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Abstract For every prime number p,, we define the sequence X, = 7&;1‘0;1?)5;}\1 )
n

where N, = [}_, pk is the primorial number of order n and y ~ 0.57721 is the Euler-
Mascheroni constant. The Nicolas theorem states that the Riemann hypothesis is true
if and only if the X, > 1 holds for all prime p,, > 2. For every prime number py, Xi > 1
is called the Nicolas inequality. We show if the sequence X, is strictly decreasing for
n big enough, then the Riemann hypothesis should be true. Moreover, we demonstrate
that the sequence X,, is indeed strictly decreasing when n — oo. Notice that, Choie,
Planat and Solé in the preprint paper arXiv:1012.3613 have a proof that the Cramér
conjecture is false when X, is strictly decreasing for n big enough. This paper is an
extension of their result.
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1 Introduction

Let N, =2x3x5x7x11x---X p, denotes a primorial. For every prime p,,, we
define the sequence
_ [y, %
" e¥ xloglogN,
The constant ¥y ~ 0.57721 is the Euler-Mascheroni constant, log is the natural loga-
rithm, and ¢ | N, means the prime ¢ divides to N,. The importance of this property
is:
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Theorem 1.1 [6], [7]. X,, > 1 holds for all prime p, > 2 if and only if the Riemann
hypothesis is true. Moreover, the Riemann hypothesis is false if and only if there are
infinitely many prime numbers q; for which X; < 1 and infinitely many prime numbers
rj for which X; > 1.

In mathematics, the Chebyshev function 0(x) is given by

0(x) =} logp

P<x

with the sum extending over all prime numbers p that are less than or equal to x. We
use the following property of the Chebyshev function:

Theorem 1.2 [3].
lim @ =1.

X X

‘We use the Mertens’ second theorem which states:
Theorem 1.3 [5].

. 1
)}g‘[olc(z p —loglogx—B) =0,

q<x

where B ~ 0.2614972128 is the Meissel-Mertens constant.
We use the following property of the Meissel-Mertens constant:

Theorem 1.4 [1].

-1 1
B:}'+log(HL)+Z*-

Besides, we use the following inequality,

Theorem 1.5 [4]. For0 > x> —1:
x> log(1+x).

Choie, Planat and Solé showed that if the sequence X, is strictly decreasing for n
big enough, then the Nicolas inequality is satisfied for a prime big enough [2]. They
have confirmed that X, is strictly decreasing with a numerical computations up to
2 < pn £104729 (thatis 1 < n < 10000) [2]. In addition, these authors in the same
paper arXiv:1012.3613 have shown that the Cramér conjecture is false under the as-
sumption that the sequence X, is strictly decreasing for n big enough [2]. We make a
very similar approach showing the same result: that is, if the sequence X, is strictly
decreasing for n big enough, then the Riemann hypothesis is true. Using the proper-
ties of the Chebyshev function, we prove that the sequence X, is strictly decreasing
when 1 — oo,
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2 On Sequence X,

Theorem 2.1
lim X, =1.

n—soo

Proof By the theorem 1.3,

. 1
lim ()" ~ —loglogp, —B) =0,
q<pn

and by the theorem 1.4,

B:}/+10g(H%l)+Zl.

q q q

Putting all this together yields the result,

. 1 qg—1
lim ()~ —loglogp, —y—log([] —)— ¥ -)=0,
® < < q

qd=DPn qd=DPn

that is equivalent to

. q
lim (1 4y —y—loglog p,) = 0.
ngg(og(qgnq_l) y—loglog p)

‘We use that theorem 1.2:

lim (log(] | Ll) — y—logloglogN,) = 0.

n—roo q\N,, —
Finally, we can apply the exponentiation to show:

im H‘”Nn % ) -1
n—eoe¥ x loglogN,
Theorem 2.2 If X, is strictly decreasing for n big enough, then the Riemann hypoth-
esis is true.

Proof Suppose that N, > 2 is the smallest primorial number such that the Nicolas
inequality is false under the assumption that X; is strictly decreasing (that is X; >
Xi+1). In this way, we have

X, <1

and thus
X1 <Xp < 1.

This implies
limsupX, < 1

n—soo

which is a contradiction with the theorem 2.1. By contraposition, the Nicolas inequal-
ity could be satisfied for all prime p, big enough. Consequently, there would be no
infinitely many prime numbers for which the Nicolas inequality is unsatisfied. Using
the theorem 1.1, we can conclude that the Riemann hypothesis is true when X, is
strictly decreasing for n big enough.
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Theorem 2.3 The inequality X,, > X,+1 is equivalent to

1og 6 (pn+1) Pt
> .
log 6(pn) DPnt1—1
Proof The inequality X,, > X1 can be written as

q _4q
Hl]Wn g—1 Hl]WnH g—1

e¥ xlogloghN, €Y xloglogN, 1

which is the same as
nl q 1 q
q|Nn g—1 q|Nnt1 q—1

loglogN, =~ loglogN, 1’
Howeyver, we know that

) I

qINns 1 q_l pn+1_1 qanq_l

In this way, we have that

Pn+1
1 Pn+1 -1

logloghN, =~ loglogN,1

which is equivalent to
loglog Ny Pn+1
loglogN, Pnt1— 1

that is equal to
log 8(pn+1) P+l
> )
log@(pn) =~ pnt1—1

3 Main Theorem

Theorem 3.1 When n — oo:

log O (ppt1) Pt
> .
loge(pn) Dnt1—1

Proof We know that

log0(p,) = loglogN,

N,
zloglogn—le
Pn+1
= log (logNyy+1 —10g(pn+1))
log(pn-H)
=1 logN, 1 X (1 — ———=
Og<0g n+1 ( logNth]
log(pn+1)
=loglogN, log(l - —————=
0glog Ny, 11 +log( Tog Ny o1
IOg(PrHH)

=log6 +log(1 —
g (pthl) g( 6(pn+1)
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In this way, we have that

loge(pn-H) 10g9(Pn+1)

- —
log8(pn)  1og(pys1) +log(1 — “gELect))

‘We use the theorem 1.5 to show that

. log (pn+1 )

. log(anrl )
e(pn+l)

> log(1
e G )

% > —1 for p, 41 > 2. Hence, we would have that

since 0 > —
1og 6 (pui1) S log 8(pni1)

a0 g0l

Then, it is enough to prove that

10g6(pn+1) > Pn+1
10g9(p,,+1) — 1%%(;[?%11)) ~ pnp1—1

Howeyver, due to the theorem 1.2, we know that

0
n=ee Pl

=1

If we replace the value of 6(p,+1) by p,+1 in the following expression:

log 6 (pn+1 )

log(p,
log 8 (py+1) — “gricet)

then, we obtain that

10gpn+l _ 1ngnJrl « 1

log(ppr1) _
log pni1 — OgIE’iTl) logpnr 1 Pnt1

Therefore, the proof is complete.
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