication only” to a

16 | https:/doi.org/10.5281/zenodo.5108218

gold standard of fully linked executable code and data.
The ERC reaches the gold standard. When code and data
are linked and executable, one may zoom into the spec-
trum and define a spectrum of executability within the
highly reproducible workflows. This position on this sub-
spectrum is determined by time since ERC creation, work-
flow complexity, and reviewers’ expertise—all at the same
time. In practice, the executability may at a minimum
start with a README file, which puts the highest bur-
den on the reviewer. Increasingly more accessible prac-
tices would be a computational notebook, a research com-
pendium, and finally an ERC, which puts increasing bur-
den on the author while easing executability for the re-
viewer.

Gavish and Donoho (2012) describe three “Dream Ap-
plications” that would be possible if verifiable computa-
tional research (VCR) would be adopted. The ERC en-
ables all three applications. It indirectly supports Search
for research that uses a specific dataset or code and Amal-
gate for fusioning data and results, as data, code, and re-
sults are contained and could be indexed. The Ul bindings
and the substitution mechanism are a realisation of the
Tweak application to interact and experiment with com-
putational results.

Zhao et al. (2012) investigate decay of computational
workflows over time regarding their re-execution and re-
production. They classify causes for workflow decay into
four categories, all of which can be mitigated effectively
by the ERC (as well as by their own tool). The ERC
prohibits volatile third-party resources, missing example
data, missing execution environment, and insufficient de-
scriptions about workflows, because of the captured build-
ing blocks and self-containedness.

Stodden et al. (2013) devise a five-level taxonomy for
computational research, classifying it as reviewable, repli-
cable, confirmable, auditable, and open/reproducible.
They also define the terms verification and validation. Re-
search published as an ERC reaches the highest level of
open and reproducible research, because it demands full
openness for a fully available auditable workflow, and pro-
vides verification, because it allows for checking whether
there are no errors in the code, and is, thereby, a support
for validation by other researchers.

Thain et al. (2015) describe techniques for keeping
software and computing environments executable and list
a number of objectives for digital preservation. These
techniques are presented between the two extremes of
“preserving the mess” and “encouraging cleanliness”. We
place the ERC between those extremes. The outside pack-
aging is quite clean for the execution of the full workflow,
and UI bindings document some configurable parameters,
but the ERC is far from the explicit level of detail cap-
tured by workflow engines such as Umbrella (Meng and
Thain, 2015) or Taverna (Wolstencroft et al., 2013). The
automated creation of containers for the runtime environ-
ment mitigates some of the “messy” shortcomings Thain
et al. describe for virtual machines and container technol-
ogy, but the ERC cannot capture distributed systems (ma-
chines, file systems). Regarding the preservation objec-
tives, the ERC focuses on Identical Verification,, verifying

Nst

http://ivory.idyll.org/blog/2017-pof-software-archivability.html
https://doi.org/10.5281/zenodo.5108218

that the same software and data lead to the same results.
The execution within the ERS also realises a New Envi-
ronment Verification, especially if the author does not pro-
vide a recipe for the inner container. The ERS does not
allow for updating the computing environment for New
Software Verification, but the substitution can, within lim-
its, be used for Extension to New Data respectively New

Software.

Benureau and Rougier (2018) define five ordered char-
acteristics for useful code in a scientific publication: It
should be re-runnable, repeatable, reproducible, reusable,
and replicable. The ERC can fulfil all these require-
ments through its self-contained yet transparent proper-
ties, though the author must still carefully set up a work-
flow to not fall into any traps, e.g., with randomness, and
enable reuse, e.g., with documentation, modularisation,
or ease of configuration. The characteristics are achieved
in part because different parties execute the code, the au-
thor and the ERS, and the ERS is designed for peer re-
view processes, providing more eyes on the code and data.
The ERC surely provides the details that are often missing
from the manuscript itself and can, thereby, support repli-
cation.

Chen et al. (2019) define guiding principles towards re-
producibility for individual researchers or research groups,
but the principles are transferable to a reproducibility in-
frastructure. The ERC clearly defines a reproducibility
goal: Package a workflow so that it can enable evaluation
during peer review. However, it does not required incorpo-
rate best practices early, as it only requires a reproducible
workflow at the time of submission, and admittedly cre-
ates a new platform instead of extending existing ones to
be able to innovate. One would hope, though, that the
expectation to submit an ERC should lead to adopting re-
producibility practices early in projects. The ERC and ERS
do require structure to make knowledge readable to both
human and machine and to capture content and workflows
well. The last three principles are rather cultural goals
that could be pursued with the help of ERC and ERS.

Oliveira et al. (2020) describe an approach to evalu-
ate software systems for reproducible software artefacts.
Their reproducibility pyramid has seven levels in three
main categories: accessibility, executability, and interac-
tivity. The ERC and ERS enable all these levels, though
only only binaries of the runtime environment are pre-
served in the inner container, which Oliveira et al. see as
a risk, and the interactivity is focused on Ul bindings and
substitution but does not provide a full development en-
vironment.

Finally, Hinsen (2020) formulates four essential possi-
bilities from a scientists point of view as the basis for con-
structive discussion about reproducible scientific compu-
tations. The ERC and ERS can enable the first three pos-
sibilities: Code and data can be inspected, workflows can
run for verification both in the ERS and locally, and in-
termediate results or modifications can be explored. The
fourth possibility to verify that executable software and
source code match can be achieved for the workflow code
which is available in source, but not completely for the li-
braries in the inner container. The ERS assumes these de-

Nust

pendencies to simply be “correct”, though where available
the source packages of tools could be installed alongside
the executable binaries. The blog post rightly argues the
complexity of today’s software stacks make not using pre-
compiled binaries a hassle. Hinsen further discusses the
variation over time of the four possibilities, which can be
reduced by the ERS’s snapshotting approach, and that the
degrees to which the possibilities need to be fulfilled may
depend on the research at hand.

7. Conclusion & future work

The functionality of ERCs and the connection with crucial
parts for scientific infrastructure has been demonstrated
based on the reproducibility service and selected work-
flows. The user interface and service implementation
can lower the barriers to sharing snapshots of research
workflows for review and reading, and they can be in-
tegrated in a scholarly publication process. Further, the
artefacts of a reproducibility package can be preserved for
a time frame suitable to improve understanding and col-
laboration of relatively recently published results. ERCs
and the designed infrastructure could also be connected
to more radical changes in publishing practices, such as
piecemeal approaches for publication, review, and pub-
lishing like Octopus (Octopus team, 2020) and other evo-
lutions in academic publishing (Tennant et al., 2019), dis-
ruptive ways to distribute and review research such as
Academic Torrents (Cohen and Lo, 2014) or overlay jour-
nals (Brown, 2010), and also novel ways of presenting,
collaborating, and interacting with research outputs (Kray
et al., 2019). It remains to be seen whether the techni-
cal and organisational innovations can benefit from each
other or are better introduced successively.

However, an uptake of ERC and ERS by third parties
has not yet been achieved and the open research chal-
lenges summarised a few years ago by Freire et al. (2016)
and Thain et al. (2015) are far from being answered to-
day, though the ERS and ERC can contribute to address-
ing them. The slow pace of change can be attributed to
the many moving parts for adapting to more reproducible
and transparent processes, such as author guidelines, re-
searcher skills, editorial and review procedures, and pub-
lishing systems. This makes it really challenging for pub-
lishers to innovate, though their options for promoting re-
producibility are widely discussed (e.g., Hrynaszkiewicz,
2020; Eglen et al., 2018). However, existing pilots yield
promising results with strong institutional support (Guiz-
zardi et al., 2021; Hawkins, 2019). The complexity of
cultural change also slows down seemingly small but pos-
sibly impactful changes, such as making a “reproducibility
package” as well as reports about reproductions (cf. Niist
and Eglen, 2021) first level citizens or types of research
output in databases such as CrossRef or repositories such
as Zenodo. This would give recognition to and aid dis-
covery of data, software, and reproducible computational
workflows. Nevertheless, the presented software does
provide a basis for further testing with stakeholders, in
order to improve the understanding of the remaining bar-
riers for individuals (e.g., authors, reviewers, editors)
and organisations (e.g., publishers, scholarly societies, sci-

ERC Web service | July 15,2021

17

entific communities). The technical solutions for repro-
ducible publications and transparent reviews can thereby
help to support change in community practices and normes.
These tests can go hand in hand with other solutions to su-
persede PDF papers, such as peer-reviewed Jupyter Note-
books®2, and with support offerings for reproducible re-
search, e.g., by academic libraries (Sayre and Riegelman,
2019).

With respect to the further development of the tech-
nologies, the 02r project aims to realise a tight integration
of the ERC with Open Journal Systems? (0JS). Usage
in other publishing software platforms would strengthen
the validation of the concepts and implementation, but a
more realistic step-by-step approach could be to use ERCs
in specialised workflow review and execution processes
as part of “regular” peer review (Niist and Eglen, 2021).
For a scalable infrastructure, existing tools for orchestrat-
ing ERC creation and examination sessions, such as Ku-
bernetes (Wikipedia contributors, 2021d) or BinderHub
(Project Jupyter et al., 2018), could be used thanks to the
fully containerised approach of both the reproducibility
service implementation and the runtime environment of
the ERC. While all specifications and implementations of
the ERC Web service are open, the creation of reusable
tools in different languages to more directly work with
ERCs, e.g., validation and inspection functions in R or
Python, and finding external collaborators to improve the
specifications, e.g., by creating a formal schema file for
the ERC configuration file format, would benefit uptake
and usability for developers.

The biggest barrier remains the question of who
takes responsibility to enable and finance computa-
tional reproducibility for scientific papers by providing
infrastructure—this problem is not even solved for financ-
ing possibly less dynamic and demanding infrastructures
for data (Tennant et al., 2019; Nature Editorial, 2017).
There is a need to better integrate different research
outputs and to convince funders and journals that they
should request and better support openness and repro-
ducibility as defaults (EOSC Executive Board Working
Group (WG) Architecture Task Force (TF) SIRS, 2020;
Porubsky et al., 2021)—ERC and ERS can facilitate such
goals. Is infrastructure for computational reproducibil-
ity a service offered by publishers as part of their busi-
ness model, or will readers pay with every execution? If
readily usable computing resources are given, it will be-
come relevant to understand working practices on code
execution during peer review (Niist et al., 2021). The
increased openness and a growing number of individual
practitioners as well as local to international initiatives
around open science and reproducibility are promising
drivers towards which open community-owned research
infrastructures will eventually strive3*. “Transparency can
improve our practices even if no one actually looks, simply

32 https://iwww.earthcube.org/notebooks

33 See blog post at https:/02r.info/2020/02/26/0JS-workshop-HD/.
4For example, Repro4Everyone (https://reprodeveryone.org/, Auer et al., 2020), ReproHacks (https://
reprohack.github.io/reprohack-hg/), and The Turing Way (https://www.turing.ac.uk/research/research-
projects/turing-way- handbook- reproducible-data-science) on educating researchers, Invest in Open
Infrastructure (IOI, https://investinopen.org/) for funding community-owned open technologies and sys-
tems for research and scholarship, or novel priorities and processes in funding schemes (Cruz and
de Jonge, 2020).

https:/doi.org/10.5281/zenodo.5108218

because we know that someone could look.” (Nosek et al.,
2012) Packaging research workflows and outputs as ex-
ecutable research compendia can enhance existing scien-
tific practices by eventually enabling infrastructures like
the executable research compendium reproducibility ser-
vice that can provide transparency, reproducibility, and
reusability.

Acknowledgments. This work is supported by the project
Opening Reproducible Research (o2r, o2r.info) funded by the
German Research Foundation (DFG) under project numbers
PE 1632/10-1, KR 3930/3-1 and TR 864/6-1 for phase 1 and
PE 1632/17-1, KR 3930/8-1, and TR 864/12-1 for phase 2. We
thank Edzer Pebesma for repeated feedback on this manuscript
and Celeste R. Brennecka from the Scientific Editing Service,
University of Miinster, for her editorial review. The ideas and
implementations presented in this article are based on the work
of the whole 02r team: Markus Konkol, Marc Schutzeichel,
Edzer Pebesma, Christian Kray, Holger Przibytzin, Jorg Lorenz,
Rehan Chaudhary, Fabian Fermazin, Philipp Glahe, Juan Se-
bastian Garzén Alvarado, Laura Goulier, Matthias Hinz, Nick
Jakuschona, Jan Koppe, Timm Kiihnel, Torben Kraft, Lukas Lo-
hoff, Tom Niers, Jan Suleiman, Yousef Qamaz. On top of that,
the great online communities of Open Science and Reproducible
Research have inspired and directly shaped many of the ideas in
this work; we have tried to diligently record origins of earlier
ideas and parallel developments.

References

Akhlaghi M, Infante-Sainz R, Roukema BF, Khellat M, Valls-Gabaud D,
Baena-Gallé R (2021). “Toward Long-Term and Archivable Reproducibil-
ity” Computing in Science Engineering, 23(3), 82—91. ISSN 1558-366X.
doi:10.1109/MCSE.2021.3072860. Conference Name: Computing
in Science Engineering.

Allaire J, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham H,
Cheng J, Chang W, lannone R (2021a). rmarkdown: Dynamic Documents
for R. R package version 2.8, URL https://github.com/rstudio/rmarkdown.

Allaire J, Xie Y, R Foundation, Wickham H, Journal of Statistical Software,
Vaidyanathan R, Association for Computing Machinery, Boettiger C, EI-
sevier, Broman K, Mueller K, Quast B, Pruim R, Marwick B, Wickham C,
Keyes O, Yu M, Emaasit D, Onkelinx T, Gasparini A, Desautels MA, Leut-
nant D, MDPI, Taylor and Francis, Oreden O, Hance D, Niist D, Uvesten
P, Campitelli E, Muschelli J, Hayes A, Kamvar ZN, Ross N, Cannoodt R,
Luguern D, Kaplan DM, Kreutzer S, Wang S, Hesselberth J, Dervieux C
(2021b). rticles: Article Formats for R Markdown. R package version 0.20,
URL https://CRAN.R-project.org/package=rticles.

Appel M, Lahn F, Buytaert W, Pebesma E (2018).
able analytics of large Earth observation datasets:
multidimensional arrays using SciDB and GDAL.
of Photogrammetry and Remote Sensing, 138, 47-56. ISSN 0924-
2716. doi:10.1016/j.isprsjprs.2018.01.014. URL https:/
www.sciencedirect.com/science/article/pii/S0924271617300898.

Auer S, Haelterman N, Weissgerber T, Erlich JC, Susilaradeya D, Julkowska
M, Gazda MA, Abitua A, Niraulu A, Shah A, Clyburne-Sherin A, Guiquel
B, Alicea B, LaManna C, Ganguly D, Perkins EJ, Jambor H, Li IMH,
Tsang J, Kamens J, Teytelman L, Paul M, Phuyal S, Schmelling N,
Crisp P, Sarabipour S, Roy S, Bachle S, Tran MTK, Ford T, Steeves
V, llangovan V, Schwessinger B, Jadavji N (2020). “Reproducibility
for Everyone: A Community-Led Initiative with Global Reach in Repro-
ducible Research Training.” Technical report, OSF Preprints.
10.31219/0sf.i0/dxw67.

Benureau FCY, Rougier NP (2018). “Re-run, Repeat, Reproduce,
Reuse, Replicate: Transforming Code into Scientific Contributions.”
Frontiers in Neuroinformatics, 11. ISSN 1662-5196.
10.3389/fninf.2017.00069.

Boettiger C (2015). “An Introduction to Docker for Reproducible Research.”
SIGOPS Oper. Syst. Rev., 49(1), 71-79. ISSN 0163-5980. doi:
10.1145/2723872.2723882.

“Open and scal-
From scenes to
ISPRS Journal

doi:

doi:

Nst

https://www.earthcube.org/notebooks
https://o2r.info/2020/02/26/OJS-workshop-HD/
https://repro4everyone.org/
https://reprohack.github.io/reprohack-hq/
https://reprohack.github.io/reprohack-hq/
https://www.turing.ac.uk/research/research-projects/turing-way-handbook-reproducible-data-science
https://www.turing.ac.uk/research/research-projects/turing-way-handbook-reproducible-data-science
https://investinopen.org/
https://www.uni-muenster.de/forschungaz/project/12343
https://o2r.info
https://gepris.dfg.de/gepris/projekt/274927273
https://gepris.dfg.de/gepris/projekt/415851837
http://dx.doi.org/10.1109/MCSE.2021.3072860
https://github.com/rstudio/rmarkdown
https://CRAN.R-project.org/package=rticles
http://dx.doi.org/10.1016/j.isprsjprs.2018.01.014
https://www.sciencedirect.com/science/article/pii/S0924271617300898
https://www.sciencedirect.com/science/article/pii/S0924271617300898
http://dx.doi.org/10.31219/osf.io/dxw67
http://dx.doi.org/10.31219/osf.io/dxw67
http://dx.doi.org/10.3389/fninf.2017.00069
http://dx.doi.org/10.3389/fninf.2017.00069
http://dx.doi.org/10.1145/2723872.2723882
http://dx.doi.org/10.1145/2723872.2723882
https://doi.org/10.5281/zenodo.5108218

Bouffler B (2019). “Keynote: Delivering on the promise of Research Comput-
ing.” Gesellschaft fir Informatik e.V. in TIB AV-PORTAL. https://doi.org/
10.5446/42484#1=15:31,16:20 (time stamp 15:31; last accessed: 31 May
2021).

Brammer GR, Crosby RW, Matthews SJ, Williams TL (2011). “Paper Maché:
Creating Dynamic Reproducible Science.” Procedia Computer Science, 4,
658-667. ISSN 1877-0509. doi:10.1016/j.procs.2011.04.069.

Brown J (2010). “An introduction to overlay journals.” Report, Repositories
Support Project, UK. URL https://discovery.ucl.ac.uk/id/eprint/19081/.

Buckheit JB, Donoho DL (1995). “WaveLab and Reproducible Re-
search.” In A Antoniadis, G Oppenheim (eds.), Wavelets and Statis-
tics, number 103 in Lecture Notes in Statistics, pp. 55-81. Springer
New York. ISBN 978-0-387-94564-4 978-1-4612-2544-7. doi:
10.1007/978-1-4612-2544-7_5.

Castleberry DG, Brandt SR, Loffler F (2013). “Inkling: An Executable
Paper System for Reviewing Scientific Applications” In 2013 In-
ternational Conference on Social Computing, pp. 917-922. doi:
10.1109/SocialCom.2013.142.

Chard K, Gaffney N, Jones MB, Kowalik K, Ludascher B, McPhillips T,
Nabrzyski J, Stodden V, Taylor I, Thelen T, Turk MJ, Willis C (2019).
“Application of Baglt-Serialized Research Object Bundles for Packag-
ing and Re-Execution of Computational Analyses.” In 2019 15th In-
ternational Conference on eScience (eScience), pp. 514-521. doi:
10.1109/eScience.2019.00068.

Chen X, Dallmeier-Tiessen S, Dasler R, Feger S, Fokianos P, Gonzalez JB,
Hirvonsalo H, Kousidis D, Lavasa A, Mele S, Rodriguez DR, imko T, Smith
T, Trisovic A, Trzcinska A, Tsanaktsidis |, Zimmermann M, Cranmer K,
Heinrich L, Watts G, Hildreth M, Iglesias LL, Lassila-Perini K, Neubert S
(2019). “Open is not enough.” Nature Physics, 15(2), 113. ISSN 1745-
2481. doi:10.1038/s41567-018-0342-2.

Chirigati F, Rampin R, Shasha D, Freire J (2016). “ReproZip: Compu-
tational Reproducibility With Ease.” In Proceedings of the 2016 Inter-
national Conference on Management of Data, SIGMOD ’16, pp. 2085—
2088. ACM, New York, NY, USA. ISBN 978-1-4503-3531-7.
10.1145/2882903.2899401.

Chuah J, Deeds M, Malik T, Choi Y, Goodall JL (2020). “Documenting Com-
puting Environments for Reproducible Experiments.” Parallel Computing:
Technology Trends, pp. 756—765. doi:10.3233/APC200106. Publisher:
10S Press.

Cohen JP, Lo HZ (2014). “Academic Torrents: A Community-Maintained Dis-
tributed Repository.” In Proceedings of the 2014 Annual Conference on
Extreme Science and Engineering Discovery Environment - XSEDE 14,
pp. 1-2. ACM Press, Atlanta, GA, USA. ISBN 978-1-4503-2893-7. doi:
10.1145/2616498.2616528.

Cruz M, de Jonge H (2020). “Beyond mandates: For open science to become
a norm, it must be recognised and rewarded.” URL https://blogs.Ise.ac.uk/
impactofsocialsciences/2020/12/01/beyond-mandates-for-open-science-
to-become-a-norm-it-must-be-recognised-and-rewarded/.

Davenport JH, Grant J, Jones CM (2020). “Data Without Software Are Just
Numbers.” Data Science Journal, 19(1), 3. ISSN 1683-1470. doi:
10.5334/dsj-2020-003. URL http:/datascience.codata.org/articles/
10.5334/dsj-2020-003/.

David CH, Gil Y, Duffy CJ, Peckham SD, Venayagamoorthy SK (2016). “An
introduction to the special issue on Geoscience Papers of the Future.”
Earth and Space Science, 3(10), 2016EA000201. ISSN 2333-5084. doi:
10.1002/2016EA000201.

Davison A (2012). “Automated Capture of Experiment Context for Easier Re-
producibility in Computational Research.” Computing in Science Engineer-
ing, 14(4), 48-56. ISSN 1521-9615. doi:10.1109/MCSE.2012.41.

Davison AP, Mattioni M, Samarkanov D, Telenczuk B (2014). “Sumatra: A
Toolkit for Reproducible Research.” In V Stodden, F Leisch, RD Peng
(eds.), Implementing Reproducible Research, Chapman & Hall/CRC The
R Series, p. 448. Taylor & Francis. ISBN 978-1-4665-6159-5.

Docker Inc (2019). “Overview of Docker Compose.” URL https://
docs.docker.com/compose/.

Diaz L, Granell C, Gould M, Olaya V (2008). “An open service network for
geospatial data processing.” In Proceedings of the academic track of the
2008 Free and Open Source Software for Geospatial (FOSS4G) Confer-
ence, pp. 410-420. Cape Town, South Africa. ISBN 978-0-620-42117-1.
URL https://www.researchgate.net/profile/Laura- Diaz- 75/publication/
228655946_An_open_service_network_for_geospatial_data_processing/
links/0deec5195f4bdb0f86000000/An-open-service-network-for-

doi:

Nust

geospatial-data-processing.pdf.

Editorial (2018). “Easing the burden of code review.” Nature Methods, 15(9),
641-641. ISSN 1548-7105. doi:10.1038/s41592-018-0137-5.
Eglen SJ, Mounce R, Gatto L, Currie AM, Nobis Y (2018). “Recent devel-
opments in scholarly publishing to improve research practices in the life
sciences.” Emerging Topics in Life Sciences, 2(6), 775-778. ISSN 2397-

8554, 2397-8562. doi:10.1042/ETLS20180172.

Emsley I, De Roure D (2018). “A Framework for the Preservation of a Docker
Container | International Journal of Digital Curation.” International Journal
of Digital Curation, 12(2). doi:10.2218/ijdc.v12i2.509.

EOSC Executive Board Working Group (WG) Architecture Task Force (TF)
SIRS (2020). “Scholarly infrastructures for research software: report from
the EOSC Executive Board Working Group (WG) Architecture Task Force
(TF) SIRS.” Technical report, Edited by the EOSC Executive Board. doi:
10.2777/28598.

Executable Books Community
10.5281/zenodo .4539666.

Frantz D (2019). “FORCELandsat + Sentinel-2 Analysis Ready Data and
Beyond.” Remote Sensing, 11(9), 1124. doi:10.3390/rs11091124.

Freire J, Fuhr N, Rauber A (2016). “Reproducibility of Data-Oriented Exper-
iments in e-Science (Dagstuhl Seminar 16041).” Dagstuhl Reports, 6(1),
108-159. ISSN 2192-5283. doi:10.4230/DagRep.6.1.108.

Gavish M, Donoho D (2012). “Three Dream Applications of Verifiable Compu-
tational Results.” Computing in Science Engineering, 14(4), 26-31. ISSN
1558-366X. doi:10.1109/MCSE.2012.65. Conference Name: Com-
puting in Science Engineering.

Gentleman R, Lang DT (2007). “Statistical Analyses and Reproducible Re-
search.” Journal of Computational and Graphical Statistics, 16(1), 1-23.
ISSN 1061-8600. doi:10.1198/106186007X178663.

Ghoshal D, Bianchi L, Essiari A, Beach M, Paine D, Ramakrishnan L
(2021). “Science Capsule - Capturing the Data Life Cycle” Jour-
nal of Open Source Software, 6(62), 2484. ISSN 2475-9066. doi:
10.21105/joss.02484. URL https:/joss.theoj.org/papers/10.21105/
joss.02484.

Gil Y, David C, Demir |, Essawy B, Fulweiler R, Goodall J, Karlstrom L, Lee
H, Mills H, Oh J, Pierce S, Pope A, Tzeng M, Villamizar S, Yu X (2016).
“Toward the Geoscience Paper of the Future: Best practices for document-
ing and sharing research from data to software to provenance.” Earth and
Space Science, 3(10), 2015EA000136. doi:10.1002/2015EA000136.

Glatard T, Kiar G, Aumentado-Armstrong T, Beck N, Bellec P, Bernard R,
Bonnet A, Brown ST, Camarasu-Pop S, Cervenansky F, Das S, Ferreira
da Silva R, Flandin G, Girard P, Gorgolewski KJ, Guttmann CRG, Hayot-
Sasson V, Quirion PO, Rioux P, Rousseau ME, Evans AC (2018). “Bou-
tiques: A Flexible Framework to Integrate Command-Line Applications in
Computing Platforms.” GigaScience, 7(giy016). ISSN 2047-217X. doi:
10.1093/gigascience/giy016.

Gonzalez Avalos E (2020). “Good overall quality, additional discussion on cer-
tain points would be desirable.” other, Geosciences Marine Geology/essd-
2020-22. doi:10.5194/essd-2020-22-RC1.

Gronenschild E, Habets P, Jacobs H, Mengelers R, Rozendaal N, van Os
J, Marcelis M (2012). “The effects of FreeSurfer version, workstation
type, and Macintosh operating system version on anatomical volume
and cortical thickness measurements.” PLoS One, 7(6), €38234. doi:
10.1371/journal.pone.0038234.

Guizzardi G, Bentley N, Maciocci G (2021). “Announcing the next phase
of Executable Research Articles.” Publisher: eLife Sciences Publica-
tions Limited, URL https:/elifesciences.org/labs/a04d2b80/announcing-
the-next-phase-of-executable-research-articles.

Hardt D (2012). “The OAuth 2.0 Authorization Framework.” RFC 6749. doi:
10.17487/RFC6749. URL https:/rfc-editor.org/rfc/rfc6749.txt.

Hardwicke TE, Mathur MB, MacDonald K, Nilsonne G, Banks GC, Kidwell MC,
Mohr AH, Clayton E, Yoon EJ, Tessler MH, Lenne RL, Altman S, Long B,
Frank MC (2018). “Data Availability, Reusability, and Analytic Reproducibil-
ity: Evaluating the Impact of a Mandatory Open Data Policy at the Journal
Cognition.” Royal Society Open Science, 5(8), 180448. ISSN 2054-5703.
doi:10.1098/rsos.180448.

Hawkins E (2019). “What we have learnt testing container-platforms for
peer review and publication of code : Of Schemes and Memes Blog.”
URL http://blogs.nature.com/ofschemesandmemes/2019/10/09/what-we-
have-learnt-testing-container-platforms-for-peer-review-and-publication-
of-code.

Haydel N, Madey G, Gesing S, Dakkak A, de Gonzalo SG, Taylor I, Hwu

(2020). “Jupyter Book.” doi:

ERC Web service | July 15,2021

19

https://doi.org/10.5446/42484#t=15:31,16:20
https://doi.org/10.5446/42484#t=15:31,16:20
http://dx.doi.org/10.1016/j.procs.2011.04.069
https://discovery.ucl.ac.uk/id/eprint/19081/
http://dx.doi.org/10.1007/978-1-4612-2544-7_5
http://dx.doi.org/10.1007/978-1-4612-2544-7_5
http://dx.doi.org/10.1109/SocialCom.2013.142
http://dx.doi.org/10.1109/SocialCom.2013.142
http://dx.doi.org/10.1109/eScience.2019.00068
http://dx.doi.org/10.1109/eScience.2019.00068
http://dx.doi.org/10.1038/s41567-018-0342-2
http://dx.doi.org/10.1145/2882903.2899401
http://dx.doi.org/10.1145/2882903.2899401
http://dx.doi.org/10.3233/APC200106
http://dx.doi.org/10.1145/2616498.2616528
http://dx.doi.org/10.1145/2616498.2616528
https://blogs.lse.ac.uk/impactofsocialsciences/2020/12/01/beyond-mandates-for-open-science-to-become-a-norm-it-must-be-recognised-and-rewarded/
https://blogs.lse.ac.uk/impactofsocialsciences/2020/12/01/beyond-mandates-for-open-science-to-become-a-norm-it-must-be-recognised-and-rewarded/
https://blogs.lse.ac.uk/impactofsocialsciences/2020/12/01/beyond-mandates-for-open-science-to-become-a-norm-it-must-be-recognised-and-rewarded/
http://dx.doi.org/10.5334/dsj-2020-003
http://dx.doi.org/10.5334/dsj-2020-003
http://datascience.codata.org/articles/10.5334/dsj-2020-003/
http://datascience.codata.org/articles/10.5334/dsj-2020-003/
http://dx.doi.org/10.1002/2016EA000201
http://dx.doi.org/10.1002/2016EA000201
http://dx.doi.org/10.1109/MCSE.2012.41
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://www.researchgate.net/profile/Laura-Diaz-75/publication/228655946_An_open_service_network_for_geospatial_data_processing/links/0deec5195f4bdb0f86000000/An-open-service-network-for-geospatial-data-processing.pdf
https://www.researchgate.net/profile/Laura-Diaz-75/publication/228655946_An_open_service_network_for_geospatial_data_processing/links/0deec5195f4bdb0f86000000/An-open-service-network-for-geospatial-data-processing.pdf
https://www.researchgate.net/profile/Laura-Diaz-75/publication/228655946_An_open_service_network_for_geospatial_data_processing/links/0deec5195f4bdb0f86000000/An-open-service-network-for-geospatial-data-processing.pdf
https://www.researchgate.net/profile/Laura-Diaz-75/publication/228655946_An_open_service_network_for_geospatial_data_processing/links/0deec5195f4bdb0f86000000/An-open-service-network-for-geospatial-data-processing.pdf
http://dx.doi.org/10.1038/s41592-018-0137-5
http://dx.doi.org/10.1042/ETLS20180172
http://dx.doi.org/10.2218/ijdc.v12i2.509
http://dx.doi.org/10.2777/28598
http://dx.doi.org/10.2777/28598
http://dx.doi.org/10.5281/zenodo.4539666
http://dx.doi.org/10.5281/zenodo.4539666
http://dx.doi.org/10.3390/rs11091124
http://dx.doi.org/10.4230/DagRep.6.1.108
http://dx.doi.org/10.1109/MCSE.2012.65
http://dx.doi.org/10.1198/106186007X178663
http://dx.doi.org/10.21105/joss.02484
http://dx.doi.org/10.21105/joss.02484
https://joss.theoj.org/papers/10.21105/joss.02484
https://joss.theoj.org/papers/10.21105/joss.02484
http://dx.doi.org/10.1002/2015EA000136
http://dx.doi.org/10.1093/gigascience/giy016
http://dx.doi.org/10.1093/gigascience/giy016
http://dx.doi.org/10.5194/essd-2020-22-RC1
http://dx.doi.org/10.1371/journal.pone.0038234
http://dx.doi.org/10.1371/journal.pone.0038234
https://elifesciences.org/labs/a04d2b80/announcing-the-next-phase-of-executable-research-articles
https://elifesciences.org/labs/a04d2b80/announcing-the-next-phase-of-executable-research-articles
http://dx.doi.org/10.17487/RFC6749
http://dx.doi.org/10.17487/RFC6749
https://rfc-editor.org/rfc/rfc6749.txt
http://dx.doi.org/10.1098/rsos.180448
http://blogs.nature.com/ofschemesandmemes/2019/10/09/what-we-have-learnt-testing-container-platforms-for-peer-review-and-publication-of-code
http://blogs.nature.com/ofschemesandmemes/2019/10/09/what-we-have-learnt-testing-container-platforms-for-peer-review-and-publication-of-code
http://blogs.nature.com/ofschemesandmemes/2019/10/09/what-we-have-learnt-testing-container-platforms-for-peer-review-and-publication-of-code

20

WmW (2015). “Enhancing the usability and utilization of accelerated ar-
chitectures via docker.” In Proceedings of the 8th International Conference
on Utility and Cloud Computing, UCC ’15, pp. 361-367. IEEE Press, Li-
massol, Cyprus. ISBN 978-0-7695-5697-0.

Heroux MA (2015). “Editorial: ACM TOMS Replicated Computational Results
Initiative.” ACM Transactions on Mathematical Software, 41(3), 13:1-13:5.
ISSN 0098-3500. doi:10.1145/2743015.

Hinsen K (2015). “ActivePapers: a platform for publishing and archiving
computer-aided research.” F1000Research, 3, 289. ISSN 2046-1402.
doi:10.12688/f1000research.5773.3.

Hinsen K (2018). “Verifiability in computer-aided research: the role of digital
scientific notations at the human-computer interface.” PeerJ Computer
Science, 4, e158. ISSN 2376-5992. doi:10.7717/peerj-cs.158.

Hinsen K (2020). “The four possibilities of reproducible scientific
computations.” URL https://blog.khinsen.net/posts/2020/11/20/the-four-
possibilities-of-reproducible-scientific-computations/.

Hrynaszkiewicz | (2020). “Publishers Responsibilities in Promoting Data
Quality and Reproducibility.” In A Bespalov, MC Michel, T Steck-
ler (eds.), Good Research Practice in Non-Clinical Pharmacology and
Biomedicine, Handbook of Experimental Pharmacology, pp. 319-348.
Springer International Publishing, Cham. ISBN 978-3-030-33656-1. doi:
10.1007/164_2019_290.

Jimenez |, Sevilla M, Watkins N, Maltzahn C, Lofstead J, Mohror K, Arpaci-
Dusseau A, Arpaci-Dusseau R (2017). “The Popper Convention: Making
Reproducible Systems Evaluation Practical.” In 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp. 1561-1570. doi:10.1109/IPDPSW.2017.157.

Katz DS, Chue Hong NP, Clark T, Muench A, Stall S, Bouquin D, Cannon
M, Edmunds S, Faez T, Feeney P, Fenner M, Friedman M, Grenier G,
Harrison M, Heber J, Leary A, MacCallum C, Murray H, Pastrana E, Perry
K, Schuster D, Stockhause M, Yeston J (2021). “Recognizing the value
of software: a software citation guide.” F1000Research, 9, 1257. ISSN
2046-1402. doi:10.12688/£1000research.26932.2.

Knuth DE (1984). “Literate Programming.” Comput. J., 27(2), 97-111. ISSN
0010-4620. doi:10.1093/comjnl/27.2.97.

Konkol M, Kray C, Pfeiffer M (2019a). “Computational reproducibility in
geoscientific papers: Insights from a series of studies with geoscien-
tists and a reproduction study.” International Journal of Geographi-
cal Information Science, 33(2), 408—-429. ISSN 1365-8816. doi:
10.1080/13658816.2018.1508687.

Konkol M, Kray C, Suleiman J (2019b). “Creating Interactive Scientific Pub-
lications Using Bindings.” Proceedings of the ACM on Human-Computer
Interaction, 3(EICS), 16:1-16:18. doi:10.1145/3331158.

Konkol M, Nust D, Goulier L (2020). “Publishing computational research - a
review of infrastructures for reproducible and transparent scholarly com-
munication.” Research Integrity and Peer Review, 5(1), 10. ISSN 2058-
8615. doi:10.1186/s41073-020-00095-y.

Kray C, Pebesma E, Konkol M, Nust D (2019). “Reproducible Research
in Geoinformatics: Concepts, Challenges and Benefits (Vision Pa-
per).” volume 142 of Leibniz International Proceedings in Informatics
(LIPIcs), p. 8:1-8:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany. doi:10.4230/LIPIcs.COSIT.2019.8. URL
http://drops.dagstuhl.de/opus/volltexte/2019/11100.

Kunze JA, Littman J, Madden L, Scancella J, Adams C (2018). “The Baglt
File Packaging Format (V1.0).” RFC 8493. doi:10.17487/RFC8493.
URL https://rfc-editor.org/rfc/rfc8493.ixt.

Liu DM, Salganik MJ (2019). “Successes and Struggles with Com-
putational Reproducibility: Lessons from the Fragile Families Chal-
lenge” Socius, 5, 2378023119849803. ISSN 2378-0231. doi:
10.1177/2378023119849803.

Marwick B (2015). “How Computers Broke Science — and What We Can Do
to Fix It” http://theconversation.com/how-computers-broke-science-and-
what-we-can-do-to-fix-it-49938.

Marwick B, Pilaar Birch SE (2018). “How researchers can solve
the bottle-opener problem with compute capsules.” URL https:
/lwww.cambridge.org/core/blog/2018/07/30/how-researchers-can-solve-
the-bottle-opener-problem-with-compute-capsules/.

Mecum B, Jones MB, Vieglais D, Willis C (2018). “Preserving Reproducibility:
Provenance and Executable Containers in DataONE Data Packages.” In
2018 IEEE 14th International Conference on E-Science (e-Science), pp.
45—49. ISSN null. doi:10.1109/eScience.2018.00019.

Meng H, Thain D (2015). “Umbrella: A Portable Environment Creator for

https://doi.org/10.5281/zenodo.5108218

Reproducible Computing on Clusters, Clouds, and Grids.” In Proceed-
ings of the 8th International Workshop on Virtualization Technologies in
Distributed Computing, VTDC ’15, pp. 23-30. ACM, New York, NY, USA.
ISBN 978-1-4503-3573-7. doi:10.1145/2755979.2755982.

Miller G (2006). “A Scientist’'s Nightmare: Software Problem Leads to Five
Retractions.” Science, 314(5807), 1856—-1857. ISSN 0036-8075, 1095-
9203. doi:10.1126/science.314.5807.1856.

Minghini M, Mobasheri A, Rautenbach V, Brovelli MA (2020). “Geospa-
tial openness: from software to standards & data” Open Geospa-
tial Data, Software and Standards, 5(1), 1. ISSN 2363-7501. doi:
10.1186/s40965-020-0074-y.

Molenaar G, Makhathini S, Girard JN, Smirnov O (2018). “KlikoThe scientific
compute container format.” Astronomy and Computing, 25, 1-9. ISSN
2213-1337. d0i:10.1016/j.ascom.2018.08.003.

Nature Editorial (2017). “Empty rhetoric over data sharing slows science.”
Nature News, 546(7658), 327. doi:10.1038/546327a.

Nosek BA, Spies JR, Motyl M (2012). “Scientific Utopia Il. Restructuring In-
centives and Practices to Promote Truth Over Publishability.” Perspectives
on Psychological Science, 7(6), 615—-631. ISSN 1745-6916, 1745-6924.
doi:10.1177/1745691612459058.

Nust D, Granell C, Hofer B, Konkol M, Ostermann FO, Sileryte R, Cerutti
V (2018). “Reproducible Research and GlIScience: An Evaluation Using
AGILE Conference Papers.” Peerd, 6, €5072. ISSN 2167-8359. doi:
10.7717/peerj.5072.

Nust D, Pebesma E (2020). “Practical Reproducibility in Geography and Geo-
sciences.” Annals of the American Association of Geographers, 111(5),
1-11. doi:10.1080/24694452.2020.1806028.

Nust D (2021). “Reproducibility Service for Executable Research Compendia:
Technical Specifications and Reference Implementation (Version 1.1.0).”
Technical report. doi:10.5281/zenodo.5106499.

Nust D, Eglen S (2021). “CODECHECK: an Open Science initiative for the in-
dependent execution of computations underlying research articles during
peer review to improve reproducibility.” F7000Research, 10, 253. doi:
10.12688/£1000research.51738.1.

Nust D, Hinz M (2019). “containerit: Generating Dockerfiles for reproducible
research with R.” Journal of Open Source Software, 4(40), 1603. doi:
10.21105/joss.01603.

Nist D, Konkol M, Pebesma E, Kray C, Schutzeichel M, Przibytzin H,
Lorenz J (2017). “Opening the Publication Process with Executable Re-
search Compendia.” D-Lib Magazine, 23(1/2). ISSN 1082-9873. doi:
10.1045/january2017-nuest.

Nust D, Schutzeichel M (2017). “An Architecture for Reproducible Compu-
tational Geosciences.” In Poster abstracts of AGILE 2017. Wageningen,
The Netherlands. doi:10.5281/zenodo.1478542.

Nust D, Seibold H, Eglen S, Schulz-Vanheyden L (2021). “Code Execution in
Peer Review.” doi:10.17605/0sf.i0/x32nc.

Nist D, Sochat V, Marwick B, Eglen SJ, Head T, Hirst T, Evans BD (2020).
“Ten simple rules for writing Dockerfiles for reproducible data science.”
PLOS Computational Biology, 16(11), e1008316. ISSN 1553-7358. doi:
10.1371/journal.pcbi.1008316.

Octopus team (2020). “More about Octopus.”
octopus.org/about.

Oliveira L, Wilkinson D, Mossé D, Childers B (2018). “Supporting Long-
term Reproducible Software Execution.” In Proceedings of the First
International Workshop on Practical Reproducible Evaluation of Com-
puter Systems, P-RECS’18, pp. 1-6. Association for Computing Ma-
chinery, New York, NY, USA. ISBN 978-1-4503-5861-3. doi:
10.1145/3214239.3214245.

Oliveira L, Wilkinson D, Mossé D, Childers BR (2020). “Stimulating Re-
producible Software Artifacts.” In Proceedings of the 3rd International
Workshop on Practical Reproducible Evaluation of Computer Systems, P-
RECS '20, pp. 3—7. Association for Computing Machinery, New York, NY,
USA. ISBN 978-1-4503-7977-9. doi:10.1145/3391800.3398177.

Pasquier T, Lau MK, Han X, Fong E, Lerner BS, Boose ER, Crosas M, Ellison
AM, Seltzer M (2018). “Sharing and Preserving Computational Analyses
for Posterity with encapsulator.” Computing in Science Engineering, 20(4),
111-124. ISSN 1558-366X. doi:10.1109/MCSE.2018.042781334.

Pebesma E (2013). “Earth and Planetary Innovation Challenge (EPIC)
submission "One-Click-Reproduce"” URL http://pebesma.staff.ifgi.de/
epic.pdf.

Peer L, Orr LV, Coppock A (2021). “Active Maintenance: A Proposal
for the Long-Term Computational Reproducibility of Scientific Results.”

URL https://science-

Nst

http://dx.doi.org/10.1145/2743015
http://dx.doi.org/10.12688/f1000research.5773.3
http://dx.doi.org/10.7717/peerj-cs.158
https://blog.khinsen.net/posts/2020/11/20/the-four-possibilities-of-reproducible-scientific-computations/
https://blog.khinsen.net/posts/2020/11/20/the-four-possibilities-of-reproducible-scientific-computations/
http://dx.doi.org/10.1007/164_2019_290
http://dx.doi.org/10.1007/164_2019_290
http://dx.doi.org/10.1109/IPDPSW.2017.157
http://dx.doi.org/10.12688/f1000research.26932.2
http://dx.doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1080/13658816.2018.1508687
http://dx.doi.org/10.1080/13658816.2018.1508687
http://dx.doi.org/10.1145/3331158
http://dx.doi.org/10.1186/s41073-020-00095-y
http://dx.doi.org/10.4230/LIPIcs.COSIT.2019.8
http://drops.dagstuhl.de/opus/volltexte/2019/11100
http://dx.doi.org/10.17487/RFC8493
https://rfc-editor.org/rfc/rfc8493.txt
http://dx.doi.org/10.1177/2378023119849803
http://dx.doi.org/10.1177/2378023119849803
https://www.cambridge.org/core/blog/2018/07/30/how-researchers-can-solve-the-bottle-opener-problem-with-compute-capsules/
https://www.cambridge.org/core/blog/2018/07/30/how-researchers-can-solve-the-bottle-opener-problem-with-compute-capsules/
https://www.cambridge.org/core/blog/2018/07/30/how-researchers-can-solve-the-bottle-opener-problem-with-compute-capsules/
http://dx.doi.org/10.1109/eScience.2018.00019
http://dx.doi.org/10.1145/2755979.2755982
http://dx.doi.org/10.1126/science.314.5807.1856
http://dx.doi.org/10.1186/s40965-020-0074-y
http://dx.doi.org/10.1186/s40965-020-0074-y
http://dx.doi.org/10.1016/j.ascom.2018.08.003
http://dx.doi.org/10.1038/546327a
http://dx.doi.org/10.1177/1745691612459058
http://dx.doi.org/10.7717/peerj.5072
http://dx.doi.org/10.7717/peerj.5072
http://dx.doi.org/10.1080/24694452.2020.1806028
http://dx.doi.org/10.5281/zenodo.5106499
http://dx.doi.org/10.12688/f1000research.51738.1
http://dx.doi.org/10.12688/f1000research.51738.1
http://dx.doi.org/10.21105/joss.01603
http://dx.doi.org/10.21105/joss.01603
http://dx.doi.org/10.1045/january2017-nuest
http://dx.doi.org/10.1045/january2017-nuest
http://dx.doi.org/10.5281/zenodo.1478542
http://dx.doi.org/10.17605/osf.io/x32nc
http://dx.doi.org/10.1371/journal.pcbi.1008316
http://dx.doi.org/10.1371/journal.pcbi.1008316
https://science-octopus.org/about
https://science-octopus.org/about
http://dx.doi.org/10.1145/3214239.3214245
http://dx.doi.org/10.1145/3214239.3214245
http://dx.doi.org/10.1145/3391800.3398177
http://dx.doi.org/10.1109/MCSE.2018.042781334
http://pebesma.staff.ifgi.de/epic.pdf
http://pebesma.staff.ifgi.de/epic.pdf
https://doi.org/10.5281/zenodo.5108218

PS: Political Science & Politics, pp. 1-5. ISSN 1049-0965, 1537-5935.
d0i:10.1017/51049096521000366. Publisher: Cambridge University
Press.

Peng R (2017). “Reproducible Research Needs Some Limiting Principles.”
URL https://simplystatistics.org/2017/02/01/reproducible-research-limits/.

Peng RD (2011). “Reproducible Research in Computational Science.” Sci-
ence, 334(6060), 1226-1227. ISSN 0036-8075, 1095-9203. doi:
10.1126/science.1213847.

Peng RD, Hicks SC (2021). “Reproducible Research: A Retrospective.” An-
nual Review of Public Health, 42(1), 79-93. ISSN 0163-7525. doi:
10.1146/annurev-publhealth-012420-105110.

Piwowar H (2013). “Value all research products.” Nature, 493, 159. doi:
10.1038/493159a.

Porubsky V, Smith L, Sauro HM (2021). “Publishing reproducible dynamic
kinetic models.” Briefings in Bioinformatics, 22(3). ISSN 1477-4054. doi:
10.1093/bib/bbaalb2.

Project Jupyter, Bussonnier M, Forde J, Freeman J, Granger B, Head
T, Holdgraf C, Kelley K, Nalvarte G, Osheroff A, Pacer M, Panda Y,
Perez F, Ragan-Kelley B, Willing C (2018). “Binder 2.0 - Reproducible,
Interactive, Sharable Environments for Science at Scale” Proceed-
ings of the 17th Python in Science Conference, pp. 113-120. doi:
10.25080/Majora-4af1f417-011.

Rechert K, Liebetraut T, Kombrink S, Wehrle D, Mocken S, Rohland M (2017).
“Preserving Containers” In J Kratzke, V Heuveline (eds.), Forschungs-
daten managen, pp. 143—151. Heidelberg. ISBN 978-3-946531-75-3.
doi:10.11588/heibooks.285.377.

Ross N (2021). redoc: Reversible Reproducible Documents. R package
version 0.1.0.9000, URL https://github.com/noamross/redoc.

Sayre F, Riegelman A (2019). “Replicable Services for Reproducible Re-
search: A Model for Academic Libraries.” College & Research Libraries,
80(2), 260. doi:10.5860/crl.80.2.260.

Schramm M, Pebesma E, Milenkovi M, Foresta L, Dries J, Jacob A, Wagner
W, Mohr M, Neteler M, Kadunc M, Miksa T, Kempeneers P, Verbesselt
J, G6SSwein B, Navacchi C, Lippens S, Reiche J (2021). “The ope-
nEO APIHarmonising the Use of Earth Observation Cloud Services Using
Virtual Data Cube Functionalities.” Remote Sensing, 13(6), 1125. doi:
10.3390/rs13061125.

Stodden V, Bailey DH, Borwein J, LeVeque RJ, Rider B, Stein W
(2013). “Setting the Default to Reproducible: Reproducibility in
Computational and Experimental Mathematics.” Technical report,
The Institute for Computational and Experimental Research in Math-
ematics. Workshop website with full list of workshop participants:
https://icerm.brown.edu/topical_workshops/tw12-5-rcem/ This report was
developed collaboratively by the ICERM workshop participants, and
compiled and edited by the organizers., URL https://icerm.brown.edu/
topical_workshops/tw12-5-rcem/icerm_report.pdf.

Stodden V, Miguez S, Seiler J (2015). “ResearchCompendia.org: Cyberin-
frastructure for Reproducibility and Collaboration in Computational Sci-
ence” Computing in Science & Engineering, 17(1), 12-19. ISSN 1521-
9615. doi:10.1109/MCSE.2015.18.

Stodden V, Seiler J, Ma Z (2018). “An empirical analysis of journal policy ef-
fectiveness for computational reproducibility.” Proceedings of the National
Academy of Sciences, 115(11), 2584—-2589. ISSN 0027-8424, 1091-6490.
doi:10.1073/pnas.1708290115.

Tennant JP, Crane H, Crick T, Davila J, Enkhbayar A, Havemann J, Kramer
B, Martin R, Masuzzo P, Nobes A, Rice C, Rivera-Lépez B, Ross-
Hellauer T, Sattler S, Thacker PD, Vanholsbeeck M (2019). “Ten Hot
Topics around Scholarly Publishing.” Publications, 7(2), 34. doi:
10.3390/publications7020034.

ter Riet G, Storosum BW, Zwinderman AH (2019).
ducibility?” F1000Research, 8, 36.
10.12688/£1000research.17615.1.

Thain D, Ivie P, Meng H (2015). “Techniques for Preserving Scientific Soft-
ware Executions: Preserve the Mess or Encourage Cleanliness?” In
Proceedings of the 12th International Conference on Digital Preservation
(iPres). doi:10.7274/ROCZ353M.

That DHT, Fils G, Yuan Z, Malik T (2017). “Sciunits: Reusable Research
Objects.” In 2017 IEEE 13th International Conference on e-Science (e-
Science), pp. 374-383. doi:10.1109/eScience.2017.51.

Vandewalle P, Kovacevic J, Vetterli M (2009). “Reproducible research in sig-
nal processing.” IEEE Signal Processing Magazine, 26(3), 37—47. ISSN
1053-5888, 1558-0792. doi:10.1109/MSP.2009.932122.

“What is repro-
ISSN 2046-1402. doi:

Nust

Vines T, Albert AK, Andrew R, Débarre F, Bock D, Franklin M, Gilbert K,
Moore JS, Renaut S, Rennison D (2014). “The Availability of Research
Data Declines Rapidly with Article Age.” Current Biology, 24(1), 94-97.
ISSN 0960-9822. doi:10.1016/j.cub.2013.11.014.

Whitehouse T (2019). “Making Reproducibility Reproducible.”
https://medium.com/gigantum/making-reproducibility-reproducible-
7457d656680c.

Wikipedia contributors (2021a). “AppArmor.” Page Version ID: 1027531383,
URL https://en.wikipedia.org/w/index.php?title=AppArmor&oldid=
1027531383.

Wikipedia contributors (2021b). “Bus factor.” Page Version ID: 1024613010,
URL https://en.wikipedia.org/w/index.php?title=Bus_factor&oldid=
1024613010.

Wikipedia contributors (2021c). “Docker (software).” Page Ver-
sion ID: 1019840030, URL https://en.wikipedia.org/w/index.php?title=
Docker_(software)&oldid=1019840030.

Wikipedia contributors (2021d). “Kubernetes.” Page Version ID: 1024839217,
URL https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=
1024839217.

Wikipedia contributors (2021e). “Make (software).” Page Ver-
sion ID: 1016565702, URL https://en.wikipedia.org/w/index.php?title=
Make_ (software)&oldid=1016565702.

Wikipedia contributors (2021f). “OpenAPI| Specification” Page Ver-
sion ID: 1023136282, URL https:/en.wikipedia.org/w/index.php?title=
OpenAPI_Specification&oldid=1023136282.

Wikipedia contributors (2021g). “Unix philosophy.” Page Ver-
sion ID: 1022001416, URL https://en.wikipedia.org/w/index.php?title=
Unix_philosophy&oldid=1022001416.

Wikipedia contributors (2021h). “Vagrant (software).” Page Ver-
sion ID: 1014463164, URL https://en.wikipedia.org/w/index.php?title=
Vagrant_(software)&oldid=1014463164.

Wikipedia contributors (2021i). “WebSocket.” Page Version ID: 1028455012,
URL https://en.wikipedia.org/w/index.php?title=WebSocket&oldid=
1028455012.

Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK
(2017). “Good enough practices in scientific computing.” PLOS
Computational Biology, 13(6), €1005510. ISSN 1553-7358. doi:
10.1371/journal.pcbi.1005510.

Wolstencroft K, Haines R, Fellows D, Wiliams A, Withers D, Owen S,
Soiland-Reyes S, Dunlop I, Nenadic A, Fisher P, Bhagat J, Belhajjame
K, Bacall F, Hardisty A, Hidalga ANdI, Vargas MPB, Sufi S, Goble C
(2013). “The Taverna workflow suite: designing and executing workflows
of Web Services on the desktop, web or in the cloud.” Nucleic Acids
Research, 41(W1), W557-W561. ISSN 0305-1048, 1362-4962. doi:
10.1093/nar/gkt328.

Xie Y, Allaire J, Grolemund G (2018). R Markdown: The Definitive Guide.
Chapman and Hall/CRC, Boca Raton, Florida. ISBN 9781138359338,
URL https://bookdown.org/yihui/rmarkdown.

Yan A, Huang C, Lee JS, Palmer CL (2020). “Cross-disciplinary data
practices in earth system science: Aligning services with reuse and
reproducibility priorities.” Proceedings of the Association for Informa-
tion Science and Technology, 57(1), e218. ISSN 2373-9231. doi:
https://doi.org/10.1002/pra2.218.

Youngdahl A, Ton-That DH, Malik T (2019). “Scilnc: A Container Runtime
for Incremental Recomputation.” In 2019 15th International Conference
on eScience (eScience), pp. 291-300. IEEE, San Diego, CA, USA. ISBN
978-1-72812-451-3. doi:10.1109/eScience.2019.00040.

Zhao J, Gomez-Perez JM, Belhajjame K, Klyne G, Garcia-Cuesta E, Gar-
rido A, Hettne K, Roos M, De Roure D, Goble C (2012). “Why workflows
break Understanding and combating decay in Taverna workflows.” In
2012 IEEE 8th International Conference on E-Science, pp. 1-9. doi:
10.1109/eScience.2012.6404482.

imko T, Heinrich L, Hirvonsalo H, Kousidis D, Rodriguez D (2019).
“REANA: A System for Reusable Research Data Analyses” EPJ
Web of Conferences, 214, 06034. ISSN 2100-014X. doi:
10.1051/epjconf/201921406034.

URL

ERC Web service | July 15,2021

21

http://dx.doi.org/10.1017/S1049096521000366
https://simplystatistics.org/2017/02/01/reproducible-research-limits/
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1146/annurev-publhealth-012420-105110
http://dx.doi.org/10.1146/annurev-publhealth-012420-105110
http://dx.doi.org/10.1038/493159a
http://dx.doi.org/10.1038/493159a
http://dx.doi.org/10.1093/bib/bbaa152
http://dx.doi.org/10.1093/bib/bbaa152
http://dx.doi.org/10.25080/Majora-4af1f417-011
http://dx.doi.org/10.25080/Majora-4af1f417-011
http://dx.doi.org/10.11588/heibooks.285.377
https://github.com/noamross/redoc
http://dx.doi.org/10.5860/crl.80.2.260
http://dx.doi.org/10.3390/rs13061125
http://dx.doi.org/10.3390/rs13061125
https://icerm.brown.edu/topical_workshops/tw12-5-rcem/icerm_report.pdf
https://icerm.brown.edu/topical_workshops/tw12-5-rcem/icerm_report.pdf
http://dx.doi.org/10.1109/MCSE.2015.18
http://dx.doi.org/10.1073/pnas.1708290115
http://dx.doi.org/10.3390/publications7020034
http://dx.doi.org/10.3390/publications7020034
http://dx.doi.org/10.12688/f1000research.17615.1
http://dx.doi.org/10.12688/f1000research.17615.1
http://dx.doi.org/10.7274/R0CZ353M
http://dx.doi.org/10.1109/eScience.2017.51
http://dx.doi.org/10.1109/MSP.2009.932122
http://dx.doi.org/10.1016/j.cub.2013.11.014
https://medium.com/gigantum/making-reproducibility-reproducible-7457d656680c
https://medium.com/gigantum/making-reproducibility-reproducible-7457d656680c
https://en.wikipedia.org/w/index.php?title=AppArmor&oldid=1027531383
https://en.wikipedia.org/w/index.php?title=AppArmor&oldid=1027531383
https://en.wikipedia.org/w/index.php?title=Bus_factor&oldid=1024613010
https://en.wikipedia.org/w/index.php?title=Bus_factor&oldid=1024613010
https://en.wikipedia.org/w/index.php?title=Docker_(software)&oldid=1019840030
https://en.wikipedia.org/w/index.php?title=Docker_(software)&oldid=1019840030
https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=1024839217
https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=1024839217
https://en.wikipedia.org/w/index.php?title=Make_(software)&oldid=1016565702
https://en.wikipedia.org/w/index.php?title=Make_(software)&oldid=1016565702
https://en.wikipedia.org/w/index.php?title=OpenAPI_Specification&oldid=1023136282
https://en.wikipedia.org/w/index.php?title=OpenAPI_Specification&oldid=1023136282
https://en.wikipedia.org/w/index.php?title=Unix_philosophy&oldid=1022001416
https://en.wikipedia.org/w/index.php?title=Unix_philosophy&oldid=1022001416
https://en.wikipedia.org/w/index.php?title=Vagrant_(software)&oldid=1014463164
https://en.wikipedia.org/w/index.php?title=Vagrant_(software)&oldid=1014463164
https://en.wikipedia.org/w/index.php?title=WebSocket&oldid=1028455012
https://en.wikipedia.org/w/index.php?title=WebSocket&oldid=1028455012
http://dx.doi.org/10.1371/journal.pcbi.1005510
http://dx.doi.org/10.1371/journal.pcbi.1005510
http://dx.doi.org/10.1093/nar/gkt328
http://dx.doi.org/10.1093/nar/gkt328
https://bookdown.org/yihui/rmarkdown
http://dx.doi.org/https://doi.org/10.1002/pra2.218
http://dx.doi.org/https://doi.org/10.1002/pra2.218
http://dx.doi.org/10.1109/eScience.2019.00040
http://dx.doi.org/10.1109/eScience.2012.6404482
http://dx.doi.org/10.1109/eScience.2012.6404482
http://dx.doi.org/10.1051/epjconf/201921406034
http://dx.doi.org/10.1051/epjconf/201921406034

	Introduction
	Related work
	Executable research compendium: technical specification
	Design
	The specification

	Opening reproducible research system architecture
	Structure
	Goals
	Scope, context, and solution strategy
	Building block view
	Runtime view

	Reproducibility service
	API
	Reference implementation
	Examples

	Discussion
	Project set-up, maintainability, and security
	Understandability and usability
	Capabilities and features
	Extent of capturing and ERCs' lifespan
	ERCs in the spotlight

	Conclusion & future work

