The Bayesian Reconstruction (BR) Method
Description
//*********************************************************************************
//
// Bayesian Spectral Reconstruction and Extended MEM
//
// Code: Dr. Alexander Karl Rothkopf DATE: July 14th 2021
//
// Method: Dr. Yannis Burnier, Dr. Alexander Karl Rothkopf DATE: 2013
// ========================================================================
//
// THIS PROGRAM IS AN IMPLEMENTATION OF TWO BAYESIAN APPROACHES
// FOR THE NUMERICAL INVERSION OF THE TYPICALLY ILL DEFINED TASK
//
// DATA[t] = Int_-WMIN^WMAX [ K[w,t] * SPEC[w] ]dw
//
// WHERE THE GOAL IS TO EXTRACT THE SPECTRAL FUNCTION SPEC[w] FROM
// THE PROVIDED LATTICE DATA DATA[t] USING A PREVIOUSLY SPECIFIED
// KERNEL FUNCTION K[w,t].
//
// References:
//
// Y. Burnier and A. Rothkopf,
// "Bayesian Approach to Spectral Function Reconstruction for
// Euclidean Quantum Field Theories"
// arXiv:1307.6106 [hep-lat]
// Phys. Rev. Lett. 111, 182003 (2013)
//
// A. Rothkopf
// "Improved Maximum Entropy Analysis with an Extended Search Space"
// arXiv:1110.6285 [physics.comp-ph]
// J.Comput.Phys. 238 (2013) 106-114
//
//*********************************************************************************
//*********************************************************************************
// This program uses adapted code from two libraries:
//
// 1. The GNU Scientific Library:
//
// SINGULAR VALUE DECOMPOSITION
// EIGENSYSTEMS OF SYMMETRIC MATRICES
// MATRIX INVERSION BASED ON QR DECOMPOSITION
// SOLVER FOR Ax=b BASED ON QR DECOMPOSITION
//
// 2. The ALGLIB Library (MPFR part 2.6.):
//
// LBFGS MINIMIZER
// LEVENBERG MARQUARD + LBFGS PRECONDITIONER MINIMIZER
// EIGENVALUES FOR NON_SYMMETRIC MATRICES
//
//*********************************************************************************
Files
BR_Method_Code.zip
Files
(274.9 kB)
Name | Size | Download all |
---|---|---|
md5:58c2aca50ff74d0148255c877aea8d80
|
274.9 kB | Preview Download |
Additional details
References
- Y. Burnier and A. Rothkopf, Phys. Rev. Lett. 111, 182003 (2013)
- A. Rothkopf, J.Comput.Phys. 238 (2013) 106-114