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Abstract—Missing values appear in most multivariate time
series, especially in the monitored network traffic data due to
high measurement cost and unavoidable loss. In the networking
fields, missing data prevents advanced analysis and downgrades
downstream applications such as traffic engineering and anomaly
detection. Despite the great potential, existing imputation ap-
proaches based on tensor decomposition and deep learning
techniques have shown limitations in addressing missing values
of traffic data due to its dynamic behavior. In this paper, we
propose Graph Convolutional Recurrent Neural Network for
Imputing Network Traffic (GCRINT), a combination between Re-
current Neural Network (RNN) and Graph Convolutional Neural
Network, for filling the missing values of network traffic data.
We use a bidirectional Long Short-Term Memory network and
Graph Neural Network to efficiently learn the spatial-temporal
correlations in partially observed data. We conducted extensive
experiments to evaluate our model by using two different datasets
and various missing scenarios. The experiment results show
that GCRINT achieves significantly low imputation errors and
reduces the error by 35% compared to the state-of-the-art
methods. GCRINT also helps to obtain a stable performance
in the traffic engineering problem.

I. INTRODUCTION

Recently, machine learning techniques have been applied
to various networking problems, from simply learning or
extracting knowledge to utilize and improve knowledge over-
time. Building an effective machine learning model requires
high accuracy in the historical measurement data. However,
missing values in networking data are inevitable due to unex-
pected accidents or intended purposes (e.g., sparse monitoring
[1]). This inappropriate data imposes a significant impact
on the performance of downstream applications. A study in
[2] showed that the accuracy of predicted traffic values is
downgraded when increasing of missing ratio in network
traffic data. Therefore, accurate recovering of missing values
from the partially observed data plays an essential role in
leveraging machine learning techniques for solving networking
problems.

In the past decades, various approaches have been developed
to address missing values in time series. The missing values
can be filled by using statistical models such as Autoregressive
Moving Average (ARMA) or Autoregressive Integrated Mov-
ing Average (ARIMA) [3]. However, these models are essen-
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Fig. 1: Example of network link load traffic under block
missing scenarios on two different days for three links in the
Abilene network. The dot lines represent the missing blocks,
while the stars indicate the observed data.

tially linear and process time series independently. Therefore,
they fail to exploit the correlation between different variables
in multivariate time series. Matrix and tensor factorization
were also applied to solve the data imputation problem. Many
tensor completion algorithms have been proposed based on
Alternating Least Square (ALS) such as Localized Tensor
Decomposition (LTC) [4], gradient-based method such as
Generalized Canonical Polyadic Tensor Decomposition (GCP)
[5]. Among those, LTC [4] would be seen as the most
recent work on estimating missing values, tailored for network
traffic data. In LTC, the traffic matrix was represented as a
3-way tensor, including days, hours, and origin-destination
dimension, to exploit the inherent relationship among higher-
dimensional data. Also, LTC divides the huge 3-way traffic
tensor into many sub-tensors with highly relevant data and
performs Canonical Polyadic (CP) decomposition on these
substructures. This approach is claimed to be more efficient
than decomposing the original traffic tensor. However, all of
the tensor completion algorithms mentioned above do not
encapsulate the temporal correlation in time series data. In
particular, the imputation data is formed by summing up the
outer product of component matrices. The data imputed by
CP in each time step cannot utilize the information from the
previous and the following time steps. Moreover, most of the
tensor completion methods rely on a strong assumption that
the tensor data has a low-rank structure.

Other approaches for estimating the missing values are
deep learning-based techniques. There are many imputation
methods, which are based on Recurrent Neural Network
(RNN), have been proposed. The RNN models, such as Long



Short-term Memory (LSTM) or Gated Recurrent Unit (GRU),
have achieved state-of-the-art results in many applications with
time series and sequence data. Che, Purushotham, Cho, et
al. proposed GRU-D [6], in which the missing data were
represented as the combination of the last observed values and
the mean value. GRU-D laid the foundation for other methods
and demonstrated its significantly high performance on health-
care data with labels. Unfortunately, this method can not
be directly applicable in an unsupervised manner on general
datasets without the tag for each time series as our focus on
network traffic data. Following GRU-D, Cao, Wang, Li, et
al. introduced Bidirectional Recurrent Imputation for Time-
series (BRITS) as a novel bidirectional LSTM-based model for
multivariate time series recovery [7]. A temporal decay factor
and a linear layer were introduced in the BRITS model, which
can help learn the spatial-temporal features of data recorded
in irregular intervals. More recently, Generative Adversarial
Network (GAN) has been used to impute missing values. Luo,
Zhang, Cai, et al. proposed an End-to-end GAN (E2GAN)
[8] for extracting feature representation of time series and
reconstructing it from the low-dimensional vector. E2GAN
model leverages the GRU-I cell, which was used in [7], to
process the incomplete time series. However, E2GAN only
uses a unidirectional recurrent model and does not consider the
correlation between the time series. Most recently, motivated
by CP decomposition, NTC model was introduced in [1],
which was specifically designed for imputing network traffic.
However, by taking the index of each observed data as the
input, NTC suffers from a scalability issue when the number
of observed data in the training set is significantly large.

Although many efforts have been devoted to data impu-
tation, most of the deep learning methods proposed so far
have not focused on the network traffic data. Therefore, they
suffer from the following critical problems. First, most of the
methods mainly focused on the temporal relationship. Some
approaches (e.g., BRITS [7]) have considered leveraging the
spatial features, but they only cope with the static spatial
correlations. Meanwhile, the correlations between the time
series in the network traffic data vary significantly over time
due to network behavior dynamics. Fig.1 visualizes the traffic
load on three different links in the Abilene network to show
the variation of the network behavior. Due to the dynamic of
the routing scheme, the correlation between the links’ traffic
is inconsistent. Specifically, the traffic on link 3 shows a high
correlation to that of link 2 on the first day, whereas, on the
next day, it appears to be closely similar to link 1. Second,
the existing models have not been evaluated by the network
traffic dataset (e.g., the Abilene dataset). As the network
traffic possesses unique characteristics, as mentioned above,
the evaluation results for other data types are not likely to fit
with network traffic data.

In this paper, we focus on network measurement data and
propose Graph Convolutional Recurrent Neural Network for
Imputing Network Traffic (GCRINT), a spatial-temporal deep
learning model for network traffic imputation. GCRINT is
a combination of the RNN-based model and Graph-based

neural network. We design a multi-layers model whose each
layer has two modules for learning features in time and space
domains. Like BRITS, we use a bidirectional LSTM model
for learning the temporal feature in the traffic data. To cope
with the dynamic correlation mentioned above, we use Graph
Convolutional Neural Network to exploit the spatial feature
among the traffic flows automatically. Then, each layer’s
outputs are combined by a fully connected layer to obtain the
final imputed data. Furthermore, to address the LSTM model’s
scalability in handling long sequences, the input is reduced
by half after each layer. In this way, we can still learn the
long-range dependency on deeper layers while lowering model
complexity.

The contributions of this paper can be summarized as
follows:

• We design the GCRINT model, which considers both
spatial and temporal correlations to impute the missing
network traffic data accurately.

• We conduct extensive experiments with various network
traffic datasets to evaluate the prediction accuracy of
the proposed method. We also study the performance of
GCRINT when applying to other networking tasks such
as traffic engineering.

This paper is organized as follows. The second section for-
mulates the time series imputation problem and the overview
of our solution. The proposed model and the mechanism to
enhance the trainability of neural networks for data imputation
are described in Section III. In Section IV, we describe how
traffic engineering can leverage network traffic imputation. The
next section presents experimental studies. Some conclusions
are drawn in the final section.

II. PRELIMINARIES

In this section, we first formulate the multivariate time
series imputation problem and then present the background of
Long Short-Term Memory and Graph Convolutional Neural
Networks.

A. Problem description

We denote a partially observed data with D different time
series (traffic flows), which are observed at N time steps, as
X ∈ RN×D. X is generally an incomplete matrix where each
column Xd = (xd

1, ..., x
d
N ) denotes the d-th time series and

each row Xt = (x1
t , ..., x

D
t ) is the data at time step t. We use

a mask matrix M ∈ {0, 1}N×D to indicate the locations of
the missing value, where md

t = 1 if xd
t is observed, and 0,

otherwise. The imputation problem can be formulated as:

min
X̂

N∑
t=1

D∑
d=1

|x̂d
t − xd

t |

s.t.

N∑
t=1

D∑
d=1

md
t ∗ |x̂d

t − xd
t | = 0

(1)

where x̂d
t ∈ X̂ is the imputed data of X .



(a) The overview of our proposed data imputation model (b) The input layer.

Fig. 2: The architecture of GCRINT model

B. Bidirectional Long Short Term-Memory Network

LSTM network is a special RNN that replaces the standard
RNN units with the LSTM units. LSTM network has been
proved to be stable and powerful for modeling long-range
dependencies in various domains. Thus, it is well-suited for
processing and making predictions based on time series or
sequence data. Indeed, LSTM has been applied in many
real-life sequence modeling problems. Bidirectional LSTM
(BiLSTM) is a modification of the LSTM network where an
additional backward LSTM is added to the model. The added
backward network help to capture the information by the
inverse order. Then, the outputs of the forward and backward
networks are concatenated or averaged to obtain the final
outputs. Therefore, the BiLSTM is widely used to solve the
problems of estimating the missing data in a sequence, such
as predicting the missing words in a sentence.

C. Graph Convolutional Neural Network

Graph Convolution Neural Network (GCN) is well-known
for extracting the spatial features in data given its structural
information in the form of a graph. Unlike the conventional
Convolutional Neural Network (CNN), which is designed to
exploit features of a fixed size, grid-based data structure
such as images, GCN can learn the hidden representation of
the unordered and variable-sized data structure [9]. In [10],
the authors introduced the Diffusion Diffusion Convolutional
Neural Network (DCNN) to learn the spatial relations in the
graphical data efficiently. Then, the DCNN has been applied
in many studies [11], [12], to handle spatial-temporal data. In
this study, we leverage the ability of DCNN to extract spatial
features among traffic flows. The dynamic correlation of traffic
flows can be learned from the data to improve imputation
accuracy. In the next section, we will present in detail our
proposed model GCRINT for imputing missing values in the
network traffic data.

III. GRAPH CONVOLUTIONAL RECURRENT NEURAL
NETWORK FOR IMPUTING NETWORK TRAFFIC

In this section, we present GCRINT (Fig.2a), which is
the combination of BiLSTM and GCN for imputing network

traffic. Overall, GCRINT has three main modules: an input
layer, BiLSTM, and GCN layers. The input layer is respon-
sible for extracting hidden features from the input, while the
BiLSTM and GCN layers are for learning the temporal and
spatial features in the data. GCRINT has multiple layers of
BiLSTM and GCN; thus, it can handle temporal and spatial
dependencies at different levels. After each layer, the number
of time-steps in the sequence data is reduced by half. By
skipping some time-steps in the sequence data, we reduce
the computational complexity in the latter layers while still
learning the long-term temporal information. We combine the
outputs from each layer and use a fully connected layer to
obtain the final output. Next, we present the details of each
module in GCRINT.

A. Input layer

In contrast to the tensor completion-based approaches,
which process the whole data at once, in the deep learning-
based approaches, data is divided into sub-sequences and put
into the imputation model sequentially. Let [X1:T ,M1:T ] be
the input of the GCRINT model in which X1:T is the traffic
data of T time steps and M1:T is its corresponding mask
matrix. Thus, the input of GCRINT is a 3D tensor [T,D, 2]
with two features: the traffic volume and the mask. In the
input layer, we use two fully connected networks to obtain
the feature representation of the input (as shown in Fig. 2b).
After passing the input layer, we receive the output of X1:T ,
which is a 3D tensor with the size of [T,D,HI ] (HI is the
number of hidden units of the fully connected network in the
input layer). Then, X1:T is fed into the BiLSTM layers.

B. Temporal feature learning with BiLSTM

Unlike the normal BiLSTM that receives the same input
for both forward and backward LSTM networks, the BiLSTM
layer in GCRINT takes inputs with different alignments for
each LSTM propagation direction. Specifically, the forward
LSTM takes X1:T−2 as input and obtains output X f

2:T−1 for
time-steps from 2 to T−1. Similarly, X3:T and X b

2:T−1 are the
input and output of the backward LSTM. Therefore, from both
LSTM networks, we obtain the output for the same time-steps



Fig. 3: Traffic Engineering leveraging network traffic imputation.

[2 : T − 1]. This technique was presented in [7] to overcome
the backpropagation issue caused by the missing values in the
data. The final output of BiLSTM layer XG is the mean of
X f

2:T−1 and X b
2:T−1 (Eq. 2).

XG = tanh ((X f
2:T−1 + X

b
2:T−1)/2) (2)

The output of the BiLSTM layer is a 3D tensor with the
size of [T − 2, D,HB], where HB is the hidden size of the
LSTM networks.

C. Spatial feature learning with GCN

The GCN in each layer falls into the spatial-based, node-
level graph neural networks. Each node in the graph represents
the traffic of a network flow. We use Diffusion Convolutional
Neural Network to extract the spatial relationships among the
traffic flows, as shown in Equation (3).

Z =

K∑
k=0

f(P kXGWk) (3)

where XG is the input of GCN, K is the number of diffusion
steps, P k is the power series of the transition matrix, f(.) is
the activation function, and Wk is the learnable parameters.
The transition matrix is computed by P = D−1A where A is
the adjacency matrix of the graph, D is the diagonal matrix
of node degrees, Dii =

∑
j Aij .

However, there is no explicit graph representing the relations
among the traffic flows in this work. Therefore, we adopt the
Self-adaptive Adjacency Matrix from [12] to learn the input
data’s adjacency matrix. The Self-adaptive Adjacency Matrix
is obtained by Equation (4) proposed in [12].

Aadp = Softmax(ReLU(E1E
T
2 )) (4)

where E1, E2 are the learnable parameters. From (3) and (4),
the DCNN with Self-adaptive Adjacency Matrix is represented
as:

Z =

K∑
k=0

f(Ak
adpXGWk) (5)

The output of the GCN is a 3D tensor Z2:T−1 with size
[T − 2, D,HG] (HG is the hidden size of the GCN). Finally,
The outputs of the GCN in each layer are combined and fed
into a fully connected layer to obtain the final output.

IV. DOWNSTREAM APPLICATIONS

Although there are many proposed methods for imputing or
recovering missing values in the network data [1], [4], most of
them concentrated on improving the imputation error without
considering the performance of downstream applications. In
this section, we present how Traffic Engineering leverages
network traffic imputation. The objective of the traffic engi-
neering problem is to find a routing policy that minimizes the
maximum link utilization (MLU) of the network and avoids
traffic congestion. To this end, a common solution is to infer
the future network traffic and then determine a routing policy
that can adapt to the network traffic’s dynamic. However, most
traffic prediction methods proposed so far did not consider the
impact of the missing values in the network data.

Figure 3 shows how traffic engineering benefits from the
imputed network traffic data. First, the missing data is re-
covered using imputation models such as GCRINT, BRITS;
then, a prediction model is trained using the imputed data.
The prediction model predicts the future network traffic from
the imputed data and uses it as input for calculating the routing
policy. We use a simple LSTM model as the traffic prediction
model and 2-Segment Routing [13] to calculate the routing
policy. The performance of traffic engineering (MLU) is used
to evaluate the performance of imputation methods.

V. EXPERIMENTAL STUDY

We design three types of experiments to evaluate our
approach to network traffic imputation problem with real
backbone network datasets. The experiment’s results can be
reproduced at [14].

A. Datasets and baseline methods
We conduct experiments on two real network datasets:

Brain, and Abilene, available at [15]. Each dataset is divided
into three sets: 70% for training, 10% for validating, and 20%
for testing. Note that, although the Brain network has 161
nodes in total, most of them are regional nodes. Therefore, we
only consider the aggregated traffic from 9 backbone nodes in
the Brain network.

The baseline methods are:
• GCP [5]: the CP decomposition-based tensor completion

approach.
• NTC [1]: the network traffic recovery model combines

deep learning model (3D-CNN) and CP decomposition-
based approach.

• BRITS [7]: This model bases on bidirectional recurrent
network with GRU-I cell to impute time series. We do
not compare with E2GAN [8] because E2GAN uses the
same GRU-I cell, and their performances are relatively
the same.



Fig. 4: Random and block missing schemes
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Fig. 5: GCRINT on different input sizes

B. Performance metrics

We evaluate the imputation error using the Mean Absolute
Error (MAE), which is calculated by Equation (6). For the
traffic engineering problem, after obtaining the routing policy,
the MLU is calculated using the actual traffic matrix from the
test set.

MAE =

∑N
t=1

∑D
d=1 (1−md

t )|xd
t − x̂d

t |∑N
t=1

∑D
d=1 (1−md

t )
(6)

C. Generating synthetic missing data

We synthetically generate the missing data by removing
k% (i.e., the missing rate) entries from the original data. The
value of k is varied from 50 to 90. For each missing rate,
the entries are removed by two patterns: random missing and
block missing as shown in Fig.4. In the random missing, the
entries are randomly removed, while in the block missing, a
block of entries is removed consecutively.

D. Results

1) Impacts of the input size: The traffic data (consisting
of N time-steps) is divided into (N − T ) sub-sequences by
using a sliding window of size T . The missing data in every
sub-sequence is then recovered. Finally, the imputed data is
obtained by taking the average of the overlapped recovered
sub-sequences. In this experiment, we study the impacts of
T on the imputation errors of GCRINT. Figure 5a shows
the imputation errors of GCRINT on Abilene dataset with
60% random missing values. As can be observed, the MAE
decreases when T increases from 16 to 64 but increases
beyond that. This phenomenon can be explained as follows.
With a longer input sequence, the model may receive more
information to recover the missing values, thereby increasing
the imputation accuracy. Using T = 64, we can reduce
16.8%, 13.4% and 12.6% in MAE compared to the cases
T = 16, 32, 48, respectively. However, when the sequence
length is sufficiently large (i.e., T = 80), the imputation model
becomes too complicated, which leads to the LSTM network’s
inherent drawbacks in handling long sequences.

The impacts of T on the training time is depicted in Fig.5b.
As shown, there is a trade-off between the imputation accuracy

and the computational complexity. The larger T , the more
computational overhead in both model training and testing.
Based on the experiment results obtained above, T should
be set to a moderate value of 64. We use this value for all
subsequent experiments.

2) Imputation accuracy: Figure 6 shows the performance
comparison of all the methods in terms of MAE with different
missing scenarios. Overall, the LSTM-based models (i.e.,
BRITS and GCRINT) outperform the CP decomposition-based
approaches in the network traffic imputation problem. Our
proposed model achieves the best performance in all the
scenarios. All the methods have high imputation errors in
the block missing in both datasets compared to the random
missing scenario.

In comparison with GCP and NTC, GCRINT can reduce
MAE by at most 80.5% and 68.7% on the Abilene dataset, and
72.0% and 54.4% on the Brain dataset. Comparing BRITS and
GCRINT, while both models have almost the same MAE in
the low missing rate (i.e., less than 70%), GCRINT achieves
better performance when the missing rate increases. In the
highest missing rate, GCRINT reduces MAE by about 35%.

3) Impacts of imputed data on traffic engineering: In this
experiment, we do the traffic prediction and traffic engineering
(Section IV) by using the imputed data of 90% missing rate.
The optimal results are obtained by using the ground-truth
data. Overall, traffic engineering results reflect the imputation
methods’ performance, as shown in Fig.7. The mean MLU
of GCRINT is 22% lower than BRITS in the block missing
scenario of the Abilene dataset. In the Brain dataset, GCRINT
also reduces the MLU by about 70% to 80% on average,
compared with that of GCP and NTC. Besides, the average
MLU of our proposed model is only marginally over that of
BRITS in the Brain dataset at about 3%.

Although the average MLUs of all the methods are close
to the optimal, GCP and NTC suffer from a significantly
high MLU in some absurd time-steps, especially in the Brain
dataset. Therefore, the variances of GCP and NTC are consid-
erably larger than those of GCRINT. Similarly, solving routing
using imputed data by BRITS leads to high link utilization in
many time-steps of the Abilene dataset (Fig.6a, 6b). In most
of the cases, GCRINT achieves the lowest MLU.

In conclusion, the recovered data provided by our proposed
model facilitates the most stable performance in traffic engi-
neering compared with all recently proposed methods.

VI. CONCLUSION

In this paper, we proposed a novel model, namely GCRINT,
to address the network traffic imputation problem. To ex-
ploit the unique characteristic of traffic data, GCRINT is
constructed with three main modules for extracting temporal
and spatial features. Extensive experiments demonstrated our
model’s effectiveness in real network traffic datasets (e.g.,
Brain and Abilene datasets) with different missing scenarios.
Moreover, we showed that GCRINT can improve the per-
formance of downstream network applications such as traffic
engineering.
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Fig. 6: The comparison of all methods in terms of MAE with different missing scenarios.
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Fig. 7: The comparison of imputation methods in traffic engineering problem.
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