Generic Representation of PLC Programming
Languages for Formal Verification

Déniel Darvas*f, Istvan Majzik* and Enrique Blanco Viiiuela®
*Budapest University of Technology and Economics, Department of Measurement and Information Systems
Budapest, Hungary, Email: {darvas,majzik}@mit.bme.hu
TEuropean Organization for Nuclear Research (CERN), Beams Department
Geneva, Switzerland, Email: {ddarvas, eblanco}@cern.ch

Abstract—Programmable Logic Controllers are typically pro-
grammed in one of the five languages defined in the IEC 61131
standard. While the ability to choose the appropriate language
for each program unit may be an advantage for the developers,
it poses a serious challenge to verification methods. In this paper
we analyse and compare these languages to show that the ST
programming language can efficiently and conveniently represent
all PLC languages for formal verification purposes.

I. INTRODUCTION AND BACKGROUND

Programmable Logic Controllers (PLCs) are widely used
for various control tasks in the industry. As they often perform
critical tasks — sometimes PLCs are even used in safety-
critical settings up to SIL3 — the verification of these hardware-
software systems is a must. Besides the common testing and
simulation methods, formal verification techniques, such as
model checking are increasingly often used.

The corresponding IEC 61131 standard defines five PLC-
specific programming languages: Instruction List (IL), Struc-
tured Text (ST), Ladder Diagram (LD), Function Block Di-
agram (FBD) and Sequential Function Chart (SFC) [1]. It is
out of the scope to discuss the features of these languages in
detail, but a simple example in Figure 1 shows the different
flavours of these languages. The first four example program
excerpts are execution equivalent, i.e. for all possible starting
(input and retained) variable valuations, the results of these
programs are the same variable valuations. The SFC example is
different from the others, as this is a special-purpose language
for structuring complex applications.

This variety of languages responds to the fact that PLCs
are used in different settings and programmed by people with
various backgrounds. This is an advantage for the developers,
but an important challenge for the verification. The languages
can be freely mixed, e.g. a function written in IL can call an ST
function. To provide a generally applicable formal verification
solution, all these languages should be supported.

A. Motivation

Our practical motivation lies in the PLCverif formal ver-
ification tool and its workflow [2], [3]. The PLCverif tool
provides a way for PLC program developers to apply model
checking to their implementation. This allows to check the
satisfaction of various state reachability, safety and liveness
requirements. The inputs of the model checking workflow
are the source code and the requirements formalized using
verification patterns. At the moment, programs (or program

ST LD FBD
% rl
IF NOT (x = TRUE OR ':1 NoT—(s)H >=)
y = FALSE) THEN /] . :
END ;‘ T Y 2 i -
—_ o ()_‘ >=
— 2
r2 := (a >= b); a—{IN1 a—{IN1 r
b—{IN2 b—{IN2 —| =
IL (Siemens) SFC
A(
[¢] x
ON y
)
NOT
S rl
L a
L b
>=I
= r2

Fig. 1. PLC language examples

units) written in the Siemens variant of ST or SFC are
supported. These inputs are convenient for the users not famil-
iar with formal verification methods. PLCverif automatically
generates temporal logic expressions from the pattern-based
requirements, parses the input code, builds a simple, automata-
based intermediate verification model, calls the chosen external
model checker tool (e.g. nuXmv), and presents the results in
a simple, self-contained format to the user. The tool is in use
at the European Organization for Nuclear Research (CERN)
to check critical control programs [4]. While most of the PLC
programs are written in ST at CERN, in special cases (e.g.
safety-critical applications) restrictions forbid the use of ST. To
make PLCverif generally applicable, all five PLC programming
languages should be supported.

From the development point of view, providing a complete
parser and a verification model builder is a great effort.
Furthermore, the grammars of the PLC languages are notably
different, making it difficult to use the same technology stack.
For example, the currently used Xtext-based parser is not suit-
able for the IL language, where the same tokens can be treated
as keywords or names depending on the context. On the other
hand, the different languages have many common parts, e.g.
function and function block declarations, variable declarations.
If these should be developed for each language independently,
the maintenance of the tool may become difficult.

Instead, in this paper we investigate the possibility of
a different approach: is it possible to use the ST language
as a pivot to represent all five standard PLC languages? If

Authors’ manuscript.
Measurement and Information Systems, 2016. http://hdl.handle.net/10890/1546

Published in: Proceedings of the 23rd PhD Mini-Symposium, Budapest University of Technology and Economics, Department of

http://hdl.handle.net/10890/1546

the translation preserves the properties of the model to be
checked, adding this extra translation step (i.e. transformation
to ST, then parse and build the verification model) makes no
theoretical difference, the pivot language might be considered
as a concrete syntax of the underlying verification model.
However, as it will be discussed later, the development and
maintenance effort needed could be significantly lower.

To answer this question, the relations between the PLC
languages have to be investigated. As it might not be possible
or practical to translate each language directly to ST, the
relationship between all languages should be discussed.

B. Related Work

Transformation of PLC programs were already studied pre-
viously. For example, Sadolewski translates ST programs into
ANSI C [5] and Why [6] for verification purposes. However,
in both work the source and target languages are on a similar
abstraction level, not necessitating a detailed analysis of the ST
language. Siilflow and Drechsler [7] translate IL programs to
SystemC representation in order to perform equivalence check-
ing. Here the translation involves a significant change in the
abstraction level, requiring more considerations. Furthermore,
all of them targeted one single source PLC language. In our
work, all the five PLC languages are compared.

The paper is structured as follows. Section II defines
our comparison method. Section III discusses the relations
between the different IEC 61131 PLC programming languages.
Next, Section IV discusses a concrete implementation of these
languages, namely the one provided by Siemens. Section V
analyzes the results of the paper and draws the conclusions.
Finally, Section VI summarizes the paper.

II. COMPARISON METHOD

The expressive power of different programming languages
is often discussed in computer science. However, the typical
answer to these questions for a pair of commonly used
languages is that both languages are Turing complete, therefore
their expressive power is equivalent.

For our purposes, this is not a useful comparison. Firstly,
because these languages are designed for special purposes,
therefore they contain many limitations. One of them is the
lack of dynamic memory allocation. Together with the lack
of recursion [1, Sec. 2.5] and the limited data structures, it
is impossible to use more storage than the amount defined
explicitly in compilation time. These limitations are parts of the
language definition, not caused by implementation or hardware
limitations, therefore these languages are not Turing complete.

Secondly, when we are looking for a pivot language, it is
not enough to know that a certain program can be represented
in another language, i.e. for each program in source language
S there exists an execution equivalent program in language
T. It should be known as well, how can this translation be
performed. Therefore we are interested in a stronger, element-
wise emulation relation that determines whether each “ele-
ment”! of a language S can be mapped to language 7. If this
relation holds, then inductively all programs of language S

! As the PLC languages are significantly different, “element” is understood
on a high level (i.e. an element can be a statement, but also a wire junction).

can be translated into language 7', in other words language T’
can emulate language S. This is close to defining a small-step
operational semantics for language S in language 7.

In the following we investigate for each pair of PLC
languages if such element-wise mapping relation exists. Note
that this relation is transitive, reflexive and asymmetric. We
start the investigation with the IEC 61131 version of the
languages, as they have a detailed, yet semi-formal description
in [1]. Later, we check the differences between the standard
and the Siemens variants.

ITI. STANDARD LANGUAGES

In this section, we discuss the element-wise representation
relation for each pair of standard PLC languages. The find-
ings are summarized in Table I. Here “~” denotes that this
representation is not possible.

TABLE 1. ELEMENT-WISE MAPPING BETWEEN STANDARD LANGUAGES
to
from ST IL FBD LD SFC
ST + + - - -
1L - + - -
FBD - + + + -
LD - + + + -
SFC + + + + +

SFC is based on a specification method called Grafcet,
which itself has roots in safety Petri nets. The goal of SFC
is to structure the programs, it is not intended to be a generic
PLC language. As only certain types of program units can be
represented by SFCs, while the other four languages target all
of the program unit types, no other language can be repre-
sented in SFC. Since it is based on Petri nets, translating the
structure of an SFC program to any other language might be
problematic, because Petri nets allow non-determinism, while
the PLC languages are deterministic. However, determinism is
explicitly required by the standard [1, Sec. 2.6.5]. The parts
of SFC besides the structure are defined as simple program
snippets in other languages and these specific parts can be
easily mapped to any other PLC language, assuming that the
ambiguities of the standard are first resolved [8].

FBD and LD are two similar graphical languages. FBD is
composed by signal flow lines and boxes representing built-in
and user-defined program units. LD is closer to the electric
diagrams, with concepts like power rails, contacts and coils.
Despite the differences, IEC 61131 defines LD and FBD in a
similar way, with many common elements. The differences
[1, Sec. 4.2-4.3] are minor and mainly syntactic. All LD-
specific elements (e.g. coils, power rails) can be translated
to equivalent FBD elements and vice versa. The wires and
flow lines represent data flows, the coils and contacts have
corresponding instructions in IL, that is an assembly-like, low-
level language. The built-in and user-defined blocks of FBD
and LD can be called from IL as well. Therefore each FBD
and LD program can be element-wise mapped to IL, in some
cases requiring to explicitly introduce new variables that are
only implicitly present (as wires) in the FBD and LD programs.

Contrarily, LD and FBD programs cannot be element-wise
mapped to ST. The FBD, LD and IL languages support labels
and jumps, but ST enforces structured programming, thus
jumps are missing from the language [1, Sec. B.3]. Although

it is known that Turing complete programs can be made jump-
free by replacing jumps with loops and conditional statements
[9], this construction does not fit to our approach of element-
wise mapping.

IL has instructions such as LD (load value to accumulator)
or ST (store the accumulator value to the given variable), and
the other languages do not provide direct access to the accu-
mulator, this way the element-wise (instruction by instruction)
translation to any other PLC language is not possible.

ST is a high-level, structured textual language. Besides
providing program structuring elements, such as conditional
statements (IF, CASE) and loops, it also makes the indi-
rect variable access possible. For example, the expression
“array_var[varl]” is allowed in ST, but not in FBD
or LD [1, Sec. 2.4.1.2], therefore the ST to FBD or LD
translation is not possible. On the other hand, these expressions
are allowed in IL. More precisely, the ST syntax for defining
expression is allowed in IL in certain cases. Based on the
syntax and semantics definitions of ST and IL, each ST
statement can be represented by a list of IL instructions: the
corresponding arithmetic operations exist in IL as well, the
variable assignments can be performed through LD and ST,
the selection and iteration statements can be represented by
labels and jumps, etc.

Based on the above discussion and Table I, ST does not
seem to be a pivot language candidate. However, before the
final conclusion, the implementation of the languages should
also be checked for two reasons: (1) the different manufactur-
ers may have differences in their implementation compared to
the standard, and (2) the IEC 61131 standard is ambiguous [8],
[10] and the vendors might resolve the ambiguities differently.
The following section compares a concrete implementation of
the five PLC programming languages.

IV. IMPLEMENTATION OF THE LANGUAGES

The IEC 61131 standard does not discuss the implemen-
tation details of the languages. Several decisions are left to
the vendors, marked as “implementation-dependent” feature
or parameter in the standard (e.g. range of certain data types,
output values on detected internal errors). Consequently, PLC
providers support different variants of the languages. The
implementation-dependent details are also important for the
behaviour of the programs, thus it is necessary to check these
details. Siemens is the PLC provider most used at CERN,
therefore we focus on the Siemens variants of the languages
in this section. All five languages are supported in Siemens
PLCs, however with some differences [11]. Compared to the
standard, the differences are significant in some cases, also
some languages have ancestors from times before IEC 61131,
thus Siemens uses different names for their languages: instead
of ST, IL, FBD, LD, SFC the Siemens languages are called
SCL, STL, FBD, LAD, SFC/GRAPH, respectively. To avoid
the confusion of the readers, we will use the standard language
names for the Siemens variants too, with an added apostrophe.

The differences between the standard and Siemens versions
of FBD, LD and SFC are subtle and mainly syntactic?> [11].

2For instance, LD’ fully implements the standard. The only difference
between FBD and FBD’ is that the latter does not support the unconditional
jumps, but it is easy to represent them as conditional jumps [11].

TABLE II. ELEMENT-WISE MAPPING BETWEEN SIEMENS LANGUAGES
to N R B . .
from ST I FBD LD SFC
ST + - - -
15 + - - -
FBD’ + + +
LD’ + + +
SFC’ + + + + +

Notable differences in syntax and semantics between the stan-
dard and the implementation can be observed in the Siemens
variants of ST and IL. The following part of the section
overviews the differences compared to Table I, see Table II.

As the FBD’, LD’, and SFC’ are equal to the standard
versions, the relations between them are valid for the Siemens
variants too. ST” and IL are extended compared to the standard
equivalents. Therefore if one of these languages can be mapped
to ST or IL, it can be mapped also to the corresponding
implementation, and if ST or IL cannot be mapped to one
of these languages, IL’ or ST’ cannot be mapped to the
implementation of the same language either. Consequently, the
shaded cells of Table II are inherited from Table I.

Due to the limitations of the Siemens development envi-
ronment, the FBD’ and LD’ programs can only be exported if
they are translated to IL’ first. According to [12], the translation
from LD’ and FBD’ to IL’ is always possible. We omit the
discussion of transforming LD’ and FBD’ to ST’ or SFC’, as
they would be practically infeasible.

The Siemens variant of ST is significantly extended com-
pared to the standard. It includes labels and jump functions,
which invalidates the reasoning of Section III why IL, LD
and FBD cannot be represented in ST. Despite the extensions,
it is not possible in ST’ to directly access the registers, e.g.
modifying the contents of the accumulators. Therefore the IL’
instruction “L varl”, transferring the contents of Accumula-
tor 1 to Accumulator 2 and then loading the content of variable
varl to Accumulator 1 cannot be directly represented in ST’ .
One can argue that a function containing only the instruction
“L varl” is meaningless, as its effect will be made invisible
when the function returns. However, this example is enough
to demonstrate that the element-wise mapping is not possible.

The Siemens variant of IL is remarkably different from
the standard IL. This is manifested in a different syntax. A
short example is the following: the IL program in Listing 1
and the IL program in Listing 2 give the same outputs to the
same inputs, but they use a significantly different syntax and
underlying semantics. The behaviour of both code snippets is
equivalent to r:=(a >= Db) in ST. The background of this
difference is that the standard defines only one “register”, the
result variable. The Siemens implementation is closer to the
assembly-like languages, using several status bits, registers,
accumulators, etc®. As the ST’ and IL’ language definitions
are non-formal, it is difficult to argue about the ST’ to
I’ transformation. However, the Siemens development tool
provides this transformation capability, therefore we treat this
as possible.

3From this point we use the term “register” in a generic way, referring to
status bits, accumulators, nesting stack, etc.

LD a (% RES:=a %)
GE b (% RES:=(RES>=b) %)
ST r (% r:=RES %)

a (x ACC2:=ACCI; ACCl:=a %)
b (¥ ACC2:=ACCI; ACCI:=b %)
I
r

w o

(* RLO:=(ACC2>=ACCI) %)
(% r:=RLO %)

B W —

Listing 1. Example IL code

Listing 2. Example IL’ code

Fig. 2. Unified representation of Siemens PLC languages

V. ANALYSIS AND CONCLUSION

Looking at Table II might lead to the same conclusion
for the Siemens implementations of the languages as Table 1.
However, due to the extensions in the implementations, the
gap between I’ and ST’ is much smaller than between their
standard equivalents. The only difference between them is the
possibility to access the registers directly. Therefore ST’ can be
a pivot language, if it is extended with the emulation of register
access by using dedicated local variables for verification
purposes. We will refer to this format of the programs as
STr’. As the values of the registers are saved on the stack
on each function call, their values are local to each program
unit, they can be represented as local temporary variables.
Thus the mapping from IL’ to STr’ can be done instruction
by instruction, by explicitly representing the effects of each
instruction on the basis of their semantics. For example, the
above-mentioned “L varl” will be represented as “ACC2
:= ACCl; ACC1l := varl;”, where ACC1 and ACC2 are
the local variables representing Accumulator 1 and 2. This idea
is similar to the SystemC representation used in [7].

Although the FBD’ and LD’ cannot be directly translated to
STr’ in practice, it is feasible through IL’. The SFC’ programs
can directly be mapped to ST’, thus to STr’ also. The advantage
of this method is that one parser and generator to construct
the intermediate verification model fits all languages. Only a
simpler, text-to-text mapping to STr’ has to be developed for
each language that is responsible for translating the language-
specific parts, element by element.

One could argue that I’ might be a good pivot language
without defining any extension or representation convention
for the verification. However, STr’ is a higher-level language,
with a more compact representation (especially the expression
description is more compact). The underlying intermediate
verification model supports also complex expressions (simi-
larly to the formalism of many model checkers, e.g. nuXmyv,
UPPAAL), therefore translating a compact ST’ expression to
a lengthy IL’ form is inefficient. Also, in our setting typically
ST’ codes are verified, therefore using STr’ (and not IL") as
pivot can provide support for the other languages without any
impact on the verification of ST’ programs.

Figure 2 summarizes the proposed generic representations
of PLC languages for PLCverif. The FBD’ and LD’ graph-
ical languages can be translated into IL’ by the Siemens
development environment (/). An instruction-by-instruction
transformation from IL’ to STr’ that makes the effects of the
IL instructions explicit is implemented for the most common
instructions (2). The SFC’ to ST’ translation is relatively

simple, it can be implemented using the same principles as the

ones used in [2] to represent SFC’ directly using the PLCverif
intermediate model (3). Finally, ST’ is a subset of STr’, thus
it does not need any further transformation step (4). The STr’
code is the input for the verification model generation.

In this paper interrupts were not targeted. Certain PLCs
may use interrupts, interrupting the execution of the main
program. A certain IL’ instruction can be atomic, but the cor-
responding STr’ representation, comprising several statements
will not be atomic. This might cause concurrency problems
and discrepancies between the two representations of the code.
However, if this is critical, a locking mechanism can be added
to the translation. Although the IEC 61131 standard does not
define any locking mechanism, it is defined for the Siemens
ST’ language via the available system function blocks.

VI. SUMMARY

This paper presented the relations between the different
PLC programming languages, both for the standard versions of
IEC 61131 and the Siemens implementations. For our practical
goals, i.e. to extend PLCverif to support all five Siemens
variants of the PLC languages, a good pivot language candidate
was found: STr’ that is the Siemens ST’ language emulating
register access with variable access for verification purposes.
Using STr’, PLCverif can efficiently support the verification
of low-level languages (IL’, FBD’, LD’), without modifying
the core workflow or decreasing the verification performance
of the programs written in ST language.

REFERENCES

[1] IEC 61131-3:2003 Programmable controllers — Part 3: Programming
languages, IEC Std., 2003.

[2] B. Ferndndez et al., “Applying model checking to industrial-sized PLC
programs,” IEEE Transactions on Industrial Informatics, vol. 11, no. 6,
pp. 1400-1410, 2015.

[3] D. Darvas, B. Fernandez, and E. Blanco, “PLCverif: A tool to verify
PLC programs based on model checking techniques,” in Proc. of the

15th Int. Conf. on Accelerator & Large Experimental Physics Control
Systems, 2015.

[4] B. Fernandez, D. Darvas, J.-C. Tournier, E. Blanco, and V. M. Gonzilez,
“Bringing automated model checking to PLC program development —
A CERN case study,” in Proc. of the 12th Int. Workshop on Discrete
Event Systems. IFAC, 2014, pp. 394-399.

[5] J. Sadolewski, “Conversion of ST control programs to ANSI C for
verification purposes,” e-Informatica, vol. 5, no. 1, pp. 65-76, 2011.

(6]

, “Automated conversion of ST control programs to Why for
verification purposes,” in Proc. of the Federated Conf. on Computer
Science and Information Systems. 1EEE, 2011, pp. 849-854.

[71 A. Silflow and R. Drechsler, “Verification of PLC programs using
formal proof techniques,” in Formal Methods for Automation and Safety
in Railway and Automotive Systems. L Harmattan, 2008, pp. 43-50.

[8] N.Bauer, R. Huuck, B. Lukoschus, and S. Engell, “A unifying semantics
for sequential function charts,” in Integration of Software Specification
Techniques for Applications in Engineering, ser. Lecture Notes in
Computer Science. Springer, 2004, vol. 3147, pp. 400—418.

[9] C. Bohm and G. Jacopini, “Flow diagrams, Turing machines and
languages with only two formation rules,” Communications of the ACM,
vol. 9, no. 5, pp. 366-371, 1966.

[10] M. de Sousa, “Proposed corrections to the IEC 61131-3 standard,”
Computer Standards & Interfaces, vol. 32, no. 5-6, pp. 312-320, 2010.

[11] Siemens, “Standards compliance according to IEC 61131-3,” 2011,
http://support.automation.siemens.com/WW/view/en/50204938.

, SIMATIC Ladder Logic (LAD) for S7-300 and S7-400 Program-
ming, 1996, C79000-G7076-C504-02.

[12]

